文档库 最新最全的文档下载
当前位置:文档库 › 卡尔曼滤波器及matlab代码

卡尔曼滤波器及matlab代码

卡尔曼滤波器及matlab代码
卡尔曼滤波器及matlab代码

信息融合大作业

——维纳最速下降法滤波器,卡尔曼滤波器设计及Matlab仿真

时间:2010-12-6

专业:信息工程

班级:09030702

姓名:马志强

1.滤波问题浅谈

估计器或滤波器这一术语通常用来称呼一个系统,设计这样的系统是为了从含有噪声的数据中提取人们感兴趣的,接近规定质量的信息。由于这样一个宽目标,估计理论应用于诸如通信、雷达、声纳、导航、地震学、生物医学工程、金融工程等众多不同的领域。例如,考虑一个数字通信系统,其基本形式由发射机、信道和接收机连接组成。发射机的作用是把数字源(例如计算机)产生的0、1符号序列组成的消息信号变换成为适合于信道上传送的波形。而由于符号间干扰和噪声的存在,信道输出端收到的信号是含有噪声的或失真的发送信号。接收机的作用是,操作接收信号并把原消息信号的一个可靠估值传递给系统输出端的某个用户。随着通信系统复杂度的提高,对原消息信号的还原成为通信系统中最为重要的环节,而噪声是接收端需要排除的最主要的干扰,人们也设计出了针对各种不同条件应用的滤波器,其中最速下降算法是一种古老的最优化技术,而卡尔曼滤波器随着应用条件的精简成为了普适性的高效滤波器。2.维纳最速下降算法滤波器

2.1 最速下降算法的基本思想

考虑一个代价函数J(w),它是某个未知向量w的连续可微分函数。函数J(w)将w的元素映射为实数。这里,我们要寻找一个最优解w。使它满足如下条件

J(w0)≤J(w)

(2.1) 这也是无约束最优化的数学表示。

特别适合于自适应滤波的一类无约束最优化算法基于局部迭代下降的算法:从某一初始猜想w(0)出发,产生一系列权向量w(1),w(2),,使得代价函数J(w)在算法的每一次迭代都是下降的,即

J(w(n+1))

其中w(n)是权向量的过去值,而w(n+1)是其更新值。

我们希望算法最终收敛到最优值w0。迭代下降的一种简单形式是最速下降法,该方法是沿最速下降方向连续调整权向量。为方便起见,我们将梯度向量表示为

g=J(w)=J(w)

w

(2.2)

因此,最速下降法可以表示为

w(n+1)=w(n)?1

μg(n)

(2.3)

其中n代表进程,μ是正常数,称为步长参数,1/2因子的引入是为了数学上处理方便。在从n到n+1的迭代中,权向量的调整量为

δw(n)=w(n+1)?w(n)=?1

2

μg(n)

(2.4)

为了证明最速下降算法满足式(2.1),在w(n)处进行一阶泰勒展开,得到

J(w(n+1))≈J(w(n))+g H(n)δw(n)

(2.5) 此式对于μ较小时是成立的。在式(2.4)中设w为负值向量,因而梯度向量g也为负值向量,所以使用埃尔米特转置。将式(2.4)用到式(2.5)中,得到

J(w(n+1))J(w(n))?1

2

μ‖g(n)‖2

此式表明当μ为正数时,J(w(n+1))

2.2最速下降算法应用于维纳滤波器

考虑一个横向滤波器,其抽头输入为u(n),u(n?1),,u(n?M+1),对应的抽头权值为w0(n),w1(n),,w M?1(n)。抽头输入是来自零均值、相关矩阵为R的广义平稳随机过程的抽样值。除了这些输入外,滤波器还要一个期望响应d(n),以便为最优滤波提供一个参考。在时刻n抽头输入向量表示为u(n),滤波器输出端期望响应的估计值为d?(n|U n),其中U n是由抽头输u(n),u(n?1),,u(n?

