文档库 最新最全的文档下载
当前位置:文档库 › CA6100通用数字型可控硅触发板的应用

CA6100通用数字型可控硅触发板的应用

CA6100通用数字型可控硅触发板的应用
CA6100通用数字型可控硅触发板的应用

我厂KGCFA-150/200~360型硅整流充电装置,自投入运行以来已有十年以上,由于设备的老化及其技术上的局限性,经常发生输出电压、电流振荡,甚至跳闸等事故。严重影响我厂直流系统的稳定性,对全厂机组的正常运行埋下了隐患。从1997年开始,我厂更换了新型GFM(Z)阀控密封铅酸蓄电池。该种电池要求硅整流充电装置具有较高的稳压、稳流精度,同时还要具有限流恒压的充电方式。因此,原硅整流充电装置已不能满足实际生产要求,需要对其进行改进。

KGCFA-150/200~360型硅整流充电装置的控制电路由电源板、信号板、直流放大器、触发板、直流互感器等组成。分析其工作原理,我们认为造成硅整流充电装置运行不稳定的原因有以下几个方面:

1.反馈采集元件性能差,至使反馈回来的电压、电流信号不稳

定,且线性度差。

2.直流放大器调节性能下降。直流放大器主要由分立电子元件

组成,由于运行时间较长,大部分元件都已老化,工作特性

发生变化,使直流放大器对信号的处理能力下降。

3.触发板采用正弦同步电压和直流控制电压叠加的垂直控制原

理,直流控制电压与同步电压的交点决定触发脉冲发出的时

刻。改变直流控制电压与同步电压的交点,就可以改变脉冲

发出的时刻(即移相)。三相同步电压是经过同步变压器获得

的,由于同步变压器制造工艺上的原因,致使三相同步电压

在幅值、宽度及对称平衡性上都有一定的差异,使得同一直

流控制电压与每相同步电压交叉点的相序不平衡(即触发时

间相序发生变化),从而造成充电装置输出电压和电流波动。

通过以上分析,在不改变原硅整流充电装置主体结构的情况下,只要对其控制电路的调节与触发部分进行重新设计和改进就可以满足实际生产要求。

目前国内传统的三相可控硅触发电路普遍采用小规模集成块KC 或KJ系列的模拟芯片来组成。这类电路每一相的触发脉冲都是通过同步变压器送来的同步信号转换为锯齿波信号,再与给定的直流电压相比较来取得移相信号的。三相锯齿信号的斜率、占空比和幅度等与分离的每相元器件参数关系密切,比较信号中小的干扰可能造成较大的移相误差。此外,三相脉冲的对称平衡亦取决于三个锯齿波斜率的调整,至少要调整四个以上的电位器才能使这种电路正常工作,电路的可靠性及自动平衡能力较差。在干扰严重或电位器接触不良造成严重失衡时,触发信号甚至造成主回路元件的损坏。

由模拟芯片组成的触发电路,对不同的用途通常需要重新设计,不同相序的输入电源、同步变压器及触发脉冲所对应的可控硅也需用示波器严格查对。此外,对诸如缺相保护、软起停等附属电路也需另外设计电路解决,整个电路系统在设计和调试时相当繁杂。

经过认真调研,我们采用了以CA6100通用数字型可控硅触发电路板为核心的控制电路,其原理框图如图1所示。该控制电路由电压模块、电流模块、PI调节板、CA6100型触发电路板等组成。

现将各部分的原理和作用简述如下:

1、电压模块KV、电流模块KT

作为采集元件为控制电路提供稳定的电压和电流反馈信号。

1

2345687654321

1

2345678G 1K 1G 2K 2G 3K 3G 4K 4G 5K 5G 6

K 654321

K V K T

R

s i g

A

B

C

三相全控桥

P I 调节板

C A 6100触发板

电源开关

小型变压器

A C 220V

-12V

+15V C O M -15V

+12V +5V

A C 220V

图1 控制回路图简图

2、PI 调节板(比例积分调节板) 其原理简图如图2所示

+-

L M 324+-

L M 324+-

L M 324电压调节器

电流调节器

Y T

L T

滤波器

图2 P I 调节板原理简图

C O M

S I G

C A 6100接口

V d d

V f V d d V d

I d

I f

6.2k

滤波器

滤波器

滤波器

该调节板由高质量的集成运算放大器和积分电容组成。其作用将给定的电压、电流信号与电压、电流反馈信号进行比例积分运算,并加以放大后向触发板提供触发信号SIG 。由于电压环和电流环在调节板上形成“或”的逻辑关系,可以保证硅整流充电装置实现限流恒压

的充电方式。同时该调节板还能向控制电路提供+5V 和±12V 控制电源。

3、CA6100触发板

CA6100型触发板是以40芯CMOS 大规模集成电路为核心,,利用锁相环技术PLL 和多芯片合成技术MCM ,根据压控振荡器VCO 锁定三相同步信号间的逻辑关系设计出的一种可控硅触发系统。0~5V 的直流输入电压信号,可以控制输出脉冲的移相范围从5o~175o可调。

CA6100型触发板由以下几部分构成:

禁止选通逻辑解码电 路

6分频

80分频

异或门

鉴相器

压控振荡器

相序检测

相序信号输出

相位基准补尝

相序选择开关

低通滤波器

衰减器

校正电路

加法放大

低通滤波器

缓冲放大 软起停

缺相检测禁止电路

+5V

R N 1

R 31-R 33

衰减器

U a

U b

U c

V s s

+12V V d d

300H z

24k H z

禁止信号选通信号

+30V d c

+12V d c +5V d c C O M

220V A C

C K 2

C K 1

S I G 门延命令

板外同步信号

+A P +B P

+C P -A P -B P

-C P

g k

脉冲放大

脉冲变

图3 C A 6100触发板原理方框图

相位基准电路、缓冲放大器及软起动/软停止电路、锁相环、缺

相检测及禁止电路、相序检测和选择开关、监控电路、脉冲放大器和脉冲变压器等。其原理框图如图3所示

下面以触发板的核心技术――锁相环进行详细分析,从而了解系统的工作原理,而后分析脉冲驱动电路,介绍驱动能力:

⑴ 锁相环

锁相环是整个触发电路的核心,使得输出的触发脉冲与电源实现同步。锁相环门延角发生器电路如图4所示,加法放大器,压控振荡器(VCO ),80分频器,6分频器,三相裂相器,三个彼此独立的异或非门相位检测器和一个缓冲放大器组成三相位锁相环。

缓冲放大器

解码逻辑电路

门延命令0.5V

10/0V

C 2

R 2

R 4

+5V

+

-K S V C O

C K 124k H z

C K 2

300H z

延迟基准

A d

B d

C d

延迟门信号命令

裂相器

R 1

C 1

R R R

R 3

A B D a

D b

C

相位基准

80分频器

6分频器

禁止选通

图4 锁相环门延角发生器电路

锁相环具有很高的频率响应,可以在一个电源周期内达到锁相。压控振荡器输出信号的角频率受控于输入控制电压的大小,而在图示锁相环电路中,三异或非门鉴相器的输出信号与门延命令经缓冲放大

