文档库 最新最全的文档下载
当前位置:文档库 › 有杆泵抽油斜直井防冲距的计算

有杆泵抽油斜直井防冲距的计算

有杆泵抽油斜直井防冲距的计算
有杆泵抽油斜直井防冲距的计算

抽油泵泵效

中国石油大学采油工程实验报告 实验日期: 2014.10.26 成绩: 班级: 石工11-14学号: 11034128 姓名:朱光辉 教师: 战永平 同组者:王天宇 孙艺 孙贝贝 赵艳武 万欣成 胡雄军 游家庆 杨琛 张紫峣 抽油泵泵效实验 一、 实验目的 (1)观察抽油机、抽油泵的结构和工作工程(机杆泵的四连杆机构); (2)掌握抽油泵扬程、功率和效率的计算方法; (3)观察泵效的和产气量之间的关系; (4)观察气锚的分气效果; 二、 实验原理 抽油泵的效率是分析抽油机井工作状况的重要参数,根据气液混合物流过抽油泵的能量方程式和机械能守恒原理可以分析泵效。 泵的实际排量要小于理论排量,两者的比值称作容积泵效率,油田称泵效,也称泵的排量系数,即: T V Q Q = η 式中:Q -----泵的实际排液量; T Q -----泵的理论排液量; V η-----泵效; Sn D Q T 4 2 π= 式中:D----泵径; S-----冲程; n-----冲次; 影响泵效的因素是多方面的,如油杆、油管的弹性变形,液体漏失及泵筒液体的充满程度和液体在地层与地面体积的差异等。 要注意的是,在实际井中,由于排量系数只表示抽油机井的实际产液量占抽油泵理论排量的份额,它并不能从能量角度准确的表示抽油泵的效率。 当有气体进入泵中时,泵效由于气体的影响而降低,增加气锚装置可将部分气体分离到环空,使泵效提高,通过测定有气锚和无气锚时的排量就可计算出气

锚的分气效果(泵效的相对减少量): 未通气时泵效 通气后泵效 未通气时泵效泵效的相对减少量-= 实验用供液瓶代替地层供液,用小型抽油机带动活塞产液,由空压机供气,在油管口用量筒和秒表计量实际排量。 三、实验设备和材料 1.实验设备 小型抽油机、深井泵模型、空压机、阀组、空气定值器、浮子流量计、供液瓶、秒表等; 2.实验介质 空气、水; 四、 实验步骤 1. 记录实验深井泵的泵径; 2. 移动支架使泵筒中心线与驴头对准,检查对应泵筒的进气管和进液管是 否通畅; 3. 用手转动皮带轮带动驴头上下运动,记录柱塞冲程; 4. 接通抽油机电源,测量冲次; 5. 用量筒和秒表在油管口记录实际排液量,重复三次; 6. 打开空压机电源,调节空气定值器旋钮,井进入泵筒中的气量定位0.4 方/小时,待产液稳定后,记录三次井筒的排量; 7. 打开空压机电源,调节空气定值器旋钮,井进入泵筒中的气量定位0.8 方/小时,待产液稳定后,记录三次井筒的排量; 8. 打开空压机电源,调节空气定值器旋钮,井进入泵筒中的气量定位1.6 方/小时,待产液稳定后,记录三次井筒的排量; 9. 关闭抽油机和空压机电源,轻抬支架更换泵筒,更换对应的进液管和进 气管; 10. 重复5-9步; 11. 清扫地面,实验结束; 五、 实验记录与数据处理 表1 实验数据记录表

2018抽油泵泵效实验

中国石油大学采油工程实验报告 实验日期:成绩: 班级:学号:姓名:教师:战永平 同组者: 抽油泵泵效实验2018 1. 实验目的(每空1分,共20) (1) 抽油装置是指由、、所组成的抽油系统。游梁式抽油机主要由、、、等四大部分组成。抽油泵主要由、、、组成。按照抽油泵在油管中的固定方式,抽油泵可分为和。 (2) 游梁式抽油机是以和连线做固定杆,以、、为活动杆所构成的四连杆机构。 (3) 泵效是指油井生产过程中,与的比值。 2. 实验内容(每题4分,共20分) (1) 光杆冲程: (2) 气锁: (3) 沉没度: (4) 动液面: (5) 冲程损失: 3. 实验过程(每空1分,共10分) 上冲程:抽油杆柱带着柱塞,活塞上的受管内液柱压力而关闭。此时,泵内(柱塞下面的)压力降低,在环形空间液柱压力与泵内压力之差的作用下被打开。上冲程是、的过程。造成泵吸入的条件是泵内压力(吸入压力)低于。 下冲程:抽油杆柱带着柱塞,一开始就关闭,泵内压力增高到大于柱塞以上液柱压力时,游动阀被顶开,柱塞下部的液体通过游动阀进入柱塞上部,使泵排出液体。由于光杆进入井筒,在井口挤出相当于的

液体。下冲程是泵向油管内排液的过程。造成泵排出液体的条件是泵内压力(排出压力)高于柱塞以上的。 4. 数据处理(写出算例)(30分) (1) 理论排量计算(公式编辑器编写) (2) 实际排量计算(公式编辑器编写,只写一个计算示例即可) (3) 泵效计算:(公式编辑器编写,只写一个计算示例即可) (4) 泵效计算结果(填上气量) (5) 以气量为横坐标,泵效为纵坐标做出泵效与气量的关系图 (6) 泵效与气量的关系曲线,以及实验时观察到现象,分析曲线。 5. 问题(20分) (1) 气体对泵筒充满程度影响的实验现象描述(5分) (2) 气锚的分气原理。(5分)

《有杆抽油系统》课程综合复习资料

有杆抽油系统 一、1、在上下冲程中,摩擦载荷始终增加抽油机的悬点载荷。(X) 2、抽油设备由抽油机、抽油杆、抽油泵及井下采油附件组成。(V) 3、游梁式抽油机主要由电动机、皮带减速箱、曲柄一连杆一游梁机构以及辅助部件等四大部分组成。(“) 4、旋转驴头游梁式抽油机、蛋形驴头游梁式抽油机、六连杆双游梁抽油机均具有长冲程的特点。(V) 5、游梁式抽油机的运动指标越接近于1,悬点的实际运动规律就越接近于真实运动规律。 (X) 6、对于要求安装刮蜡器的抽油杆,需要在抽油杆上设置一定数量的限位器,限位器之间的距离为 冲程的一半。(V) 7、气锁会因沉没压力升高而自动解除。(V) 8、气锁会因沉没压力升高而自动解除。(V) 9、K级杆用于中、重负荷并有腐蚀性的油井。(X) 10、采用玻璃钢抽油杆可以实现小泵深抽或大排量的功能。(V) 11、钢丝绳抽油杆是具有代表性的柔性抽油杆。(X) 12、抽油杆及其接箍的主要失效类型是疲劳断裂。(V)