M+1)所张成的空间。空过比较期望响应d(n)及其估计值,可以得到一个估计误差e(n),即

e(n)=d(n)?d?(n|U n)=d(n)?w H(n)u(n)

(2.6) 这里w H(n)u(n)是抽头权向量w(n)与抽头输入向量u(n)的内积。w(n)可以进一步表示为

w(n)=[w0(n),w1(n),,w M?1(n)]T

同样,抽头输入向量u(n)可表示为

u(n)=[u(n),u(n?1),,u(n?M+1)]T

如果抽头输入向量u(n)和期望响应d(n)是联合平稳的,此时均方误差或者在时刻n的代价函数J(n)是抽头权向量的二次函数,于是可以得到

J(n)=σd2?w H(n)p?p H w(n)+w H(n)Rw(n)

(2.7) 其中,σd2为目标函数d(n)的方差,p抽头输入向量u(n)与期望响应d(n)的互相关向量,及R为抽头输入向量u(n)的相关矩阵。从而梯度向量可以写为

J(n)=

[

J(n)

+j

J(n)

J(n)

a1(n)

J(n)

M?1

+

+

j

J(n)

b1(n)

J(n)

M?1

=?2p+2Rw(n)

(2.8)

其中在列向量中J(n)

a k(n)和J(n)

b k(n)

分别是代价函数J(n)对应第k个抽头权值w k(n)的实

部a k(n)和虚部b k(n)的偏导数。对最速下降算法应用而言,假设式(2.8)中相关矩阵R和互相关向量p已知,则对于给定的抽头权向量w(n+1)为

w(n+1)=w(n)+μ[p?Rw(n)

(2.9) 它描述了为那滤波中最速下降法的数学表达式。

3.卡尔曼滤波器

3.1卡尔曼滤波器的基本思想

卡尔曼滤波器是用状态空间概念描述其数学公式的,另外新颖的特点是,他的解递归运算,可以不加修改地应用于平稳和非平稳环境。尤其是,其状态的每一次更新估计都由前一次估计和新的输入数据计算得到,因此只需存储前一次估计。除了不需要存储过去的所有观测数据外,卡尔曼滤波计算比直接根据滤波过程中每一步所有过去数据进行估值的方法都更加有效。

v1(n)x(n+1)x(n)y(n)

换句话说,状态由预测系统未来特性时所素要的,与系统的过去行为有关的最少的数据组成。典型地,比较有代表性的情况是,状态x(n)是未知的。为了估计它,我们使用一组观测数据,在途中用向量y(n)表示。y(n)成为观测向量或者简称观测值,并假设它是N维的。

在数学上,图3.1表示的信号流图隐含着一下两个方程:

(1)过程方程

x(n+1)=F(n+1,n)x(n)+v1(n)

(3.1)

式中,M×1向量v1(n)表示噪声过程,可建模为零均值的白噪声过程,且其相关矩阵定义为

E[v1(n)v1H(k)]={Q1(n) n=k

O n≠k

(2)测量方程

y(n)=C(n)x(n)+v2(n)

(3.2)

其中C(n)是已知的N×M测量矩阵。N×1向量v2(n)称为测量噪声,建模

为零均值的白噪声过程,其相关矩阵为

E[v2(n)v2H(k)]={Q2(n) n=k

O n≠k

(3.3)

测量方程(3.2)确立了可测系统输出y(n)与状态x(n)之间的关系,如图

3.1所示。

3.2 新息过程

为了求解卡尔曼滤波问题,我们将应用基于新息过程的方法。根据之前所述,用向量y?(n|y n?1)表示n=1时刻到n?1时刻所有观测数据过去值给定的情况下,你时刻观测数据y(n)的最小均方估计。过去的值用观测值y(1),y(2),,y(n?1)表示,他们张成的向量空间用y n?1表示。从而可以定义新息过程如下:

α(n)=y(n)?y?(n|y n?1)

(3.4)

其中M×1向量α(n)表示观测数据y(n)的新息。

3.3 应用新息过程进行状态估计

下面,我们根据信息过程导出状态x(i)的最小均方估计。根据推导,这个估计可以表示成为新息过程α(1),α(2),,α(n)序列的线性组合,即

n

x?(i|y n)=∑B i(k)α(k)

k=1

(3.5)

n是一组待定的M×N矩阵。根据正交性原理,预测状态误差向量其中{B i(k)}k=1

与新息过程正交,即

E[ε(i,n)αH(m)]=E{[x(i)?x?[i|y n]]αH(m)}=O

(3.6)

将式(3.5)代入式(3.6),并利用新息过程的正交性质,即得

E[x(i)αH(m)]=B i(m)E[α(m)αH(m)]=B i(m)R(m)

