文档库 最新最全的文档下载
当前位置:文档库 › 水溶性高分子增稠剂综述

水溶性高分子增稠剂综述

水溶性高分子增稠剂综述
水溶性高分子增稠剂综述

1 绪论

增稠剂实质上是一种流变助剂,加入增稠剂后能调节流变性,使胶黏剂和密封剂增稠,防止填料沉淀,赋予良好的物理机械稳定性,控制施工过程的流变性(施胶时不流挂、不滴淌、不飞液),还能起着降低成本的作用。特别对于胶黏剂和密封剂的制造、储存、使用都很重要,能够改进和调节黏度,获得稳定、防沉、减渗、防淌、触变等性能。

1.1定义

能明显增加胶黏剂和密封剂黏度的物质称为增稠剂(chickening agent),有水性和油性之分。尤其是水相增稠剂应用更为普遍。在水体系中,当增稠剂达到一定浓度后,亲油端基缔合形成胶束;在水基高分子体系中,增稠剂的亲油基团主要与聚合物粒子缔合,以这种方式完成增稠特性的高分子化合物称为水性增稠剂。

1.2分类及机理

水溶性高分子增稠剂的分类有以下几种:

1.2.1纤维素类[1]

纤维素类在水基体系中是一类非常有效的增稠剂,广泛应用于化妆品的各种领域。纤维素是天然有机物, 它含有重复的葡萄糖苷单元,每个葡萄糖苷单元含有3 个羟基, 通过这些羟基可以形成各种各样的衍生物。纤维素类增稠剂通过水合膨胀的长链而增稠,纤维素增稠的体系表现明显的假塑性流变形态。使用量一般质量分数为1%左右。

纤维素类增稠剂纤维素类增稠剂的增稠机理是疏水主链与周围水分子通过氢键缔合,提高了聚合物本身的流体体积,减少了颗粒自由活动的空间,从而提高了体系黏度。也可以通过分子链的缠绕实现黏度的提高,表现为在静态和低剪切有高黏度,在高剪切下为低黏度。这是因为静态或低剪切速度时,纤维素分子链处于无序状态而使体系呈现高粘性;而在高剪切速度时,分子平行于流动方向作有序排列,易于相互滑动,所以体系黏度下降。

1.2.2 聚丙烯酸类

聚丙烯酸类增稠剂[2]自1953 年Goodrich 公司将Carbomer934引入市场至今已有40年的历史了, 现在这系列增稠剂已经有了更多的选择(见表1) 。

聚丙烯酸类增稠剂的增稠机理有2 种, 即中和增稠与氢键结合增稠。中和增稠是将酸性的聚丙烯酸类增稠剂中和, 使其分子离子化并沿着聚合物的主链产生负电荷, 同性电荷之间的相斥促使分子伸直张开形成网状结构达到增稠效果; 氢键结合增稠是聚丙烯酸类增稠剂先与水结合形成水合分子, 再与质量分数为10 %~ 20 %的羟基给予体(如具有5个或以上乙氧基的非离子表面活性剂)结合, 使其卷曲的分子在含水系统中解开形成网状结构达到增稠效果。

1.2.3 天然胶及其改性物

天然胶主要有胶原蛋白类和聚多糖类,但是作为增稠剂的天然胶主要是聚多糖类( 见表1) 。

增稠机理是通过聚多糖中糖单元含有3个羟基与水分子相互作用形成三维水化网络结构,从而达到增稠的效果。它们的水溶液的流变形态大部分是非牛顿流体, 但也有些稀溶液的流变特性接近牛顿流体。

1.2.4无机高分子及其改性物

无机高分子类增稠剂一般具有三层的层状结构或一个扩张的格子结构,最有商业用途的两类是蒙脱土和水辉石。

其增稠机理是无机高分子在水中分散时,其中的金属离子从晶片往外扩散,随着水合作用的进行,它发生溶胀,到最后片晶完全分离,其结果形成阴离子层状结构片晶和金属离子的透明胶体悬浮液。在这种情况下,片晶带有表面负电荷,它的

边角由于出现晶格断裂面而带有少量的正电荷。在稀溶液中,其表面的负电荷比边角的正电荷大,粒子之间发生相互排斥,故不会产生增稠作用。随着电解质的加入和浓度增加,溶液中离子浓度的增加,片晶表面电荷减少。这时,主要的相互作用由片晶间的排斥力转变为片晶表面的负电荷与边角正电荷之间的吸引力, 平行的片晶相互垂直地交联在一起形成所谓“纸盒式间格”的结构[3] ,引起溶胀产生胶凝从而达到增稠的效果。离子浓度进一步加大又会破坏结构发生絮凝导致降低稠度。这类增稠剂主要用于牙膏、香波、护发素、膏霜、乳液和止汗剂等的增稠。稠度一般随着浓度的增加而迅速增大随后趋于平缓,流变形态为触变性。除具增稠性能外,在体系中还有稳定乳液、悬浮作用。其改性物主要是季铵盐化(见表1),改性后具有亲油性,可用于含油量多的体系。

1.2.5 聚氧乙烯类

一般把相对分子质量大于25000的产品称作聚氧乙烯,而小于25000的称作聚乙二醇。聚氧乙烯的水溶液在质量分数为百分之几时为假塑性流体,其水溶液倾向呈黏稠状。如将浸入其中的物体从溶液中拉出,形成长拉丝和成膜。相对分子质量越大和相对分子质量分布越宽的黏稠性就越大,低相对分子质量和窄相对分子质量分布的聚氧乙烯黏稠性较低,其水溶液的黏度取决于相对分子质量大小、浓度、温度和测量黏度时的切变速度。其溶液的黏度随着相对分子质量的增大和浓度的增加而上升,随着温度上升( 10℃~90℃)而较急剧下降。聚氧乙烯水溶液的假塑性随相对分子质量的减小而降低,相对分子质量1×10^5的水溶液流变性接近牛顿流体。

增稠效果来源于高分子聚合物链溶解进表面活性剂体系中, 增稠机理主要与高分子聚合物链有关,并不依赖于表面活性剂体系。聚氧乙烯的水溶液在紫外线、强酸和过渡金属离子( 特别是Fe3+、Cr3+和Ni2+) 作用下会自动氧化降解,失去其黏度。

1.2.6其他

PVM/MA癸二烯交联聚合物[4](聚乙烯甲基醚/丙烯酸甲酯与癸二烯的交联聚合物)是新的一族增稠剂,在过去3年的个人护理品工业应用中它很快得到认可。它

们能使乳液稳定、增稠,赋予极好的肤感,几乎感觉不到黏性。能配制成透明定型凝胶、喷发胶和乳胶,可用于增稠醇类溶液、甘油和其他非水体系,可在无需乳化剂的情况下悬浮活性组分,在牙膏中它还能起到玉洁纯的增效作用[5]。

PVP(聚乙烯吡咯烷酮)[6]是一种既溶于水,又溶于多数有机溶剂的聚酰胺,外观为白色或淡黄色粉末,或为透明液体,水溶性好,安全无毒,为绿色化学品。PVP广泛应用于医药、化妆品、洗涤用品、饮料、纺织品、造纸、农药和印刷等行业。PVP的增稠性能与其相对分子质量密切相关,在给定浓度的条件下,相对分子质量越大,其黏度也越大。pH值和温度对PVP水溶液的黏度影响都不明显,未交联的PVP 溶液没有特殊的触变性,除非浓度非常高时才会有触变性,并显示很短的松驰时间。