13、对于要求安装刮蜡器的抽油杆,需要在抽油杆上设置一定数量的限位器,限位器之间的距离 为冲程的一半。(V) 14、抽油泵主要有泵筒、柱塞、游动阀、固定阀组成。(V) 15、可打捞式管式抽油泵由于加长短节与柱塞的配合间隙大而增加了泵的余隙,故在油气比大的 油井不宜采用。(V) 16、碗式柱塞适用于含砂较多的油井。(X) 17、在抽油泵下悬挂尾管或下油管锚均可改善油管的工作状况。(V) 二、单选题 1、弹性滑动使带速 _________ 于主动轮表面速度而又 __________ 于从动轮表面速度,从动轮的圆周速度总是_______ 主动轮的圆周速度。(B) A超前滞后低于B滞后超前低于C超前滞后高于D滞后超前高于 2、下冲程中,沉没压力对悬点载荷的影响是 C 。 A增加B减小C没有影响D前半冲程增加,后半冲程减小 3、下列 C 特点不是玻璃钢抽油杆的性能特点。 A重量轻B弹性好C可承受轴向压缩载荷D耐腐蚀 4、测量抽油机井示功图使用的仪器是 B 。 A回声仪B水力动力仪C传感测试仪D记录仪 5、带状抽油杆是一种由石墨复合材料制成的抽油杆,具有A以及耐腐蚀、使用寿命长等

回压升高对抽油泵泵效的影响规律及品牌特点

回压升高对抽油泵泵效的影响规律及品牌特点 能源环境回压升高对抽油泵泵效的影响规律大庆油田有限责任公司第一采油厂第六油矿徐卫庆用和地面管线工艺流程的简化设计(环、树流程的用)。采出井回油压力因原油粘度增加、管径变细等厍因不断升高,很多采出并的平均回油压力由原来的0.3MPa左右升至了(UMpa-0.9MPa.在实际生产中我们发现回油压力对油并产液量4成了很大影响,回压升高后单井产液明显下降。而已往的泵效理论计算公式从来没有考虑回压这一因素。为了从理论上找出回压与录效损失的计算关系,我们通过分析泵效损失的各个方面,得出了回压高与果效损失的理论计算关系。 通过抽油泵的工作原理我们知道抽油泵主要泵效损失因有以下三点:1、冲程损失。2、漏失损失。3、充满系数。抽油泵的漏失t主要有:活寒和泵之间的间隙漏失、游动凡尔漏失、固定凡尔漏失三部分组成,凡尔的漏失t主要和凡尔的T.作状态和原油物性相关,因而回压对凡尔漏失tT以不做考虑。 抽油泵间隙火t的计算公式:=(1)q-抽油泵间隙漏失M,cm3/s v-物体的运动粘度,cm3/sI-活塞长度,m g-策力加速度,cm/s2e-径向间隙,cmVP-活塞运动速度,cm/s在il算公,只有参数A//和回压相关,回压梢加相当丁增加了活塞h端液体压力,将井内液体密度近似看为lxl(Tkg/m3,回压每增加lMPa,相当千增加液柱100m.即参数AH增加100米。所以回压增加会显增加抽油泵的间隙漏失ft.设kh 为回压,争位MPa,间隙漏失t随回压的变关系可表示为:因压增高,而增加的间隙漏失泵效损失为:通过该公式,就可以定量的计算出回压与泵N隙漏失量的关系。 但由于间隙漏失81和活寒与泵简间隙有关,因而会随时间因间隙增人而增大。 2、允满系数,允满系数主要和并底供液能力相关。供液能力和回压无关,因而回压对允满系数无影响。 3、回压对冲程损失的影响,冲程损失计算公式为:-冲fi损矣,m该计算公式在il算抽油杆变形量的过程中没有考虑M压对杆我荷的影响,而在柚油机并实际T.作过程屮,回压对杆载荷是有影响的,上冲程其作用在活塞上的力:f=Kh(fp-,而这个力会增加抽油杆的弹性变形ft,即增加冲程损失。在下冲程过程中回作用在液体上的力不作用到活寒上因而对抽油杆变形无影响。因此回压升高H是增加f上冲程过程中抽油杆的弹性变形。油管在上下冲程过程中的弹性变形主要是液柱重力栽荷,因而与回压无关,所以回压升高与油管弹性变形:t关。由此可以得出考虑回压影响后冲程损失U算公式应因N压升高,增加冲程损失进而引起的泵效损失为:宗上所述,回压升高主要通过增加冲程损失和间隙失最增加了抽油的泵效损失,回压引起的泵效损失总t可用下式计算。 1、泵为立式结构,进出口口径相同,且位于同一中心线上,可象阀门一样安装于管路之中,外形紧凑美观,占地面积小,建筑投入低,如加上防护罩则可置于户外使用。 2、叶轮直接安装在电机的加长轴上,轴向尺寸短,结构紧凑,泵与电机轴承配置合理,能有效地平衡泵运转产生的径向和轴向负荷,从而保证了泵的运行平稳,振动小、噪音低。 3、轴封采用机械密封或机械密封组合,采用进口钛合金密封环、中型耐高温机械密封和采用硬质合金材质,耐磨密封,能有效地延长机械密封的使用寿命。