(3.7)

因此,式(3.7)两边同时右乘逆矩阵R?1(m),可得B i(m)的表达式为

B i(m)=E[x(i)αH(m)]R?1(m)

(3.8) 最后,将式(3.8)带入式(3.5),可得最小军方差估计

x?(i|y n)=∑E[x(i)αH(k)]R?1(k)α(k)

n

k=1

=∑E[x(i)αH(k)]R?1(k)α(k)

n?1

k=1

+E[x(i)αH(n)]R?1(n)α(n)

(3.9) 故对于i=n+1,有

x?(n+1|y n)=∑E[x(n+1)αH(k)]R?1(k)α(k)

n?1

k=1

+E[x(n+1)αH(n)]R?1(n)α(n)

(3.10) 然而,n+1时刻的状态x(n+1)与n时刻的状态x(n)的关系式由式可以推导出对于0≤k≤n,有

E[x(n+1)αH(k)]=E{[F(n+1,n)x(n)+v1(n)]αH(k)}

=F(n+1,n)E[x(n)αH(k)]

(3.11) 其中α(k)只与观测数据y(1),y(2),,y(k)有关。因此可知,v1(n)与α(k)彼此正交(其中0≤k≤n)。利用式(3.11)以及当i=n时x?(i|y n)的计算公式,可将式(3.10)右边的求和项改写为

∑E[x(n+1)αH(k)]R?1(k)α(k) n?1

k=1=F(n+1,n)∑E[x(n)αH(k)]R?1(k)α(k)

n?1

k=1

=F(n+1,n) x?(n|y n?1)

(3.12) 为了进一步讨论,引入如下基本定义。

3.4 卡尔曼增益

定义M×N矩阵

G(n)=E[x(n+1)αH(n)] R?1(k)

(3.13)其中E[x(n+1)αH(n)]是状态向量x(n+1)和新息过程α(n)的互相关矩阵。利用这一定义和式(3.12)的结果,可以将式(3.10)简单重写为

x?(n+1|y n)= F(n+1,n)x?(n|y n?1)+G(n)α(n)

(3.14) 式(3.14)具有明确的物理意义。它标明:线性动态系统状态的最小均方估计

x?(n+1|y n)可以由前一个估计x?(n|y n?1)求得。为了表示对卡尔曼开创性贡献的认可,将矩阵G(n)称为卡尔曼增益。

现在剩下唯一要解决的问题是,怎样以一种便于计算的形式来表示卡尔曼增益G(n)。为此,首先将x(n+1)与αH(n)乘积的期望表示为

E[x(n+1)αH(n)]=F(n+1,n)E[x(n)εH(n,n?1)]C H(n)

(3.15) 式中利用了状态x(n)与噪声向量v2(n)互不相关这一事实。其次,由于预测状态误差向量ε(n,n?1)与估计x?(n|y n?1)正交,因此x?(n|y n?1)与εH(n,n?1)乘机的期望为零。这样,用预测状态误差向量ε(n,n?1)代替相乘因子x(n),将不会引起式(3.15)变化,故有

E[x(n+1)αH(n)]=F(n+1,n)E[ε(n,n?1)εH(n,n?1)]C H(n)

(3.16) 由此,可将上式进一步变化为

E[x(n+1)αH(n)]=F(n+1,n)K(n,n?1)C H(n)

(3.17) 现在我们重新定义卡尔曼增益。为此,将式(3.17)代入式(3.13)得

G(n)=F(n+1,n)K(n,n?1)C H(n) R?1(k)

(3.18) 现在我们已经了解了卡尔曼滤波的整个过程和相应的参数设置,为了能够更为方便利用计算机仿真实现,特将其中参数变量进行小结。

卡尔曼变量和参数小结

变量定义维数

x(n)n时刻状态M×1

y(n)n时刻状态值N×1 F(n+1,n)从n时刻到n+1时刻的转移矩阵M×M

C(n)n时刻的测量矩阵N×M

Q1(n)过程噪声v1(n)的相关矩阵M×M

Q2(n)过程噪声v2(n)的相关矩阵N×N

M×1 x?(n|y n?1)给定观测值y(1),y(2),,y(n?1)

