文档库 最新最全的文档下载
当前位置:文档库 › 火力发电厂主要及辅助设备的构造与作用

火力发电厂主要及辅助设备的构造与作用

火力发电厂主要及辅助设备的构造与作用
火力发电厂主要及辅助设备的构造与作用

一次风机:干燥燃料,将燃料送入炉膛,一般采用离心式风机。

送风机:克服空气预热器、风道、燃烧器阻力,输送燃烧风,维持燃料充分燃烧。

引风机:将烟气排除,维持炉膛压力,形成流动烟气,完成烟气及空气的热交换。

磨煤机:将原煤磨成需要细度的煤粉,完成粗细粉分离及干燥。

空预器:空气预热器是利用锅炉尾部烟气热量来加热燃烧所需空气的一种热交换装置。提高锅炉效率,提高燃烧空气温度,减少燃料不完全燃烧热损失。空预器分为导热式和回转式。回转式是将烟气热量传导给蓄热元件,蓄热元件将热量传导给一、二次风,回转式空气预热器的漏风系数在8~10%。

炉水循环泵:建立和维持锅炉内部介质的循环,完成介质循环加热的过程。

燃烧器:将携带煤粉的一次风和助燃的二次风送入炉膛,并组织一定的气流结构,使煤粉能迅速稳定的着火,同时使煤粉和空气合理混合,达到煤粉在炉内迅速完全燃烧。煤粉燃烧器可分为直流燃烧器和旋流燃烧器两大类。

汽轮机本体

汽轮机本体是完成蒸汽热能转换为机械能的汽轮机组的基本部分,即汽轮机本身。它与回热加热系统、调节保安系统、油系统、凝汽系统以及其他辅助设备共同组成汽轮机组。汽轮机本体由固定部分(静子)和转动部分(转子)组成。固定部分包括汽缸、隔板、喷嘴、汽封、紧固件和轴承等。转动部分包括主轴、叶轮或轮鼓、叶片和联轴器等。固定部分的喷嘴、隔板与转动部分的叶轮、叶片组成蒸汽热能转换为机械能的通流部分。汽缸是约束高压蒸汽不得外泄的外壳。汽轮机本体还设有汽封系统。

汽轮机:汽轮机是一种将蒸汽的热势能转换成机械能的旋转原动机。分冲动式和反动式汽轮机。

给水泵:将除氧水箱的凝结水通过给水泵提高压力,经过高压加热器加热后,输送到锅炉省煤器入口,作为锅炉主给水。

高低压加热器:利用汽轮机抽汽,对给水、凝结水进行加热,其目的是提高整个热力系统经济性。

除氧器:除去锅炉给水中的各种气体,主要是水中的游离氧。

凝汽器:使汽轮机排汽口形成最佳真空,使工质膨胀到最低压力,尽可能多地将蒸汽热能转换为机械能,将乏汽凝结成水。

凝结泵:将凝汽器的凝结水通过各级低压加热器补充到除氧器。

油系统设备:一是为汽轮机的调节和保护系统提供工作用油,二是向汽轮机和发电机的各轴承供应大量的润滑油和冷却油。主要设备包括主油箱、主油泵、交直流油泵、冷油器、油净化装置等。

在发电厂中,同步发电机是将机械能转变成电能的唯一电气设备。因而将一次能源(水力、煤、油、风力、原子能等)转换为二次能源的发电机,现在几乎都是采用三相交流同步发电机。在发电厂中的交流同步发电机,电枢是静止的,磁极由原动机拖动旋转。其励磁方式为发电机的励磁线圈FLQ(即转子绕组)由同轴的并激直流励磁机经电刷及滑环来供电。同步发电机由定子(固定部分)和转子(转动部分)两部分组成。定子由定子铁心、定子线圈、机座、端盖、风道等组成。定子铁心和线圈是磁和电通过的部分,其他部分起着固定、支持和冷却的作用。

转子由转子本体、护环、心环、转子线圈、滑环、同轴激磁机电枢组成。

主变压器:利用电磁感应原理,可以把一种电压的交流电能转换成同频率的另一种电压等级

的交流电的一种设备。

6KV、380V配电装置:完成电能分配,控制设备的装置。

电机:将电能转换成机械能或将机械能转换成电能的电能转换器。

蓄电池:指放电后经充电能复原继续使用的化学电池。在供电系统中,过去多用铅酸蓄电池,现多采用镉镍蓄电池

控制盘:有独立的支架,支架上有金属或绝缘底板或横梁,各种电子器件和电器元件安装在底板或横梁上的一种屏式的电控设备。

1、汽轮机冲转前应具备那些条件?

主汽压、主汽温、再热汽温应符合规程要求;主油压与润滑油压正常;润滑油温正常;大轴弯曲度正常;发电机密封油压、内冷水压正常,且有关差压正常;汽轮机金属温差、差胀、轴向位移正常;轴承温度正常。

2、启动前应先对主、辅设备检查那些工程?

检查并确认所有的检修工作结束;工具、围栏、备用零部件均已收拾干干净;所有的安全设施均已到位(接地装置、保护罩、保护盖);拆卸下来的保温层均已装复,工作场所整齐整洁;检查操作日志,从事主辅设备检修的检修工作目标已经注销。

3、汽轮机有那些不同的启动方式?

按启动过程中主蒸汽参数分:额定参数启动和滑参数启动。

按启动前汽轮机金属温度(内缸或转子表面)水平分:冷态启动;温态启动;热态启动。按冲转时汽轮机的进汽方式分:高中压缸启动;中压缸启动。

按控制汽轮机进汽流量的阀门分:调节阀启动;自动主汽阀或电动主汽阀启动。

4、汽轮机热态启动的金属温度水平是如何划分的?

金属温度低于150℃~180℃者称为冷态启动;金属温度在180℃~350℃之间者称为温态启动;金属温度在350℃以上者称为热态启动。有时热态又分为热态(350~450℃)和极热态(450℃以上)。

5、热态启动应具备的条件是什么?

上、下缸温差在允许范围内;大轴晃度不允许超过规定值;启动参数的匹配要符合规程要求;润滑油温不低于35~40℃;胀差应在允许范围内。

6、汽轮机支持轴承的工作原理是什么?

根据建立液体摩擦的理论,两平面之间必须形成楔形间隙;两平面之间有一定速度的相对运动,并承受载荷,平板移动方向必须由楔形间隙的宽口移向窄口;润滑油必须具有一定的粘性和充足的油量,才能保证两平面间有油膜存在。

轴颈放入轴瓦中便形成油楔间隙。当连续地向轴承供给具有一定压力和粘度的润滑油之后,轴颈旋转时与轴瓦形成相对运动,粘附在轴颈上的油层随轴颈一起转动,并带动相邻各层油转动,进入油楔向旋转方向和轴承端部流动。由于楔形面积逐渐减小,带人其中的润滑油由于具有不可压缩性,润滑油被聚集到狭小的间隙中而产生油压。随着转速的升高,油压不断升高。当这个油压超过轴颈上的载荷时,便把轴颈抬起,使间隙增大,则所产生的油压有所降低。当油压作用在轴颈上的力与轴颈上载荷平衡时,轴颈便稳定在一定的位置上旋转,轴颈与轴瓦间形成油膜隔开,建立了液体摩擦。

7、中压缸启动有何意义?

中压缸启动是汽轮机启动时,关闭高压调节阀、开启中压调节阀,利用高、低压旁路系统,先从中压缸进汽启动后切换为高、中压缸联合允许的启动方式。

中压缸启动可以充分加热汽缸,加速热膨胀;中压缸启动在热态启动时,可以缩短锅炉点火至冲转时间;中压缸启动可以解决热态启动参数高,造成机组转速摆动,不易并网的问题;启动初期,低压缸流量增加,减少末级鼓风摩擦,提高了末级叶片的安全性;对特殊工况有良好的适应性,主要体现在空负荷和极低负荷运行方面。

8、汽轮机盘车装置有何作用?

在汽轮机启动冲转前和停机后,使转子以一定的转速连续地转动,以保证转子均匀受热和冷却的装置称为盘车装置。

在汽轮机冲转前要用盘车装置带动转子作低速转动,使转子受热均匀,以利机组顺利启动;启动前盘动转子,可以用来检查汽轮机是否具备运行条件,如动静部分是否存在摩擦,主轴弯曲度是否正常等;停机后,投入盘车装置,可搅合汽缸内的汽流,以利于消除汽缸上、下温差,防止转子变形,有助于消除温度较高的轴颈对轴瓦的损伤。

9、汽轮机热态启动应注意那些问题?

汽轮机的热态启动是在盘车连续运行前提下先送轴封汽,后抽真空,且轴封供汽温度应根据转子表面和汽缸温度水平及胀差确定;热态启动时应加强疏水,防止冷水冷汽进入汽缸,真空应适当保持高一些;热态启动时,法兰螺栓加热装置的投入,要根据汽缸的温度水平而定;根据高压缸调节级金属温度在热态启动曲线上确定汽轮机冲转参数、初负荷(系指高压缸调节级汽温与金属温度不匹配度低于精确匹配线以下所确定的最低负荷)、5%额定负荷保持时间及其升速率,注意汽轮机高压缸调节级蒸汽温度与其金属不匹配度须在-56~111℃之间;主蒸汽温度要在最低过热度为50℃的情况下向汽轮机送汽,主汽阀前蒸汽参数应处于主汽阀启动蒸汽参数曲线所示的标有在切换转速下、主汽阀进口的最低汽温的曲线上;热态启动的冲转及带负荷方式与冷态启动相同,但要求顺利迅速地进行;机组升负荷过程中,要密切注意主蒸汽温度、胀差、缸胀和机组的振动情况,主蒸汽温度的剧烈变化对汽轮机的一切运行状态都可能造成严重后果。

10、多级冲动式汽轮机的轴向推力有那几部分构成?其平衡措施有那些?

多级冲动式汽轮机轴向推力的构成:动叶上的轴向推力;叶轮轮面上的轴向推力;汽封凸肩上的轴向推力;转子凸肩上的轴向推力。

多级冲动式汽轮机轴向推力的平衡措施:叶轮上开设平衡孔;设置平衡活塞;采用汽缸反向对置,使汽流反向流动;采用推力轴承。

11、汽轮机启动前的主要准备工作有那些?

确认按电厂规程对所有系统进行检查正常;辅助设备各项实验正常;主要仪表完备准确;各项保护装置校验正确投入运行;有关辅机、辅助设备按规程投入运行正常;发电机水冷、氢冷、密封油、氢气系统投入运行正常;盘车投入,大轴弯曲正常,检查转动部分声音正常;当锅炉具备点火条件时,开始抽真空。

12、汽轮机禁止启动的规定有那些?

调节系统卡涩,摆动不能消除;危急保安器动作不灵;自动主汽门或调节汽门卡涩或动作不灵;辅助油泵、盘车装置工作失常;上、下缸温差超过规定值;转速表、轴向位移表等主要仪表失常;油质不合格;大轴挠度超过规定值等。

13、汽轮机滑销系统有何作用?

保证汽缸定向自由膨胀,并能保持汽缸与转子中心一致,避免因膨胀不均匀造成不应有的应力及伴同而生的振动。

14、启动前向轴封供汽应注意什么问题?

轴封供汽前先对送汽管道进行暖管,使疏水排尽;必须在连续盘车状态下向轴封供汽;向轴封供汽时间必须恰当;要注意轴封供汽温度与金属温度的匹配;在高、低温轴封汽源切换时不能太快,否则容易引起胀差的显著变化,导致轴封处不均匀的热变形。

15、高压油采用汽轮机油的供油系统有那些主要设备构成?

一台由汽轮机主轴直接带动的离心式主油泵;一台交流高压辅助油泵;一台交直流低压润滑油泵;二台注油器;两台冷油器;还有滤油器、过压度降低对机组运行有以下几点影响:阀及润滑油低油压发讯器等。

16、汽轮机供油系统有那些作用?

供给调节系统和保护系统的用油;供给轴承润滑用油;供给各运动付机构的润滑用油;向发电机氢密封油系统提供密封油;供给盘车装置和顶轴装置用油。

17、影响胀差的因素有哪些?

答案要点:影响胀差的因素主要有:

(1)主、再蒸汽的温度变化率;

(2)负荷的变化速度;

(3)轴封供汽温度的高低及供汽时间的长短;

(4)蒸汽加热装置的投入时间和所用汽源;

(5)暖机时间的长短;

(6)凝汽器真空的变化;

(7)摩擦鼓风损失;

(8)转子回转效应;

(9)汽轮机滑销系统畅通与否;

(10)汽缸保温和疏水的影响。

18、启动过程中可以通过哪些手段控制胀差?

答案要点:启动过程中可以通过以下手段来控制胀差:

(1)控制主、再蒸汽的温度变化率;

(2)控制负荷的变化速度

(3)调整轴封供汽温度的高低及供汽时间的长短;

(4)调整蒸汽加热装置的投入时间和所用汽源的温度;

(5)暖机时间的长短;

(6)在升速过程中也可适当调整凝汽器真空。

19、在主蒸汽压力不变时,主蒸汽温度升高对汽轮机运行有何影响?运行中应如何处理?