后的输出信号相叠加,再经低通滤波后输出的信号作为控制电压送到VCO的输入端,控制其振荡频率,当环路锁定后,VCO输出为480倍电源频率的振荡信号即CK1信号。

信号CK1经80分频后得到CK2信号,其频率为电源频率的6倍。CK2信号再经6分频器和裂相器得到三个信号即延迟基准信号Ad、Bd、Cd,其频率为电源频率,宽度为180o,但彼此间相位互差120o。这三个信号与相位基准电路产生的电源基准信号A、B、C被分别送入三个异或非门鉴相器,从而产生相位差值信号Da、Db、Dc。

当压控振荡器(VCO)的输出信号频率锁定在电源频率数倍(如480倍)的数值时,VCO的控制电压必须保持为一个恒定的数值,即相位差信号与缓冲后的门延命令电压之和为一恒值。这样,当门延命令电压值上升时,缓冲后的电压下降,为保持频率锁定及VCO控制电压的恒定,相位差值信号平均电压值要上升,因而电源基准与延迟基准信号间的相位差值减少,而延迟基准信号直接决定了触发脉冲延迟角的大小,从而实现可控的移相控制。

不同的主电路形式,可能要求触发脉冲延迟角的最小值和最大值也不一样。这可以通过调节偏置电阻R3与范围电阻R2的大小来达到要求,前者决定了逆变参考位置(即触发脉冲的最大延迟角),而后者决定了脉冲的移相范围。

⑵触发脉冲驱动电路

脉冲驱动电路包括脉冲放大器和脉冲变压器,其中任意一个可控硅(例如+A相)的脉冲驱动原理如图5所示

+A 相脉冲变压器

g

k

3A

2:1

510

200

C O M

+A P 0.33

T D 62004

+30V d c 68

图5 脉冲驱动电路

+AP 的波形、输出脉冲P 波形如图6所示

30度

30度

30度

+A P

t

双30度脉冲时+A P 波形

t

P

30度

30度

30度

双30度脉冲波形

15V

7.5V 图6 +A P 波形与脉冲波形

当+AP 端开始有信号时,晶体管立即进入导通状态,由于0.33u F 电容的瞬间短路作用,使得脉冲变压器的原边得到+30V 的电源电压,因此此时副边得到的信号为+15V 的尖峰脉冲,它可以用作可控硅的强触发脉冲,加快其导通速度,从而提高了触发的可靠性。而后+AP 端的高频调制脉冲使得脉冲变压器副边得到持续的幅度较低

(7.5V)的高频调制脉冲,继续给可控硅提供触发脉冲,以提高电流断续时工作的稳定性,同时可以降低驱动电路的功率等级。

4、CA6100触发板的优点

⑴输出的三相触发脉冲通过高频同步脉冲分频计数输出,因而具有高度的对称性、均衡性和良好的控制线度,克服了KC、KJ系列的同类产品的诸多缺点。

⑵触发板无需同步变压器,同步信号直接用高值电阻取自与可控硅相连的主回路(无单独联线),自动实现与电网同步,而且具有相序自动测控核对能力,从而使其在主电路与调节器的联线上变得异常简易、可靠,无需作任何调测便能投入运行。

⑶触发板集缺相保护、软起停等功能为一体,功能密集程度较高,不必再去另外设计检测控制电路。

通过对KGCFA-150/200~360型硅整流充电装置的控制电路进行以上技术改进,该种型号硅整流充电装置这几年来运行一直非常稳定,未发生过任何异常缺陷。为我厂直流系统的安全运行提供了可靠的保证。

CA6100通用数字型可控硅触发电路的应用

国电吉林热电厂

张晓军

晶闸管过零触发电路

精心整理 TSC 的触发电路 1.介绍晶闸管投切电容器的原理和快速过零触发要求 晶闸管投切电容器组的关键技术是必须做到电流无冲击。晶闸管投切电容器组的机理如图一所示,信息请登陆:输配电设备网 当电路的谐振次数n 为2、3时,其值很大。 式(2)的第三项给出当触发角偏离最佳点时的振荡电流的幅值;式(2)中的第二项给出当偏离最佳予充电值时振荡电流的幅值。若使电容器电流ic=C*du/dt=0,则du/dt=0,即晶闸管必须在电源电压的正或负峰值触发导通投切电容器组,电容器预充电到峰值电压。 1. 当得到TSC 电管+高。如果 MOC3083芯片内部有过零触发判断电路,它是为220V 电网电压设计的,芯片的双向可控硅耐压800V ,在4、6两端电压低于12V 时如果有输入触发电流,内部的双向可控硅就导通。 用在380V 电网的TSC 电路上要串联几只3083。在2控3的TSC 电路应用如图四: 图四2控3的TSC 电路 用2对晶闸管开关控制3相电路,电路简单了,控制机理复杂了。这种触发电路随机给触发命令要出现下面的许多麻烦问题。 快速动作时,有触发命令,一对晶闸管导通另一对晶闸管不通电压反而升高了,限于篇幅和重点,本文不分析为什么电压反而高了,只是从测量的2控3电路中看到了确实存在电压升高的现象和危险,这种现象如同倍压整流电路直流电压升高了一样。图五测量不正常工作的两对晶闸管的电压波形。此试验晶闸管存在高压击穿的可能,所以用调压器将电网电压调低。晶闸管导通时两端电压

为零,不导通,晶闸管有电容器的直流电压和电网的交流电压。测量C相停止时峰峰值电压为540V,其有效值=,图中C相升高的电压峰值为810V,升高电压约为电网电压有效值的倍数:。推算,400V 电压下工作,晶闸管有可能承受的电压,400V电网的TSC电路多数是采用模块式的晶闸管,模块的耐压不高,常规为1800V,升高的管压降很容易击穿晶闸管元件。信息请登陆:输配电设备网图五不正常的两对晶闸管的电压波形信息来自:输配电设备网*在晶闸管电压波形过零点,串联的MOC3083由于分压不均匀,使得3083有的导通有的停止。电网电压升高时,原先导通的依然导通,不同的要承受更高的电压,3083有可能击穿。信息请登陆:输配电设备网 *在初次投切时有一定的冲击。下面是国外着名产品的首次投切的电流波形。 图六:国外公司产品的第一次触发冲击波形 记录C相晶闸管两端电压,A相电流。电流投切冲击很大,使得电网电压都产生了变形。信息来自: * * * * 3. 努力, 源: 切停止后,电容器上有电网峰值电压,晶闸管在电网电压和电容器直流电压的合成下,存在着过零电压,在过零点触发晶闸管是理想状态,应该没有冲击电流。 新触发电路达到了快速20ms动作,两路晶闸管都动作,无电流冲击,晶闸管在停止时的承受电压低,最大为3倍的有效值电压。 用双踪示波器测试波形.一只表笔测量晶闸管两端的电压和另一只测量晶闸管的电流波形,这样,可以看出晶闸管是否在过零点投入,又可以看出投入时的电流冲击。由于使用两个开关控制三相电路,用双踪示波器分别测量两路的电压电流,就可以完整的观察到触发器运行的效果。A探头为电压,B探头为电流。 图十二为:连续投切的A相晶闸管电压和C相电流的动作波形。 横轴为时间200ms/格,纵轴电压500V/格,电流20A/格。可控硅工作时两端的电压零,线路中有电流,停止时可控硅两端有电压,电流为零。在连续动作中,电流没有冲击。