在n时刻状态的预测估计

x?(n|y n)给定观测值y(1),y(2),,y(n)在n

M×1

时刻状态的滤波估计

G(n)n时刻卡尔曼增益矩阵M×N

α(n)n时刻新息向量N×1

R(n)新息向量α(n)的相关矩阵N×N K(n,n?1)x?(n|y n?1)中误差相关矩阵M×M

K(n)x?(n|y n)中误差相关矩阵M×M

基于单步预测的卡尔曼滤波器的小结

观测值= y(1),y(2),,y(n?1)

转移矩阵=F(n+1,n)

测量矩阵=C(n)

过程噪声的相关矩阵=Q1(n)

测量噪声的相关矩阵=Q2(n)

G(n)=F(n+1,n)K(n,n?1)C H(n)[C(n)K(n,n?1)C H(n)+Q2(n)]?1

α(n)=y(n)?C(n)x?(n|y n?1)

x?(n+1|y n)= F(n+1,n)x?(n|y n?1)+G(n)α(n)

K(n)=K(n,n?1)?F(n,n+1)G(n)C(n)K(n,n?1)

K(n+1,n)=F(n+1,n)K(n)F H(n+1,n)+Q1(n)

4 Matlab仿真

为了简化,这里只讨论简单的一维单输入—单输出线性系统模型,其中加入白噪声作为系统的扰动,具体仿真结果可以获得如下

4.1 维纳最速下降法滤波器仿真结果

以上为最速下降法中不同的递归步长所导致的跟踪效果变化,对于最速下降法中的步长是影响其算法稳定的关键,最速下降算法稳定的充分必要条件是条件步长因子为小于输入自相关矩阵的最大特征值倒数的2倍。上面的序列分别从相关矩阵的随大特征之2倍的0.4倍开始变化至其1倍,最后一幅图象能够看出其已经不再收敛,下面是大于输入相关矩阵的最大特征值2倍步长时所表现的跟踪结果可以看出其已经明显发散,不再是我们所期望的滤波算法。因此可以总结出,对于最速下降法来说,步长的选取是很重要的,根据不同条件的需求,选取正确的步长,能为算法的快速高效提供基础。

4.2 卡尔曼滤波器仿真结果

从图中可以发现,卡尔曼滤波器能够非常有效地在比较大的干扰下比较准确地反映真实值,如果观测端加入干扰较大时,卡尔曼滤波器能够较为有效地进行滤波,不过当状态端的干扰增大时,卡尔曼滤波器的滤波效果也会随之下降。如下图,是加大了状态端的干扰,所呈现的滤波效果。

如上图所示,状态端的干扰导致状态不稳定,卡尔曼滤波器的估计值也出现了比较大的波动。如果将状态端的干扰再增大,则会出现更为严峻的滤波考验,滤波效果如下。

这是的状态已经很勉强了,所以,研究更为有效的多方法卡尔曼滤波器也显得十分必要了。

4.3 一种不需初始化的卡尔曼滤波器仿真

这种滤波器只是实现了无需对部分变量进行初始化的设计,没有特别意义上的改进经典卡尔曼滤波器本身性能的特点。仿真图如下

4.4 后联平滑滤波的卡尔曼滤波器仿真

只是在经典卡尔曼滤波器后端联接了平滑滤波器,对性能改进的效果并不特别明显,仿真图如下

如图中所表示,即使平滑过的估值与观测值之间的差别也不是特别令人满意,所以,对于经典卡尔曼滤波的研究还需要更深一步进行,由于时间和能力有限,

本次的作业对于卡尔曼及其他滤波器的研究只能达到这种程度,希望在以后的学习中,能发现更好的对经典卡尔曼滤波器的改进方法。

5 Matlab源代码(部分参考自互联网)

5.1经典卡尔曼滤波器

clear

N=200;

w(1)=0;

x(1)=5;

a=1;

c=1;

Q1 = randn(1,N)*1;%过程噪声

Q2 = randn(1,N);%测量噪声

for k=2:N;x(k)=a*x(k-1)+Q1(k-1); end%状态矩阵

for k=1:N;Y(k)=c*x(k)+Q2(k);end

p(1)=10;

s(1)=1;

for t=2:N;

Rww=cov(Q1(1:t));