答案要点:主蒸汽温度升高对机组运行影响:

制造厂设计汽轮机时,汽缸、隔板、转子等部件根据蒸汽参数的高低选用钢材,对于某一种钢材有它一定的最高允许工作温度,在这个温度以下,它有一定的机械性能,如果运行中温度高于设计值很多时,势必造成金属机械性能的恶化,强度降低,脆性增加,导致汽缸蠕变变形,寿命缩短,叶轮在轴上的套装松弛,汽轮机运行中发生振动或动静摩擦,严重时使设备损坏,故汽轮机在运行中不允许超温运行。

主蒸汽温度升高的处理:

(1)主蒸汽温度升高到540℃时,联系锅炉恢复正常,并报告值长;

(2)主蒸汽温度升高到545℃,再次联系锅炉恢复正常,并报告值长减去部分负荷,直至汽温恢复正常。在此汽温下运行不得超过10分钟,否则打闸停机,并做好超温延迟时间记录。

20、在主蒸汽压力不变时,主蒸汽温度降低对汽轮机运行有何影响?运行中应如何处理?

答案要点:主蒸汽温(1)主蒸汽温度下降,使汽轮机做功的焓降减少,故要保持原有出力,则蒸汽流量必须增加,因此汽轮机的汽耗增加,经济性下降。另外,由于蒸汽流量增加,还可能造成通流部分过负荷。

(2)主蒸汽温度急剧下降,使汽轮机末几级的蒸汽湿度增加,加剧了末几级叶片的汽蚀,缩短了叶片使用寿命。

(3)主蒸汽温度急剧下降,会引起汽轮机各金属部件温差增大,热应力和热变形也随着增加,且胀差会向负值变化,因此机组振动加剧,严重时会发生动静摩擦。

(4)主蒸汽温度急剧下降,往往是发生水冲击的预兆,会引起转子轴向推力增加。一旦发生水冲击,则机组就要受到严重损害。若汽温骤降,使主蒸汽带水,引起水冲击,后果极其严重。

主蒸汽温度降低的处理:

(1)应加强监视机组的振动、声音、轴向位移、推力瓦温度、差胀、汽缸金属温度、高中压转子应力趋势等变化;

(2)主蒸汽单管温度降至525℃时,联系锅炉恢复正常;

(3)两平行主蒸汽管温度偏差不大于14℃,否则应与锅炉核准表计,并要求锅炉恢复正常,两管最大温差不准超过42℃;

(4)主蒸汽温度降至500℃时,开电动主闸门前及高导疏水门,当主蒸汽温度降至490℃时,开各缸疏水门;

(5)汽温继续下降,应按规定减负荷,直至停机;(450℃减负荷到零,430℃故障停机)。

21、汽轮机真空下降对汽轮机的运行有何影响?真空下降应如何处理?

答案要点:汽轮机真空下降对汽轮机运行的影响主要有:

(1)汽轮机的理想焓降减小,出力降低,经济性下降;

(2)汽轮机真空下降,排汽压力升高,相应的排汽温度也升高,可能造成排汽缸及轴承等部件膨胀过度,引起汽轮机组中心改变,产生振动;

(3)由于排汽温度升高,引起凝汽器冷却水管的胀口松弛,影响了凝汽器的严密性,造成凝结水硬度增大;

(4)排汽的比体积减小,流速降低,末级就产生脱流及漩涡。同时还会在叶片的某一部位产生较大的激振力,频率降低,振幅增大,极易损坏叶片,造成事故;

(5)可能使汽轮机的轴向推力增大。

凝汽器真空下降的处理:

(1)检查排汽温度与真空对照表,确定排汽压力是否升高;

(2)查找原因并迅速消除,及时投入备用抽汽设备;

(3)根据要求降低负荷,直至停机。

(4)汽轮机的排汽温度不准超过70℃;空负荷不准超过100℃。

22、什么是监视段压力?运行中如何对监视段压力进行分析?

答案要点:调节级汽室压力和各段抽汽压力称为监视段压力。

除了汽轮机最后一、二级外,调节级压力和各段抽汽压力均与主蒸汽流量成正比变化。根据这个关系,在运行中通过监视调节级压力和各段抽汽压力,可有效地监督通流部分是否工作正常。

在安装或大修后,应在正常运行工况下对汽轮机通流部分进行实测,求得机组负荷、主蒸汽流量与监视段压力之间的关系,以作为平时运行监督的规范。

在同一负荷(主蒸汽流量)下,监视段压力升高,则说明该监视段后通流面积减少,或者高

压加热器停运、抽汽减少。多数情况下是因叶片结垢而引起通流面积减少,有时也可能因叶片断裂、机械杂物堵塞造成减少段压力升高。

如调节级和高压I段、II段压力同时升高,在可能是中压调门开度受阻或者中压缸某级抽汽停运。

监视段压力不但要看其绝对值升高是否超过规定值,还要监视各段之间压差是否超过规定值。若某个级段的压差过大,则可能导致叶片等设备损坏事故。

23、造成汽轮机大轴弯曲的原因有哪些?

答案要点:造成汽轮机大轴弯曲的原因是多方面的,主要有:

(1)动静部分摩擦,装配间隙不当,启动时上、下缸温差大,汽缸热变形,以及热态启动大轴存在热弯曲等,引起转子局部过热而弯曲。

(2)处于热状态的机组,汽缸进冷汽、冷水,使转子上下部分出现过大温差,转子热应力超过材料的屈服极限,造成大轴弯曲。

(3)转子原材料存在过大的内应力,在高温下工作一段时间后,内应力逐渐释放而造成大轴弯曲。

(4)套装转子上套装件偏斜、卡涩和产生相对位移。有时叶片断落、转子产生过大的弯矩以及强烈振动也会使套装件和大轴产生位移,造成大轴弯曲。

(5)运行经管不严格,如不具备启动条件而启动,出现振动及异常处理不当,停机后汽缸进水等,造成大轴弯曲。

24、汽轮机轴向位移增大的原因有哪些?

答案要点:汽轮机轴向位移增大的主要原因有:

(1)汽温汽压下降,通流部分过负荷及回热加热器停用;

(2)隔板轴封间隙因磨损而漏汽增大;

(3)蒸汽品质不良,引起通流部分结垢;

(4)发生水冲击;

(5)负荷变化,一般来讲,凝汽式汽轮机的轴向推力随负荷的增加而增大;对抽汽式或背压式来讲,最大的轴向推力可能在某一中间负荷。

(6)推力瓦损坏;

(7)凝汽器真空下降;

(8)电网频率下降。

25、汽轮机轴向位移增大应如何处理?

答案要点:轴向位移增大的处理要点:

(1)发现轴向位移增大时,应特别注意推力瓦块温度及其回油温度,注意汽机振动情况,

听汽轮机内部是否有异常声音。

(2)轴向位移增大到报警值(+1,-1.45㎜)时,应迅速降负荷,使其降到报警值以下,报告班长查明原因进行处理,并作好记录。

(3)轴向位移增大到动作值(+1.2,-1.65㎜)时,若保护未动作,同时推力瓦块温度升高到95℃时,应紧急故障停机。

(4)轴向位移增大,振动增加显著,轴承回油温度显著升高至75℃时,应紧急故障停机。

(5)轴向位移增大虽未达到极限值,但推力瓦温度明显升高,任一推力瓦块温度升高到95℃时,虽经减负荷处理仍不能恢复时,应故障停机。

26、汽轮机升负荷阶段的注意事项有哪些?

答案要点:(1)应按规程规定严格控制升负荷率,并选择一定的负荷段停留暖机,以控制金属各部件之间的温差和胀差;

(2)应按规程规定严格控制升温、升压速度;

(3)加负荷过程中还应经常检查和监视调节系统工作正常、稳定,调门控制油压或指令、油动机开度与当时负荷相对应,调节保安系统各部分油压均正常;

(4)加负荷过程中还应加强对机组振动和声音的检查,尤其是推力瓦温度的检查;

(5)负荷增加时,凝汽器水位、除氧器水位、轴封汽压力、油温、氢温、内冷水温、加热器水位都容易变化,要加强监视检查;

(6)随着负荷的增加,应注意真空的变化,及时调节循环水的量;

(7)应在负荷达额定值前,先把蒸汽参数提升到额定值;

(8)主蒸汽温度350℃以上时,节流各管道疏水,防止疏扩超压,主蒸汽温度400℃以上时再关闭管道及本体疏水门;

(9)及时调整加热装置,当高外上缸温度达400℃以上时,可停止加热装置;

(10)门杆漏汽压力高于除氧器压力时倒向除氧器;

(11)150MW负荷汽温汽压额定时,与锅炉联系投入高加运行,并将疏水倒向除氧器,高加不投入时,负荷不超过180MW。

27、在主蒸汽温度不变时,主蒸汽压力升高对汽轮机运行有何影响?运行中应如何处理?答案要点:(一)主蒸汽压力升高对运行的影响主要有:

在主蒸汽温度不变时,主蒸汽压力升高,整个机组的焓降就增大,运行的经济性提高。但当主蒸汽压力升高超过规定变化范围的限度,将会直接威胁机组的安全,主要有以下几点:

(1)机组末几级的蒸汽湿度增大,使末几级动叶片的工作条件恶化,水冲刷严重。

(2)使调节级焓降增加,将造成调节级动叶片过负荷。

(3)会引起主蒸汽承压部件的应力升高,将会缩短部件的使用寿命,并有可能造成这些部件的变形,以至于损坏部件。

处理:

(1)主蒸汽压力升高到13.23MPa时,应联系锅炉恢复主汽压力并汇报值长;

(2)主蒸汽压力升高到13.72MPa时,应立即汇报值长,并采取措施以恢复正常,并做好延迟时间记录。

28、在主蒸汽温度不变时,主蒸汽压力降低对汽轮机运行有何影响?运行中应如何处理?

答案要点:主蒸汽压力降低对运行的影响主要有:

(1)在主蒸汽温度不变时,主蒸汽压力降低,整个机组的焓降就减小,运行的经济性降低。

(2)主蒸汽压力降低后,若调节阀的开度不变,则汽轮机的进汽量减小,各级叶片的受力将减小,轴向推力也将减小,机组的功率将随流量的减小而减小。对机组的安全性没有影响。

(3)主蒸汽压力降低后若机组所发功率不减小,甚至仍要发出额定功率,那么必将使全机蒸汽流量超过额定值,这时若各监视段压力超过最大允许值,将使轴向推力过大,这是危险的,不能允许的。

处理:

(1)主蒸汽压力低于规定压力时,联系锅炉恢复正常;

(2)主汽压力继续降低时,注意高压油动机开度(或调节阀开度)不应超过规定值,否则应减去部分负荷,并注意汽温、轴向位移、胀差等变化。

29、汽轮机正常运行中应对哪些参数进行监视?

答案要点:汽轮机正常运行中应监视的参数主要有:

(1)蒸汽参数。主蒸汽、再热蒸汽的压力和温度;调节级汽室、高压缸排汽口和各段回热抽汽的的蒸汽压力和温度;排汽压力和排汽温度。

(2)汽轮机状态参数。机组的转速和功率;转子轴向位移和相对胀差;转子的振动和偏心度;高、中压缸及其进汽阀门金属温度;旁路管道金属温度;汽缸的内、外壁和法兰内、外壁温差;上下缸温差;各支持轴承和推力轴承的金属温度。

(3)油系统参数。压力油和润滑油供油母管压力;冷油器后油温和轴承回油温度;调节系统控制油的压力和温度;密封油压、油/氢压力差;各油箱的油位和油质。

(4)各辅机的运行状态。加热器和水泵的投入和切除;给水、凝结水、循环水的压力和温度;各水箱的水位。

30、从冲转到额定转速的过程中要经过哪几个阶段?升速暖机过程中应注意什么问题?

答案要点:从冲转到额定转速的过程中要一般要经过冲转、摩擦检查及低速暖机;升速到中速暖机;升至全速三个阶段。

升速暖机过程中应注意的问题主要有:

(1)转子冲动后,应检查盘车装置应自动退出,

停止转动;

(2)冲转后,高排逆止门应开启,为此要特别注意汽轮机高、低压旁路的匹配;

(3)摩擦检查要抓紧进行,不要让转速降得太低;

(4)对大机组,低速暖机主要是在低速下对机组进行全面检查,并进行一些配合操作,停留时间不需太长;

(5)升速过程中应严格控制升速率,通过临界转速时要平稳,不得停留;

(6)升速阶段要特别注意监视机组的振动,防止振动超过规定值;

(7)升速暖机过程中要特别注意监视机组膨胀及胀差情况;

(8)升速过程中,对轴温、轴瓦温度、轴承回油温度等也应加强监视;

(9)升速过程中还应加强氢密封油温度及空氢侧油压差的监视和调整;

(10)及时调整凝汽器、轴加水位,根据油温、风温、内冷水温的变化情况投各冷油器、冷风器和冷水器的水侧。

31、汽轮机冲转条件中,为什么规定要有一定数值的真空?