一种软件控制触发脉冲延迟角的晶闸管触发板设计

一种软件控制触发脉冲延迟角的 晶闸管触发板设计 周伟涛 刘会金 (武汉大学电气工程学院 430072) 摘 要 介绍了一种晶闸管触发板,该板可与单片机或微机系统相连,通过软件编程控制 DAC0832输出的电压来改变板上TCA785芯片的移相电压,从而实现触发脉冲延迟角的精确可调和对晶闸管触发时刻的动态控制。 关键词 触发脉冲 延迟角 晶闸管 1 引言 晶闸管由于其投入时间可以控制,因此自诞生以来就在各种工程领域得到了广泛应用。为了保证晶闸管在工程应用中能够正常工作,很重要的一点就是保证在正确的时刻向晶闸管施加有效的触发脉冲。 目前国内市场上常见的触发板对于触发延迟角的控制是通过电位器来调节移相电压从而达到调节触发脉冲延迟角的目的。这样的调节方法有以下不足: (1)这种调节方法并不十分精确,我们最终判定是否达到所希望得到的触发延迟角是通过在示波器上观察其触发脉冲与同步电压之间的关系得出来的,这样存在着一些不可避免的误差。 (2)如果在实际应用中触发延迟角需要动态改变,通过电位器来调节移相电压就会显得很麻烦,甚至没有办法使用。 (3)电位器的位置可能随着时间的推移而发生改变,从而引起触发延迟角改变。 如果能够通过软件编程来控制移相电压的大小,不但能够提高其精度,也能克服上述不足。本文提出了一种智能化晶闸管触发板的设计,通过单片机或微机编程来调节移相电压的大小,进而实现对触发延迟角的精确动态控制。 2 主电路设计 211 主要元件的选取 (1)TCA785芯片 主要用来产生触发脉冲, 并且通过调节该芯片管脚11上的移相电压来控制触发脉冲延迟角。该芯片的内部电路简图如图1 所示。图1 TCA785内部电路 TCA785芯片的工作原理:首先由R 9和U S 组成的电路对C 10充电,当检测到同步电压(管脚5)的过零点时,C 10通过放电三极管放电,于是就在管脚10上得到了如图2所示的锯齿波波形。U 11为移相电压,它和管脚10的锯齿波通过比较来确定是否输出脉冲,从而控制脉冲的延迟角。14脚和15脚相位相差180°,用户可根据需要选择。TCA785芯片的几个主要管脚的波形如图2所示。 (2)NE555P TCA785芯片产生的脉冲是单宽脉冲,555的作用就是将原来TCA785产生的单宽脉冲转化为高频调制脉冲,以达到避免变压器直流磁化的目的,同时也可以减小供电变压器的体积。 (3)DAC0832和运放F007 主要作用是通过对DAC0832编程控制TCA785的管脚11的移相电压,最终达到控制触发脉冲延迟角的目的。212 主电路设计 该触发板的主电路如图3所示。采用了可编程 — 45—《电工技术杂志》2003年第1期 ?应用技术?

晶闸管的触发电路

晶闸管TSC的触发电路 1. 介绍晶闸管投切电容器的原理和快速过零触发要求 晶闸管投切电容器组的关键技术是必须做到电流无冲击。晶闸管投切电容器组的机理如图一所示,信息请登陆:输配电设备网 当电路的谐振次数n为2、3时,其值很大。 式(2)的第三项给出当触发角偏离最佳点时的振荡电流的幅值;式(2)中的第二项给出当偏离最佳予充电值时振荡电流的幅值。若使电容器电流ic=C*du/dt=0,则du/dt=0,即晶闸管必须在电源电压的正或负峰值触发导通投切电容器组,电容器预充电到峰值电压。 触发电路的功能是:电流无冲击触发;快速投切,20ms的动作。这个20ms不是得到投切命令到产生动作的时间,而是从停止到再投入动作的时间为20ms。快速反应时,在平衡补偿电路,不能出现不平衡动作,即有的相有电流,有的没有。

1. 两类晶闸管的触发电路的特点和存在的问题 从同步信号的采集上,有两类晶闸管触发电路。一类为从电网电压取得同步信号,一类为从晶闸管两端取得同步信号。 从电网电压取得同步信号的电路框图如图二:信息来源:https://www.wendangku.net/doc/3418344719.html, 电路中包括同步变压器、同步信号处理电路和功率驱动电路、脉冲变压器隔离电路等。当得到触发命令后,在投切点产生触发脉冲列,经过脉冲变压器的隔离,推动晶闸管。同步信号处理电路有滤波处理功能,可以是CMOS等的电子电路组成,也可以是单片机、GAL电路等。电路中包括相序错判断功能。信息来自:输配电设备网 从电网电压取得同步信号的优点为在主回路没有送电时,给触发命令,可以测量晶闸管的触发脉冲幅度和相位,在主回路得电后,给触发命令,可以放心, TSC为正确的投入工作。对于TSC电路中的两只晶闸管+一只二极管的“2+1”电路、两只晶闸管+两只二极管的“2+2”电路、三只晶闸管+三只二极管的“3+3”电路,电容器有二极管预充电, 电容器上一直存在直流电压,晶闸管的交直流电压不变,电网电压取得同步信号触发适合。缺点为电路复杂,对于400V小容量的TSC电路造价高。如果TSC全部采用晶闸管不用二极管,由于晶闸管两端的电压随着电容器放电电压的减少逐渐小,意味着触发点在变动,上述电路不能跟随变化触发点,所以不适应了。信 图二: 电网电压取得同步信号的触发电路 从晶闸管两端取得过零信号比较困难,过零触发要求电压高时截止,电压最低低时导通触发。几乎找不出什么元件是这种特性.如稳压管,电压低截止,电压高维持电压不变.不满足要求。 目前,从晶闸管两端取得过零信号的典型触发电路是MOC3083,它的框图如图三:信 图三:MOC3083电路图 MOC3083芯片内部有过零触发判断电路,它是为220V电网电压设计的,芯片的双向可控硅耐压800V,在4、6两端电压低于12V时如果有输入触发电流,内部的双向可控硅就导通。 用在380V电网的TSC电路上要串联几只3083。在2控3的TSC电路应用如图四:

晶闸管触发电路设计

摘要 为了控制晶闸管的导通,必须在控制级至阴极之间加上适当的触发信号(电压及电

流),完成此任务的就是触发电路。 本课题针对晶闸管的触发电路进行设计,其电路的主要组成部分由触发电路,交流电路,同步电路等电路环节组成。有阻容移相桥触发电路、正弦波同步触发电路、单结晶体触发电路、集成UAA4002、KJ004触发电路。包括电路的工作原理和电路工作过程以及针对相关参数的计算。 关键词:晶闸管;触发电路;脉冲;KJ004