Rvv=cov(Q2(1:t));

p1(t)=a.^2*p(t-1)+Rww;

b(t)=c*p1(t)/(c.^2*p1(t)+Rvv);%kalman增益

s(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1));

p(t)=p1(t)-c*b(t)*p1(t);

end

t=1:N;

plot(t,s,'r',t,Y,'g',t,x,'b');%红色卡尔曼,绿色观测值,蓝色状态值

legend('kalman estimate','ovservations','truth');

5.2 最速下降法

clc

clear all

N=30;

q=2.1;%q>1&&q<2/Ryx最大特征值

hn=zeros(1,N);

hn(:)=5;

vg=0;

Rxx=xcorr(1);

Ryx=min(min(corrcoef(1, 1+randn)));

echo off

for i=1:N-1;

%vg=2*Rxx*hn(:,i)-2*Ryx;

%hn(:,i+1)=hn(:,i)-1/2*q*vg;

vg=2*Rxx*hn(i)-2*Ryx;

hn(i+1)=hn(i)-1/2*q*vg;

m(i)=1;

end

t=1:N-1;

plot(t,hn(t),'r-',t,m(t),'b-');

5.3 后联平滑滤波器的卡尔曼滤波器clear

clc;

N=300;

CON = 5;

x = zeros(1,N);

x(1) = 1;

p = 10;

Q = randn(1,N)*0.2;%过程噪声协方差

R = randn(1,N);%观测噪声协方差

y = R + CON;%加过程噪声的状态输出

for k = 2 : N

Q1 = cov(Q(1:k-1));%过程噪声协方差

Q2 = cov(R(1:k-1));

x(k) = x(k - 1);%预估计k时刻状态变量的值

p = p + Q1;%对应于预估值的协方差

kg = p / (p + Q2);%kalman gain

x(k) = x(k) + kg * (y(k) - x(k));

p = (1 - kg) * p;

end

Filter_Wid = 10;

smooth_res = zeros(1,N);

kalman_p = zeros(1,N);

for i = Filter_Wid + 1 : N

tempsum = 0;

kalman_m = 0;

for j = i - Filter_Wid : i - 1

tempsum = tempsum + y(j);

kalman_m = kalman_m+x(j);

end

kalman_p(i) = kalman_m/Filter_Wid;

smooth_res(i) = tempsum / Filter_Wid;%平滑滤波end

% figure(1);

% hist(y);

t=1:N;

figure(1);

expValue = zeros(1,N);

for i = 1: N

expValue(i) = CON;

end

plot(t,expValue,'r',t,x,'g',t,y,'b',t,smooth_res,'k',t,kalman_p,'m'); legend('truth','estimate','measure','smooth result','smooth kalman'); %axis([0 N 0 30])

xlabel('Sample time');

ylabel('Room Temperature');

title('Smooth filter VS kalman filter');

卡尔曼滤波算法与matlab实现

一个应用实例详解卡尔曼滤波及其算法实现 标签:算法filtermatlabalgorithm优化工作 2012-05-14 10:48 75511人阅读评论(25) 收藏举报分类: 数据结构及其算法(4) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。 我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。 好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。 假如我们要估算k时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。 由于我们用于估算k时刻的实际温度有两个温度值,分别是23 度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance(协方差)来判断。因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23)=24.56度。 可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。 现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56 度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

各类滤波器的MATLAB程序清单

各类滤波器的MATLAB程序 一、理想低通滤波器 IA=imread(''); [f1,f2]=freqspace(size(IA),'meshgrid'); Hd=ones(size(IA)); r=sqrt(f1.^2+f2.^2); Hd(r>=0; Y=fft2(double(IA)); Y=fftshift(Y); Ya=Y.*Hd; Ya=ifftshift(Ya); Ia=ifft2(Ya); figure subplot(2,2,1),imshow(uint8(IA)); subplot(2,2,2),imshow(uint8(Ia)); figure surf(Hd,'Facecolor','interp','Edgecolor','none','Facelighting','phong'); 二、理想高通滤波器 IA=imread(''); [f1,f2]=freqspace(size(IA),'meshgrid'); Hd=ones(size(IA)); r=sqrt(f1.^2+f2.^2); Hd(r<=0; Y=fft2(double(IA));