抽油机井无泵效问题的认识

抽油机井无泵效问题的认识 [摘要]抽油机井泵况是描述油井是否正常生产的重要资料。近几年,因为无泵效造成抽油机井检泵率呈逐年上升趋势。本文通过总结现场的工作经验,结合示功图、沉没度、产液量、含水、电流、压力等多项生产数据,对可能产生无泵效的原因进行分析。使对无泵效井的检查和处理有的放矢,同时提出针对无泵效问题的预防性措施。 【关键词】油井;泵效;防治措施 一、前言 抽油机井泵效是抽油机井的实际产液量与抽油泵的理论排量的比值叫泵效。深井泵泵效的高低反映了杆、管、泵性能的好坏及抽油参数的选择是否合适等。油井泵效受砂、蜡、原油粘度、气体等因素影响。在生产过程中,主要依靠视泵效来判断油井生产是否正常。 二、油井无泵效判断方法 1、直观判断: 日常管理中,在井口可以通过看、摸、听、试直观判断; 看:光杆变黑、盘根干磨或冒水; 摸:光杆烫手或有黑屑; 听:井口有无出液声、气声; 试:电流、取样。电流严重不平衡或变化大;取样时含水变化大或清水或不出液。 根据以上信息,需要进一步核实功图和液面等资料,以便进行准确判断。 2、憋压诊断法 抽油机井日常管理中,判断泵况正常与否的常用的诊断方法是憋压诊断法。憋压时,会出以以下几种现象:A抽不起压;B稳不住;C上冲程下降下冲程上升;D上行时大幅度上升、下时时大幅度下降、总的趋势上升不明显;E上冲程上升下冲程下降、表针在一定范围内波动等。憋压诊断法是通过油井正常起抽的条件下,关闭油井的回油阀门,记录井口压力随时间的变化画出憋压曲线来诊断泵况的方法。憋压曲线就是起机关回油和停机关回油井的不同条件下,各测一条油压与时间变化的关系曲线。从曲线中可以看出,单井泵况是否正常。 3、综合判断法(根据功图、产量、含水、沉没度、电流等生产数据综合分析) 综合判断法,既根据每次录取的有关生产数据(产量、含水、油套压电流等数据)综合分析,对数据中变化较大的井,查找原因,进行泵况诊断。无泵效井的普遍特征是该井的产液量降,含水上升,沉没度上升。对于中上部油管漏失井,当漏失位置高于液面时,且漏失量较小,产液量下降,含水微升;当液面高于漏失部位,由于套管压力大于油管压力,油井产液量恢复到原来正常时产液量,但含水上升,产油下降,从功图和产液量无法诊断这种井漏失,必须通过含水资料和憋压曲线才能准确判断。常用的示功图法对受单因素影响的纯油井,一般可得出较准确的判断结论(图1) 但对受自喷因素影响或中上部油管漏失井,诊断准确性会大大降低。根据油套压是否平衡可以诊断油管是否漏失。 三、油井无泵效原因及分析

液压功率计算公式

请问液压功率计算公式为何有两种N=P*Q/(60η)K W,压力P单位M P a,流量Q单位L/m i n,η为油泵总效率 和 N=P*Q/612η KW,压力P单位kgf/cm2,流量Q单位L/min,η为油泵总效率。 为何一个除60η,一个除612η60η和612η是如何而来 液压泵的常用计算公式 参数名称单位计算公式符号说明 流量L/min V —排量 n —转速 q —理论流量q —实际流量 输入功率kW P i —输入功率(kW) T—转矩(N·m) 输出功率kW P —输出功率(kW) p—输出压力(MPa) 容积效率%η —容积效率(%) 机械效率%η m —机械效率(%)总效率%η—总效率(%) 液压泵和液压马达的主要参数及计算公式 液压泵和液压马达的主要参数及计算公式参数名称单位液压泵液压马达 排量、流量排量q0m3/r 每转一转,由其密封腔内几何尺寸变化计算而得的 排出液体的体积 理论流 量Q0 m3/s 泵单位时间内由密 封腔内几何尺寸变化 计算而得的排出液体 的体积 Q0=q0n/60 在单位时间内为形成指 定转速,液压马达封闭腔 容积变化所需要的流量 Q0=q0n/60

实际流量Q 泵工作时出口处流量 Q=q0nηv/60 马达进口处流量 Q=q0n/60ηv 压力额定压 力 Pa 在正常工作条件下,按试验标准规定能连续运转的 最高压力 最高压 力p max 按试验标准规定允许短暂运行的最高压力 工作压 力p 泵工作时的压力 转速额定转 速n r/min 在额定压力下,能连续长时间正常运转的最高转速 最高转 速 在额定压力下,超过额定转速而允许短暂运行的最 大转速 最低转 速 正常运转所允许的最低 转速 同左(马达不出现爬行 现象) 功率输入功 率P t W 驱动泵轴的机械功率 P t=pQ/η 马达入口处输出的液压 功率 P t=pQ 输出功 率P0 泵输出的液压功率,其 值为泵实际输出的实际流 量和压力的乘积 P0=pQ 马达输出轴上输出的机 械功率 P0=pQη 机械功 率 P t=πTn/30P0=πTn/30 T–压力为p时泵的输入扭矩或马达的输出扭矩, N.m 扭矩理论扭 矩 N.m 液体压力作用下液压马 达转子形成的扭矩 实际扭 矩 液压泵输入扭矩T t T t=pq0/2πηm 液压马达轴输出的扭矩 T0 T0=pq0ηm/2π 效率容积效 率ηv 泵的实际输出流量与理 论流量的比值 ηv=Q/Q0 马达的理论流量与实际 流量的比值 ηv=Q0/Q 机械效 率ηm 泵理论扭矩由压力 作用于转子产生的液 马达的实际扭矩与理论 扭矩之比值 ηm=2πT0/pq0

第三章 有杆泵采油

第三章有杆泵采油 有杆泵一般是指利用抽油杆上下往复运动所驱动的柱塞式抽油泵。有杆泵采油具有结构简单、适应性强和寿命长的特点,是目前国内外应用最广泛的机械采油方式。本章将系统地介绍游梁式抽油机有杆抽油装置、采油原理、工艺设计及油井工况分析方法。 第一节有杆抽油装置 典型的有杆抽油装置主要由三部分组成,如图3-1所示。一是地面驱动设备即抽油机;二是安装在油管柱下部的抽油泵;三是抽油杆柱,它把地面设备的运动和动力传递给井下抽油泵柱塞使其上下往复运动,使油管柱中的液体增压,将油层产液抽汲至地面。就整个有杆抽油生产系统而言,还包括供给流体的油层、用于悬挂抽油泵并作为举升流体通道的油管柱、井下器具(油管锚、气锚、砂锚等)、油套管环形空间及井口装置等。 图3-1 典型的有杆抽油生产系统 1-吸入阀;2-泵筒;3-排出阀;4-柱塞;5-抽油杆;6-动液面;7-油管;8-套管;9-三通;10-盘根盒;11-光杆;12-驴头;13-游梁;14-连杆;15-曲柄;16-减速器;17-动力机(电动机) 一、抽油机 抽油机(pumping unit)是有杆抽油的地面驱动设备。按其基本结构抽油机可分为游梁式和无游梁式两大类,目前国内外应用最为广泛的是游梁式抽油机(俗称磕头机)。游梁式抽油机主要由游梁—连杆—曲柄(四连杆)机构、减速机构(减速器)、动力设备(电动机)