答案要点:汽轮机冲转前必须建立一定的真空,一般为60kPa左右。若真空过低,转子转动就需要较多的新蒸汽,而过多的乏汽突然排入凝汽器,凝汽器汽侧压力瞬间升高较多,可能使凝汽器汽侧形成正压,造成排大气安全薄膜损坏,同时也会给汽缸和转子造成较大的热冲击。

冲动转子时,真空也不能太过高,真空过高不仅要延长建立真空的时间,也因为通过汽轮机的蒸汽流量较少,放热系数也小,使得汽轮机加热缓慢,转速也不易稳定,从而延长汽轮机的启动时间。

32、汽轮机启动时为什么要限制上、下汽缸的温差?

答案要点:汽轮机上、下缸存在温差,将引起汽缸的变形。上、下缸温度通常是上缸高于下缸,因而引起汽缸的拱背变形,俗称猫拱背。汽缸的这种变形使下缸底部径向动静间隙减小甚至消失,造成动静部分的摩擦,尤其当转子存在热弯曲时,动静部分摩擦的危险更大。

上下缸温差是监视和控制汽缸热翘曲变形的指标。大型汽轮机高压转子一般是整锻的,轴封部分在轴体上车旋加工而成,一旦发生摩擦就会引起大轴弯曲发生振动,如不及时处理,可能引起永久变形。汽缸上下缸温差过大常是造成大轴弯曲的初始原因,因此汽轮机启动时一定要限制上下缸的温差。

33、汽轮机冷态滑参数启动时何时向轴封供汽?向轴封供汽时应注意哪些问题?

答案要点:汽轮机冷态滑参数启动时在冲转前15分钟向轴封供汽。

向轴封供汽时应注意的问题有:

(1)严禁在转子静止状态下向轴封供汽,并尽量缩短冲转前向轴封送汽时间;

(2)在送轴封供汽前应对轴封供汽联箱及轴封供汽压力调节阀前的管道进行充分暖管,并充分疏水,以防止水通过轴封系统进入汽轮机。

(3)启动一台轴抽风机运行,正常后开启其入口门,将另一台投入备用。

(4)向各轴封供汽并保持调整门后汽压,轴抽真空调整到正常值。

34、试叙述汽轮机的冲转操作。

答案要点:1.检查冲转条件全部满足,记录以下参数:主、再热蒸汽温度、压力、高压缸第一级金属温度、中压缸第一静叶持环温度、偏心率、真空、轴向位移、差胀、盘车电流、润滑油压力、温度、EH油温度。

2.联系锅炉,停用旁路系统,检查一、二、三级减温水应关闭,高压缸排汽通风阀关闭。

3.在挂闸前,DEH应处于自动状态,DEH操作盘“自动”,“DPU01主控”,“双机运行”,“ATC监视”,“单阀”,“旁路切除”灯亮。

4.按下“挂闸”按钮,并保持两秒以上,检查TV1、TV2、GV1~GV6、IV1、IV2均在关闭位置,RSV1、RSV2自动开启并全开,单操开启高排逆止门。

5.按“主汽门控制”按钮,灯亮,GV1~GV6缓慢开启至全开。

6.按下“升速率”键,设定升速率为100r/min;按下“目标值”键,设定“目标值”为600r/min/min,“保持”灯亮。

7.通知锅炉、电气及汽机值班员准备冲转。按下“进行”健,灯亮,“保持”灯灭,机组开始升速。

8..当转速达到600r/min时,“进行”灯灭,此时进行全面检查。

35、防止汽轮机大轴弯曲的技术措施有哪些?

答案要点:(1)汽缸应具有良好的保温条件;

(2)主蒸汽管道、旁路系统应有良好的疏水系统;

(3)主蒸汽导管和汽缸的疏水符合要求;

(4)汽缸各部分温度计齐全可靠;

(5)启动前必须测大轴晃动度,超过规定则禁止启动;

(6)启动前应检查上、下缸温差,超过规定则禁止启动;

(7)热态启动中要严格控制进汽温度和轴封供汽温度;

(8)加强振动监视;

(9)汽轮机停止后严防汽缸进水。

36.汽轮发电机组的振动有哪些危害?

答案要点:(1)汽轮发电机组的大部分事故,甚至比较严重的设备损坏事故,都是由振动引起的,机组异常振动是造成通流部分和其它设备元件损坏的主要原因之一;

(2)机组的振动,会使设备在振动力作用下损坏;

(3)长期振动会造成基础及周围建筑物产生共振损坏。

37.汽机停机方式有几种,分别是什么?

汽机停机的方式可分为正常停机和故障停机。正常停机按停机过程参数的不同,可分为滑参数停机和定参数停机。故障停机分为一般故障停机和紧急故障停机,即破坏真空紧急停机。

38.汽机快速冷却有哪几种方式,快冷时应注意什么?

汽机快速冷却有以下几种方式:

1)蒸汽逆流冷却

2)蒸汽顺流冷却

3)压缩空气逆流快冷

4)压缩空气顺流快冷

快冷应注意以下几个方面问题:

1)快速冷却的安全评价

2)投冷却系统时间的选择

3)冷却介质的选择

4)顺流冷却和逆流冷却的选择

39.什么是甩负荷实验?

甩负荷实验是在汽轮发电机并网带负荷情况下,突然拉掉发电机主断路器,使发电机与电力系统解列,观察机组的转速与调速系统各主要部件在过渡过程中的动作情况,从而判断调速系统的动态稳定性的实验。

甩负荷实验应在调速系统运行正常,锅炉和电气设备运行情况良好,各类安全门调试动作可靠的条件下进行。甩负荷实验,一般按甩负荷的1/2、3/4及全负荷3个等级进行。甩额定负荷的1/2、3/4负荷实验合格后,才可以进行甩全负荷实验。

40.简述紧急故障停机的步骤。

(1)手打危急保安器,检查并确认自动主汽门、调节汽门、抽汽逆止门已关闭。

(2)投入启动油泵和交流润滑油泵向轴承供油,调整氢压和密封油压。

(3)需破坏真空的紧急停机(即前面介绍需紧急停机的1~13),应停止抽气器并打开真空破坏门,必要时给发电机加上励磁。

(4)当因进水紧急停机时,打开汽轮机的全部疏水门,并一直向轴封供汽,直至转子静止。

(5)注意转子惰走情况。

41.汽轮机发生哪些情况需要紧急停机?

发生以下情况:

1)汽机主油箱油位下降到报警值,补救无效;

2)汽轮发电机组任一轴承断油;

3)汽轮发电机组任一轴承回油温度超过允许值且轴瓦金属温度达95℃时;

4)汽轮发电机组及其油系统着火无法扑灭;

5)轴封冒火花;

6)汽机内部出现金属撞击声;

7)主汽或再热器温3分钟内下降50℃及以上;

8)发生水冲击;

9)机组发生强烈振动;

10)汽机工况已达保护跳闸条件而保护拒动;

11)汽轮机任一缸中断进汽;

12)发生严重危及人身设备安全的紧急情况

42.汽轮机的停机过程有何特点?停机过程如何分类?

汽轮机的停机过程是启动的逆过程。在停机过程中汽轮发电机组的输出功率由运行工况降至零,与电网解列,主汽门关闭,其转速由于摩擦鼓风作用逐渐降至零。在停机过程中汽轮机的进汽量逐渐减小至零;高、中压级前的蒸汽参数逐步降低,其汽缸和转子等零件被逐渐冷却。

按停机过程中进汽参数变化的特点,可分为额定参数停机和滑参数停机。按停机的原因或目的可分正常停机和事故停机两大类。正常停机又可分为大修停机和调峰停机两种;事故停机分为一般事故停机和紧急事故停机两种。

大修停机后汽轮机要揭开汽缸进行检修,而揭开汽缸必须待汽缸金属温度降至100℃左右才能进行。因汽缸保温较好,靠停机后自然冷却,需要较长的时间。为了缩短冷却降温的时间,在降负荷过程中,采用逐步降低主蒸汽压力和温度的办法(即滑参数停机),进行强制冷却。

调峰停机是在电网负荷低谷期间,将某些机组停机备用,待电网负荷增大时,再将此机组启动。由于机组启动时间与冲转时汽缸最高金属温度有关:冲转前汽缸的金属温度愈高,启动时加热的温升量愈小,在热应力相同的条件下,启动所需的时间愈短。因此调峰停机应采用滑压停机,或额定参数停机,在降负荷过程中尽可能保持主蒸汽和再热蒸汽温度不变,使停机后汽缸的金属温度较高,以缩短下一次启动的时间,减小启动损失,提高调峰的机动性。

43.大修停机过程如何进行?有什么特点?

大修停机过程可明显的分为:降负荷;打闸停机与电网解列;转速逐渐降至零(惰走过程);

停机后的处理四个阶段。为了使机组充分冷却,对于中间再热机组,或可以切换为单元制的机组,多采用滑参数停机。在降负荷过程中,可保持调节阀开度不变,逐步降低主蒸汽和再热蒸汽的温度,并相应降低主蒸汽压力,以保证蒸汽的过热度和排汽湿度在允许范围内。为了便于锅炉操作,蒸汽的降温和降压交替进行,并适当安排暖机,使转子中心孔的温度也按一定的速度降低,避免出现过大的热应力和负胀差。适时切换除氧器供汽和轴封供汽、停用高压加热器和一台给水泵、一台循环水泵。在尽可能低的负荷下,锅炉熄火,打闸停机与电网解列。在惰走过程中,随润滑油压降低,辅助润滑油泵应自动投入。适时停用主抽气器,使凝汽器真空为零时,转速为零,停止向轴封供汽,立即投入盘车设备,进行连续盘车,直至汽缸温度降至100℃。

44.大修停机后进行快速冷却可采用哪些冷却介质?强制冷却应注意哪些问题?

大修停机后,在惰走过程,可采用低温过热蒸汽进行冷却。在盘车过程,可采用空气冷却。

强制冷却应注意:设计合理的冷却系统,组织冷却汽流,使汽缸和转子均匀冷却;控制冷却介质的温度及流量,以控制金属的冷却速度不超过1℃∕min,使热应力在允许的范围内;要控制汽缸的内、外壁温差和上、下缸温差,使它们符合运行规程的有关规定,同时要避免出现负胀差。

45.与大修停机相比,调峰停机过程有何特点?应注意什么问题?

调峰停机是在电网低谷期间,某些机组停机;而当电网负荷增加时,再将这些机启动投入运行。由于启动前汽轮机的金属温度愈高,启动过程金属的温升量相应减小,启动速度可以加快。为了缩短下一次启动的时间,减少启停损失,提高电网调度的机动性,在调峰停机过程中,尽可能保持机组的金属温度在较高的水平。调峰停机的特点是:在降负荷过程中,或保持蒸汽参数为额定值,或采取滑压停机,尽可能保持主蒸汽和再热蒸汽温度不变;在尽可能高的负荷下打闸停机;在汽机打闸停机后,锅炉才能熄火;凝汽器内真空为零后,才能停止轴封供汽和轴封抽气,防止冷空气由轴封漏入汽缸。

调峰停机也应该严格控制机组降负荷速度;适时切换除氧器供汽和轴封供汽、停用高压加热器和给水泵、循环水泵;同时避免机组被过分冷却。

46.与正常停机相比,事故停机过程有何特点?一般事故停机与紧急事故停机有何差异?

事故停机过程的特点是:主汽门和调节阀迅速关闭,负荷瞬间降到零,机组与电网解列,进入惰走阶段。

一般事故停机与紧急事故停机的差异在于:打闸停机后,要不要立即破坏凝汽器的真空。一般事故,允许机组继续转动,不需立即破坏凝汽器真空。按正常停机的惰走过程,适时停主抽气器,转速降到零时,凝汽器真空也降至零,停止向轴封供汽,投入盘车装置进行盘车。而紧急事故停机打闸停机后,要立即破坏凝汽器的真空,以增加转子的摩擦鼓风作用,使转速迅速降至零。

47.紧急事故停机对机组有何不利影响?哪些事故必需实行紧急事故停机?

由于紧急事故停机破环凝汽器真空时,大量冷空气进入凝汽器,对凝汽器和低压缸迅速冷却,产生很大的“冷冲击”,会造成凝汽器铜管急剧收缩,使其胀口松动,产生泄漏。而且使低压缸和低压转子的热应力增大,有时还会诱发机组振动增大。

必需实行紧急事故停机的事故包括:(1)汽轮机的机械故障。机组振动突然超限;转子轴向

位移超限;汽缸内有异常声音或动、静部分发生摩擦;轴承金属温度过高;严重超速等。(2)润滑油系统故障。润滑油压降至30~40kPa(表压),无法恢复;系统大量漏油,需停交流润滑油泵;油箱油位降至最低油位,可能影响正常供油;发电机密封油压降低,且低于氢压等。(3)重大災害。车间起火,无法补灭;发生破坏性地震等

48.何谓惰走曲线?测绘惰走曲线有何作用?