Y=fftshift(Y); Ya=Y.*Hd; Ya=ifftshift(Ya); Ia=real(ifft2(Ya)); figure subplot(2,2,1),imshow(uint8(IA)); subplot(2,2,2),imshow(uint8(Ia)); figure surf(Hd,'Facecolor','interp','Edgecolor','none','Facelighting','phong'); 三、B utterworth低通滤波器 IA=imread(''); [f1,f2]=freqspace(size(IA),'meshgrid'); D=; r=f1.^2+f2.^2; n=4; for i=1:size(IA,1) for j=1:size(IA,2) t=r(i,j)/(D*D); Hd(i,j)=1/(t^n+1); end end Y=fft2(double(IA)); Y=fftshift(Y); Ya=Y.*Hd; Ya=ifftshift(Ya); Ia=real(ifft2(Ya));

卡尔曼滤波器及其简matlab仿真.

卡尔曼滤波器及其简matlab仿真 一、卡尔曼滤波的起源 谈到信号的分析与处理,就离不开滤波两个字。通常,信号的频谱处于有限的频率范围内,而噪声的频谱则散布在很广的频率范围内,为了消除噪声,可以进行频域滤波。但在许多应用场合,需要直接进行时域滤波,从带噪声的信号中提取有用信号。虽然这样的过程其实也算是对信号的滤波,但其所依据的理论,即针对随机信号的估计理论,是自成体系的。人们对于随机信号干扰下的有用信号不能“确知”,只能“估计”。为了“估计”,要事先确定某种准则以评定估计的好坏程度。 1960年卡尔曼发表了用递归方法解决离散数据线性滤波问题的论文A New Approach to Linear Filtering and Prediction Problems(线性滤波与预测问题的新方法),在这篇文章里一种克服了维纳滤波缺点的新方法被提出来,这就是我们今天称之为卡尔曼滤波的方法。卡尔曼滤波应用广泛且功能强大,它可以估计信号的过去和当前状态甚至能估计将来的状态即使并不知道模型的确切性质。 其基本思想是以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值。算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。 对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。它的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 卡尔曼滤波不要求保存过去的测量数据,当新的数据到来时,根据新的数据和前一时刻的储值的估计,借助于系统本身的状态转移方程,按照一套递推公式,即可算出新的估值。卡尔曼递推算法大大减少了滤波装置的存储量和计算量,并且突破了平稳随机过程的限制,使卡尔曼滤波器适用于对时变信号的实时处理。 二、卡尔曼滤波的原理

扩展卡尔曼滤波matlab程序

文件一 % THIS PROGRAM IS FOR IMPLEMENTATION OF DISCRETE TIME PROCESS EXTENDED KALMAN FILTER % FOR GAUSSIAN AND LINEAR STOCHASTIC DIFFERENCE EQUATION. % By (R.C.R.C.R),SPLABS,MPL. % (17 JULY 2005). % Help by Aarthi Nadarajan is acknowledged. % (drawback of EKF is when nonlinearity is high, we can extend the % approximation taking additional terms in Taylor's series). clc; close all; clear all; Xint_v = [1; 0; 0; 0; 0]; wk = [1 0 0 0 0]; vk = [1 0 0 0 0]; for ii = 1:1:length(Xint_v) Ap(ii) = Xint_v(ii)*2; W(ii) = 0; H(ii) = ‐sin(Xint_v(ii)); V(ii) = 0; Wk(ii) = 0; end Uk = randn(1,200); Qu = cov(Uk); Vk = randn(1,200); Qv = cov(Vk); C = [1 0 0 0 0]; n = 100; [YY XX] = EKLMNFTR1(Ap,Xint_v,Uk,Qu,Vk,Qv,C,n,Wk,W,V); for it = 1:1:length(XX) MSE(it) = YY(it) ‐ XX(it); end tt = 1:1:length(XX); figure(1); subplot(211); plot(XX); title('ORIGINAL SIGNAL'); subplot(212); plot(YY); title('ESTIMATED SIGNAL'); figure(2); plot(tt,XX,tt,YY); title('Combined plot'); legend('original','estimated'); figure(3); plot(MSE.^2); title('Mean square error'); 子文件::function [YY,XX] = EKLMNFTR1(Ap,Xint_v,Uk,Qu,Vk,Qv,C,n,Wk,W,V); Ap(2,:) = 0; for ii = 1:1:length(Ap)‐1 Ap(ii+1,ii) = 1;