和辅助装置等四部分组成,如图3-2所示。游梁式抽油机工作时,传动皮带将电机的高速旋转运动传递给减速器的输入轴,经减速后由低速旋转的曲柄通过四连杆机构带动游梁作上下往复摆动。游梁前端圆弧状的驴头经悬绳器带动抽油杆柱作上下往复直线运动。 根据结构形式不同游梁式抽油机分为常规型(普通型),异相型、前置型和异型等类型。常规型和前置型是游梁式抽油机的两种基本型式。 1.常规型抽油机 常规型游梁抽油机如图3-2所示。它是目前油田使用最广的一种抽油机。其结构特点是:支架位于游梁的中部,驴头和曲柄连杆分别位于游梁的两端,曲柄轴中心基本位于游梁尾轴承的正下方,上下冲程运行时间相等。 图3-2 常规型游梁式抽油机结构 1-刹车装置;2-电动机;3-减速器皮带轮;4-减速器;5-输入轴;6-中间轴;7-输出轴;8-曲柄;9-连杆轴;10-支架;11-曲柄平衡块;12-连杆;13-横船轴;14-横船;15-游梁平衡块;16-游梁;17- 支架轴;18-驴头;19-悬绳器;20-底座 2. 异相型抽油机 异相型抽油机是上世纪七十年代发展起来的一种性能较好的抽油机,如图3-3所示。从外形上看,它与常规型抽油机并无显著差别,故常规型与异相型也称后置型抽油机。其结构特点是:曲柄轴中心与游梁尾轴承存在一定的水平距离;曲柄平衡重臂中心线与曲柄中心线存在偏移角(曲柄平衡相位角)。使得上冲程的曲柄转角明显大于下冲程,从而降低了上冲程的运行速度、加速度和动载荷,达到减小抽油机载荷、延长抽油杆寿命和节能的目的。

液压常用计算公式-液压泵

液压常用计算公式 1、齿轮泵流量(L /min ): q 。 Vn Vn 。 1000,q 1000 说明:V 为泵排量(ml/r ) ; n 为转速(r/min ) ; q o 为理论流量 (L/min ); q 为实际流量(L/min ) 2、 齿轮泵输入功率(kW ): P 辽 i 60000 说明:T 为扭矩(N.m ); n 为转速(r/min ) 3、 齿轮泵输出功率(kW ): P o 说明:p 为输出压力(MP a ); pq _p_q 60 612 p '为输出压力(kgf/cm 2 ); q 为实际 流量(L/min ) 4、齿轮泵容积效率(% : 说明:q 为实际流量(L/min ); 2 100 q o q o 为理论流量(L / min ) 5、齿轮泵机械效率(%: 10 ^ 100 2 Tn 说 p 为输出压力(MP a ); q 为实际流量(L/min ); T 为扭矩 m (N.m ); n 为转速(r/min ) 6、齿轮泵总效率(% :

说明: V 为齿轮泵容积效率(% ; m 为齿轮泵机械效率(% 7、齿轮马达扭矩(N.m ): T P q T T 2 , t (ml/r );T t 为马达的理论扭矩(N.m ); T 为马达的实际输出扭矩(N.m ); m 为马达的机械效率(% 8齿轮马达的转速(r / min ): Q — V q 说明:Q 为马达的输入流量(ml/min ); q 为马达排量(ml/r ); V 为马达的容积效率(% 11、液压缸速度(m. min ): Q V 10A 说明:Q 为流量(L min );A 为液压缸面积(cm 2 ) 说明:P 为马达的输入压力与输出压力差( MP a ) ; q 为马达排量 9、齿轮马达的输出功率( kW ): 说明:n 为马达的实际转速 10、液压缸面积(cm 2 ): 2 nT P 60 103 (r / min ); T 为马达的实际输出扭矩(N.m ) D 2 A - 4 说明:D 为液压缸有效活塞直径 (cm )

浅谈如何提高抽油机井泵效延长检泵周期

浅谈如何提高抽油机井泵效延长检泵周期 发表时间:2019-04-30T17:59:34.890Z 来源:《基层建设》2019年第6期作者:姜松1 谢仕洪2 宋晶鑫3 [导读] 摘要:本文针对抽油机井冲次快慢对抽油杆、油管、抽油泵使用寿命有哪些制约关系,从而得出降低冲次是延长检泵周期的途径之一;其次针对调整抽油机井冲程大小,观察产量,功图的变化,从而达到提高泵效的目的。 1大庆油田有限责任公司第五采油厂第一油矿九区一队;2大庆油田有限责任公司第五采油厂生产维修大队加工车间;3大庆油田有限责任公司第五采油厂第二油矿 摘要:本文针对抽油机井冲次快慢对抽油杆、油管、抽油泵使用寿命有哪些制约关系,从而得出降低冲次是延长检泵周期的途径之一;其次针对调整抽油机井冲程大小,观察产量,功图的变化,从而达到提高泵效的目的。 关键词:提高;泵效;延长检泵周期 1:抽油机井冲次与检泵周期的关系 抽油机冲次是指抽油泵活塞在工作筒内每分钟往复运动的次数。目前抽油机井冲次多为4次\分,6次\分,8次\分,其它有9次\分。从定义上可以推算,以8次\分为例,理想状态下(无其它因素影响),1分钟活塞在泵筒内往复8次,一天为8×1440=11520次\天,一年为11520×365=4204800次\年,所以冲次越快,活塞往复次数越频繁,设备磨损程度越严重,检泵几率越高,检泵周期越短。 检泵原因主要为杆管偏磨断脱,油管漏失,抽油泵漏失。下面结合实际针对快冲次(8次\分以上)的井对杆、管、泵有哪些影响进行分析。 1.1.抽油杆 抽油杆位于油管内,连接活塞,与它同时做上下往复运动,将液体抽到地面,在此过程中,造成抽油杆杆断偏磨主要有两个力的影响,一个是抽油杆本身的弹性力。由于抽油杆是一种弹性体,当驴头开始上行时,游动阀关闭,液柱载荷作用在柱塞上,使抽油杆发生弹性伸长。下冲程开始时,吸入阀立即关闭,液柱载荷由抽油杆柱逐渐移到油管上,使抽油杆缩短。因此抽油杆在这种伸长-缩短-伸长的变化过程中,容易出现杆断脱现象,冲次越快,这一过程越频繁,断脱的出现几率越高。 另一个力是抽油杆在上下行过程中存在法向力。抽油杆随着活塞向上下运动时,游动凡尔打开,固定凡尔关闭,由于抽油杆线性运动,抽油杆会向油管一侧移动,造成杆管偏磨。同样,冲次越快,抽油杆往复次数越频繁,抽油杆柱上的法向力也越频繁,检泵次数也频繁,周期越短。 1.2.油管 油管上接油管挂,下连接抽油泵,起到密闭液体的作用。在抽汲过程中,油管本身及各连接处必须是密封完好,否则液体会在漏失处流出,就是所说的油管漏失或断脱。其原因有两点,一是上面提到的,下冲程开始时,吸入阀立即关闭,液柱载荷由抽油杆柱逐渐移到油管上,油管伸长;相反上冲程时,油管缩短。油管频繁的伸长-缩短-伸长,增加了断脱几率。二是受到抽油杆对油管壁的磨损,造成管壁越来越薄,最终磨漏。所以,油管的漏失、断脱仍与冲次快慢有直接关系。 1.3.抽油泵 抽油泵位于杆管的最下部,可以作为抽油机井下部分的心脏。它通过固定阀、游动阀交替开关完成进液和排液过程,使液体源源不断的流向地面。固定阀和游动阀主要由钢球、球座组成,每次开关,钢球都会撞击球座一次,活塞完成上下往复运动一次。长时间的撞击,钢球与球座就会不密封,球座会出现麻点和小坑,使得泵漏失越来越严重。 2:抽油机井冲程与泵效的关系 抽油机冲程是指抽油机工作时,光杆在驴头的带动下作上、下往复运动,光杆运动的最高点和最低点之间的距离。也可以理解为活塞在泵筒内移动的距离。如果不考虑杆管的伸长,活塞在泵筒内移动的距离和光杆运动的最高点和最低点之间的距离是相等的。但是一般情况下柱塞冲程小于光杆冲程,它是造成泵效小于1的重要因素。抽油杆柱和油管柱的弹性伸缩愈大,柱塞冲程与光杆冲程的差别也愈大,泵效就愈低,这是影响泵效的原因之一。 原因之二:多数油田在深井泵开采期,都是在井底流压低于饱和压力下生产的,即使在高于饱和压力下生产,泵口压力也低于饱和压力。因此,在抽汲时总是气液两相同时进泵,气体进泵必然减少进入泵内的液体量而降低泵效。当气体影响严重时,可能发生“气锁”,即在抽汲时由于气体在泵内压缩和膨胀,使吸人和排出阀无法打开,出现抽不出油的现象。 通常采用充满系数β来表示气体的影响程度,充满系数β表示了泵在工作过程中被液体充满的程度。β愈高,则泵效愈高。泵的充满系数与泵内气液比和泵的结构有关。因此,在保证柱塞不撞击固定阀的情况下,尽量减小防冲距,以减小余隙。所以抽油机尽量满足满冲程,提高泵的充满系数,提高泵效。 3:结论 3.1.抽油机冲次是否合理,直接关系着检泵周期长短。特别是冲次超过8次/分(包括8次/分)的抽油机井,很容易出现杆管偏磨断脱,泵漏,首先我们要分析好每次作业跟踪结果,及时做好参数调整工作,避免出现多次返工作业。 3.2.对于目前冲次高于8次/分(包括8次/分),作业特别频繁、杆管问题多的抽油机井,首要工作应下调一级冲次。 3.3.针对抽油机井提高泵效而言,首先要考虑调大冲程,减少冲程损失,减少气体影响,增加泵的充满系数,达到提高泵效的目的。