在停机的惰走过程中,转速随时间的变化的曲线,称为惰走曲线。惰走曲线反映转子的机械状态和主汽门、调节阀等的严密性,可以利用它进行上述问题的判断。如果惰走时间增长,则说明阀门严密性欠佳,有蒸汽漏入汽缸,对转子产生作用力;若惰走时间缩短,则说明动、静部分存在摩擦,或系统严密性不佳;若转速突降对应的转速偏高,则说明轴承润滑有故障或缺陷。

49.紧急事故停机与一般事故停机停机过程有何不同之处?

事故停机是在设备或系统出现异常、可能危及安全运行时,保护系统动作或操作员按动“停机”按钮,主汽门和调节阀快速关闭,机组瞬间降负荷至零,与电网解列,进入惰走阶段,使机组降速至零的停机过程。紧急事故停机与一般事故停机之间的差别是前者在主汽门关闭后,立即打开凝汽器的真空破坏阀,破坏凝汽器的真空。使汽缸内的压力瞬间升至大气压力,加大转子惰走过程的摩擦鼓风作用,迫使转速迅速降至零,以避免转子长时间转动,而使机组损坏或事故扩大。而一般事故停机,则无须在主汽门关闭后,立即破坏凝汽器的真空。

50.简述滑参数停机的主要操作。

(1)停机前的准备。实验高压辅助油泵、交直流润滑油泵、顶轴油泵及盘车装置电机;为轴封、除氧器和准备好低温汽源;并对法兰螺栓加热装置的管道进行暖管。

(2)减负荷。

1)带额定负荷的机组,先将负荷按规定速度降到80~85%或更多一些。

2)通知锅炉减弱燃烧降低蒸汽温度和压力(大概1℃/min的降温速度),同时逐渐将调节汽门全开,稳定运行一段时间。

3)待汽缸法兰温差减小后,按滑参数停机曲线分阶段(每一阶段的温降约为20~40℃)交替降温、降压、减负荷,直至负荷减至较低值。

(3)解列发电机停机和转子惰走

(4)盘车。当转子完全静止后,应立即投入盘车装置,防止转子产生热弯曲。

51.简述滑参数停机的注意事项。

(1)滑停时,最好保证蒸汽温度比该处金属温度低20~50℃为宜。过热度始终保持50℃,低于该值。开疏水门或旁路门。

(2)控制降温降压速度。新蒸汽平均降温速度为1~2℃/min,降压速度为19.7kPa/min,当蒸汽温度低于高压内上缸壁温30~40℃时,停止降温。

(3)不同负荷阶段降温降压速度不同。较高负荷时,可快些,低负荷时,降温降压应缓慢进行,以保证金属降温速度比较稳定。

(4)正确使用法兰螺栓加热装置,以减小法兰内外壁温差和汽轮机的胀差。因为法兰冷却的滞后会限制汽缸的收缩。

(5)减负荷应等到再热汽温接近主蒸汽温度时,再进行下一次的降压。防止滑停结束时,因再热蒸汽降温滞后于主蒸汽降温,使中压缸温度还较高。

(6)滑停时,不准做汽轮机的超速实验。因为新蒸汽参数较低,要进行超速实验就必须关小调节汽阀,提高压力,当压力提高后,就有可能使得新蒸汽的温度低于对应压力下的饱和温度。此时再开大汽阀做超速实验,就有可能有大量凝结水进入汽轮机造成水冲击。

52.真空下降的危害有哪些?

1)导致排汽压力升高,做功能力(焓降)减小,使机组出力减小。

2)排汽缸和轴承座受热膨胀,轴承负荷分配发生变化,机组产生振动。

3)凝汽器铜管受热膨胀产生松弛、变形、甚至断裂,造成凝汽器泄漏。

4)排汽容积减小,使末级产生脱流和旋涡。

5)若保持负荷不变,将使轴向推力增大和叶片过负荷。

53.真空下降的现象有哪些?

1)真空表指示下降;

2)低压缸排汽温度升高;

3)凝汽器端差明显增大;

4)凝结水过冷度增大;

5)在汽轮机调节汽门开度不变的情况下,负荷降低。

54.真空急剧下降的原因有哪些?如何处理?

1)循环水中断

(1)主要表征:凝汽器真空急剧降落;排汽温度显著升高;循环水泵电机电流和进出口压差到零。

(2)原因及处理:

①循环水泵出口压力、电机电流摆动,通常是循环水泵吸入水位过低、入口滤网脏堵所致,此时应尽快采取措施,提高水位或清除杂物。

②若循环水泵出口压力、电机电流大幅度下降则可能是循环泵本身故障引起。启动备用循环水泵,关闭事故泵的出水门;若两台泵均处于运行状态同时跳闸时,即使发现并未反转时,可强行合闸;无备用泵,应迅速将负荷降到零,打闸停机。

③循环水泵运行中出口误关,备用泵出口误开,造成循环水倒流,也会使真空急剧下降。若在未关死前及时发现,应设法恢复供水,根据真空情况紧急减负荷;若发现较晚,需不破坏真空紧急停机。

④循环水泵失电或跳闸。需不破坏真空紧急停机。

2)射水抽气器工作失常

若射水泵出口压力、电机电流同时到零,说明射水泵跳闸;若射水泵出口压力、电机电流下降,则是由于泵本身故障或水池水位过低。发生以上情况均应启动备用射水抽气器,水位过低时应补水至正常水位。

3)凝汽器满水

凝汽器在短时间内满水,一般是由于铜管泄漏严重(同时凝结水硬度增大),大量循环水进入汽侧或凝结水泵故障(出口压力和电机电流减小甚至到零)所致。处理方法是:立即开大水位调节阀并启动备用凝结水泵,必要时将凝结水排入地沟,直至水位恢复正常。

4)低压轴封供汽中断

轴封供汽中断的可能原因有:负荷降低时未及时调整轴封供汽压力使供汽压力降低;汽封系统进使轴封供汽中断;轴封压力调整器失灵,调节阀芯脱落。因此在机组负荷降低时,要及时调整轴封供汽压力为正常值;若是轴封压力调整器失灵应切换为手动,待修复后投入;若因轴封供汽带水造成,则应及时消除供汽带水。

5)真空系统管道严重漏气

真空系统漏入的大量空气,最终都汇集到凝汽器中,使传热热阻增大,真空异常下降。运行中真空管道严重漏气,可能是由于膨胀不均使管道破裂,或误开与真空系统连接的阀门所致。若是真空管道破裂漏气则应查漏补漏予以解决;若是误开阀门引起的,应及时关闭。

6)冬季运行时,利用限制凝汽器冷却水入口流量保持汽轮机排汽温度,致使冷却水流速过低而在冷却水出口管道上部形成汽塞,阻止冷却水的排出,也会导致真空急剧下降。

55.真空缓慢下降的原因有哪些?如何处理?

因为真空系统庞大,影响真空因素较多,所以最容易发生,查找原因也比较困难。引起真空缓慢下降的原因通常有:

1)循环水量不足

循环水不足表现在同一负荷下,凝汽器循环水进出口温差增大。找出循环水不足的原因,采取相应的方法进行处理。

2)凝汽器水位升高

导致凝汽器水位升高的原因可能有:凝结水泵入口汽化(凝结水泵电流减小)、铜管破裂(凝结水硬度增大)、软水门未关、备用凝结水泵的逆止门损坏(关备用泵的出口门后水位不再升高)等。处理方法分别为:启备用泵,停故障泵;关闭备用泵的出水门,更换逆止门;关补充水门;降低负荷停半面凝汽器,查漏堵管。

3)射水抽气器工作水温升高

工作水温升高,使抽汽室压力升高,降低了抽气器的效率。当发现水温升高时,应开启工业水补水,以降低工作水温。

4)真空系统管道及阀门不严密使空气漏入

真空系统是否漏入空气,可通过严密性实验来检查。此外,空气漏入真空系统,还表现为凝结水过冷度增加,凝汽器传热端差增大。

5)凝汽器内冷却水管结垢或脏污

其表象是:随着脏污日益严重,凝汽器传热端差也逐渐增大,抽气器抽出的空气混合物温度也随着增高。经真空严密性实验证明不是由于真空系统漏入空气而又有以上现象时就可确认凝汽器真空缓慢下降是由凝汽器表面脏污引起,应及时进行清洗。

6)冷却水温上升过高

通常发生在夏季,采用循环供水更容易出现这种情况。为保证凝汽器真空应适当增加循环水量。

56.汽轮机进水的主要征象有哪些?

1)汽轮机轴向位移、振动、胀差负值大;

2)上下缸温差≥43℃。

3)抽汽管上下温差大于报警值,抽汽管振动,有水击声和白色蒸汽冒出。

4)主蒸汽或再热蒸汽温度急剧下降。

5)主蒸汽或再热蒸汽管道振动,轴封有水击声,管道法兰、阀门、密封环、汽缸结合面和轴封处有白色湿蒸汽冒出。

6)推力瓦乌金温度和回油温度急剧增高。

7)加热器满水或汽包、凝汽器满水。

8)监视段压力异常升高,机组负荷骤然下降。

各机组发生水冲击的原因不同,上述象征不一定同时出现。

57.发生汽轮机进水时如何处理?

当机组发生水冲击事故时,应立即破坏真空紧急停机,密切监视推力瓦温度、回油温度、振动、轴向位移和机内声音,开启汽轮机本体及有关蒸汽管上的疏水门,注意转子惰走情况。停止后,立即投入盘车,注意盘车电流并测量大轴弯曲值。转子如果在停机过程中没有发现任何不正常情况,可小心谨慎地重新启动。若停机或再次启动有异常情况时,应开缸检查。

58.叶片断落的一般象征有哪些?

1)汽轮机内部或凝汽器内有突然的响声,伴随机组突然发生振动。

2)当叶片不对称脱落较多时,使转子不平衡,引起机组振动明显增大。

3)调节级围带飞脱堵在下一级静叶片上时,使通流部分堵塞,导致调节汽室压力升高。

4)低压末级叶片飞脱落入凝汽器内时,除了有较强的撞击声,且若打坏铜管,会使凝结水的硬度和导电率突增,热井水位增高,凝结水的过冷度增大。

5)若机组抽汽部位叶片断落,则叶片可能进入抽汽管。使抽汽逆止阀卡涩,或进入加热器

使管子损坏,水位升高。

59.叶片断落如何处理。

如果危急保安器未动作,应立即手打危急保安器,破坏真空紧急停机。若需重新启动,必须做超速实验,经调整合格,确认正常,才可以重新启动。危急保安器动作后主汽门不能关闭,多数原因是阀杆卡涩、弹簧松弛或阀座中有杂物,此时应强行关闭,并立即关闭电动主汽门破坏真空紧急停机。待缺陷消除后才可重新启动。

60.汽轮机轴承损坏的危害有哪些?

轴承损坏事故,主要针对汽轮发电机组的推力轴承和支持轴承而言。当油膜被破坏,除会引起轴承烧瓦事故外,还会引起如下严重后果。

(1)轴瓦乌金烧熔时,转子因轴颈局部受热而弯曲,引起轴承振动和噪声。

(2)推力瓦乌金烧熔时,转子向后窜动,轴向位移增大,将引起汽轮机通流部分碰磨,导致机组损坏。

61.产生汽轮机轴承损坏的原因有哪些?

1)润滑油压过低。造成油压过低的原因有:主油泵磨损;入口滤网脏堵;油系统逆止门不严密,使部分油从辅助油泵倒流入油箱;各轴承的压力进油管及连接法兰漏油等。

2)润滑油温过高。冷油器运行失常使润滑油温升高,油的粘度下降。

3)润滑油中断。造成润滑油中断的原因有:主油泵故障;油系统管道堵塞;油箱油位过低使主油泵不能正常工作等。

4)油质不良。包括:油质劣化,油中含有机械杂质;油中含水。

5)轴瓦与轴的间隙过大。轴瓦间隙正常为轴径的0.001~0.003倍。若过大,一是油从轴瓦中流出速度过快,难形成连续油膜;二是随轴上负荷的增大,更多的润滑油被挤出,使油膜厚度减小

6)乌金脱落。产生原因:轴承振动过大;乌金质量不良或乌金材料因疲劳而变形;推力轴承负载过大;浇铸乌金时温度过高,使发生大小不一的块状剥落。

7)发电机或励磁机漏电。使推力瓦块产生电腐蚀,承载能力下降。

62.汽轮机轴承损坏的处理原则如何?