表1:水溶性高分子增稠剂的分类

纤维素类

纤维素、纤维素胶、羧甲基羟乙基纤维素、鲸蜡羟乙基纤维素、乙基纤维素、羟乙基纤维素、羟丙基纤维素、羟丙基甲基纤维素、甲基纤维素、羧甲基纤维素等

聚氧乙烯类

PEG- n( n= 5M、9M、23M、45M、90M、160M)等

聚丙烯酸类

丙烯酸酯/ C10~ 30烷基丙烯酸酯交联聚合物、丙烯酸酯/ 十六烷基乙氧基( 20) 衣康酸物丙烯酸酯/十六烷基乙氧基( 20) 甲基丙烯酸酯共聚物、丙烯酸酯/十四烷基乙氧基( 25) 丙烯酸酯共聚物、丙烯酸酯/十八烷基乙氧基( 20) 衣康酸酯共聚物、丙烯酯酯/十八烷基乙氧基( 20) 甲基丙烯酸酯共聚物、丙烯酸酯/十八烷基乙氧基( 50) 丙烯酸酯共聚物、丙烯酸酯/ VA 交联聚合物、PAA( 聚丙烯酸)、丙烯酸钠/乙烯异癸酸酯交联聚合物、Carbomer( 聚丙烯酸)及其钠盐等天然胶及其改性物

海藻酸及其(铵、钙、钾) 盐、果胶、透明质酸钠、瓜尔胶、阳离子瓜尔胶、羟丙基瓜尔胶、黄蓍胶、鹿角

菜胶及其(钙、钠)盐、汉生胶、菌核胶等

无机高分子及其改性物

硅酸铝镁、二氧化硅、硅酸镁钠、水合二氧化硅、蒙脱土、硅酸锂镁钠、水辉石、硬脂铵蒙脱土、硬脂铵水辉石、季铵盐- 90 蒙脱土、季铵盐- 18 蒙脱土、季铵盐- 18水辉石等

其他

PVM/MA 癸二烯交联聚合物( 聚乙烯甲基醚/ 丙烯酸甲酯与癸二烯的交联聚合物) 、PVP( 聚乙烯吡咯烷酮)等

2.国内外研究现状

自从Vanderhoff 等在1962 年开始的反相乳液聚合方式以来,高分子量的聚丙烯酸类和聚丙烯酰胺的聚合就以反相乳液聚合为主。Ruffner 等发明了以含氮及聚氧乙烯或其与聚氧丙烯交替共聚的聚合型表面活性剂、交联剂和丙烯酸单体采用乳液共聚合的方法制备了聚丙烯酸乳液用作增稠剂, 取得了良好的增稠效果, 并且具有较好的抗电解质性能。Arianna Benetti等[7]采用反相乳液聚合的方法, 以丙烯酸、含磺酸基的单体和阳离子单体共聚,发明了一种用于化妆品的增稠剂。由于在增稠剂结构中引入了抗电解质能力极强的磺酸基和季铵盐,制备的聚合物具有极好的增稠和抗电解质性能。Martial Pabon 等[8]采用反相乳液聚合,以丙烯酸钠、丙烯酰胺和甲基丙烯酸异辛基酚聚氧乙烯酯大单体共聚,制备了疏水缔合型水溶性增稠剂。Charles A. 等[9]以丙烯酸和丙烯酰胺为共聚单体,通过反相乳液聚合制得了高分子量的增稠剂。何平等[10]探讨了有关反相乳液聚合法制备聚丙烯酸增稠剂的几个问题。文中以两性共聚物为稳定剂、亚甲基双丙烯酰胺为交联剂, 引发丙烯酸铵进行反相乳液聚合,以制备高性能的涂料印花增稠剂。研究了不同的稳定剂、引发剂、共聚单体及链转移剂对聚合的影响。指出甲基丙烯酸十二酯与丙烯酸的共聚物能作为稳定剂,过氧化苯甲酰-二甲基苯胺及叔丁基过氧化氢-焦亚硫酸钠两种氧化还原引发剂均能在35℃引发聚合,得到一定粘度的白浆。并且认为丙烯酸铵与15%以下的丙烯酰胺共聚的产物的耐盐性增加。

2.1耐电介质增稠剂的研究[11]

在大多数情况下,纺织品印花色浆中需要加入适量的电解质来保证所印花纹的质量,但是目前市场上大多数的合成增稠剂耐电解质性能较差,无法满足工业需求。苏州大学张玉芳、周向东采用反相乳液聚合法制备了耐电解质性能良好的增稠剂,并将其用于纺织品印花。以N-乙烯基吡咯烷酮为提高增稠剂耐电解质能力的功能单体,丙烯酸为主要原料,N,N’-亚甲基双丙烯酰胺为交联剂,煤油为溶剂,司盘-80为乳化剂,过硫酸钾、过硫酸铵和亚硫酸氢钠为引发体系,吐温-80为反相乳化剂,采用反相乳液聚合的方法,制备了一种耐电解质增稠剂N。

2.2缔合型水性聚氨酯增稠剂的研究,[12]

缔合型水性聚氨酯增稠剂集合优异的增稠、流平、触变、耐酸碱等特性为一体,绿色环保无污染,是目前的高端流变助剂,对缔合型水性聚氨酯增稠剂的研究有着巨大的实际意义和商业价值。西北大学刘志林、陈立宇对缔合型水性聚氨酯增稠剂的合成进行了研究,对于异氰酸基团、醇醚基团、封端剂、溶剂、催化剂等进行了筛选,并考察了合成的工艺条件,研究表明合成该缔合型水性聚氨酯增稠剂的最优条件为:以丙酮为溶剂,以二月桂酸二丁基锡为催化剂,配料比为HDI:PEG-6000:十六醇=2:1:2,聚合温度为60℃,封端温度为65℃,合成出的增稠剂效果良好。对合成的缔合型水性聚氨酯增稠剂进行的系列表征表明,该反应为亲核反应,合成样品的热稳定性良好,增稠剂分子硬段在分子中起着骨架作用,软段在分子中起着亲水功能。亲水链段和疏水链段的长度比值要在一个特定的值域内增稠效果才能达到最好。温度、酸、碱、电解质、表面活性剂等外部因素对增稠性能的影响表明,温度、碱、电解质、表面活性剂对增稠体系的影响较大,少量的碱、电解质、表面活性剂就会使体系粘度大幅度的变化,而酸对体系的影响很小,甚至还会对体系的热稳定性起促进作用。

2.3耐盐增稠剂的研究[13]

张海玲、周向东、史亚鹏等以丙烯酸、煤油、丙烯酸十八酯等为主要原料,采用反相乳液聚合制备了一种耐盐增稠剂。考察了pH 值、溶剂种类、乳化剂用量、耐盐单体用量等对增稠剂主要性能的影响,并优化了合成工艺。优化的工艺条件为: pH 值至6.5,以煤油为溶剂,乳化剂Span-80和丙烯酸十八酯用量分别为单体总用量的8%和1.5%,高速乳化45 min后,在氮气保护下聚合反应约2h,最后加入Tween-80反相乳化45 min,出料即得到增稠剂。结果表明,自制增稠剂1%原糊黏度为1 387.7 mPa·s,对盐的黏度保留率为47.82%,抱水性为1.5 cm/15min,PVI 值为0.27,得色量( 正面K/S值)达20以上,渗透率达67%以上,色泽不匀度在0.173%以下,脱糊率在84%以上,综合性能良好。

2.4溶剂聚合法制备粉末状聚丙烯酸增稠剂[14]

马晓原,王万绪等以丙烯酸和季戊四醇三烯丙基醚为原料,过氧化十二酰为引发剂,在乙酸乙酯溶剂中制备了粉末状聚丙烯酸增稠剂。研究了交联剂和引发剂用量、反应时间对产物水溶液的黏度和透光率的影响,并采用红外光谱、激光粒度仪、扫描电镜等对产品进行了表征。结果表明: 聚丙烯酸增稠剂的最佳合成条件为: 季戊四醇三烯丙基醚用量为丙烯酸单体质量的1.0%,引发剂用量为丙烯酸单体质量的0.8%时,在73~76℃的温度下反应4 h。粉末状聚丙烯酸增稠剂的粒径分布在1~100μm 范围内,在水溶液中粒径小于200nm。采用该法合成的PAA 水溶液的黏度和透光率不低于文献报道的乳液聚合法和反相乳液聚合法所得产品。