目录 第1章绪论 (1) 第2章课程设计的方案 (1) 2.1 概述 (1) 2.2 系统组成整体结构 (2) 2.3 设计方案 (2) 第3章电路设计 (4) 3.1 UAA4002集成芯片构成的触发器 (4) 3.2 阻容移相桥触发电路 (5) 3.3正弦波同步触发电路 (6) 3.4单结晶体管触发电路 (8) 3.5集成KJ004触发电路 (9) 第4章课程设计总结 (12) 参考文献 (14)

绪论晶闸管是晶体闸流管的简称,又称为可控硅整流器,以前被简称为可控硅。在电力二极管开始得到应用后不久,1956年美国贝尔实验室发明了晶闸管,到1957年美国通用电气公司开发出世界上第一只晶闸管产品,并在1958年达到商业化。由于其开通时刻可以控制,而且各方面性能均明显胜过以前的汞弧整流器,因而立即受到普遍欢迎,从此开辟了电力电子技术迅速发展和广泛应用的崭新时代,其标志就是以晶闸管为代表的电力半导体器件的广泛应用,有人称之为继晶体管发明和应用之后的又一次电子技术革命。自20世纪80年代以来,晶闸管的地位开始被各种性能更好的全控型器件取代,但是由于其所能承受的电压和电流容量仍然是目前电力电子器件中最高的,而且工作可靠,因此在大容量的应用场合仍然具有比较重要的地位。 20世纪80年代以来,信息电子技术与电力电子技术在各自发展的基础上相结合而产生了一代高频化、全控型、采用集成电路制造工艺的电力电子器件,从而将电力电子技术又带入一个崭新时代。门极可关断晶闸管、电力晶体管、电力场效应晶体管和绝缘栅双极晶体管就是全控型电力电子器件的典型代表。晶闸管的种类较多,有单向晶闸管、双向晶闸管、光控晶闸管、直流开关晶闸管(即门级可关断晶闸管)、寄生晶闸管(即功率场效应管IGBT)、无控制极晶闸管等。 晶闸管在电力电子技术上有很广泛的应用,整流电路(交流变直流)、逆变电路(直流变交流)、交频电路(交流变交流)、斩波电路(直流变直流),此外,还可用作无触点开关。 又晶闸管是半控型器件,因此在控制极和阴极间的触发信号是必不可少的。而触发电路的作用是产生符合要求的门级触发脉冲,保证在需要是晶闸管立即由阻断状态变为导通状态。广义上讲,触发电路包括对其触发时刻进行控制的相位控制环节、放大和输出环节。而触发电路的形成又有许多种形式。 本课程设计研究的是基于螺旋式晶闸管KP50的触发电路。 课程设计的方案 概述要使晶闸管开始导通,必须施加触发脉冲,在晶闸管触发电路中必须有触 发电路,触发电路性能的好坏直接影响晶闸管电路工作的可靠性,也影响系统的控制精度,正确设计触发电路是晶闸管电路应用的重要环节。

三相全控整流触发板TC300

TC300数字式 三相全控整流触发板使用说明书(通用恒压恒流控制)

以下为特别需要注意事项: 1、任何情况下都不可以在带电状态下拔插接线或试图触摸插座内各接点,以防触电和发生意外。 2、本机设计使用于阴凉干燥环境,需保持良好的通风散热环境,请不要在浸水、阳光曝晒场所工作,也不要在超过电气特性要求的温度范围之外工作。 3、任何情况下请勿将本控制板在超越设计极限状态下运行。 4、请严格按照本使用说明操作,对于不按本操作说明所造成的任何设备或人身伤害,本公司不承担任何民事和刑事责任。 5、任何情况下请都不要打开本机机壳,以防电击。如本机出现故障请至致电本公司,我们将尽快协助排除故障,请不要试图维修本机。 6、一定要确认控制器需要可靠接地。否则将会导致机壳带电,发生严重安全事故!!! 产品概述: TC300三相数字整流可控硅触发板采用工业级高性能微处理器,高度数字化军工品质设计,Fuzzy-PID智能调节,集开环调压、闭环恒压和恒流三种调节方式于一体,控制可控硅实现恒压限流或恒流限压,功能参数设定采用按键操作,故障报警、界面参数采用LED数码管显示,设定参数自动储存。控制板带自动判别相位、缺相保护、上电软起动、缓关断、恒流输出、恒压输出、过压保护、过流保护、工作状态指示等功能。具有三相全控桥式整流、三相半控桥式整流、双反星整流触发方式,可触发5000A以下的可控硅,适用于工业各领域的电压电流调节的阻性负载、感性负载、容性负载等各种负载类型,广泛应用于直流电机调速、电解电镀、充放电、三相晶闸管电源、电加热温控等设备。 该三相数字整流可控硅触发板具有多种给定控制信号选择,支持0-5Vdc、0-10Vdc、0-10mA、4-20mA等输入自动控制模式,也可用电位器(10K 2W)及通过面板按键手动控制,灵活方便,所有参数均为数字量,无温度漂移变化,提高了调节精度和电源利用效率,减少对电源的污染,具有稳压精度高,可靠稳定性好。同时本控制板具有强抗干扰能力,采用独特防干扰措施,恶劣干扰环境正常运行,输出全部采取隔离技术,具有多种保护功能,适用范围宽。 一、技术规格: 1.1、工作电源:220VAC/380VAC ±10% 50/60HZ (可根据客户要求订制) 1.2、电压调节范围:1~100% 1.3、电流调节范围:1~100% 1.4、负载适应调节电压:AC220V/380V/660V 1.5、移相范围:0-175° 调节输出分辨率:1/1000 稳定精度:优于 ±1% 1.6、输入信号:面板按键操作、DC0-5V、DC0-10V、0-10mA、4-20mA、10K电位器调节

双向可控硅及其触发电路

双向可控硅及其触发电路 双向可控硅是一种功率半导体器件,也称双向晶闸管,在单片机控制系统中,可作为功率驱动器件,由于双向可控硅没有反向耐压问题,控制电路简单,因此特别适合做交流无触点开关使用。双向可控硅接通的一般都是一些功率较大的用电器,且连接在强电网络中,其触发电路的抗干扰问题很重要,通常都是通过光电耦合器将单片机控制系统中的触发信号加载到可控硅的控制极。为减小驱动功率和可控硅触发时产生的干扰,交流电路双向可控硅的触发常采用过零触发电路。(过零触发是指在电压为零或零附近的瞬间接通,由于采用过零触发,因此需要正弦交流电过零检测电路) 双向可控硅分为三象限、四象限可控硅,四象限可控硅其导通条件如下图: 总的来说导通的条件就是:G极与T1之间存在一个足够的电压时并能够提供足够的导通电流就可以使可控硅导通,这个电压可以是正、负,和T1、T2之间的电流方向也没有关系。因为双向可控硅可以双向导通,所以没有正极负极,但是有T1、T2之分 再看看BT134-600E的简介:(飞利浦公司的,双向四象限可控硅,最大电流4A)