1)当发现轴向位移逐渐增加时,迅速减负荷使恢复正常,特别注意推力瓦金属温度和回油温度。

2)当推力轴承轴瓦乌金温度及回油温度急剧升高冒烟,振动增大,说明轴瓦烧损,此时应立即手打危急保安器,解列发电机。

63.若因焊接问题引起高压给水管道破裂时的处理步骤有那些?

(1)发现给水不正常并判断为高压给水管路破裂;

(2)联系锅炉,降负荷维持水位;

板块构造与地质作用

板块构造与地质作用

绪论 (1)大地构造研究内容及基本思想 狭义(传统)概念:研究地壳构造发生、发展、演化及其运动规律的科学。侧重构造特征和构造发展史的研究,研究方法以地质历史分析法为主,涉及范围限于地壳(表面)和大陆. 概念(广义):研究地壳和上地幔(岩石圈)结构、组成、构造特征及其演化、成因、运动学、动力学的科学。大地构造学的广义概念摆脱了单纯的构造发展历史分析(狭义),以地球动力学作为立论基础,研究方法注意了地球物理、地球化学和地质学的结合;同时注意了地球动力作用的制约下的构造运动与地质(沉积、岩浆、变质、变形等)作用的关联性和整体性,研究涉及的范围更广(全球)、更深(岩石圈)。 研究对象:地球表面——固体岩石圈(构造)的各种构造(广义)类型、特征 研究内容:地壳各构造单元的沉积建造、岩浆作用、构造变形作用、成矿作用以及地球化学、地球物理特征。重塑各构造单元大地构造性质及发展历史;划分不同岩石圈构造类型。 研究意义: 理论意义——阐明一个地区(单元)乃至全球构造运动规律、成因、地球起源与演化,天体演化与成因等。 实践意义——矿产资源形成及分布规律、地震预报、区域稳定性评价等。 (2)大地构造学研究方法 (一)历史分析法 地质历史分析法(又叫历史-构造比较分析法)是以各种地质、地球物理、地球化学资料为基础,按地史发展的顺序,探讨不同阶段大地构造的特点。 1.沉积岩相、建造分析沉积岩占大陆及其邻近海域的大部分。地层发育、岩性、岩相、厚度、接触关系以及它们在空间和时间的变化, 恢复古地理面貌、古气候、隆起、拗陷、地壳沉降幅度与速度、构造状况以及演化历史。通过对地层沉积特征及其演变的研究,推断地层形成的大地构造背景(环境)、性质和演化,相应的方法称之为历史大地构造分析方法,相应的学科称之为历史大地构造学构造沉积作用与构造-沉积组合(沉积建造) 研究思路:沉积组合→古构造环境→大地构造作用 构造-沉积作用(容纳沉积物的堆积地都是构造变动的产物)沉积作用的内因是沉积物本身的物理、化学性质的制约;外部控制因素主要是气候和大地构造,大地构造的升降运动造成海平面的升降,使沉积岩相、厚度、层序和岩性方面呈现出构造作用痕迹来。 1) 岩相(单一岩性组合,反映某种沉积环境) 岩相的更替是地壳拗陷和隆起的一种表现,隆-拗造成某种沉积环境的变迁,从而导致同一地区的岩相发生改变。 岩相本身只与拗陷速度有关,与拗陷幅度没有直接的关系。 拗陷速度对相带宽度具有控制作用: x=h/s (h:剥蚀区上升速度,s:沉降区沉降速度)拗隆速度(s、h)越快,宽度(x)越小,反之亦然。

火电厂自动控制系统的重要性

浅谈火电厂自动控制系统的重要性 张振明 (神华准能氧化铝中试厂设备维修部,内蒙古薛家湾 010300) 摘 要:热控保护系统是火力发电厂的一个不可缺少的重要组成部分,它对提高机组主辅设备的可靠性和安全性具有十分重要的作用。在主、辅设备发生某些可能引发严重后果的故障时,及时采取相应的措施加以保护,从而软化故障,停机待修,避免发生重大的设备损坏和人身伤亡事故。对故障的防范,关键是如何尽早检测、发现故障,然后预防、软化、控制和排除故障,避免故障的进一步扩大,使热工保护工作的精密性趋于高度完善,从而为电厂热力设备的安全运行把好最后的一道关。 关键词:火电厂;热工控制;保护 中图分类号:T M762 文献标识码:A 文章编号:1006—7981(2012)23—0033—01 1 高度重视火电厂热工自动化控制系统的保护工作 随着DCS控制系统的成熟发展,热工自动化程度越来越高,但热工保护误动和拒动的情况还时有发生。如何防止DCS系统失灵和热工保护误动、拒动成为火力发电厂日益关注的焦点。由于热控设备覆盖着热力系统和热力设备的所有参数,各系统相互联系,相互制约,任何一个环节的故障都有可能通过热工保护系统发出跳机停炉信号,从而造成不必要的经济损失。因此,如何提高保护系统的可靠性是一项十分重要而又迫切的工作。在主辅设备正常运行时,保护系统因自身故障而引起动作,造成主辅设备停运,称为保护误动,并因此造成不必要的经济损失;在主辅设备发生故障时,保护系统也发生故障而不动作,称为保护拒动,同样会造成重大事故和不可避免的经济损失。 2 热控自动化保护系统常见故障及成因 因DCS软、硬件故障而引起的保护误动也时有发生。主要原因是信号处理卡、输出模块、设定值模块、网络通讯等故障引起。热控元件故障是因热工元件故障(包括温度、压力、液位、流量、阀门位置元件、电磁阀等)误发信号而造成的主机、辅机保护误动、拒动占的比例也比较大,有些电厂因热工元件故障引起热工保护误动、拒动甚至占到了一半。主要原因是元件老化和质量不可靠,单元件工作,无冗余设置和识别。电缆接线断路、断路、虚接引起的保护误动主要原因是电缆老化绝缘破坏、接线柱进水、空气潮湿腐蚀等。设备电源故障是因为随着热控系统自动化程度的提高,热工保护中加入了DCS系统一些过程控制站电源故障停机保护。因热控设备电源故障引起的热工保护误动、拒动的次数也有上升的趋势。主要原因是热控设备电源接插件接触不良、电源系统设计不可靠。因人为因素引起的保护误动大多是由于操作失误引起。设计、安装、调试存在缺陷。许多机组因热控设备系统设计、安装、调试存在质量缺陷导致机组热工保护误动或拒动。 3 应对热控保护故障应采取的主要措施 3.1 技术性操作要逐步科学化 加强技术培训,提高热控人员的技术水平和故障处理能力至关重要。其中过程控制站的电源和CPU冗余设计已普遍,对一些保护执行设备(如跳闸电磁阀)的动作电源也应该监控起来。对一些重要热工信号也应进行冗余设置,并且对来自同一取样的测点信号进行有效的监控和判断,重要测点的测量通道应布置在不同的卡件以分散危险,提高其可靠性。重要测点就地取样孔也应该尽量采用多点并相互独立的方法取样,以提高其可靠性,并方便故障处理。一个取样,多点并列的方法有待考虑改进。尽量采用技术成熟、可靠的热控元件。在合理投资的情况下,一定要选用品质、运行业绩较好的就地热控设备,保护逻辑组态进行优化。优化保护逻辑组态,对提高保护系统的可靠性、安全性,降低热控保护系统的误动、拒动率具有十分重要的意义。 3.2 管理、制度、环境要趋于规范化 工作人员对设计、施工、调试、检修质量要严格把关。严格执行定期维护制度。做好机组的大、小修设备检修管理,及时发现设备隐患,使设备处于良好的工作状态;做好日常维护和试验;停机时,对保护系统检修彻底检修、检查,并进行严格的保护试验;提高和改善热控就地设备的工作环境条件。就地设备工作环境普遍十分恶劣,提高和改善就地设备的工作环境条件,对提高整个系统的可靠性有着十分重要的作用。必须严格控制电子间的环境条件,要明确认识温度、湿度、灰尘及振动对热控电子设备有 33  2012年第23期 内蒙古石油化工

磁珠(Ferrite Bead 即 FB)介绍

什么是磁珠 磁珠有很高的电阻率和磁导率,他等效于电阻和电感串联,但电阻值和电感值都随频率变化。他比普通的电感有更好的高频滤波特性,在高频时呈现阻性,所以能在相当宽的频率范围内保持较高的阻抗,从而提高调频滤波效果。 作为电源滤波,可以使用电感。磁珠的电路符号就是电感但是型号上可以看出使用的是磁珠在电路功能上,磁珠和电感是原理相同的,只是频率特性不同罢了。 磁珠由氧磁体组成,电感由磁心和线圈组成,磁珠把交流信号转化为热能,电感把交流存储起来,缓慢的释放出去。 磁珠对高频信号才有较大阻碍作用,一般规格有100欧/100mMHZ ,它在低频时电阻比电感小得多。 铁氧体磁珠 (Ferrite Bead) 是目前应用发展很快的一种抗干扰组件,廉价、易用,滤除高频噪声效果显着。 在电路中只要导线穿过它即可(我用的都是象普通电阻模样的,导线已穿过并胶合,也有表面贴装的形式,但很少见到卖的)。当导线中电流穿过时,铁氧体对低频电流几乎没有什么阻抗,而对较高频率的电流会产生较大衰减作用。高频电流在其中以热量形式散发,其等效电路为一个电感和一个电阻串联,两个组件的值都与磁珠的长度成比例。磁珠种类很多,制造商应提供技术指标说明,特别是磁珠的阻抗与频率关系的曲线。 有的磁珠上有多个孔洞,用导线穿过可增加组件阻抗(穿过磁珠次数的平方),不过在高频时所增加的抑制噪声能力不可能如预期的多,而用多串联几个磁珠的办法会好些。 铁氧体是磁性材料,会因通过电流过大而产生磁饱和,导磁率急剧下降。大电流滤波应采用结构上专门设计的磁珠,还要注意其散热措施。 铁氧体磁珠不仅可用于电源电路中滤除高频噪声(可用于直流和交流输出),还可广泛应用于其它电路,其体积可以做得很小。特别是在数字电路中,由于脉冲信号含有频率很高的高次谐波,也是电路高频辐射的主要根源,所以可在这种场合发挥磁珠的作用。 铁氧体磁珠还广泛应用于信号电缆的噪声滤除。 以常用于电源滤波的HH-1H3216-500为例,其型号各字段含义依次为: HH 是其一个系列,主要用于电源滤波,用于信号线是HB系列; 1 表示一个组件封装了一个磁珠,若为4则是并排封装四个的; H 表示组成物质,H、C、M为中频应用(50-200MHz), T低频应用(50MHz),S高频应用(200MHz); 3216 封装尺寸,长3.2mm,宽1.6mm,即1206封装;

造山带的深部过程与成矿作用

造山带的深部过程与成矿作用 1.国内外研究现状及存在问题 矿产资源和能源历来是保障国民经济持续发展、支撑GDP快速增长、确保国家安全的重要物质基础。随着我国工业化进程的快速发展,对能源、矿产资源的需求量急剧增加,大宗矿产和大部分战略性资源日渐面临严重短缺的局面,并将成为制约我国经济快速发展的瓶颈。因此,深入研究能源和矿产资源的形成过程及成矿成藏机理,拓展新的找矿领域,增强发现新矿床的能力,是缓解我国当前大宗矿产资源紧缺局面的重要途径。 近年来,国内外矿床学理论研究和勘探技术得到了快速发展,在地壳浅表矿床日益减少枯竭的情况下,逐步提高深部矿床勘探和开发能力。例如,我国大冶铁矿床、红透山铜矿床、铜陵冬瓜山特大型铜矿床、新疆阿尔泰阿舍勒铜、金、锌特富矿床, 会理麒麟铅、锌矿床、山东增城、乳山金矿床等开采深度均已超过1000米, 有的矿床已近2000米(滕吉文等,2010)。加拿大萨德伯里( Sodbury) 铜-镍矿床已开采到2000米,最深矿井达3050米。南非金矿钻井深4800米。更为重要的是找矿勘探实践和地球深部探测实验证实,虽然绝大多数矿床的形成、就位和保存发生在地壳环境,但成矿系统的驱动机制和成矿金属的集聚过程则受控于岩石圈尺度的深部地质过程,地球深部蕴藏着巨量矿产资源,深度空间找矿潜力巨大。 深部过程与动力学是控制地球形成演化、矿产资源、能源形成,乃至全球环境变化的核心。因此,深入研究地球深部过程与动力学,不仅是提高人类对地球形成与演化、地球系统运行规律认识程度的重要途径,也是建立和研发新的成矿理论与勘查技术, 以促进我国找矿勘查的重大突破,是解决我国资源能源危机的根本途径。 20世纪90年代以来,国际地学界一直非常注重大陆岩石圈结构、深部作用过程和动力学研究,并将其作为国际岩石圈计划的主要研究领域。美国于20世纪70-80年代开展了地壳探测计划,首次揭示了北美地壳的精细结构,确定了阿帕拉契亚造山带大规模推覆构造,并在落基山等造山带下发现了多个油气田。欧