2.5反相乳液聚合法制备高性能聚丙烯酸钠增稠剂[15]

卞进发实验采用反相乳液聚合法, 研究以丙烯酸、煤油、N,N-亚甲基双羟丙烯酰胺为原料,合成高性能聚丙烯酸钠增稠剂。通过对中和度、聚合温度、煤油用量、交联剂用量、引发剂等多个条件实验的研究,得到了聚合的最佳工艺条件: 中

和度控制在75%,反应温度为50℃,煤油用量为丙烯酸量的0.5倍,交联剂用量0.2g, 引发剂过硫酸胺和连二亚硫酸钠分别为丙烯酸量的1%和0.75%质量分数。采用最佳工艺条件合成所得产品聚丙烯酸钠性能优良,设备投资省,操作简便。聚丙烯酸钠增稠剂的性能较优,粘度达到630mPa·s,增稠倍率达到30。

3.市场与应用[16]

增稠剂的用途相当广泛,目前应用研究已经深入到印染纺织、水性涂料、医药、食品加工和日常用品等方面。

3.1印染纺织

纺织品及涂料印花要获得良好的印制效果和质量,很大程度上取决于印花色浆的性能,其中增稠剂的性能起着至关重要的作用。加入增稠剂可使印花产品给色量高,印花轮廓清晰,色泽鲜艳饱满,提高产品的透网性和触变性,给印染企业创造更大的利润空间。印花色浆的增稠剂过去多用天然淀粉或海藻酸钠,由于天然淀粉成糊困难、海藻酸钠价格较贵等原因,现在逐渐被丙烯酸型印染增稠剂所代替。

3.2水性涂料

涂料的主要功能是装饰及保护被涂物。适当地加入增稠剂,可以有效地改变涂料体系的流体特性,使之具有触变性,从而赋予涂料良好的贮存稳定性和施工性。好的增稠剂要达到如下要求:贮存时提高涂料黏度、抑制涂料的分离,高速涂装时要降低黏度,涂装后提高涂膜的黏度、防止流挂现象的发生,等等。传统的增稠剂经常使用水溶性的聚合物,例如,纤维素衍生物中的高分子羟乙基纤维素

(HEC)等。SEM[17]资料显示聚合增稠剂还可在纸制品涂膜过程中控制水分的保留,增稠剂的存在可使涂料纸表面呈现光滑和均匀。尤其是溶胀型乳液(HASE)增稠剂有优秀的抗飞溅能力,可以和其它种类增稠剂联合使用,大大减轻涂料纸表面的粗糙度。

3.3食品

迄今世界上用于食品工业的食品增稠剂已有40 余种,主要用来改善和稳定食品的物理性质或形态、增加食品的黏度、赋予食品粘滑适口的口感,并起到增稠、稳定、均质、乳化凝胶、掩蔽、矫味、增香、增甜等作用。增稠剂种类很多,分天然和化学合成两类。天然增稠剂主要从动植物中获取,化学合成的增稠剂有CMC-Na、藻酸丙二酯等。

3.4日化行业

目前使用于日化行业的增稠剂达200多种,主要有无机盐类、表面活性剂类、水溶性高分子类和脂肪醇及脂肪酸类等。在日用品方面,用于洗洁精,可使产品透明、稳定、泡沫丰富、手感细腻、易于漂洗,另外还常应用于化妆品、牙膏等。

3.5其它

增稠剂也是水基压裂液中的主要添加剂,关系到压裂液的使用性能及压裂成败。此外,增稠剂也广泛应用于医药、造纸、陶瓷、皮革加工、电镀等方面。

4.研究发展趋势与展望[18]

增稠剂属于多品种、多功能材料。纤维素增稠剂、聚丙烯酸酯增稠剂、碱溶性丙烯酸增稠剂、聚氨酯增稠剂等系列产品的市场需求量较大, 它们在成糊性、渗

透性、透网性、流变性、触变性、曳丝性、抱水性和混悬性等方面性能突出。随着增稠剂的不断开发, 各生产厂家普遍认识到应用研究的重要意义。但与跨国公司相比, 国内企业的产品在系列化和产品性能上还存在一定差距, 一些产品开发还处于仿制阶段, 今后应该集中精力开发自己的特色产品。液体缔合型无溶剂增稠剂、对聚丙烯酸增稠剂进行共聚改性、增稠剂复配将是今后增稠剂领域开发的方向。此外, 尽管合成增稠剂占据着主要市场面, 但是这些增稠剂大多以反相乳液聚合为主, 有机溶剂的污染给环境带来巨大的压力。因此开发低污染环境友好型增稠剂也是该领域的研究方向之一。

参考文献

[1]刘义,高俊,化妆品用增稠剂,日用化学工业,2003年2月

[2] Zahid Amiad, Wil J Hemkere, Cheryl A Maiden, etal. Carbomerresins: past, present and future [J] . Cosmetics & Toiletries, 1992,107(5) : 81- 86.

[3] Donald J Del l. Smectite clays in personal care products [J] . Cosmetics&Toiletries, 1993, 108 (5):79- 85.

[4] St ephen L Kopolow, Yoon Tae Kwak , Michael Helioff . A new thickener/ stabilizer technology [ J] . Cosmetics & Toiletries, 1993, 108(5):61- 67

[5] Nuran Nabi , Charlnanie Mukerjee, etal In Vitro and in vivo studies ontriclosan/PVM/MA copolymer/NaF combination as anti - plaque agent[ J] . American Journal of Dentistry, 1989, 2 (9) : 197-206

[6] 丁运生,史铁钧,汤雪梅,绿色高分子产品,聚乙烯吡咯烷酮[J].安徽化工,1999(3):5-6

[7] Arianna Benetti, Gianmarco Polotti, Giuseppe Libassi.Inverse emulsions as thickeners for cosmetics [P] .US2007/0258927 Al.

[8] Martial Pabon, Jean-marc Corpart, Joseph Selb, etal.Synthesis in inverseemulsion and properties of water-soluble associating po lymers[J] . Journal of Applied Polymer Science, 2002, 84: 1418-1430.

[9] Charles A Defazion. Preparation of high molecular weight polyacry lates by inverseemulsion polymerization[P] . US4656222, 1987.

[10] 何平,谢洪泉,侯笃冠等.有关反相乳液聚合法制备聚丙烯酸增稠剂的几个问题[J] . 高分子材料科学与工程,2002,18(3) : 172-175.

[11]张玉芳,周向东,耐电解质增稠剂的合成与性能,2014

[12]刘志,陈立宇,缔合型水性聚氨酯增稠剂的合成及表征,2013

[13]张海玲,周向东,史亚鹏等,耐盐增稠剂的合成与性能,印染(2011 No.23)

[14]马晓原,王万绪,杜志平等,溶剂聚合法制备粉末状聚丙烯酸增稠剂,中国日用化学工业研究院,2013年11月

[15]卞进发,反相乳液聚合法制备高性能聚丙烯酸钠增稠剂,计算机与应用化学,2011年11月28日

[16]白庆华,李鸿义,增稠剂的研究进展,河北化工,2011年7月,第34卷第7期

[17] 关有俊,谭亮.新型水性聚氨酯缔合型增稠剂的研制[J].上海涂料,2005,43(7/8):1-3.