采油系统概述

(1)当前主要应用采油系统的特点是: ①有杆泵采油系统的特点 抽油机发展时间最长,技术比较成熟,工艺配套完善,设备可靠耐用,故障率低。其缺点是抽深和排量都不如水力活塞泵和射流泵,单独排量不如电动潜油泵,柱塞泵对于出砂、高气油比、结蜡或流体中含有腐蚀性物质的井都会降低容积效率和使用寿命。抽油杆在不同程度腐蚀环境中承受着大交变载荷运行,产生腐蚀、磨损和疲劳破坏,还与油管存在偏磨,故障率升高,而且整个系统抽油时还要做举升抽油杆的无用功,由于抽油杆重量较大,因而这种抽油方式的效率比较低下。 地面驱动螺杆泵采油系统优点是地面设备体积小,对砂、气不敏感,能适应高气油比、出砂井,对高粘度的井也能适应。缺点是抽油杆存在管杆偏磨问题和脱扣问题,而且抽油杆限制了系统在定向井、水平井等特殊井的应用。螺杆泵的定子容易损坏,增加了检泵费用。定子橡胶不适合在注入蒸汽井中应用。螺杆泵的加工和装配要求较高,泵的性能对液体的粘度变化比较敏感。 ②无杆泵采油系统的特点 电动潜油泵采油方式具有井下工作寿命长、排量大、井上装置容易、管理方便、经济效益明显等优点,缺点是潜油电泵下入深度受电机额定功率、套管尺寸和井底温度所限制,特别是大型高功率潜油电机的使用寿命会由于井孔没有足够的环形空间冷却而大大缩短。而且多级大功率潜油电泵比较昂贵,使得初期投资比较高,特别是电缆的费用较高。由于整套装置都安装在井下,一旦出现故障,需要起出全部管柱进行修理,导致作业费用增加和停产时间过长。井下高温容易使电缆出现故障,高温、腐蚀和磨损可能造成电机损害。高气油比会使举升效率降低,而且会因气锁使潜油电泵发生故障。 潜油螺杆泵采油的最大特点是螺杆泵和潜油电机都处于井下,因而不需要抽油杆传递动力,特别适合于深井、斜井和水平井采油作业,具有很多优势,但也存在一些不足。螺杆泵的缺陷与地面驱动螺杆泵系统相同,缩短了检泵周期。采用减速传动装置的潜油螺杆泵系统,减速装置也影响了系统的效率和可靠性。 水力活塞泵其优点是扬程范围较大,起下泵操作简单。可用于斜井、定向井和稠油井采油。缺点是地面泵站设备多、规模大,动力液计量误差未能完全解决。

抽油泵泵效实验

中国石油大学(华东)采油工程实验报告 实验日期: 成绩: 班级: 学号: 姓名: 教师: 同组者: 抽油泵泵效实验 一、 实验目的 1. 观察抽油机、抽油泵的结构和工作工程(机杆泵的四连杆机构); 2. 掌握抽油泵扬程、功率和效率的计算方法; 3. 观察泵效的和产气量之间的关系; 4. 观察气锚的分气效果; 二、 实验原理 抽油泵的效率是分析抽油机井工作状况的重要参数,根据气液混合物流过抽油泵的能量方程式和机械能守恒原理可以分析泵效。 泵的实际排量要小于理论排量,两者的比值称作容积泵效率,油田称泵效,也称泵的排量系数,即: T V Q Q = η 式中:Q -----泵的实际排液量; T Q -----泵的理论排液量; V η-----泵效; Sn D Q T 4 2 π=