火力发电厂协调控制系统的分析

大型火电厂锅炉-汽轮机组协调控制系统的分析 上海发电设备成套设计研究所杨景祺 目前我国火电站领域的技术具有快速的发展,单元机组的容量已从300MW 发展到600MW,外高桥电厂单元机组容量已达到900MW。DCS系统在火电站的成功应用,大大提高了电站控制领域的自动化投入水平。本文主要对大型火电机组的两种主要炉型—汽包炉和直流炉机组的协调控制系统的设计机理进行概要性的说明。 1.协调控制系统的功能和主要含义 协调控制系统是我国在80年代引进的火电站控制理念,主要设计思想是将锅炉和汽机作为一个整体,完成对机组负荷、锅炉主汽压力的控制,达到锅炉风、水、煤的协调动作。对于协调控制系统而言包含三层含义:机组与电网需求的协调、锅炉汽轮机协调以及锅炉风、水、煤子系统的协调。 1.1.机组与电网需求的协调 机组与电网需求的协调主要是机组最快的响应电网负荷的要求,包括了电网AGC控制和电网一次调频控制两个方面。目前华东电网已实现了电网调度对电厂机组的负荷调度和一次调频控制。 1.2.锅炉汽轮机的协调 锅炉汽轮机的协调被认为是机组的协调,主要是协调控制锅炉与汽轮机,提高机组对电网负荷调度的响应性和机组运行的稳定性。从协调控制系统而言,对汽包锅炉和直流锅炉都具有相同的控制概念,但由于两种炉型在汽水循环上有很大的差别,导致控制系统具有很大的差别。 1.3.锅炉协调 锅炉协调主要考虑锅炉风、水、煤之间的协调。 2.汽包锅炉机组的协调控制系统 汽轮机、锅炉协调控制系统概念的引出,主要在于汽轮机和锅炉对于机组的负荷与压力具有完全不同的控制特性,汽轮机以控制调门开度实现对压力、负荷的调节,具有很快的调节特性,而锅炉利用燃料的燃烧产生的热量使给水流量变为蒸汽,其控制燃料的过程取决于磨煤机、给煤机、风机

火电厂自动控制系统教程文件

火电厂自动控制系统 火电厂控制系统总体分为两部分:第一部分是主控部分,第二部分是副控部分。下面就这两部分具体内容做个介绍。 一、火电厂主控系统 火电厂主控系统是保证火电厂安全、稳定生产的关键,随着控制技术、网络技术、计算机技术和Web技术的飞跃发展,火电厂主控系统的控制水平和工程方案也在不断进步,火电厂的管理信息系统和主控系统的一体化无缝连接必将成为未来火电厂管控系统的发展趋势,传统火电厂的DCS系统也必将向这一趋势靠拢。火电厂主控系统以控制方式分类可分为:DAS、MCS、SCS、BMS及DEH等系统。 下面分别加以阐述: 1.数据采集系统-DAS: 火电厂的主控系统中的DAS(数据采集系统)主要是连续采集和处理机组工艺模拟量信号和设备状态的开关量信号,并实时监视,保证机组安全可靠地运行。 ■数据采集:对现场的模拟量、开关量的实时数据采集、扫描、处理。 ■信息显示:包括工艺系统的模拟图和设备状态显示、实时数据显示、棒图显示、历史趋势显示、报警显示等。 ■事件记录和报表制作/ 打印:包括SOE 顺序事件记录、工艺数据信息记录、设备运行记录、报警记录与查询等。 ■历史数据存储和检索 ■设备故障诊断 2.模拟量调节系统-MCS系统: ■机、炉协调控制系统(CCS) ● 送风控制,引风控制 ● 主汽温度控制 ● 给水控制 ● 主蒸汽母管压力控制 ● 除氧器水位控制,除氧器压力控制 ● 磨煤机入口负压自动调节,磨煤机出口温度自动调节 ■高加水位控制,低加水位控制 ■轴封压力控制 ■凝汽器水位控制 ■消防水泵出口母管压力控制 ■快减压力调节,快减温度调节 ■汽包水位自动调节

3.炉膛安全保护监控系统-BMS系统: BMS(炉膛安全保护监控系统)保证锅炉燃烧系统中各设备按规定的操作顺序和条件安全起停、切投,并能在危急情况下迅速切断进入锅炉炉膛的全部燃料,保证锅炉安全。包括BCS(燃烧器控制系统)和FSSS(炉膛安全系统)。 ■锅炉点火前和MFT 后的炉膛吹扫 ■油系统和油层的启停控制 ■制粉系统和煤层的启停控制 ■炉膛火焰监测 ■辅机(一次风机、密封风机、冷却风机、循环泵等)启、停和联锁保护 ■主燃料跳闸(MFT) ■油燃料跳闸(OFT) ■机组快速甩负荷(FCB) ■辅机故障减负荷(RB) ■机组运行监视和自动报警 4.顺序控制系统—SCS: ■制粉系统顺控 ■锅炉二次风门顺控 ■锅炉定排顺控 ■射水泵顺控 ■给水程控 ■励磁开关 ■整流装置开关 ■发电机灭磁开关 ■发电机感应调压器 ■备用励磁机手动调节励磁 ■发电机组断路器同期回路 ■其他设备起停顺控 5.电液调节系统—DEH: 该系统完成对汽机的转速调节、功率调节和机炉协调控制。包括:转速和功率控制;阀门试验和阀门管理;运行参数监视;超速保护;手动控制等功能。 ■转速和负荷的自动控制 ■汽轮机自启动(ATC) ■主汽压力控制(TPC) ■自动减负荷(RB) ■超速保护(OPC) ■阀门测试

上集_磁珠(Bead)_电感(L)_电阻(R)_电容(C)于噪声抑制上之剖析与探讨

电容
由[1]可知,当两个金属很靠近时,便形成了电容。
而由[2-5]可知,通常电源输出端,其电压并非理想的恒定值,而是会有涟波与 噪声,
而由[6]可知, GSM 为分时多工机制, 其讯号为 Burst 形式, 故其 PA 会一直 On/Off 不停地切换,导致其 PA 电源端,会有瞬时电流。而要抑制这些会危害电路的涟 波、噪声、以及瞬时电流,最常见的手法,便是摆放落地电容,接下来便探讨电 容的应用与注意事项。
1

由[8]可知,任何讯号都会有回流电流,整体路径形成一个完整的封闭回路。回 路面积越小,产生的 EMI 干扰就越小。而回路面积取决于讯号路径长度,以及 回流电流路径长度。因此不只讯号长度越短越好,其回流电流路径长度也是越 短越好,如此才能使回路面积缩到最小。
因此, 落地电容的作用, 便是提供噪声一个低阻抗的路径, 使整体回路面积变小, 来降低 EMI 干扰,且避免噪声透过耦合方式,干扰其他讯号。
2

由[3]可知,摆放稳压电容,确实可减少电源的涟波。
而由下图可知,虽然 C3114,已有稳压效果,但不够靠近收发器,以至于稳压效 果不如预期,而因为 LO 电源,会影响调变的精确度,如此便导致调制频谱正负 1.6MHz 处超标,而将 C3115 更换成 4.7uF 的稳压电容后,
可看到调制频谱改善许多[6]。
3

由[9]可知,电容在高频时,会有寄生电感(Equivalent Series Inductance, ESL), 与寄生电阻(EquivalentSeries Resistance, ESR),其等效模型如下 :
因此其频率响应如下 :
由上图可知,电容会有自我谐振频率,简称 SRF(Self Resonant Frequency),与 电容值,以及 ESL 有关,过了 SRF 后,则该电容会变电感,这使得抑制噪声, 以及稳压的能力会下降,因此 ESL 越小越好,即 SRF 越高,如此便可确保电容 性的频率范围越广。
4

火力发电厂主要设备及其作用介绍

一次风机:干燥燃料,将燃料送入炉膛,一般采用离心式风机。 送风机:克服空气预热器、风道、燃烧器阻力,输送燃烧风,维持燃料充分燃烧。 引风机:将烟气排除,维持炉膛压力,形成流动烟气,完成烟气及空气的热交换。 磨煤机:将原煤磨成需要细度的煤粉,完成粗细粉分离及干燥。 空预器:空气预热器是利用锅炉尾部烟气热量来加热燃烧所需空气的一种热交换装置。提高锅炉效率,提高燃烧空气温度,减少燃料不完全燃烧热损失。空预器分为导热式和回转式。回转式是将烟气热量传导给蓄热元件,蓄热元件将热量传导给一、二次风,回转式空气预热器的漏风系数在8~10%。 炉水循环泵:建立和维持锅炉内部介质的循环,完成介质循环加热的过程。 燃烧器:将携带煤粉的一次风和助燃的二次风送入炉膛,并组织一定的气流结构,使煤粉能迅速稳定的着火,同时使煤粉和空气合理混合,达到煤粉在炉内迅速完全燃烧。煤粉燃烧器可分为直流燃烧器和旋流燃烧器两大类。 汽轮机本体:汽轮机本体是完成蒸汽热能转换为机械能的汽轮机组的基本部分,即汽轮机本身。它与回热加热系统、调节保安系统、油系统、凝汽系统以及其他辅助设备共同组成汽轮机组。汽轮机本体由固定部分(静子)和转动部分(转子)组成。固定部分包括汽缸、隔板、喷嘴、汽封、紧固件和轴承等。转动部分包括主轴、叶轮或轮鼓、叶片和联轴器等。固定部分的喷嘴、隔板与转动部分的叶轮、叶片组成蒸汽热能转换为机械能的通流部分。汽缸是约束高压蒸汽不得外泄的外壳。汽轮机本体还设有汽封系统。 汽轮机:汽轮机是一种将蒸汽的热势能转换成机械能的旋转原动机。分冲动式和反动式汽轮机。 给水泵:将除氧水箱的凝结水通过给水泵提高压力,经过高压加热器加热后,输送到锅炉省煤器入口,作为锅炉主给水。 高低压加热器:利用汽轮机抽汽,对给水、凝结水进行加热,其目的是提高整个热力系统经济性。 除氧器:除去锅炉给水中的各种气体,主要是水中的游离氧。 凝汽器:使汽轮机排汽口形成最佳真空,使工质膨胀到最低压力,尽可能多地将蒸汽热能转换为机械能,将乏汽凝结成水。 凝结泵:将凝汽器的凝结水通过各级低压加热器补充到除氧器。 油系统设备:一是为汽轮机的调节和保护系统提供工作用油,二是向汽轮机和发电机的各轴承供应大量的润滑油和冷却油。主要设备包括主油箱、主油泵、交直流油泵、冷油器、油净化装置等。 在发电厂中,同步发电机是将机械能转变成电能的唯一电气设备。因而将一次能源(水力、煤、油、风力、原子能等)转换为二次能源的发电机,现在几乎都是采用三相交流同步发电机。在发电厂中的交流同步发电机,电枢是静止的,磁极由原动机拖动旋转。其励磁方式为发电机的励磁线圈FLQ(即转子绕组)由同轴的并激直流励磁机经电刷及滑环来供电。同步发电机由定子(固定部分)和转子(转动部分)两部分组成。定子由定子铁心、定子线圈、机座、端盖、风道等组成。定子铁心和线圈是磁和电通过的部分,其他部分起着固定、支持和冷却的作用。 转子由转子本体、护环、心环、转子线圈、滑环、同轴激磁机电枢组成。 主变压器:利用电磁感应原理,可以把一种电压的交流电能转换成同频率的另一种电压等级的交流电的一种设备。 6KV、380V配电装置:完成电能分配,控制设备的装置。 电机:将电能转换成机械能或将机械能转换成电能的电能转换器。 蓄电池:指放电后经充电能复原继续使用的化学电池。在供电系统中,过去多用铅酸蓄电池,现多采用镉镍蓄电池 控制盘:有独立的支架,支架上有金属或绝缘底板或横梁,各种电子器件和电器元件安装在底板或横梁上的一种屏式的电控设备。 1、汽轮机冲转前应具备那些条件? 答:主汽压、主汽温、再热汽温应符合规程要求;主油压与润滑油压正常;润滑油温正常;大轴弯曲度正常;发电机密封油压、内冷水压正常,且有关差压正常;汽轮机金属温差、差胀、轴向位移正常;轴承温度正常。 2、启动前应先对主、辅设备检查那些项目? 答:检查并确认所有的检修工作结束;工具、围栏、备用零部件均已收拾干干净;所有的安全设施均已到位(接地装置、保护罩、保护盖);拆卸下来的保温层均已装复,工作场所整齐整洁;检查操作日志,从事主辅设备检修的检修工作目标已经注销。 3、汽轮机有那些不同的启动方式? 答:a.按启动过程中主蒸汽参数分:额定参数启动和滑参数启动。b.按启动前汽轮机金属温度(内缸或转子表面)水平分:冷态启动;温态启动;热态启动。按冲转时汽轮机的进汽方式分:高中压缸启动;中压缸启动。C.按控制汽轮机进汽流量的阀门分:调节阀启动;自动主汽阀或电动主汽阀启动。 4、汽轮机热态启动的金属温度水平是如何划分的? 答:金属温度低于150℃~180℃者称为冷态启动;金属温度在180℃~350℃之间者称为温态启动;金属温度在350℃以上者称为热态启动。有时热态又分为热态(350~450℃)和极热态(450℃以上)。