[18]范珂瑞,增稠剂的制备及应用研究进展,纺织科技进展,2010年第3期

高分子材料环氧树脂综述

高分子材料环氧树脂综述 摘要:环氧树脂是指分子中含有两个以上环氧基团的一类聚合物的总称。它是环氧氯丙烷与双酚A或多元醇的缩聚产物。由于环氧基的化学活性,可用多种含有活泼氢的化合物使其开环,固化交联生成网状结构,因此它是一种热固性树脂。本文将简单介绍环氧树脂的结构、性能、应用及研究现状,重点介绍环氧树脂的应用前景和研究现状。 关键词:高分子材料;环氧树脂;结构;研究现状 一、前言 在世界范围内, 高分子材料的制品属于最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势, 将是 21 世纪最活跃的材料支柱. 面向21 世纪的高科技迅猛发展, 带动了社会经济和其他产业的飞跃, 高分子已明确地承担起历史的重任, 向高性能化、多功能化、生物化三个方向发展.21 世纪的材料将是一个光辉灿烂的高分子王国. 环氧树脂是指分子中含有两个以上环氧基团的一类聚合物的总称。它是环氧氯丙烷与双酚A或多元醇的缩聚产物。由于环氧基的化学活性,可用多种含有活泼氢的化合物使其开环,固化交联生成网状结构,因此它是一种热固性树脂。双酚A 型环氧树脂不仅产量最大,品种最全,而且新的改性品种仍在不断增加,质量正在不断提高。我国自1958年开始对环氧树脂进行了研究,并以很快的速度投入了工业生产,至今已在全国各地蓬勃发展,除生产普通的双酚A-环氧氯丙烷型环氧树脂外,也生产各种类型的新型环氧树脂,以满足国防建设及国家经济各部门的急需。 二、基本分类 1.分类标准 环氧树脂的分类目前尚未统一,一般按照强度、耐热等级以及特性分类,环氧树脂的主要品种有16种,包括通用胶、结构胶、耐高温胶、耐低温胶、水中及潮湿面用胶、导电胶、光学胶、点焊胶、环氧树脂胶膜、发泡胶、应变胶、软质材料粘接胶、密封胶、特种胶、潜伏性固化胶、土木建筑胶16种。 2.几种分类 对环氧树脂胶黏剂的分类在行业中还有以下几种分法: (1)按其主要组成分为纯环氧树脂胶黏剂和改性环氧树脂胶黏剂; (2)按其专业用途分为机械用环氧树脂胶黏剂、建筑用环氧树脂胶黏剂、电子环氧树脂胶黏剂、修补用环氧树脂胶黏剂以及交通用胶、船舶用胶等; (3)按其施工条件分为常温固化型胶、低温固化型胶和其他固化型胶; (4)按其包装形态可分为单组分型胶、双组分胶和多组分型胶等; 还有其他的分法,如无溶剂型胶、有溶剂型胶及水基型胶等。但以组分分类应用较多。 三、几种常见环氧树脂结构

高分子水凝胶

高分子水凝胶 凝胶是指溶胀的三维网状结构高分子。即聚合物分子间相互连结,形成空间网状结构,而在网状结构的孔隙中又填充了液体介质。 药用的凝胶大部分是水凝胶(hydrogel),它们通过制剂的形式进入体内后吸收体液自发形成。水凝胶是指一种在水中能显著溶胀、保持大量水分的亲水性凝胶,为三维网络结构,多数水凝胶网络中可容纳高分子本身重量的数倍至数百倍的水,它不同于疏水性的高分子网络如聚乳酸和聚乙醇酸(只有有限的吸水能力,吸水量不到10%)。水凝胶中的水有两种存在状态。靠近网络的水与网络有很强的作用力,这种水在极低温度下又有冻结的和不冻结之分,而离网络比较远的水与普通水性质相似称为自由水。 影响水凝胶形成的主要因素有浓度、温度和电解质。每种高分子溶液都有一个形成凝胶的最小浓度,小于这个浓度则不能形成凝胶,大于这个浓度可加速凝胶。对温度来说,温度低,有利于凝胶,分子形状愈不对称,可胶凝的浓度越小,但也有些高分子材料加热后胶凝,低温变成溶液。电解质对胶凝的影响有促进作用也有阻止作用,其中阴离子起主要作用。 水凝胶从来源分类,可分为天然水凝胶和合成水凝胶;从性质来分类,可分为电中性水凝胶和离子型水凝胶,离子型水凝胶又可分为阴离子型、阳离子型和两性电解质型水凝胶。 根据水凝胶对外界刺激应答情况不同,水凝胶又可分为两类:①传统的水凝胶,这类水凝胶对环境的变化,如PH或温度变化不敏感;②环境敏感水凝胶,这类水凝胶对温度或PH 等环境因素的变化所给予的刺激有非常明确和显著的应答。 不同结构、不同化合物的水凝胶具有不同的物理化学性质如溶胀性、触变性、环境敏感性和黏附性等: (一)溶胀性:水凝胶在水中可显著溶胀。溶胀性是指凝胶吸收液体后自身体积明显增大的现象,这是弹性凝胶的重要特性,凝胶的溶胀可分为两个阶段:第一阶段是溶剂分子钻入凝胶中与大分子相互作用形成溶剂化层,此过程很快,伴有放热效应和体积收缩现象(指凝胶体积的增加比吸收的液体体积小);第二阶段是液体分子的继续渗透,这时凝胶体积大大增加。溶胀的大小可用溶胀度(swelling capacity)来衡量。 (二)环境敏感性:又称智能水凝胶,根据环境变化的类型不同,环境敏感水凝胶又分为如下几种类型:温敏水凝胶、PH敏水凝胶、盐敏水凝胶、光敏水凝胶、电场响应水凝胶、形状记忆水凝胶。非离子型水凝胶溶胀性只取决于聚合物的化学组成,而与外界环境无关。(三)黏附性:或称黏着或黏接等。一般指的是同种或两种不同的物体表面相黏接的现象。除非其中之一为具有黏附性的材料,或者两个表面能通过物理、化学作用而产生黏附性,否则就要用到胶黏剂。在现代新型的药物制剂中为了通过黏附作用达到长效、缓释和靶向给药的目的,往往使用聚合物水凝胶,以达到在生物体上黏附的目的。 由于水凝胶具有良好的生物相容性,对药物的释放具有缓释、控释作用及可吸水膨润等优点,引起了众多研究者的浓厚兴趣,在中药领域也逐渐得以研究应用.如把一些传统的中药散

电致发光高分子功能材料的应用..

电致发光高分子材料及其应用进展 孙东亚*,1,何丽雯2 (1 厦门理工学院材料科学与工程学院福建厦门361024) (2华侨大学材料科学与工程学院福建厦门361021) 摘要:主要介绍了导电高分子的一个重要门类-电致发光(有机EL,也称作OLED)聚合物材料的发光机理、制备工艺及应用现状。结合有机OLED相比于传统显示材料及器件具有发光效率高、波长易调节、寿命长、机械加工性能好等优势,综述了OLED材料及器件在环保照明及平板显示领域取得进展和未来的发展方向。 关键词:电致发光;高分子材料;平板显示; Abstract:An important category of conductive polymer-electroluminescent (organic EL, also known as OLED) luminescence mechanism, preparation process and application status of polymer materials has been introduced. Compared to traditional display materials and devices, the organic combination of OLED has high luminous efficiency, long life, easy to adjust the wavelength, good machining performance and other advantages. At the same time, we summarized the progresses and future development of OLED materials and devices in the green lighting and panel display. 0 前言 有机高分子光电材料由于其诱人的应用前景而得到了人们的广泛关注和研究[1-10]。近年来,导电高分子的研究取得了较大的进展,科学家对其合成、结构、导电机理、性能、应用等方面经过多年的研究,已使其成为一门相对独立的学科。目前,有机电致发光平面显示器(OLED)在一些领域里已经取代了液晶显示器占有平面显示器的主要市场。与液晶平面显示器相比, 有机电致发光平面显示器以及高效率的节能照明设备具有主动发光、轻薄、色彩绚丽、全角度可视、能耗低等显著特点,吸引很多国内外研究机构和国际知名大电子、化学公司都投入了巨大的人力财力研究这一领域[11-15]。虽然在应用研究领域已经取得了巨大的成功,但是无论从综合发光效率、发光波长的调整、稳定性和寿命等方面还有待更进一步的发展。本文综述了近年来OLED材料与器件在制备工艺及品质质量方面所取得的进展及需要解决的主要问题。 1 有机电致发光器件及原理 由电能直接激发产生的发光现象称为电致发光。如图1所示,电致发光材料是通过电极向材料注入空穴和电子,两者通过在材料内部的相对迁移在材料内部发生复合形成激子(激发态分子),然后激子导带中的电子跃迁到价带的空穴中,多余的能量以光的形式放出,产生发光现象。 福建省中青年教师教育科研项目(JB14077) Education Scientific Project of Young Teacher of Fujian Province(JB14077) 作者简介:孙东亚(1982-),男,硕士,工程师,从事光电功能材料制备与表征,E-Mail:

有机高分子磁性材料研究综述

有机磁性材料研究综述 摘要:有机磁性材料是最近二十多年发展起来的新型的功能材料,因为其结构的多样性,可用化学方法合成,相比传统磁性材料具有比重低、可塑性强等等优点,因此在新型功能材料方面有着广阔的应用前景。本文综述了高分子有机磁性化合物的发展和研究近况,及其有机高分子磁性材料的分类及其应用前景。 关键词:有机磁性材料结构型复合型 Review on the research of organic magnetic material Abstract: organic magnetic material is a new functional material in recent twenty years, because of the diversity of its structure, synthetized by chemical method , compared with the traditional magnetic materials with a low specific gravity, high plasticity, and so on, so it has a broad application prospect in the new functional materials.This paper reviews the development and research status of high polymer organic magnetic materials’compounds, classification and its application prospect. Key word: organic magnetic material intrinsic complex

高分子水凝胶综述

高分子水凝胶综述 摘要 在这篇综述中,笔者以高分子水凝胶为探究的领域,围绕其产生、发展、应用等诸方面,浅层次地加以论述。论文大体的探讨方式是这样:首先以高分子水凝胶的出现为基点,考察其定义的由来以及与吸水树脂之间的关系;然后以高分子水凝胶潜在应用价值的属性为导向线,对其进行分类,讨论相应的制备方法和水凝胶性能各类表征方法;接着突出强调环境敏感性水凝胶的制备及响应原理;而水凝胶实际应用及缺陷则作为最后系统概括。 关键词:高分子水凝胶应用性能制备 产生、定义与比较 高分子水凝胶的合成可以追溯到20世纪50年代后期,Wichterle和Lim合成了第一个医用甲基丙烯酸羟乙酯(HEMA)水凝胶[1]。对于高分子水凝胶的定义,各个文献报道的都很接近,即由带有化学或物理交联的亲水性高分子链形成的三维固体网络[2],在水环境下高分子水凝胶能够发生吸水溶胀,甚至有的吸水能超过其自重好多倍(图1) 图1凝胶吸水溶胀前与溶胀后的比较(左侧为吸水溶胀后,右侧为吸水溶胀前)

同时,笔者发现,高分子水凝胶与吸水树脂之间的关联需要被加以认知。吸水树脂本身就是一种新型功能高分子材料,具有亲水基团,能吸收大量水分而又能保持水分不外流。当水分子通过扩散作用及毛细作用进入到树脂中时,形成的树脂即称为高分子水凝胶。也就是说,吸水树脂是高分子水凝胶的前身,且当树脂经吸水后才成为水凝胶。 此外,对于高分子水凝胶的吸水并且保水的机理也需要加以阐述。从化学结构上来分析,凝胶是分子中含有亲水性基团和疏水性基团的交联型高分子。在凝胶的交联网格里,必然存在很多疏水性基团朝外,亲水性基团朝里的结构,在这样的结构下,亲水性基团与水分子以氢键等方式进行结合,疏水性基团在外头形成的屏障可以有效地间隔不同的内亲水网格,起到容纳水分子容器的作用(图 2)。 O OH R O O H R O O H R O O H R O OH R O OH R O OH R O H H 图2 凝胶保持水分子示意图 图2中,右下侧的疏水性基团是朝内的,这表明凝胶亲水性网格结构内部也是含有非亲水性基团的;而水分子与亲水链上的氧之间形成了氢键。 此外,还能说明一个问题:理论上能够和亲水性基团之间发生水合而吸附在高分子聚合物周围的水分子,其厚度最多不过2~3层,第一层水分子是由亲水性基团与水分子形成的配位键或氢键的水合水,第二层或第三层则是水分子和水合水形成的氢键结合层,作用力随层数的增加而不断减弱。而凝胶之所以能够吸收更多的水分,原因就在于其交联网格结构。这样的结构是包裹式的,以立体三维式取代了平面式,而且链上亲水性基团的复杂交错,给容纳水分提供了优良的环境。

电致发光及原理

电致发光及原理 电致发光ElectroluminescenceEL是物质在一定的电场作用下被相应的电能所激发而产生的发光现象。电致发光EL是一种直接将电能转化为光能的现象。早在20世纪初虞瑟福就发现了SiC晶体在电场作用下的发光。电致发光作为一种平面光源引起了人们的极大爱好。人们企图实现照明光源从点光源、线光源到面光源的革命。自从无机发光板硫化锌和磷砷化镓化合物发明以来电致发光已被广泛应用在很多领域取得了令人瞩目的成就。尽管粉末电致发光现象早在1937年就被发现但直到50年代将硫化锌和有机介质涂敷在透明导电玻璃上再做上第二电极加上交流电压才实现稳定的电致发光。人们逐渐把目光投向了性能更为优良的新一代平板显示器件工艺更简单的新型有机电致发光器件OLED。 1.电致发光材料从发光材料角度可将电致发光分为无机电致发光和有机电致发光。无机电致发光材料一般为等半导体材料。有机电致发光材料依占有机发光材料的分子量的不同可以区分为小分子和高分子两大类。小分子OLED材料以有机染料或颜料为发光材料高分子OLED材料以共轭或者非共轭高分子聚合物为发光材料典型的高分子发光材料为PPV及其衍生物。有机电致发光材料依据在OLED器件中的功能及器件结构的不同又可以区分为空穴注进层HIL、空穴传输层HTL、发光层EML、电子传输层ETL、电子注进层EIL等材料。其中有些发光材料本身具有空穴传输层或者电子传输层的功能这样的发光材料也通常被称为主发光体发光材料层中少量掺杂的有机荧光或者磷光染料可以接受来自主发光体的能量转移和经过载流子捕捉carriertrap的机制而发出不同颜色的光这样的掺杂发光材料通常也称为客发光体或者掺杂发光体英文用Dopant表示。从发光原理角度电致发光可以分为高场电致发光和低场电致发光。 2.电致发光的原理和器件结构从发光原理电致发光可以分为高场电致发光和低场电致发光。高场电致发光是一种体内发光效应。发光材料是一种半导体化合物掺杂适当的杂质引进发光中心或形成某种介电状