式中:D----泵径; S-----冲程; n-----冲次; 影响泵效的因素是多方面的,如油杆、油管的弹性变形,液体漏失及泵筒液体的充满程度和液体在地层与地面体积的差异等。 要注意的是,在实际井中,由于排量系数只表示抽油机井的实际产液量占抽油泵理论排量的份额,它并不能从能量角度准确的表示抽油泵的效率。 当有气体进入泵中时,泵效由于气体的影响而降低,增加气锚装置可将部分气体分离到环空,使泵效提高,通过测定有气锚和无气锚时的排量就可计算出气锚的分气效果(泵效的相对减少量): 未通气时泵效 通气后泵效 未通气时泵效泵效的相对减少量-= 实验用供液瓶代替地层供液,用小型抽油机带动活塞产液,由空压机供气,在油管口用量筒和秒表计量实际排量。 三、实验设备和材料 1.实验设备 小型抽油机、深井泵模型、空压机、阀组、空气定值器、浮子流量计、供液瓶、秒表等; 2.实验介质 空气、水; 四、 实验步骤 1. 记录实验深井泵的泵径; 2. 移动支架使泵筒中心线与驴头对准,检查对应泵筒的进气管和进液管是 否通畅; 3. 用手转动皮带轮带动驴头上下运动,记录柱塞冲程; 4. 接通抽油机电源,测量冲次;

抽油机井典型示功图分析

抽油机井典型示功图分析 学习目的:抽油机井典型示功图是采油技术人员在多年的生产实践中总结出来的,大多数具有一定的特征,一看就可直接定性的示功图。把这些具有典型图形特征的例子作为生产现场初步判断抽油机井泵况的参考依据,也是综合分析实测示功图的第一步。通过对本节的学习,使分析者能以此为参考,对具有典型特征的示功图做出准确的定性判断。 一、准备工作 1、准备具有典型特征的示功图若干; 2、纸,笔,尺,计算器。 二、操作步骤 1、把给定的示功图逐一过一遍,按所理解的先初步给示功图定性定类。 第一类:图形较大,除去某一个角外就近似于平行四边形的示功图——即抽油泵是在工作的示功图; 第二类是图形上下幅度很小,两侧较尖的示功图——即抽油泵基本不工作的示功图; 第三类示功图:特征不明显的示功图——即最难直接定性的示功图。 2、按定类详细分析判断。 三、实测示功图分析解释 为了便于分析,我们先从图形受单一因素影响的典型示功图着手。所谓典型示功图:就是指某一个因素的影响十分明显,其形状代表了该因素影响下示功图的基本特征。然后把典型示功图与实测示功图对比分析,以阐明分析方法和各类图形的特征。最后提出相应的整改措施。用对比相面法把实测示功图与理论示功图形状进行对比,看图形变化,分析泵的工作状况。 1、泵工作正常时的示功图 所谓泵的工作正常,指的是泵工作参数选用合理,使泵的生产能力与油层供油能力基本相适应。其图形特点:接近理论示功图,近似的平行四边形。这类井其泵效一般在60%以上。

图中虚线是人为根据油井抽汲参数绘制的理论负载线,上边一条为最大理论负载线,下边一条为最小理论负载线。现场常常把增载线和减载线省略了。 2、惯性载荷影响的示功图 在惯性载荷的作用下,示功图不仅扭转了一个角度,而且冲程损失减少了,有利于提高泵效。示功图基本上与理论示功图形状相符。影响的原因是:由于下泵深度大,光杆负荷大,抽汲速度快等原因在抽油过程中产生较大的惯性载荷。在上冲程时,因惯性力向下,悬点载荷受惯性影响很大,下死点A上升到A′,AA′即是惯性力的影响增加的悬点载荷,直到B′点才增载完毕;在下冲程时因惯性力向上使悬点载荷减小,下死点由C降低到C′,直到D′才卸载完毕。这样一来使整个示功图较理论示功图沿顺时针方向偏转一个角度,活塞冲程由S活增大到S′活,实际上,惯性载荷的存在将增加最大载荷和减少最小载荷,从而使抽油杆受力条件变坏,容易引起抽油杆折断现象。 整改措施: 1、减小泵挂深度,以减轻光杆负荷。 2、降低抽油机的抽汲参数,减小惯性力。 3、振动载荷影响的示功图 分析理论示功图可知,液柱载荷是周期性作用在活塞上。当上冲程变化结束后,液体由静止到运动,液柱的载荷突然作用于抽油杆下端,于是引起抽油杆柱的振动。在下冲程,由于抽油杆柱突然卸载也会发生类似现象。 振动载荷的影响是由抽油机抽汲参数过快,使抽油杆柱突然发生载荷变化而引起的振动,而使载荷线发生波动。 整改措施: 降低抽油机的抽汲参数,减小惯性力。 4、泵受气体影响的示功图

抽油机井参数调整方法

抽油机井参数调整方法 摘要:给出了抽油机井调整参数方法及调参依据,坚持采用长冲程、慢冲次、合理泵径效果较好。当地层压力高于原始压力,可以上调参数;当地层压力低于原始压力甚至低于饱和压力,可以下调参数。抽油系统效率随流压的增加而呈下降趋势。对于正常抽油机井,注意保持适当的流压值,可使抽油机高效运行。依据流压与泵效,流压与系统效率的关系,确定合理流压范围为3-6 MPa,满足生产的要求。 关键词:抽油机井;调参方法;合理流压 合理调整工作参数是充分发挥油井的生产能力,使动液面和流压保持一定的合理范围之内,并使消耗的能量最小,做到高产低耗[1,2]。抽油机井的抽汲参数不完全是合理的,对动液面低,示功图气体影响或供液不足的井,应在条件允许的情况下量化调整参数。 1 调整参数依据 合理调整工作参数,应该具备和油井情况相适应的合理生产压差、合理流压及调参预测方法。 (1)合理生产压差。由于受措施效果、流体性质、油层污染等因素的影响,抽油泵对生产压差的适应性是不同的。通常认为合理的生产压差应控制为2.5-6.5 MPa。但有些井虽然流压低、生产压差大,但示功图分析正常,而流压接近合理,示功图分析却出现气体影响或供液不足的现象,见表1。由表1可知,B、C、D 口井的流压对比,C井最低,但C井示功图正常,另外,B、D 井流压比C井高,但抽油泵出现了气体影响或供液不足的现象。C井的静压接近于原始地层压力水平,供液能力较为充足,原油不会从地层状况下分离出来,抽油泵没有气体影响情况。所以,对于地层压力较低(特别是低于饱和压力)的井时,可以通过调小参数,提高地层压力,保持油井的生产能力。统计调小参数的11口井,日产液量由518 t上升到535 t,静压由10.08 MPa上升到10.71 MPa,流压由3.84 MPa 上升到4.07 MPa,抽油机井泵效由39.4%上升到43.4%,这些井的压力比原始地层压力(11.9 MPa)低1.08 MPa,饱和压力为10.5 MPa。调参前,总压差为-1.62 MPa,地饱压差为-0.22 MPa,生产压差为6.2 MPa,由于地饱压差为负值,在井底必然出现脱气现象或者脱气比较严重,使抽油泵工作较为困难,所以在调参后,产量、压力、泵效普遍上升,效果较好。 表1 抽油机井数据对比 井号时间原始地层压力 (MPa)合理流压 (MPa)实测静压