推荐电路: 为了提高效率,使触发脉冲与交流电压同步,要求每隔半个交流电的周期输出一个触发脉冲,且触发脉冲电压应大于4V ,脉冲宽度应大于20us.图中BT 为变压器,TPL521 - 2 为光电耦合器,起隔离作用。当正弦交流电压接近零时,光电耦合器的两个发光二极管截止,三极管T1基极的偏置电阻电位使之导通,产生负脉冲信号,T1的输出端接到单片机80C51 的外部中断0 的输入引脚,以引起中断。在中断服务子程序中使用定时器累计移相时间,然后发出双向可控硅的同步触发信号。过零检测电路A、B 两点电压输出波形如图2 所示。

晶闸管触发驱动电路设计-张晋远要点

宁波广播电视大学 机械设计制造及其自动化专业 《机电接口技术》 课程设计 题目晶闸管触发驱动电路设计 姓名张晋远学号1533101200119 指导教师李亚峰 学校宁波广播电视大学 日期2017 年 4 月20 摘要 晶闸管是一种开关元件,能在高电压、大电流条件下工作,为了控制晶闸管的导通,必须在控制级至阴极之间加上适当的触发信号(电压及电流),完成此任务的就是触发电路。本课题针对晶闸管的触发电路进行设计,其电路的主要组成部分由触发电路,交流电路,同步电路等电路环节组成。有阻容移相桥触发电路、正弦波同步触发电路、单结晶体触发电路、集成

UAA4002、KJ006触发电路。包括电路的工作原理和电路工作过程以及针对相关参数的计算。 关键词:晶闸管;触发电路;脉冲;KJ006; abstract Thyristor is a kind of switch components, can work under high voltage, high current conditions, in order to control thyristor conduction, must be between control level to the cathode with appropriate trigger signal (voltage and current), complete the task is to trigger circuit. This topic in view of the thyristor trigger circuit design, the main part of the circuit by the trigger circuit, communication circuit, synchronous circuit and other circuit link. There is a blocking phase bridge trigger circuit, the sine wave synchronous trigger circuit, the single crystal trigger circuit, the integrated UAA4002, the KJ006 trigger circuit. This includes the working principle of the circuit and the circuit working procedure and the calculation of the relevant parameters. Keywords: thyristor; Trigger circuit; Pulse; KJ006; 目录 第一章绪论 1.1设计背景与意义…………………………………… 1.2 晶闸管的现实应用……………………………………

TC660十二脉波三相可控硅触发板

C HIPTRONIC TC660数字式 十二脉波三相全控整流触发板 (恒压恒流控制) 本说明书内容仅供参考,我们将不断改善用户体验,如数据参数变更,恕不通知用户。

以下为特别需要注意事项: 1、任何情况下都不可以在带电状态下拔插接线或试图触摸插座内各接点,以防触电和发生意外。 2、本机设计使用于阴凉干燥环境,需保持良好的通风散热环境,请不要在浸水、阳光曝晒场所工作,也不要在超过电气特性要求的温度范围之外工作,定期对控制板进行清洁工作。 3、任何情况下请勿将本控制板在超越设计极限状态下运行。 4、请严格按照本使用说明操作,对于不按本操作说明所造成的任何设备或人身伤害,本公司不承担任何民事和刑事责任。 5、任何情况下请都不要打开本机机壳,以防电击。如本机出现故障请至致电本公司,我们将尽快协助排除故障,请不要试图维修本机。 6、一定要确认控制器需要可靠接地。否则将会导致机壳带电,发生严重安全事故!!! 触发板调试注意事项及问题处理: *可控硅触发接口处,请注意K1-K6及G1-G6为第一组(主板)的三相全控整流控制端口(△/△),K7-K12及G7-G12为第二组(小板)的三相全控整流控制端口(△/Y),第一组与第二组的脉冲相位差为30°,如有接错会出现损坏器件的风险;主回路上的可控硅应安装适当的阻容吸收及VDR等保护电路,接线图中的RC阻容吸收保护器件,便于用户使用本公司有相关配套生产RC01阻容板,如欲购买请在订货时和销售人员说明。注意U、V、W接口线,请接在变压器的初级线圈位置。 * 本控制板运行时会自动检测负载主回路输入电源,当电源缺相时会停止输出,显示Err1或2或3提示,出现此情况请检查负载端电源输入线是否接好。 * 在通电工作前,检查控制板按本身实际要求接好连线,然后把可控硅触发端的控制线先断开,不要连接至负载,确定无误后通电工作,再根据自身需求进入菜单设置,修改控制板的相关参数,完成后把可控硅触发板的控制线连接好负载,则可以进行实际运行操作。 * 详细参照本控制板使用说明书接线图正确接线,为防止干扰,给定控制线,可控硅触发线,主电路电源线最好分别接线。如果不分开走线,给定控制线请使用绞合屏蔽线;同时严格遵守控制板与可控硅接线的对应关系。 * 通电前,请仔细检查接线,断开负载,接入一小功率阻性假负载试验,建议接入220V/500W X2灯泡做试验性负载。在用白炽灯做负载进行调试时,按启动键观看白炽灯的亮度变化情况,如果白炽灯能根据不同设定值连续平滑变化,则控制板接线正常;如果出现失控则不正常,请立取关掉电源,检查是否接线错误以免烧坏器件。控制板调试正常后,则可以接入真负载进行运行工作。 * 如果晶闸管装置需要作绝缘测试时,请您从装置上取下控制板,否则可能造成控制板永久性的损坏。 * 在使用中,控制板以外其它部件的损坏,本公司概不负责。 服务承诺:在用户正常使用操作内,提供一年免费保修服务。在保修期满后,继续提供技术支持和帮助,在此期间,更换零部件以成本价提供。 在操作本控制板前,请先详细阅读说明书,以免出现误操作及意外事故!!!