蒽类电致发光材料研究进展

文章编号:1006-6268(2008)04-0029-07 蒽类电致发光材料研究进展 摘 要:有机电致发光二极管显示技术与液晶、等离子等平板显示技术相比具有很多优势及市场 竞争力,被称为第三代显示技术。在这一研究领域,发光材料一直是关注的焦点。由于蒽类化合物具有刚性结构、宽能隙和高荧光量子效率的优点,到目前为止,研究者已开发了大量的蒽类发光材料。本文主要按照材料结构与性能特点分类对其研究进展进行了综述。并提出了进一步开发蒽类新发光材料的思路。 关键词:蒽衍生物;有机电致发光;材料研究进展中图分类号:O625.1;TN383.1文献标识码:A ProgressinAnthracene-basedElectroluminescentMaterials XUEYun-na,CHAISheng-yong,BIEGuo-jun,LIUBo,GANNing (DepartmentofOptoelectronicMaterials,Xi'anModernChemistryResearchInstitute, 710065,Xi'an,China) Abstract:OrganicLight-emittingDiode(OLED),possessingmanykindofadvantages,andmarketcompetitivepotentialsoverLCDandPDPetal,iscalledthethirdgenerationdisplaytechnology.IntheOLEDresearchfiled,thelight-emittingmaterialsarealwaysbeingfocusedon.Sinceanthracenederivativeshaverigidstructure,wideenergygapsandhighfluorescentquantumefficiency,agreatdealofanthracene-basedelectroluminescentmate-rialshavebeendevelopedtillnow.Theprogressofanthracene-basedelectroluminescentmaterialsisreviewedaccordingtothemolecularstructuresandlight-emittingproperties.Theresearchideasonnewanthracene-basedelectroluminescentmaterialsarealsosuggested. Keywords:anthracenederivatives;organicelectroluminescence;materialsdevelopingprogress 薛云娜,柴生勇,别国军,刘 波,甘 宁 (西安近代化学研究所光电材料事业部西安710065) 技术交流

电致发光高分子材料综述

电致发光高分子材料综述 作者:张祺夏沣任彤尧汤伟 摘要:高分子发光二极管(PLED)是由英国剑桥大学的杰里米伯勒德及其同事首先发现的。聚合物大多由小的有机分子以链状方式结合在一起,以旋涂法形成高分子有机发光二极管,因其巨大的科学和商业价值而得到了广泛的关注,是近来国际上的研究热点。对于各种新材料的不断开发和深入研究,PLED器件日益实用化。本文主要综述了近几年国内外关于高分子聚合物在电致发光材料领域的研究进展,介绍了有机高分子发光材料的发展现状,概述了其市场前景及相关的应用,并展望了高分子电致发光材料的发展趋势。 关键词:高分子;电致发光;研究现状 Abstract:Polymer light-emitting diode (PLED) first discovered by Jerry Mibo Lede of the University of Cambridge and his colleagues. Most organic polymer molecules from the small ones to chain together by a spin-coating to form polymer organic light-emitting diodes, because of its great scientific and commercial value ,it has been widespread concerned, and becomes the recent international researchs’ focus. For the continuous development of new materials and in-depth researchs, PLED devices become increasingly practical. This paper mainly overviews the recent years’domestic and foreign polymer progress of research in electroluminescent materials, describes the recent status of the development of organic polymer light-emitting materials, overviews the market prospects and related applications, and prospects of polymer electroluminescent material trends. Keywords:Polymer; EL; Research status

现代高分子材料综述(非常好!!)

现代高分子材料综述 材料学王晓梅学号:112408 摘要 高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。本文将从高分子材料的定义、主要种类、应用和以塑料为例介绍与人类生活息息相关的高分子材料的相关常识。本文综述了各类高分子材料的研究及发展,主要论述了导电高分子材料、功能高分子材料、工程高分子材料、复合高分子材料以及生物高分子材料等应用领域。 前言 高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料[1]。 由于高分子化学反应和合成方法对高分子化学学科发展的推动,促进了高分子合成材料的广泛应用。同时,随着高分子材料的发展,纳米技术与生物技术之间的界限变得越来越小,并与更多的传统分子科学与技术相结合。因此,我们相信,高分子技术的发展促使使各类高分子材料得到更加迅速的发展,推广和应用。 1

(发展战略)光功能高分子材料的研究发展及应用

论光功能高分子材料的研究发展及应用综述 吴俊杰 化工081班 前言:光功能高分子材料研究是光化学和光物理科学的重要组成部分,近年来随着现代科学技术的发展,光功能高分子材料研究在功能材料领域占有越来越重要的地位,光功能高分子材料日益受到重视。光功能高分子材料的应用领域已从电子、印刷、精细化工等领域扩大到塑料、纤维、医疗、生化和农业等方面,正在快速发展之中,光功能高分子材料研究与应用也将越来越广。 1光功能高分子材料及分类 光功能高分子材料是指能够对光进行传输、吸收、储存、转换的一类高分子材料。 表1 光功能高分子材料的分类 剂等构成。 光致抗蚀剂:主要包括正性光致抗蚀剂和负性光致抗蚀剂等。 高分子光稳定剂:主要包括光屏蔽剂、激发态狙灭剂抗氧剂和聚合型光稳定剂等。 光致变色高分子材料:主要包括含硫卡巴腙络合物的光致变色聚合物、含偶氮苯的光致变色高分子和含螺苯并吡喃结构的光致变色高分子等。 光导电高分子材料:由光导电聚合物材料构成。

2光功能高分子材料的类别和应用 表2 光功能高分子材料的类别和应用 3光功能高分子材料的发展概况 1954年,美国柯达公司的Minsk等人开发出光功能高分子聚乙烯醇肉桂酸酯,并成功应用于印刷制版。而现在光功能高分子材料应用领域已从电子、印刷、精细化工等领域扩大到塑料、纤维、医疗、生化和农业等方面,发展之势方兴未艾。 光功能高分子材料能够对光能进行传输、吸收、储存、转换.塑料光导纤维是利用高分子的光曲线传播性而制成的非线性光学元件。塑料光纤一般以有机玻璃为芯材,以含氟透明树脂为皮层,用柔软的有机硅树脂进行一次包覆,然后用硬质高分子材料进行二次包覆。有机玻璃、含氟透明树脂、有机硅树脂都是高分子材料,芯材有高折光率,皮层为低折光率材料。光纤的直径范围为几十到约1000微米,光纤在光纤芯内通过反复反射而向前传输,由于塑料光纤在目前传输损耗仍较高,主要应用于飞机、舰船和汽车内部的短距离光通信系统。此外,还应用于光纤显示器、图像的缩小和放大、火焰及高温监视器、光开关、巨点折象器、阅读穿孔卡片、道路标志和装饰照明等。近来,对有机玻璃采用重氢化技术,已使塑料光纤的传输损耗有所降低,为较长距离应用创造了条件。 以高性能有机玻璃或聚碳酸酯透明塑料的高分子材料为基材制成的光盘,是80年代新开发成功的先进信息、记录、储存元件,适应了激光技术的发展和对大容量、高信息密

最新功能高分子材料综述

功能高分子材料综述

功能高分子材料综述 【文摘】功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 【关键词】材料;高分子;高分子材料;功能材料; 功能高分子材料的定义为:与常规聚合物相比具有明显不同的物理化学性质,并具有某些特殊功能的聚合物大分子(主要指全人工和半人工合成的聚合物)都应归属于功能高分子材料范畴。而以这些材料为研究对象,研究它们的结构组成、构效关系、制备方法,以及开发应用的科学,应称为功能高分子材料科学。 功能高分子材料科学是研究功能高分子材料规律的科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域。它是建立在高分子化学、高分子物理等相关学科的基础之上,并与物理学、医学甚至生物学密切联系的一门学科。功能高分子材料是对物质、能量、信息具有传输、