有杆抽油系统(综合)

《有杆抽油系统》综合复习资料 一、填空题 1、抽油设备由(1) 、(2) 、(3) 及井下采油附件组成。 2、对于常规型游梁式抽油机,当驴头处于上、下死点位置时,连杆中心线间的夹角基本为零,这个角被称为抽油机的(4) 。 3、当抽油机悬点开始上行时,游动阀(5) ,液柱重量由(6) 转移(7) 上,从而使抽油杆(8) ,油管(9) 。 4、在抽油机井生产过程中,如果上冲程快,下冲程慢,则说明平衡(10) ,应(11) 平衡重或平衡半径。 5、测量抽油机井液面使用的仪器是(12) ;测量抽油机井示功图使用的仪器是(13) 。 6、游梁式抽油机的平衡方式主要有机械平衡和气平衡两种。其中,机械平衡方式包括(14) 、(15) 和(16) 三种。 7、电压—转速特性曲线平缓而有向水平趋势的电机称为(17) 电机,具有较高的转差率,在一个冲次内电机转速变化范围大,同时具有较高的过载系数。 8、弹性滑动使带速(18) (超前或滞后)于主动轮表面速度而又(19) (超前或滞后)于从动轮表面速度,从动轮的圆周速度总是(20) (低于或高于)主动轮的圆周速度。 9、普通抽油杆的杆头主要由外螺纹接头、卸荷槽、(21) 、(22) 、(23) 和圆弧过渡区组成。 10、抽油井工作时,作用在悬点上的摩擦载荷主要有:①抽油杆柱与油管的摩擦力,②柱塞与衬套之间的摩擦力,③液柱与抽油杆柱之间的摩擦力,④液柱与油管之间的摩擦力,⑤液体通过游动阀的摩擦力。 上冲程中作用在悬点上的摩擦载荷是受(24) 、(25) 及(26) 三项影响,其方向向下,故增加悬点载荷;下冲程中作用在悬点上的摩擦载荷是受(27) 、(28) 、(29) 及(30) 四项影响,其方向向上,故减小悬点载荷。

防冲距对抽油机井泵效的影响分析_朱君[1]

doi:10 3969/j issn 1006-6896 2009 10 033 防冲距对抽油机井泵效的影响分析 朱君 高源 王慧(大庆石油学院) 摘要:建立了抽油泵正常工作过程中的 力学模型,根据抽油杆的弹性伸长量,计算 了防冲距的合理取值,从而改善了抽油泵防 冲距设计中常因采用经验值而使泵效降低的 问题。结合抽油泵泵阀的开启条件,推导了 抽油泵柱塞的滞后位移,进而得到抽油泵在 一定杆管泵组合下的排量系数及防冲距对泵 效的影响关系式,为合理确定防冲距提供了 依据。 关键词:抽油杆;受力分析;防冲距; 泵效 在有杆泵采油生产中,影响抽油泵泵效的因素主要有杆管柱的伸缩、井液中的含气量、泵的充满度及漏失等[1]。由于余隙空间的存在,使得泵在抽油过程中,余隙空间被弹性能大的气体所占据,致使上冲程时泵的固定凡尔开启滞后或根本打不开(气锁),井液进泵数量减少甚至进不了泵,极大地影响了抽油效率。而且余隙越大,余隙内残留气体越多,则气体影响越大,造成有效冲程越小,泵效越低。在高油气比油田的有杆泵采油中这种影响尤为明显。目前人们主要从增加泵的沉没度、加大冲程、降低冲次等方面进行研究[2],以提高抽油泵效率。本文通过对抽油杆的受力状况及其弹性变形量的分析,研究合理的余隙容积,以提高泵效。 1 防冲距的理论分析 在抽油泵抽汲循环的上、下冲程过程中,液柱的重力从固定凡尔上转到游动凡尔上,使抽油杆柱和油管交替加载和卸载。因静液柱重力引起的抽油杆柱和油管柱在工作过程中发生弹性伸长,使抽油杆下冲程时下移的距离大于实际冲程的长度,故防冲距的目的主要是考虑到抽油杆在轴向拉力的作用下会伸长,避免杆柱与泵筒底部发生碰撞而上提的一定距离,杆柱的实际伸长量一般都小于所提距离,所以活塞的实际冲程也小于理论冲程。 1 1 抽油杆受力分析 根据抽油杆柱在工作过程中的受力状态,建立力学模型(见图1)。由采油工艺[3-4]可知杆柱所受合力为 F r=W r+W fd+W rd =(1-0 127 f)W r+W r+ W f)a/g 式中W r为抽油杆柱在液体中的自重(kN); W rd为抽油杆柱动载荷(kN);W fd为液柱动载荷(kN); f为井液密度(kg/m3);W r为抽油杆柱自重(kN);W f为作用于柱塞环形面积上的液柱重量(kN);a为抽油杆加速度(m/s2); 为泵杆管的截面差之比, =(A p-A r)/(A i-A r);A i为油管内径的流通面积(m2);A p为柱塞面积(m2);A r为抽油杆截面积(m2) 。 图1 抽油杆力学模型 1 2 防冲距的计算 防冲距的大小主要取决于抽油杆柱的弹性变形量,且抽油杆柱伸长量 l计算公式为 l=F r L r(A r E) 荷。该方案流程简单,不需要液烃泵,只需将上一级产生的凝液节流后返回前一级即可,而且外输气的烃露点容易控制。 新增丙烷制冷系统,在电力能够满足需要时,应采用电机驱动。若电力不能满足可采用燃气发动机驱动螺杆制冷压缩机,缺点是燃气发动机噪音大,易损部件多,维修工作量大。 (3)分子筛再生气流程的改造方案。原设计的分子筛再生气返回压缩机四段入口,这造成了含硫化合物的再循环及设备的腐蚀。本次改造将再生气直接外输电厂或作为燃气轮机、加热炉燃料,不再返回压缩机入口。 (栏目主持 张秀丽) 60 油气田地面工程第28卷第10期(2009 10)