单向双向可控硅触发电路设计原理

单向/双向可控硅触发电路设计原理 1,可以用直流触发可控硅装置。 2,电压有效值等于U等于开方{(电流有效值除以2派的值乘以SIN二倍电阻)加上(派减去电阻的差除以派)}。 3,电流等于电压除以(电压波形的非正弦波幅值半波整流的两倍值)。 4,回答完毕。 触摸式台灯的控制原理 这种台灯的主要优点是没有开关,使用时通过人体触摸,完成开启、调光、关闭动作,给使用带来方便。 一、电路设计原理 人体感应的信号加在电源电路可控硅的触发极,使电路导通,并给负载——灯泡或灯管供电,使灯按弱光、中光、强光、关闭4个状态动作,达到调光的目的。电路见图1,该电路的关键器件是采用CMOS工艺制造的集成电路BA210l。 二、降压稳压电路 由R3、VDl、VD4、C4组成。输出9V直流电,供给BA2101,由③⑦脚引入。 三、触发电路 由触发电极M将人体的感应信号,经c3、R8、R7送至④脚的sP端,经处理后,由⑥脚输出触发信号,经cl、R1加至可控硅VS的G极,VS导通,电灯H点亮。第二次触摸,可改变触发脉冲前沿的到达时间,而使电灯亮度改变。反复触摸,可按弱光、中光、强光和关闭四个动作状态循环,达到调节亮度的目的。可控硅VS在动作中其导通角分别为120度、86度、17度。 四、辅助电路 VD2和vD3为保护集成电路而设。防止触摸信号过大而遭破坏。C3为隔离安全电容。R4为取得同步交流信号而设。R5为外接振荡电阻。 五、使用中经常出现的故障 (1)由震动引发的故障。触摸只需轻轻触及即可。但在家庭使用中触击的强度因人而异,小孩去触摸可能是重重的一拳。性格刚烈的人去触摸,可能引起剧烈震动。因此经常出现灯泡断丝。 (2)集成块焊脚由震动而产生脱焊。如③脚脱焊,使电源切断而停止工作;④、⑥脚脱焊,使触摸信号中断,都会引起灯泡不亮。因此要检查集成块各脚是否脱焊。 (3)可控硅VS一般采用MAC94A4型双向可控硅,由于反复触发,或意外大信号触发,会引起可控硅击穿而停止工作。 触摸式台灯的控制原理 这种台灯的主要优点是没有开关,使用时通过人体触摸,完成开启、调光、关闭动作,给使用带来方便。 一、电路设计原理 人体感应的信号加在电源电路可控硅的触发极,使电路导通,并给负载——灯泡或灯管供电,使灯按弱光、中光、强光、关闭4个状态动作,达到调光的目的。电路见图1,该电路的关键器件是采用CMOS工艺制造的集成电路BA210l。 二、降压稳压电路 由R3、VDl、VD4、C4组成。输出9V直流电,供给BA2101,由③⑦脚引入。 三、触发电路 由触发电极M将人体的感应信号,经c3、R8、R7送至④脚的sP端,经处理后,由⑥脚输出触发信号,

可控硅触发板

可控硅触发板 BHC6M-1三相通用型可控硅触发板是通过调整可控硅的导通角来实现电气设备的电压电流功率调整的一种移相型的电力控制器,其核心部件采用国外生产的高性能、高可靠性的军品级可控硅触发专用集成电路。输出触发脉冲具有极高的对称性及稳定性,且不随环境温度变化,使用中不需要对脉冲对称度及限位进行调整。现场调试一般不需要示波器即可完成。BHC6M-1型通用可控硅触发板可广泛的应用于工业各领域的电压电流调节,适用于电阻性负载、电感性负载、变压器一次侧及各种整流装置等。 *以镍铬、铁铬铝、远红外发热元件及硅钼棒、硅碳棒等为加热元件的温度控制。 *盐浴炉、工频感应炉、淬火炉、熔融玻璃的温度加热控制。 *整流变压器、调功机(纯电感线圈)、电炉变压器一次侧、升磁/退磁调节、直流电机控制。 *电压、电流、功率、灯光(高压钠灯控制必须用稳压功能配套PID控制板)等无级平滑调节。 *单相、三相电焊机控制、电解电镀控制等 *同步机励磁控制、汽轮发电机机励磁控制等 *水泵、风机等软启动控制,调速节能控制等 *铜线退火设备等 *本控制板已经成功用于带平衡电抗器的双反星型主电路的控制,并获得极佳的控制效果 主要应用领域:盐浴炉、工频感应炉、淬火炉温控;热处理炉温控;玻璃生产过程温控;金刚石压机加热;大功率充磁/退磁设备;半导体工业舟蒸发源;航空电源调压;真空磁控溅射电源;纺织机械;水晶石生产;粉末冶金机械;隧道电窑集散温控系统;彩色显像管生产设备;冶金机械设备;交直流电机拖动;石油化工机械;电压、电流、功率、灯光等无级平滑调节,恒压恒流恒功率控制等领域。 主要有以下系列可控硅触发板 1.GBC2M-1单相交流调压与半控整流通用型可控硅触发板 2 ZK01单相调功调压一体化可控硅触发板 3. GBC2M-3单相调功调压一体化可控硅触发板 4. KTY199单相恒压或恒流闭环控制可控硅触发板 5. BHC6M-1三相交流调压与全控整流通用型可控硅触发板 6. BHC6M-2三相调功调压一体化可控硅触发板

CA6100通用数字型可控硅触发板的应用

CA6100通用数字型可控硅触发板的应用

我厂KGCFA-150/200~360型硅整流充电装置,自投入运行以来已有十年以上,由于设备的老化及其技术上的局限性,经常发生输出电压、电流振荡,甚至跳闸等事故。严重影响我厂直流系统的稳定性,对全厂机组的正常运行埋下了隐患。从1997年开始,我厂更换了新型GFM(Z)阀控密封铅酸蓄电池。该种电池要求硅整流充电装置具有较高的稳压、稳流精度,同时还要具有限流恒压的充电方式。因此,原硅整流充电装置已不能满足实际生产要求,需要对其进行改进。 KGCFA-150/200~360型硅整流充电装置的控制电路由电源板、信号板、直流放大器、触发板、直流互感器等组成。分析其工作原理,我们认为造成硅整流充电装置运行不稳定的原因有以下几个方面: 1.反馈采集元件性能差,至使反馈回来的电压、电流信号不稳 定,且线性度差。 2.直流放大器调节性能下降。直流放大器主要由分立电子元件 组成,由于运行时间较长,大部分元件都已老化,工作特性 发生变化,使直流放大器对信号的处理能力下降。 3.触发板采用正弦同步电压和直流控制电压叠加的垂直控制原 理,直流控制电压与同步电压的交点决定触发脉冲发出的时 刻。改变直流控制电压与同步电压的交点,就可以改变脉冲 发出的时刻(即移相)。三相同步电压是经过同步变压器获得 的,由于同步变压器制造工艺上的原因,致使三相同步电压 在幅值、宽度及对称平衡性上都有一定的差异,使得同一直

流控制电压与每相同步电压交叉点的相序不平衡(即触发时 间相序发生变化),从而造成充电装置输出电压和电流波动。 通过以上分析,在不改变原硅整流充电装置主体结构的情况下,只要对其控制电路的调节与触发部分进行重新设计和改进就可以满足实际生产要求。 目前国内传统的三相可控硅触发电路普遍采用小规模集成块KC或KJ系列的模拟芯片来组成。这类电路每一相的触发脉冲都是通过同步变压器送来的同步信号转换为锯齿波信号,再与给定的直流电压相比较来取得移相信号的。三相锯齿信号的斜率、占空比和幅度等与分离的每相元器件参数关系密切,比较信号中小的干扰可能造成较大的移相误差。此外,三相脉冲的对称平衡亦取决于三个锯齿波斜率的调整,至少要调整四个以上的电位器才能使这种电路正常工作,电路的可靠性及自动平衡能力较差。在干扰严重或电位器接触不良造成严重失衡时,触发信号甚至造成主回路元件的损坏。 由模拟芯片组成的触发电路,对不同的用途通常需要重新设计,不同相序的输入电源、同步变压器及触发脉冲所对应的可控硅也需用示波器严格查对。此外,对诸如缺相保护、软起停等附属电路也需另外设计电路解决,整个电路系统在设计和调试时相当繁杂。 经过认真调研,我们采用了以CA6100通用数字型可控硅触发电路板为核心的控制电路,其原理框图如图1所示。该控制电路由电压模块、电流模块、PI调节板、CA6100型触发电路板等组成。 现将各部分的原理和作用简述如下:

感谢您使用我公司生产的KTY399系列三相晶闸管闭环技术可控硅触发板

感谢您使用我公司生产的KTY399 系列三相晶闸管闭环技术可控硅触发板。 KTY399 系列三相晶闸管闭环技术可控硅触发板是移相触发型的晶闸管电力控制器。触发板具有过流、缺相、相序、晶闸管过热等多种保护功能;可广泛应用于工业各领域的电压、电流、功率的调节,适用于电阻性负载、电感性负载、变压器一次侧等,主要应用如下: ?以镍铬、铁铬铝、远红外发热元件及硅钼棒、硅碳棒、钼丝、石墨、白金漏板等为加热元件的温度控制。 ?盐浴炉、工频感应炉、淬火炉、熔融玻璃的温度控制。 ?整流变压器、电炉变压器一次侧控制。 ?真空镀膜设备、拉丝机变压器一次侧、静电植荣变压器一次侧等 ?三相力矩电动机的速度控制。 ?电压、电流、功率、灯光等无级平滑调节。 ?恒压、恒流、恒功率控制。 主要应用领域:盐浴炉、工频感应炉、淬火炉温控;热处理炉温控;玻璃生产过程温控;金刚石压机加热;大功率充磁/ 退磁设备;半导体工业舟蒸发源;航空电源调压;真空磁控溅射电源;纺织机械;水晶石生产;粉末冶金机械;隧道电窑集散温控系统;彩色显像管生产设备;冶金机械设备;交直流电机拖动;石油化工机械;电压、电流、功率、灯光等无级平滑调节,恒压恒流恒功率控制等领域。 为了进一步提高产品质量,我们有严格的质量保证体系:严格把握元器件的进货渠道;焊接前对元器件进行测试筛选;产品全部采用波峰焊(非人工焊接);控制板焊接完成后进行初调;初调合格后进行为期一周的通电升温动态老化试验;出厂前再进行全面检测。确保给您提供的每一块触发板都是合格产品。 为了满足不同层次的需求,我们正在加强新产品的开发,并不断推陈出新。为了满足您的特殊要求,我们愿为您单台定制。您在使用我们产品时,可能还会发现一些不尽人意的地方,请您提出宝贵意见,我们在此表示衷心感谢。 ■特点: * 可用380V 电源频率为50HZ/60HZ 电网,特殊电压要求可定制。 * 采用移相式触发方式、适用于阻性负载、感性负载、变压器一次侧等各种负载类型。 * 能与国内外各种控制仪表、微机的输出信号直接接口。 * 一台仪表可以同时控制多台触发板。 * 具有软启动功能,减少对电网的冲击干扰,使主电路更加安全可靠。 * 脉冲输出对称度小于0.1 度。 * 同步电压范围宽。 恒电压反馈: 电源电压波动± 10%,负载阻抗变化10 倍时,负荷电压保持恒定,输出电压与控制信号成线性关系 恒电流反馈: 电源电压波动± 10%,负载阻抗变化10 倍时,负荷电流保持恒定,输出电流与控制信号成线性关系 恒功率反馈: 电源电压波动± 10%,负载阻抗变化10 倍时,负荷功率保持恒定,输出功率与控制信号成线性关系 ■正常使用条件: * 海拔不超过3000 米。 *工作环境温度-30 C ~55C。 * 空气最大相对湿度不超过90% 。 * 运行地点无导电及爆炸性尘埃,无腐蚀金属及破坏绝缘的气体或蒸汽。 * 无剧烈震动和冲击。 ■安装使用须知: * 使用前认真阅读本说明书,严格按要求接线使用。 * 接线时要严格保持主电路电源R S T 与触发板电源、控制信号相位一致。

可控硅触发板使用说明

KY-23-1可控硅触发板使用说明 KY-23-1为KY-23的改进型:①增加了一个过流过压保护选择端子“GB”。该端子与“Y”端子相接是过压保护;与“L1”端子相接是直流过流保护;与“L2”端子相接是交流过流保护。原KY-23是过流还是过压保护取决于端子“K”的接线,在电压闭环控制时只能过压保护。②KY-23-1将原接线端子改为插头形式,方便维修更换。 一、主要特点 1.闭环控制,可实现稳流或稳压的比例积分调节。 2.适用于单相变压器原边的可控硅调压控制,以及电机等其它单相感性负载的控制。用于变压器原边控制时,变压器完全空载也可稳定地从零调至最高电压。也适用于阻性负载 的调压控制。 3.应用单片机技术,无上电冲击,可适应于不同的控制方式。 4.三种控制信号输入方式:① 2.2K电位器手动调节。② DC 0~10mA电流信号调节。③ 4~20mA电流信号调节。如果需要DC 0~10V电压信号调节,请参阅后面的说明稍做改动即 可。 5. 反馈信号分为:电流反馈AC 0~5A、DC 0~75mV和电压反馈AC 10~380V 、DC 10~550V (可通过改变几个电阻的阻值由用户任选反馈电压),由此可闭环稳流调节或稳压调节。出厂时按DC10V反馈而调。建议:为安全起见,反馈电压较高时最好用变压器降压隔离。 6. 可通过一个转换开关方便地实现手动调节和自动调节的转换。 7.可通过一个转换开关方便地实现稳流调节和稳压调节的转换。 8.电源电压单相220V或两相380V(和负载相对应),不需要外接变压器。 9.带有过流过压保护继电器,一组3A常开常闭触点输出。 10.移相范围0--170°。 11.触发脉冲形式:10KHz脉冲列。 12.触发脉冲幅值:15V;触发电流:300mA。 13.触发板尺寸:187mm×120mm×35mm。 二、使用与调整 1.接线端子XT1的端子G1、K1、G2、K2为可控硅的触发信号。

TC360三相全控整流可控硅触发器

C HIPTRONIC TC360数字式 三相全控整流触发板使用说明书 (通用恒压恒流控制) 本说明书内容仅供参考,我们将不断改善用户体验,如数据参数变更,恕不通知用户。