转换或贮存作用的高分子及其复合材料的一类高分子材料,有时也被称为精细高分子或者特种高分子(包括高性能高分子) 。其于20 世纪60年代末迅速发展起来的新型高分子材料,内容丰富、品种繁多、发展迅速,已成为新技术革命必不可少的关键材料。 功能高分子是指具有某些特定功能的高分子材料。它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。例如吸水树脂,它是由水溶性高分子通过适度交联而制得,遇水时将水封闭在高分子的网络内,吸水后呈透明凝胶,因而产生吸水和保水的功能。 在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要。 1 功能高分子材料研究 1.1 导电高分子材料 近几年来,导电性高分子的研究取得了长足的发展,形成了一个十分活跃的边缘学科领域,它对电子工业、信息工业及新技术的发展具有重大的意义。现有的研究成果表明,发展导电高分子不仅可以满足人们对导电材料的需要,而且由于它兼具有机高分子材料的性能及半导体和金属的电性能,具有重量

高分子材料聚合工艺综述

高分子材料聚合工艺综述 姓名:王庆阳 班级:高分子材料与工程1301班 学号:0707130104

高分子材料聚合工艺综述 高分子材料与工程1301班王庆阳 0707130104 摘要:介绍高分子材料的主要工业合成工艺,以及产品的形貌及使用性能。 关键词:高分子材料;合成工艺;自由基聚合;缩合聚合;逐步加成聚合 一、前言 高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。 而作为高分子材料生产的工业基础,高分子材料的合成工艺及其重要,因为它不仅关乎到高分子材料后续产品的性能,并且易于改良、优化从而提高材料的综合性能;因此,本文将对高分子材料的主要合成工艺,即:自由基聚合工艺、缩合聚合工艺、逐步加成聚合工艺,作简单的探讨,为今后在高分子材料工业合成方面的学习及工作奠定基础。 二、自由基聚合工艺 2.1综述 自由基聚合反应是当前高分子合成工业中应用最广泛的化学反应之一。工业中,我们将自由基聚合工艺定义为:单体借助于光、热、辐射、引发剂的作用,使单体分子活化为活性单体自由基,再与单体连锁聚合形成高聚物的化学反应;通过高分子化学的学习,我们知道自由基聚合化学反应主要包括链引发、链增长和链终止三个“基元反应”;同时,在链引发阶段,我们通常选择引发剂作为产生自由基的物质,并通过改变自由基的种类来适应不同的聚合生产工艺。 通常而言,我们将自由基聚合工艺,以实施方法的为分类标准,继续细分为本体聚合、乳液聚合、悬浮聚合和溶液聚合。每种聚合方法聚合体系、产品形态、产品用途各具特色,具体可见表2-1高聚物生产中采用的聚合方法、产品形态与用途。 下面,我们将对这几种自由基聚合工艺的聚合体系组成、产品形貌及性能、适用范围做详细介绍。

高分子发光材料

高分子发光材料 有机发光材料与无机发光材料相比,以其易合成、易加工、成本低、质轻、发光颜色全等特点越来越受到关注。近几年以有机发光材料制备的发光器件已临近应用阶段,成为当前流行的液晶显示器件的强力竞争对手。目前研究比较活跃的有聚噻吩、聚苯胺、聚吡咯、聚芴【7】等。 2.1高分子光致发光材料 2.1.1简介 高分子光致发光材料是将荧光物质(芳香稠环、电荷转移络合物或金属)引入高分子骨架的功能高分子材料。高分子光致发材料均为含有共轭结构的高聚物材料。 2.1.2发光机理 高分子在受到可见光、紫外光、X一射线等照射后吸收光能,高分子电子壳层内的电子向较高能级跃迁或电子基体完全脱离,形成空穴和电子.空穴可能沿高分子移动,并被束缚在各个发光中心上,辐射是由于电子返回较低能量级或电子和空穴在结合所致。高分子把吸收的大部分能量以辐射的形式耗散,从而可以产生发光现象[8]。 2.1.3分类 按照引入荧光物质而分为三类 2.1.3.1高分子骨架上连接了芳香稠环结构的荧光材料,应稠环芳烃具有较大的共轭体系和平面刚性结构,从而具有较高的荧光量子效率。其中广泛应用的是芘的衍生物,如图1。 图1 芘的衍生物 2.1.3.2共轭结构的分子内电荷转移化合物有以下几类 2.1. 3.2.1两个苯环之间以一C=C一相连的共轭结构的衍生物[9]如图2。吸收光能激发至激发态时,分子内原有的电荷密度分布发生了变化。这类化合物是荧光增白剂中用量最大的荧光材料,常被用于太阳能收集和染料着色。 图2 共轭结构的衍生物 2 .1.3.2 .2香豆素衍生物[10-12]如图3。在香豆素母体上引入胺基类取代基

可调节荧光的颜色,它们可发射出蓝绿岛红色的荧光,已用作有机电致发光材料。但是,香豆索类衍 生物往往只在溶液中有高的量子效率,而在固态容易发生荧光猝灭,故常以混合掺杂形式使用。 图3 香豆素衍生物 2.1.3.3高分子金属配合物发光材料,许多配体分子在自由状态下并不发光,但与金属离子形成配合物后却能转变成强的发光物质。8一羟基喹啉与Al、Be、Ga、In、Sc、Yb、Zn、Zr等金属离子形成发光配合物[13]。 2.1.3.3.1掺杂 目前,掺杂小分子的高分光致发光材料被广泛应用于PELD中。常见用于掺杂的小分子有:发蓝光的吡唑磷衍生物、发黄光的萘酰亚胺衍生物以及发红光的DCM 等。把有机小分子稀土络合物通过溶剂溶解或熔融共混的方式掺杂到高分子体系中,一方面可以提高络合物稳定性.另一方面可以改善稀土的荧光性能。 2.1.3.3.2化学键合法 汪联辉等人先后研究了烷氧基钕,烷氧基钐单体与甲基丙烯酸甲酯、苯乙烯等共聚及其荧光性质。发现在共聚物中三价钕离子的荧光特性受其基质影响很小,且其荧光强度随钕含量增加而线性增大,在钕含量高达8%时仍未出现荧光浓度淬灭现象。 2.2电致发光高分子材料 2.2.1简介 有机半导体的电致发光现象早就被人们所熟知。电致发光高分子材料是指电流通过材料时能导致发光现象的一类功能材料。目前,有机高分子电致发光器件(PLED)材料以其独特的光电性能和易加工性吸引了众多学者的研究兴趣。 2.2.2发光机理 与光致发光的电子跃迁机理不同,电致发光是通过正负电极向发光层的最高占有轨道(HOMO)和最低空轨道(LUMO)分别注入空穴和电子,这些在电极附近生成的空

PVA水凝胶的制备及研究综述

PVA水凝胶的制备与研究 关键词:PVA水凝胶制备研究表征应用 摘要:简要评述了聚乙烯醇水凝胶的制备方法,评述了PV A水凝胶的研究现状与前景展望,详细介绍了本课题传统PV A水凝胶及温敏性凝胶的制备测试方法,总结了凝胶的应用,并展望了未来PV A水凝胶的发展趋势。 高分子凝胶是基础研究以及技术领域的一种重要材料。凝胶是指溶胀了的高分子聚合物相互联结,形成三维空间网状结构,又在网状结构的空隙中填充了液体介质的分散体系。近几年,高分子水性凝胶(又被称为水凝胶)的研究获得了极大的重视。水凝胶是一种网络结构中含有大量水而不溶于水的高分子聚合物,具有良好的柔软性、弹性、储液能力和生物相容性,在生物医学和生物工程中具有广泛的用途。 常见的水凝胶有聚酰胺水凝胶、聚乙烯醇水凝胶、聚N-异丙基丙烯酰胺温敏性水凝胶等。本课题主要针对于PV A水凝胶。 1 PV A水凝胶的制备 PV A水凝胶的制备按照交联的方法可分为化学交联和物理交联。化学交联又分辐射交联和化学试剂交联两大类。辐射交联主要利用电子束、γ射线、紫外线等直接辐射PV A溶液,使得PV A分子问通过产生自由基而交联在一起。化学试剂交联则是采用化学交联剂使得PV A分子间发生化学交联而形成凝胶,常用的交联剂有醛类、硼酸、环氧氯丙烷以及可以与PV A通过配位络台形成凝胶的重金属盐等等。物理交联主要是反复冷冻解冻法。 1.1 物理交联法 通过物理交联法制备聚乙烯醇水凝胶,报道中最多的是使用“冷冻-熔融法”和“冻结-部分脱水法”两种方法。 反复冻融法是将一定浓度的PV A水溶液在-10~-40℃冷冻1d左右,再在25℃条