PLC控制系统在火电厂的应用

PLC控制系统在火电厂的应用 随着计算机和网络通讯技术的发展,PLC(Programmable Logic Contmller)可编程逻辑控制器)以其强大的功能和高度的可靠性在火电厂控制系统中获得了广泛的应用,它的可靠性关系到火电厂各大系统的安全运行,甚至影响到机组和电网运行的安全性和经济性。随着使用年限的增加,在机组运行期间所发生的各类事故中,因PLC系统故障引起的机组事故已占一定的比例,因此PLC控制系统故障及其防范便成为目前需要思考和解决的问题。 1、存在问题 发电站的环境空间存在极强的电磁场,发电机的电压高达数千伏、电流高达数百安,开关站的输出电压高达数十千伏或数百千伏。由于现场条件的限制,有时某段数百米长的强电电缆和信号线不能有效的分开,甚至只能在同一电缆沟内。这样,高电压、大电流接通和通断时产生的强电干扰可能会在PLC输入线上产生感应电压和感应电流,这种干扰轻则会造成测量数据显示不准,重则足以使PLC的光电耦合器中的发光二极管发光,导致PLC产生误动作。这种现象在现场经常发生,如:陕西金泰氯碱化工自备电站为3×130t/h+2×25MW 火电机组,其中输煤系统、化学水处理系统、水源井系统均应用了带有上位机的PLC控制系统,而在锅炉吹灰系统、除灰、静电除尘、磨煤机稀油站、汽机胶球清洗系统等应用了小型PLC控制系统。输煤PLC程控系统,曾多次出现2号A皮带白启动,检查发现其输入、输出回路各有高达57V的感应电压,使其输入光电隔离器(DC24V驱动)动作,致使接触器吸合将2号A皮带启动。随后该电站采取了抗干扰措施,在负载两端并接了RC涌浪吸收器,到目前为止再未发生过类似现象。 2、防范措施 2.1 防止干扰的措施 PLC内部用光电耦合器、小型继电器和光电可控硅等器件来实现开关量信号的隔离,PLC的模拟量模块一般也采取了光电耦合器隔离措施。这些措施不仅能减少或消除外部干扰对系统的影响,还可以保护CPU模块,使之免受外部来的高电压的危害,因此一般没有必要在PLC外部再设置干扰隔离器件。 但如果PLC内部的隔离措施不能有效地抵抗干扰,对于开关量信号通常在其输入、输出回路外加中间继电器来隔离干扰信号。另外,PLC输出模块内部的小型继电器的触点容量较小,不能驱动电流较大的负载,需用中间继电器,另外还可以采用以下几种措施,有效的防止干扰。 (1) 防止输入信号干扰 当信号输入端有感性负载时,为了防止信号变化时感应电势损坏输入模块,应在信号

汽车轮胎的构造功用

汽车轮胎的功用、结构 1 汽车轮胎的功用 现代汽车大都采用充气式轮胎。轮胎安装在轮辋上,直接与路面接触。它的功用 有以下几点。 (1)承受载荷:支承汽车的质量,承受路面传来的各种载荷和作用力。 (2)产生驱动力与制动力:因为轮胎是汽车上唯一与路面接触的部位,保证车和路 面有良好的附着性,因此,不论是汽车的起动、行驶、还是制动、停车都要通过胎与路面“沟通”,以提高汽车的动力性、制动性和通过性。 (3)缓冲和吸震:和汽车悬架共同来缓和汽车行驶中所受到的冲击,减轻和吸收汽 车在行驶时的震动和冲击力,防止汽车零部件受到剧烈震动和早期损坏,适应车辆 的高速性能并降低行驶时的噪音,保证行驶的安全性、操纵稳定性、舒适性和节 能经济性。 (4)改变汽车行驶方向:汽车不论是转向还是制动都需要由汽车的轮胎来完成,它 经常要按照驾驶员的意愿来改变汽车行驶的方向和行驶速度。正因为轮胎具有上述四大作用。因此汽车才能在凹凸不平的路面上安全、自由、迅速、舒适的行驶, 所以,轮胎在整个汽车零部件中才显得特别的重要。换句话说,人和车在行驶过程 中的安全很大程度上依赖轮胎好坏而定。 2 汽车轮胎的结构 2 . 1 轮胎的类型 (1)按轮胎内空气压力的大小,轮胎分为高压胎(0.5~0.7MPa)、低压胎(0.2~0.5MPa)和超低压胎(0.2MPa以下)三种。低压胎弹性好、减振性能强、壁薄散热性好、与地面接触面积大、附着性好, 因而广泛用汽车轮胎的功用、结构及使用维护 1 胎面(Tread) (1)轮胎与路面接触的部分,它应该在保护胎体的同时,还具有良好的耐磨性、耐刺穿性。 (2)其表面刻有不同的胎面花纹,在湿的地面上行驶时能有效的排水。在受驱动力和制动力作用时有防止打滑的功用。 2 胎肩(Shoulder) 是轮胎的肩膀部分,具有保护胎体的使命。 3 胎侧(Sidewall) (1)行驶时曲挠最严重的部分。 (2)具有保护胎体的功用。 (3)在此处印有轮胎规格,制造商和花纹等

发电厂主要设备及其功能

发电厂主要设备及其功能 能源是人类社会赖以存在和发展的重要物质条件,从其形成条件上可分为一次能源和二次能源。煤、石油、天然气等可以直接从自然界获得,它们是一次能源。但一次能源有其自身的不足和局限性,如不便于直接利用、热效率低、不利于运输和储藏等。于是,人们将一次能源转换为二次能源,如电能,蒸汽,汽油等,以使能源得以充分利用,并且能方便地转换为社会所需要的各种形式的能。然而一次能源向二次能源转换需要一定的条件,并且要在一定的设备或系统中实现。因此,将天然能源转化为电能的发电厂也就应运而生了。按输入能源形式及转换过程的不同可将发电厂分为火电厂、水电厂、核电厂及其他形式电厂。下面我们将结合图1给出的典型火力发电厂的设备构成进行简要说明。 图1火力发电厂的主要设备 一、在发电厂中,实现“燃料”能量释放、传递和向机械能形成转换的系统和设备称作发电厂的动力部分,主要有锅炉设备、汽轮机设备、水轮机设备和核反应堆。 1.锅炉设备是火力发电的三大主机设备中最基本的能量转换装置。它的主要作用是使经过预处理燃料(煤、油、气等)的化学能通过燃烧释放出高温热能,并最终把给水加热成高温、高压过热蒸汽供给 汽轮机[]1。锅炉设备由锅炉本体和辅助设备构成。本体包括汽水系统和燃气系统。辅助设备包括通风设 备、燃料运输设备、给水设备、除灰设备及除尘设备等。 在此,通过对汽水系统和燃气系统关键部分的简要说明,并且结合燃煤火力发电厂中能量流程图我们可对锅炉设备有更深刻的了解。 ⑴炉膛即燃烧室是燃料与空气充分混合后,进行完全燃烧的地方。 ⑵在汽包中通过内部汽水分离器将来自蒸汽管的汽水进行分离。 ⑶过热器是对来自汽包的饱和蒸汽进行加热的装置,一般放在燃烧气体的通路中。 ⑷再热气是为了提高效率和防止汽轮机叶片腐蚀,把在汽轮机高压缸做过功的低温低压蒸汽再送到锅炉 中加热,后送到汽轮机的中压缸及低压缸去做功的装置。

火电厂常规的自动控制系统

火电厂常规的自动控制系统(给水、减温、燃烧)介绍及方案 1、锅炉设备主要有哪几个调节系统?答:(1)给水自动调节系统。 (2)过热汽温自动调节系统。 (3)再热汽温自动调节系统。 (4)燃烧过程自动调节系统(引风、送风、一次风、氧量控制)。 (5)主汽压力自动调节系统。 2、锅炉给水调节的任务是什么?答:锅炉给水调节的任务是使锅炉的给水量适应锅炉的蒸发量,维持汽包水位在规定的范围。 3、给水自动调节系统中主站切手动有哪些条件?答:1)所有给水泵分站在手动控制。 (2)操作员人为切手动。 (3)给水泵在压力控制方式,给水泵出口压力信号故障或压力与给定值偏差大。 (4)汽包水位信号故障。 (5)给水流量信号故障。 (6)蒸汽流量信号故障。 (7)给水泵在水位控制方式,汽包水位与给定值偏差大。 4、变速泵给水调节系统包括哪几个子系统?答:变速泵给水调节系统包括三个子系统:汽包水位调节子系统、泵出口压力调节子系统、泵最小流量调 节子系统 5、如何调节给水泵转速?答:汽动泵是通过电流、电压转换器与其电液调节系统连接来改变转速。而电动给水泵是通过执行机构去控制液压联轴器的勺管位置,改变给水泵转速。

6、简述三冲量双回路给水调节系统的原理。答:三冲量双回路给水调节系统中,调节器接受汽包水位、蒸汽流量和给水流量和三个信号,其中水位是主信号,任何扰动引起的水位变化,都会使调节器输出信号发生变化,改变给水流量,使水位恢复到给定值。蒸汽流量信号是前馈信号,其作用是防止由于虚假水位而使调节器产生错误的动作,改善蒸汽流量扰动时的调节质量。蒸汽流量和给水流量两个信号相配合,可消除系统的静差。当给水流量变化时,测量孔板前后的差压变化反应很快,差压变化及时反应给水流量的变化,所以给水流量信号作为反馈信号,使调节器在水位还未变化时就可以根据前馈信号消除内扰,使调节过程稳定,起到稳定给水流量的作用。 7、测量信号接入调节器的极性是如何规定的?答:关于测量信号接入调节器的极性规定:当信号值增大时要求开大调节阀,该信号标“ +;反之,当信号值增大时要求关小调节阀,该信号标以“ - ”号。 8、给水调节系统投入前应进行哪些检查和试验?答:(1)信号极性检查。 2)调节阀开度试验。 (3)执行机构小回路检查。 (4)自动跟踪检查。 (5)调节器输出信号方向检查。 (6)参数设置。 (7)试投调节器。 9、给水全程调节系统通常有几种方案?答:给水全程调节系统通常有三种方案:

火力发电厂主要及辅助设备的构造与作用

一次风机:干燥燃料,将燃料送入炉膛,一般采用离心式风机。 送风机:克服空气预热器、风道、燃烧器阻力,输送燃烧风,维持燃料充分燃烧。 引风机:将烟气排除,维持炉膛压力,形成流动烟气,完成烟气及空气的热交换。 磨煤机:将原煤磨成需要细度的煤粉,完成粗细粉分离及干燥。

空预器:空气预热器是利用锅炉尾部烟气热量来加热燃烧所需空气的一种热交换装置。提高锅炉效率,提高燃烧空气温度,减少燃料不完全燃烧热损失。空预器分为导热式和回转式。回转式是将烟气热量传导给蓄热元件,蓄热元件将热量传导给一、二次风,回转式空气预热器的漏风系数在8~10%。 炉水循环泵:建立和维持锅炉内部介质的循环,完成介质循环加热的过程。 燃烧器:将携带煤粉的一次风和助燃的二次风送入炉膛,并组织一定的气流结构,使煤粉能迅速稳定的着火,同时使煤粉和空气合理混合,达到煤粉在炉内迅速完全燃烧。煤粉燃烧器可分为直流燃烧器和旋流燃烧器两大类。 汽轮机本体 汽轮机本体是完成蒸汽热能转换为机械能的汽轮机组的基本部分,即汽轮机本身。它与回热加热系统、调节保安系统、油系统、凝汽系统以及其他辅助设备共同组成汽轮机组。汽轮机本体由固定部分(静子)和转动部分(转子)组成。固定部分包括汽缸、隔板、喷嘴、汽封、紧固件和轴承等。转动部分包括主轴、叶轮或轮鼓、叶片和联轴器等。固定部分的喷嘴、隔板与转动部分的叶轮、叶片组成蒸汽热能转换为机械能的通流部分。汽缸是约束高压蒸汽不得外泄的外壳。汽轮机本体还设有汽封系统。 汽轮机:汽轮机是一种将蒸汽的热势能转换成机械能的旋转原动机。分冲动式和反动式汽轮机。 给水泵:将除氧水箱的凝结水通过给水泵提高压力,经过高压加热器加热后,输送到锅炉省煤器入口,作为锅炉主给水。 高低压加热器:利用汽轮机抽汽,对给水、凝结水进行加热,其目的是提高整个热力系统经济性。 除氧器:除去锅炉给水中的各种气体,主要是水中的游离氧。 凝汽器:使汽轮机排汽口形成最佳真空,使工质膨胀到最低压力,尽可能多地将蒸汽热能转换为机械能,将乏汽凝结成水。 凝结泵:将凝汽器的凝结水通过各级低压加热器补充到除氧器。 油系统设备:一是为汽轮机的调节和保护系统提供工作用油,二是向汽轮机和发电机的各轴承供应大量的润滑油和冷却油。主要设备包括主油箱、主油泵、交直流油泵、冷油器、油净化装置等。 在发电厂中,同步发电机是将机械能转变成电能的唯一电气设备。因而将一次能源(水力、煤、油、风力、原子能等)转换为二次能源的发电机,现在几乎都是采用三相交流同步发电机。在发电厂中的交流同步发电机,电枢是静止的,磁极由原动机拖动旋转。其励磁方式为发电机的励磁线圈FLQ(即转子绕组)由同轴的并激直流励磁机经电刷及滑环来供电。同步发电机由定子(固定部分)和转子(转动部分)两部分组成。定子由定子铁心、定子线圈、机座、端盖、风道等组成。定子铁心和线圈是磁和电通过的部分,其他部分起着固定、支持和冷却的作用。 转子由转子本体、护环、心环、转子线圈、滑环、同轴激磁机电枢组成。 主变压器:利用电磁感应原理,可以把一种电压的交流电能转换成同频率的另一种电压等级