卡尔曼滤波入门简介及其算法MATLAB实现代码

卡尔曼滤波入门: 卡尔曼滤波是用来进行数据滤波用的,就是把含噪声的数据进行处理之后得出相对真值。卡尔曼滤波也可进行系统辨识。 卡尔曼滤波是一种基于统计学理论的算法,可以用来对含噪声数据进行在线处理,对噪声有特殊要求,也可以通过状态变量的增广形式实现系统辨识。 用上一个状态和当前状态的测量值来估计当前状态,这是因为上一个状态估计此时状态时会有误差,而测量的当前状态时也有一个测量误差,所以要根据这两个误差重新估计一个最接近真实状态的值。 信号处理的实际问题,常常是要解决在噪声中提取信号的问题,因此,我们需要寻找一种所谓有最佳线性过滤特性的滤波器。这种滤波器当信号与噪声同时输入时,在输出端能将信号尽可能精确地重现出来,而噪声却受到最大抑制。 维纳(Wiener)滤波与卡尔曼(Kalman)滤波就是用来解决这样一类从噪声中提取信号问题的一种过滤(或滤波)方法。 (1)过滤或滤波 - 从当前的和过去的观察值x(n),x(n-1),x(n-2),…估计当前的信号值称为过滤或滤波; (2)预测或外推 - 从过去的观察值,估计当前的或将来的信号值称为预测或外推; (3)平滑或内插 - 从过去的观察值,估计过去的信号值称为平滑或内插; 因此,维纳过滤与卡尔曼过滤又常常被称为最佳线性过滤与预测或线性最优估计。这里所谓“最佳”与“最优”是以最小均方误差为准则的。 维纳过滤与卡尔曼过滤都是解决最佳线性过滤和预测问题,并且都是以均方误差最小为准则的。因此在平稳条件下,它们所得到的稳态结果是一致的。然而,它们解决的方法有很大区别。 维纳过滤是根据全部过去的和当前的观察数据来估计信号的当前值,它的解是以均方误差最小条件下所得到的系统的传递函数H(z)或单位样本响应h(n)的形式给出的,因此更常称这种系统为最佳线性过滤器或滤波器。 而卡尔曼过滤是用前一个估计值和最近一个观察数据(它不需要全部过去的观察数据)来估计信号的当前值,它是用状态方程和递推的方法进行估计的,它的解是以估计值(常常是状态变量值)形式给出的。因此更常称这种系统为线性最优估计器或滤波器。 维纳滤波器只适用于平稳随机过程,而卡尔曼滤波器却没有这个限制。维纳过滤中信号和噪声是用相关函数表示的,因此设计维纳滤波器要求已知信号和噪声的相关函数。 卡尔曼过滤中信号和噪声是状态方程和量测方程表示的,因此设计卡尔曼滤波器要求已知状态方程和量测方程(当然,相关函数与状态方程和量测方程之间会存在一定的关系。卡尔曼过滤方法看来似乎比维纳过滤方法优越,它用递推法计算,不需要知道全部过去的数据,从而运用计算机计算方便,而且它可用于平稳和不平稳的随机过程(信号),非时变和时变的系统。 但从发展历史上来看维纳过滤的思想是40年代初提出来的,1949年正式以书的形式出版。卡尔曼过滤到60年代初才提出来,它是在维纳过滤的基础上发展起来的,虽然如上所述它比维纳过滤方法有不少优越的地方,但是最佳线性过滤问题是由维纳过滤首先解决的,维纳过滤的物理概念比较清楚,也可以认为卡尔曼滤波仅仅是对最佳线性过滤问题提出的一种新的算法。 卡尔曼滤波在数学上是一种统计估算方法,通过处理一系列带有误差的实际量测数据而得到的物理参数的最佳估算。例如在气象应用上,根据滤波的基本思想,利用前一时刻预报误差的反馈信息及时修正预报方程,以提高下一时刻预报精度。作温度预报一般只需要连续两个月的资料即可建立方程和递推关系。