件下解冻1~3h,即形成物理交联的PV A水凝胶。将其反复冷冻、解冻几次后,就可以使其一些物理性能和机械性能等有很大的改善。冷冻使水溶液中的PV A的分子链在某一时刻的运动状态“冻结”下来,接触着的分子链可以发生相互作用及链缠结,通过范德华力和氢键等的物理作用紧密结合,在某一微区不在分开,成为“缠结点”。重新冻结时又有新的有序微区形成,这些微区称为“物理交联点”。用冷冻-解冻的办法可以促进分子运动,重新排列,通过分子链的折叠获得具有半结晶或者结晶结构的水凝胶。其示意图如下所示: 冻结-部分脱水法是将PV A水溶液冷冻后置于真空下脱去10%~20%的水,所得到的水凝胶的结构与性能类似于反复冻结法。 物理交联法形成的PVA水凝胶其共同点是分子链间通过氢键和微晶区形成 三维网络,即物理交联点,这些交联点随温度等外界条件的变化而变化。例如将

纳米结构高分子材料综述

纳米结构高分子材料的制备、表征、应用前景 花生 (湖南工程学院化学化工学院湖南湘潭 411104) 摘要:纳米结构高分子材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料。本文综述了纳米结构高分子材料的结构、性能和表征技术,并对其 应用进行了讨论。 关键字:纳米结构高分子材料插层复合溶胶-凝胶纳米改性 Preparation ,Characterization, Application of Nano-structural Polymer Materials huasheng (College of Chemistry and Chemical Engineering, Hunan Institute of Engineering,Xiangtan Hunan 411104,China ) Abstract:Nano-structural polymer materials are a class of composite materials which are Compound from polymer and nano-materials. This article introduces nano-structured polymer materials as follow: structure , properties , characterization techniques and its applications . Key word:Nano-structural polymer materials intercalation solution-gel modification of polymer 纳米结构聚合物材料由于具有独特的性能而在机械、光、电、 磁、微处理器件、药物控释、环境保护、纳米反应器及生物化学等方 面具有广阔的应用前景,近年来掀起了对纳米结构聚合物材料研究的 热潮。各国学者分别在化学分子设计、结构分析、组装方法和应用等 方面进行了广泛的研究。我国的科学工作者也对其开展了许多卓有成 效的工作。关于纳米结构超薄膜的综述文献已有很多,本文主要就

高分子电致发光材料研究近况--以共轭结构的高聚物材料为例

信息记录材料2019年5月第20卷第5期陋至?诊若 高分子电致发光材料研究近况 — —以共辄结构的高聚物材料为例 高远 (南昌大学材料科学与工程学院江西南昌330000) 【摘要】高分子发光材料的研究有很重要的理论和现实意义,本文则通过对一系列共觇结构的高聚物材料的原理和特点来了解电致发光高分子发光材料的应用和发展现状,并展望其发展前景. 【关键词】高分子;发光材料;应用;发展趋势 【中图分类号】TN6【文献标识码】A【文章编号】1009-5624(2019)05-0001-02 Recent Development of high polymer Electroluminescent Materials Gao Yuan. School of M aterials Science and Engineering,Nanchang University,Nanchang,Jiangxi330000,China [Abstract]The study of polymer luminescent materials is of great theoretical and practical significance.Based on the principle and characteristics of a series of conjugated polymer materials,the application and development of electroluminescent polymer materials are analyzed in this paper,and the development prospect of electroluminescent polymers is prospected. 【Key words]Luminescent material;Application;Development trend 1引言(3)聚嗟吩及其衍生物类电致发光材料。这类材料 随着信息时代的飞速发展,各种发光材料被广泛应用于通讯、卫星等高科技领域。而为了使各种新媒体满足显示的功能,使得各种发光材料被研究并开发应用而来。而有机发光材料与无机发光材料相比,以其易合成、易加工、成本低、质轻、发光颜色全等特点越来越受到人们的关注和重视。尤其是近几年以有机发光材料制备的发光器件已临近应用阶段,成为当前流行的液晶显示器件的强力竞争对手。目前研究比较活跃的有聚嗟吩、聚苯胺、聚毗咯、聚茹等。 而有机薄膜电致发光的发展较为迅速,但现在它却被新兴的有机电致发光材料所改变。比如聚对苯乙块(PPV),它本身是一种导电高分子材料,另外它的电致发光性能也同样良好。这样有机薄膜电致发光材料就从有机小分子拓展到了聚合物。而这一变化发展,这就意味着电致发光高分子材料不仅扩大了发光材料的选择范围,而且由于聚合物本身良好的易加工性、易成膜性、高稳定性等优势,使得其被更多的开发应用到发光器件的制备及应用当中。也正因如此,现已有各种体系的聚合物相继被人们研究用来制备发光材料C1]o 2共辘结构的高聚物发光材料简介 共轨结构的高聚物发光材料主要有以下几种类型: (1)聚对苯撑乙烯类电致发光材料。这种材料可以在苯环上改变取代基或在乙烯基上取代而设计合成岀结构、性能各异的衍生物,其还可通过共聚的方式来合成出各种不同的分子材料。 (2)聚对苯乙烘(PPE)-曝吩共轨结构的高聚物电致发光材料。这种材料的结构类似于PPV,其主链引入嗟吩基团,聚对苯乙块在溶液中显示很高的荧光效率,有望作为发光材料进行研究应用。这种高分子电致发光材料不仅改善了传统材料的溶解性,而且其分子量得以提升。具有良好的导电性能,并通过佟拉嘎[2]等在用其成功试 制发光元件后,证明其良好的稳定性。 (4)聚噁二哇[3]类电致发光材料,这类材料是具有性能良好的电子传输能力。其耐热性和较高的玻璃化温度被得到广泛认可。 3共辄结构的高聚物发光材料的优缺点及解决方案共轨结构的高聚物发光材料有自己独特的光电、化学性质,共辄的骨架和侧链结构决定了它们的电子结构、光电学性质,因此它们可以通过化学方法进行调控和修饰。 共轨结构的高聚物发光材料的优点是①具有良好的热稳定性和粘附性;②优异的成膜性,可大面积成膜;③具有优良的机械强度;④此类材料分子结构、发光颜色易于改变和修饰且合成路线多,发光效率高; 但是早期合成的共轨结构的高聚物会给器件的制备带来不便,因为材料合成较为复杂,提纯过程较困难,因此难以制成多层发光器件。而针对这些不足,也有很多的方法可以进行弥补和调整。 一种方法是使用单体直接聚合成型; 也可通过可溶性前聚物加工成型,然后加热转化为共轨聚合物[如Wessling⑷用前聚物法制备的PPV]; 更好的方法是引入可溶解的支链或链段。如MEH-PPV[5]{聚[2-甲氧基-5(2'-乙基己氧基)对苯乙烘]}, CN-PPV冏等。 在PPV主链的亚甲基上引入吸电子基团氧基,得到的CN-PPV聚合物不仅成膜性好,而且还可以改善高聚物和电子的亲和能力。 4高分子电致发光材料的应用 当前这些主流的电致发光材料被广泛用于激光染料、荧光集光器、有机太阳能电池、有机场效应晶体管、有机激光和化学与生物传感等领域的研究、开发和生产中,也 1

相关文档