影响抽油机井泵效的因素及提高泵效的措施

影响抽油机井泵效的因素及提高泵效的措施 发表时间:2019-03-27T14:41:10.817Z 来源:《基层建设》2018年第35期作者: 1王晓伟 2郭英健 3唐海燕[导读] 摘要:在改革开放的新时期,我国的经济在快速的发展,社会在不断的进步,随着当前国家综合实力的不断增强,石油开采井的数量在不断增加,并且规模也在逐年递增,而在此基础上,随着产油量的提升,地底的原油供应出现了严重不足的情况,抽油泵在其中发挥的作用也没有起到显著的效果。 1 大庆油田有限责任公司第八采油厂第四油矿黑龙江大庆 163000 2大庆油田有限责任公司第十采油厂第四油矿黑龙江大庆 163000 3大庆油田有限责任公司第二采油厂第七作业区实验二队黑龙江大庆 163000 摘要:在改革开放的新时期,我国的经济在快速的发展,社会在不断的进步,随着当前国家综合实力的不断增强,石油开采井的数量在不断增加,并且规模也在逐年递增,而在此基础上,随着产油量的提升,地底的原油供应出现了严重不足的情况,抽油泵在其中发挥的作用也没有起到显著的效果。本文基于此主要探究在当前采油井发展过程中,影响泵效的主要因素以及提升泵效的主要对策。 关键词:泵效;石油开采;强化 引言 抽油机井泵泵效是受诸多因素影响的,要想提高其泵效,必须要对其影响因素进行深入分析,尽可能降低甚至避免这些因素可能对泵效产生的影响,提高泵效的同时,提高油田的开采效率。 1油田开采中抽油机井泵效的影响因素 1.1冲程损失产生的影响 因抽油杆结构的影响,抽油泵的效率会出现大幅度降低。加之实际开采中抽油杆、管之间会产生较大的摩擦,这会降低活塞空间,抽油泵的效率将因此受到影响。基于相关数据分析,杆、管的长度越长,其效率就会越低,两者呈反比关系。实际生产中,若需要在较深的地层进行石油开采,便需要进一步拉深抽油杆以及抽油管,两者长度的增加会带来大量的动量损耗,这会对抽油泵的效率产生非常严重的影响。此外,开发因素以及设备因素也会影响泵效,这里主要指的是油稠、油井出砂以及气体过多等问题,当然也包括泵制造质量以及安装质量的影响。 1.2施工因素的影响 作业施工标准中对立井架的要求是,井口与游动滑车的左右偏差不超过20mm的偏差范围。前偏差不超过30mm、后偏差小超过50mm,但现场施工中很难达到这一标准,特别是左右偏差,几乎所有的作业井均超过了20mm的偏差范围。此外,目前施工时对油管丝扣的鉴定仅限于锥度检测,对丝扣的磨损程度尚无准确有效的检测手段,大多仅凭肉眼观察,缺乏一定的科学性,易将一些磨损严重但无明显破损的丝扣下入井内,因涂抹了密封脂,油管打压时也许无明显变化,但生产一段时间后,易使泵况变差。 1.3低流压降低泵效 在油田开采的过程中,会出现一些套压和沉没度低的油井,当这种油井的井底流压较低时,会在泵的入口处形成溶解气,导致井泵能够吸入的压力降低,同时会使气压比上升,造成泵筒内游离气体的剧增,会直接降低深井泵的充满系数,从而降低泵效。同时,这些流压降低的井,当这种压力低到一定限制时,会增加流饱压差,使得气体流度高于液体流度。在这种条件下,当原油从底层涌向井底时,井筒附近会出现脱气现象,当压力越低时这种脱气就越严重,会造成油层供液能力的降低。这个时候即便将套压放到很低,也无法消除逸出的气体对深井泵的影响。 2提升抽油泵效率的对策 2.1 根据实际情况选择工作方式 在实际抽油的过程中,有关技术人员需要根据实际的情况来选择合适的方式进行抽油作业。比如说在一些稠油生产的过程中,我们需要保证所开采石油的稠度,就需要采用高强度和高功率的抽油泵,在进行抽油的过程中需要根据实际的地质情况来调整内部活塞的空间,使得抽油泵的效率能够得到最大化的提升,保证抽油的质量。其次在抽油泵实际工作过程中,可以尽量降低冲次的频率,使得活塞运动的效率降低,在进行原油的抽取过程中,不仅能够使活塞运动的频率更好地契合原油的抽取效率,而且也能够大大提升抽油泵的使用寿命。最后,抽油泵在工作过程中,尽可能选择冲程比较长的方式,在符合一定标准作业条件之下,选择长冲程的抽油泵能够大大提升抽油效率,降低抽油泵在抽油过程中由于气体所产生的较大的影响,保证了抽油质量。总之,在进行抽油泵选择的过程中,我们需要根据实际的情况来进行选择,在符合作业标准的情况下,一般选择长冲程和慢冲次的方式来提升抽油泵的泵效。 2.2依托实际情况选择工作方式 油田抽油作业中,相关工作人员需要根据实际情况选择作业方式。以稠油生产为例,实际生产中为了保证原油的稠度,需要借助于高功率、高强度的抽油泵完成稠油作业。参照油层的地质状况调整内部的活塞空间,这样才能够实现油泵效率的最大化。其次抽油作业中,应尽可能地降低冲次的频率,这能够降低活塞运动的效率。对原油抽取工作而言,这能够在延长油泵寿命的基础上,使活塞运动的频率更好地契合特定油层的抽取效率,从而保证抽油作业的质量。最后抽油作业中,应使抽油泵在冲程较长的条件下运作。在满足实际作业条件以及相应技术标准的前提下,油泵冲程越长,其抽油效率越高。基于宏观层面分析,这也能够降低气体对抽油作业的影响,对提高效率、稳定生产有着积极的推动作用。综上,根据实际情况选择工作方式对提高泵效有着非常重要的意义,这方面的工作还需要相关工作人员不断在工作中总结经验。 2.3改善施工环境,确保抽油机井泵效 (1)控制并降低油井回压。特别是对已经进入生产后期的油井,做好此项工作是非常重要的。针对地层供液能力不断下降,抽油泵磨损加剧容易造成漏失的强狂,改变传统的生产方式,采用高架罐生产或者采用进落地罐生产。这种生产方式可以起到降低油井回压的作用,不但可以提高每天油井的产液量,而且能够提高油井的泵效。(2)提高油层供液能力。对于投产时间较早而且低效的油井,要努力通过改善油井的注汽效果来提高泵效。比如可以根据不同油层的压力情况和动用状况,根据地下存水等来对稠油开采的周期进行综合分析,采用注汽强度优选的方式提高油井泵效。 2.4降低油管自身零部件因素对泵效的影响

相关文档