以下为特别需要注意事项: 1、任何情况下都不可以在带电状态下拔插接线或试图触摸插座内各接点,以防触电和发生意外。 2、本机设计使用于阴凉干燥环境,需保持良好的通风散热环境,请不要在浸水、阳光曝晒场所工作,也不要在超过电气特性要求的温度范围之外工作,定期对控制板进行清洁工作。 3、任何情况下请勿将本控制板在超越设计极限状态下运行。 4、请严格按照本使用说明操作,对于不按本操作说明所造成的任何设备或人身伤害,本公司不承担任何民事和刑事责任。 5、任何情况下请都不要打开本机机壳,以防电击。如本机出现故障请至致电本公司,我们将尽快协助排除故障,请不要试图维修本机。 6、一定要确认控制器需要可靠接地。否则将会导致机壳带电,发生严重安全事故!!! 触发板调试注意事项及问题处理: * 可控硅触发接口处,请注意K1-K6及G1-G6为三相全控整流控制端口,如有接错会出现损坏器件的风险;主回路上的可控硅应安装适当的阻容吸收及VDR 等保护电路,接线图中的RC阻容吸收保护器件,便于用户使用本公司有相关配套生产RC01阻容板,如欲购买请在订货时和销售人员说明。注意U、V、W 接口线,请接在三相电进线处或变压器隔离方式时接在初级位置。 * 本控制板运行时会自动检测负载主回路输入电源,当电源缺相时会停止输出,显示Err1或2或3提示,出现此情况请检查负载端电源输入线是否接好。 * 在通电工作前,检查控制板按本身实际要求接好连线,然后把可控硅触发端的控制线先断开,不要连接至负载,确定无误后通电工作,再根据自身需求进入菜单设置,修改控制板的相关参数,完成后把可控硅触发板的控制线连接好负载,则可以进行实际运行操作。 * 详细参照本控制板使用说明书接线图正确接线,为防止干扰,给定控制线,可控硅触发线,主电路电源线最好分别接线。如果不分开走线,给定控制线请使用绞合屏蔽线;同时严格遵守控制板与可控硅接线的对应关系。 * 通电前,请仔细检查接线,断开负载,接入一小功率阻性假负载试验,建议接入220V/500W X2灯泡做试验性负载。在用白炽灯做负载进行调试时,按启动键观看白炽灯的亮度变化情况,如果白炽灯能根据不同设定值连续平滑变化,则控制板接线正常;如果出现失控则不正常,请立取关掉电源,检查是否接线错误以免烧坏器件。控制板调试正常后,则可以接入真负载进行运行工作。 * 如果晶闸管装置需要作绝缘测试时,请您从装置上取下控制板,否则可能造成控制板永久性的损坏。 * 在使用中,控制板以外其它部件的损坏,本公司概不负责。 * 服务承诺:在用户正常使用操作内,提供一年免费保修服务。在保修期满后,继续提供技术支持和帮助,在此期间,更换零部件以成本价提供。 在操作本控制板前,请先详细阅读说明书,以免出现误操作及意外事故!!!

可控硅触发板使用说明教学文稿

可控硅触发板使用说 明

KY-23-1可控硅触发板使用说明 KY-23-1为KY-23的改进型:①增加了一个过流过压保护选择端子“GB”。该端子与“Y”端子相接是过压保护;与“L1”端子相接是直流过流保护;与“L2”端子相接是交流过流保护。原KY-23是过流还是过压保护取决于端子“K”的接线,在电压闭环控制时只能过压保护。②KY-23-1将原接线端子改为插头形式,方便维修更换。 一、主要特点 1.闭环控制,可实现稳流或稳压的比例积分调节。 2.适用于单相变压器原边的可控硅调压控制,以及电机等其它单相感性负载的控制。用于变压器原边控制时,变压器完全空载也可稳定地从零调至最高电 压。也适用于阻性负载的调压控制。 3.应用单片机技术,无上电冲击,可适应于不同的控制方式。 4.三种控制信号输入方式:① 2.2K电位器手动调节。② DC 0~10mA电流信号调节。③ 4~20mA电流信号调节。如果需要DC 0~10V电压信号调节,请 参阅后面的说明稍做改动即可。 5. 反馈信号分为:电流反馈AC 0~5A、DC 0~75mV和电压反馈AC 10~380V 、 DC 10~550V(可通过改变几个电阻的阻值由用户任选反馈电压),由此可闭环稳流调节或稳压调节。出厂时按DC10V反馈而调。建议:为安全起见,反馈电压较高时最好用变压器降压隔离。 6. 可通过一个转换开关方便地实现手动调节和自动调节的转换。 7.可通过一个转换开关方便地实现稳流调节和稳压调节的转换。 8.电源电压单相220V或两相380V(和负载相对应),不需要外接变压器。 9.带有过流过压保护继电器,一组3A常开常闭触点输出。 10.移相范围0--170°。 11.触发脉冲形式:10KHz脉冲列。 12.触发脉冲幅值:15V;触发电流:300mA。 13.触发板尺寸:187mm×120mm×35mm。 二、使用与调整 收集于网络,如有侵权请联系管理员删除

双向可控硅的控制原理

双向可控硅的工作原理 1.可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化 2,触发导通 在控制极G上加入正向电压时(见图5)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IGT。在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越大,特性左移越快。 一、可控硅的概念和结构? 晶闸管又叫可控硅。自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。从晶闸管的电路符号〔图2(b)〕可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。

双向晶闸管过零检测电路设计

双向晶闸管过零检测电路设计 2012年05月18日 10:27 来源:本站整理作者:秩名我要评论(0) 引言 双向可控硅是一种功率半导体器件,也称双向晶闸管,在单片机控制系统中,可作为 功率驱动器件,由于双向可控硅没有反向耐压问题,控制电路简单,因此特别适合做交流 无触点开关使用。双向可控硅接通的一般都是一些功率较大的用电器,且连接在强电网络中,其触发电路的抗干扰问题很重要,通常都是通过光电耦合器将单片机控制系统中的触 发信号加载到可控硅的控制极。为减小驱动功率和可控硅触发时产生的干扰,交流电路双 向可控硅的触发常采用过零触发电路。过零触发是指在电压为零或零附近的瞬间接通。由 于采用过零触发,因此上述电路还需要正弦交流电过零检测电路。 1 过零检测电路 电路设计如图1 所示,为了提高效率,使触发脉冲与交流电压同步,要求每隔半个交 流电的周期输出一个触发脉冲,且触发脉冲电压应大于4V ,脉冲宽度应大于20us.图中 BT 为变压器,TPL521 - 2 为光电耦合器,起隔离作用。当正弦交流电压接近零时,光电 耦合器的两个发光二极管截止,三极管T1基极的偏置电阻电位使之导通,产生负脉冲信号,T1的输出端接到单片机80C51 的外部中断0 的输入引脚,以引起中断。在中断服务子程 序中使用定时器累计移相时间,然后发出双向可控硅的同步触发信号。过零检测电路A、B 两点电压输出波形如图2 所示。

2 过零触发电路 电路如图3 所示,图中MOC3061 为光电耦合双向可控硅驱动器,也属于光电耦合器的一种,用来驱动双向可控硅BCR 并且起到隔离的作用,R6 为触发限流电阻,R7 为BCR 门极电阻,防止误触发,提高抗干扰能力。当单片机80C51 的P1. 0 引脚输出负脉冲信号时T2 导通,MOC3061 导通,触发BCR 导通,接通交流负载。另外,若双向可控硅接感性交流负载时,由于电源电压超前负载电流一个相位角,因此,当负载电流为零时,电源电压为反向电压,加上感性负载自感电动势el 作用,使得双向可控硅承受的电压值远远超过电源电压。虽然双向可控硅反向导通,但容易击穿,故必须使双向可控硅能承受这种反向电压。一般在双向可控硅两极间并联一个RC阻容吸收电路,实现双向可控硅过电压保护,图3 中的C2 、R8 为RC 阻容吸收电路。

相关文档
相关文档 最新文档