磁珠(FerriteBead)

磁珠(Ferrite Bead) 什么是磁珠 磁珠有很高的电阻率和磁导率,他等效于电阻和电感串联,但电阻值和电感值都随频率变化。他比普通的电感有更好的高频滤波特性,在高频时呈现阻性,所以能在相当宽的频率范围内保持较高的阻抗,从而提高调频滤波效果。作为电源滤波,可以使用电感。磁珠的电路符号就是电感但是型号上可以看出使用的是磁珠在电路功能上,磁珠和电感是原理相同的,只是频率特性不同罢了磁珠由氧磁体组成,电感由磁心和线圈组成,磁珠把交流信号转化为热能,电感把交流存储起来,缓慢的释放出去。 磁珠对高频信号才有较大阻碍作用,一般规格有100欧/100mMHZ ,它在低频时电阻比电感小得多。 铁氧体磁珠 (Ferrite Bead) 是目前应用发展很快的一种抗干扰组件,廉价、易用,滤除高频噪声效果显着。 在电路中只要导线穿过它即可(我用的都是象普通电阻模样的,导线已穿过并胶合,也有表面贴装的形式,但很少见到卖的)。当导线中电流穿过时,铁氧体对低频电流几乎没有什么阻抗,而对较高频率的电流会产生较大衰减作用。高频电流在其中以热量形式散发,其等效电路为一个电感和一个电阻串联,两个组件的值都与磁珠的长度成比例。磁珠种类很多,制造商应提供技术指标说明,特别是磁珠的阻抗与频率关系的曲线。 有的磁珠上有多个孔洞,用导线穿过可增加组件阻抗(穿过磁珠次数的平方),不过在高频时所增加的抑制噪声能力不可能如预期的多,而用多串联几个磁珠的办法会好些。 铁氧体是磁性材料,会因通过电流过大而产生磁饱和,导磁率急剧下降。大电流滤波应采用结构上专门设计的磁珠,还要注意其散热措施。 铁氧体磁珠不仅可用于电源电路中滤除高频噪声(可用于直流和交流输出),还可广泛应用于其它电路,其体积可以做得很小。特别是在数字电路中,由于脉冲信号含有频率很高的高次谐波,也是电路高频辐射的主要根源,所以可在这种场合发挥磁珠的作用。 铁氧体磁珠还广泛应用于信号电缆的噪声滤除。 以常用于电源滤波的HH-1H3216-500为例,其型号各字段含义依次为: HH 是其一个系列,主要用于电源滤波,用于信号线是HB系列; 1 表示一个组件封装了一个磁珠,若为4则是并排封装四个的; H 表示组成物质,H、C、M为中频应用(50-200MHz), T低频应用(50MHz),S高频应用(200MHz); 3216 封装尺寸,长3.2mm,宽1.6mm,即1206封装; 500 阻抗(一般为100MHz时),50 ohm。 其产品参数主要有三项: 阻抗[Z]@100MHz (ohm) : Typical 50, Minimum 37; 直流电阻DC Resistance (m ohm): Maximum 20; 额定电流Rated Current (mA): 2500. 回答了什么磁珠

火电厂主要设备

火力发电厂主要设备及其作用介绍 一次风机:干燥燃料,将燃料送入炉膛,一般采用离心式风机。 送风机:克服空气预热器、风道、燃烧器阻力,输送燃烧风,维持燃料充分燃烧。 引风机:将烟气排除,维持炉膛压力,形成流动烟气,完成烟气及空气的热交换。 磨煤机:将原煤磨成需要细度的煤粉,完成粗细粉分离及干燥。 空预器:空气预热器是利用锅炉尾部烟气热量来加热燃烧所需空气的一种热交换装置。提高锅炉效率,提高燃烧空气温度,减少燃料不完全燃烧热损失。空预器分为导热式和回转式。回转式是将烟气热量传导给蓄热元件,蓄热元件将热量传导给一、二次风,回转式空气预热器的漏风系数在8~10%。 炉水循环泵:建立和维持锅炉内部介质的循环,完成介质循环加热的过程。 燃烧器:将携带煤粉的一次风和助燃的二次风送入炉膛,并组织一定的气流结构,使煤粉能迅速稳定的着火,同时使煤粉和空气合理混合,达到煤粉在炉内迅速完全燃烧。煤粉燃烧器可分为直流燃烧器和旋流燃烧器两大类。 汽轮机本体 汽轮机本体是完成蒸汽热能转换为机械能的汽轮机组的基本部分,即汽轮机本身。它与回热加热系统、调节保安系统、油系统、凝汽系统以及其他辅助设备共同组成汽轮机组。汽轮机本体由固定部分(静子)和转动部分(转子)组成。固定部分包括汽缸、隔板、喷嘴、汽封、紧固件和轴承等。转动部分包括主轴、叶轮或轮鼓、叶片和联轴器等。固定部分的喷嘴、隔板与转动部分的叶轮、叶片组成蒸汽热能转换为机械能的通流部分。汽缸是约束高压蒸汽不得外泄的外壳。汽轮机本体还设有汽封系统。 汽轮机:汽轮机是一种将蒸汽的热势能转换成机械能的旋转原动机。分冲动式和反动式汽轮机。 给水泵:将除氧水箱的凝结水通过给水泵提高压力,经过高压加热器加热后,输送到锅炉省煤器入口,作为锅炉主给水。 高低压加热器:利用汽轮机抽汽,对给水、凝结水进行加热,其目的是提高整个热力系统经济性。 除氧器:除去锅炉给水中的各种气体,主要是水中的游离氧。 凝汽器:使汽轮机排汽口形成最佳真空,使工质膨胀到最低压力,尽可能多地将蒸汽热能转换为机械能,将乏汽凝结成水。 凝结泵:将凝汽器的凝结水通过各级低压加热器补充到除氧器。 油系统设备:一是为汽轮机的调节和保护系统提供工作用油,二是向汽轮机和发电机的各轴承供应大量的润滑油和冷却油。主要设备包括主油箱、主油泵、交直流油泵、冷油器、油净化装置等。 在发电厂中,同步发电机是将机械能转变成电能的唯一电气设备。因而将一次能源(水力、

构造与成矿(资料汇编)

(一)摘自《论层间滑动断层及其控矿作用》 沈远超 1、层间滑动断裂成矿特征及成矿规律 通过对位于胶莱盆地北缘的蓬家夼、发云夼、郭城、大庄子等金矿的研究,对受层间滑动断裂控制的金矿床的成矿地质特征及规律总结如下: (1) 地(岩) 层-断层-矿层三位一体,断层-脉岩-矿体时空有序 层间滑动断裂控制了含矿层位,层间滑动断层发生于能干岩性与非能干岩性之间,层间滑动断裂带即为金矿化带,即具有地层-断层-矿层三位一体的特征。同时,闪长岩脉沿断层分布,与矿层呈平行伴生关系。 (2) 成矿系统与构造系统密切相关 区域性层间滑动系统控制了矿带的分布,某一层次的滑动单独构成一个矿床,单一滑动断层控制矿体,不同小构造形式控制不同的矿化类型,如角砾状矿石的分布受构造角砾岩带控制,脉状-网脉状矿化受碎裂岩带控制,从而构成了多级控矿构造系统。 (3) 多层次滑动与多层次成矿 如蓬家夼、大庄子金矿产于盆地基底地层中,发云夼金矿产于盆地盖层中。 (4) 矿体产状缓、规模大,矿化-蚀变具一定的分带性。 (5) 成矿多期次多阶段。 如大庄子金矿体形成期经历了先张后压再剪切的过程。拉张阶段形成碎裂-角砾状矿石和张性断裂,挤压期形成石墨化矿石和透镜状构造,剪切期形成于矿化之后,主要表现为形成斜切矿体的断层和基性脉岩的侵入。 2、层间滑动断裂的控矿作用 层间滑动断裂对金矿的控制作用主要表现在: (1) 层间滑动断裂为岩浆-流体提供通道,为成矿物质的沉淀提供了容矿空间。 (2) 控制成矿物质的来源 层间滑动断裂为低角度正断层,其上下盘切层断裂及羽裂发育,与大范围的围岩有良好的沟通性,便于热液运移并萃取成矿物质。 (3) 层间滑动过程中的构造地球化学作用 在层间滑动过程中因构造-化学作用,断裂带中的物质成分发生有规律的变化。对蓬家夼金矿区蚀变岩的常量组分分析结果,表明从围岩到断裂中心,Si 、Ti 、Ca 有规律地依次递增或递减,K在矿体中含量最低,这与钾化主要发生于矿体外围有关。在断裂带的中心部位,因Ca 、Na 大量逸散,而使Si 、Fe等元素富集。总的来看,从断裂中心向外大致次序为:Si 、Fe 、Mg、Mn、Al 、Ca 、Na 、K,这与孙岩等以韧脆性断裂的成型阶段为例,以元素的离子半径、离子比重为据,将造岩元素稳定顺序归为: Si 、Mg、Mn、Al 、Ca 、Na 和K(1998 ,孙岩) 的情况相一致,这是一种动力分异作用的结果。在断裂蚀变带中,微量元素也有一定

浅谈现代电厂自动控制系统的发展

浅谈现代电厂自动控制系统的发展 【摘要】本文从分散控制系统的现状和行业需求出发,结合已经成熟的技术,分析预见了先进DCS系统架构的发展方向以及各种已经成熟的技术和标准在DCS中应用。 【关键词】需求;OPC;模糊PID;一体化 目前,火力发电机组仍然是我国发电行业主要支柱,而先进DCS系统正经历着逐步的演化,朝向更集成可靠先进的方向发展,而其发展历程也是自动控制领域,计算机系统和网络系统发展应用的缩影,也呈现了我国发电行业市场化精细化运营的发展历程。 1.DCS产品现状 当前各厂家的DCS基本包括:至少各一台现场控制站、操作员站、工程师站(也可用操作员站兼做工程师站)和一条系统网络,如图1。此外,还可扩充专门功能站、生产管理和信息处理功能的信息网络、及实现现场仪表、执行机构数字化的现场总线网络。控制站是系统中直接与现场进行I/O 数据采样、信息交互、控制运算、逻辑控制的核心单元,完成实时控制功能,并实现各种I/O 接口。 图1 典型的DCS拓扑结构 控制站通过工业以太网与工程师站、操作员站等交换信息,采集控制站信号并通过工业以太网传送到工程师站、操作员站,工程师站、操作员站将系统组态信息通过工业以太网传送到控制站。 2.发电企业的需求 随着我国煤炭价格持续增长,煤电联动响应不足,电价市场化定价机制迟迟不能确定的行业背景下,发电企业对生产现场的控制和把握有了更高要求,生产成本的严格控制要求自动化程度更高,生产岗位减少,生产人员人均控制装机容量增加,这就要求DCS系统的核心单元要有更为先进的控制算法,先进的专家PID算法,模糊PID算法以适应类似于循环流化床锅炉这种更经济锅炉本身的大延迟,变工况的属性。生产决策必须及时就要求生产控制系统、厂级信息系统和协同管理系统一体化。随着国家对智能电网的发展的提倡,要求各大发电站的调峰、二次调频能力更强,AGC投切率更高且能适应先进的实时的潮流计算,并且要求大电站的DCS系统有更为稳定的协调控制方案和调节能力以应对负荷扰动,现如今的电企较之以前,生产设备调整周期更短,要求DCS要组态灵活方便,而且更严格执行IEC61131语言标准,便于升级换代。 3.发展方向

相关文档
相关文档 最新文档