卡尔曼滤波器及其简matlab仿真

卡尔曼滤波器及其简matlab仿真

卡尔曼滤波器及其简matlab仿真 一、卡尔曼滤波的起源 谈到信号的分析与处理,就离不开滤波两个字。通常,信号的频谱处于有限的频率范围内,而噪声的频谱则散布在很广的频率范围内,为了消除噪声,可以进行频域滤波。但在许多应用场合,需要直接进行时域滤波,从带噪声的信号中提取有用信号。虽然这样的过程其实也算是对信号的滤波,但其所依据的理论,即针对随机信号的估计理论,是自成体系的。人们对于随机信号干扰下的有用信号不能“确知”,只能“估计”。为了“估计”,要事先确定某种准则以评定估计的好坏程度。 1960年卡尔曼发表了用递归方法解决离散数据线性滤波问题的论文A New Approach to Linear Filtering and Prediction Problems (线性滤波与预测问题的新方法),在这篇文章里一种克服了维纳滤波缺点的新方法被提出来,这就是我们今天称之为卡尔曼滤波的方法。卡尔曼滤波应用广泛且功能强大,它可以估计信号的过去和当前状态甚至能估计将来的状态即使并不知道模型的确切性质。 其基本思想是以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值。算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。 对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。它的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 卡尔曼滤波不要求保存过去的测量数据,当新的数据到来时,根据新的数据和前一时刻的储值的估计,借助于系统本身的状态转移方程,按照一套递推公式,即可算出新的估值。卡尔曼递推算法大大减少了滤波装置的存储量和计算量,并且突破了平稳随机过程的限制,使卡尔曼滤波器适用于对时变信号的实时处理。

基于matlab-的巴特沃斯低通滤波器的实现

基于matlab 的巴特沃斯低通滤波器的实现 一、课程设计的目的 运用MATLAB实现巴特沃斯低通滤波器的设计以及相应结果的显示,另外还对多种低通滤波窗口进行了比较。 二、课程设计的基本要求 1)熟悉和掌握MATLAB 的基本应用技巧。 2)学习和熟悉MATLAB相关函数的调用和应用。 3)学会运用MATLAB实现低通滤波器的设计并进行结果显示。 三、双线性变换实现巴特沃斯低通滤波器的技术指标: 1.采样频率10Hz。 2.通带截止频率fp=0.2*pi Hz。 3.阻带截止频率fs=0.3*pi Hz。 4.通带衰减小于1dB,阻带衰减大于20dB 四、使用双线性变换法由模拟滤波器原型设计数字滤波器 程序代码: T=0.1; FS=1/T; fp=0.2*pi;fs=0.3*pi; wp=fp/FS*2*pi; ws=fs/FS*2*pi; Rp = 1; % 通带衰减 As = 15; % 阻带衰减 OmegaP = (2/T)*tan(wp/2); % 频率预计 OmegaS = (2/T)*tan(ws/2); % 频率预计 %设计巴特沃斯低通滤波器原型

N = ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(OmegaP/OmegaS))); OmegaC = OmegaP/((10^(Rp/10)-1)^(1/(2*N))); [z,p,k] = buttap(N); %获取零极点参数 p = p * OmegaC ; k = k*OmegaC^N; B = real(poly(z)); b0 = k; cs = k*B; ds = real(poly(p)); [b,a] = bilinear(cs,ds,FS);% 双线性变换 figure(1);% 绘制结果 freqz(b,a,512,FS);%进行滤波验证 figure(2); % 绘制结果 f1=50; f2=250; n=0:63; x=sin(2*pi*f1*n)+sin(2*pi*f2*n); subplot(2,2,1);stem(x,'.'); title ('输入信号'); y=filter(b,a,x); subplot(2,2,2);stem(y,'.') ; title('滤波之后的信号'); figure(3) ; stem(y,'.') title('输出的信号'))

matlab对卡尔曼滤波的仿真实现

MATLAB 对卡尔曼滤波器的仿真实现 刘丹,朱毅,刘冰 武汉理工大学信息工程学院,武汉(430070) E-mail :liudan_ina@https://www.wendangku.net/doc/3c5234070.html, 摘 要:本文以卡尔曼滤波器原理为理论基础,用MATLAB 进行卡尔曼滤波器仿真、对比卡尔曼滤波器的预测效果,对影响滤波其效果的各方面原因进行讨论和比较,按照理论模型进行仿真编程,清晰地表述了编程过程。 关键词:数字信号处理;卡尔曼滤波器;MATLAB ;仿真过程 中图分类号: TN912.3 1. 引言 随着信息时代和数字世界的到来,数字信号处理已成为当今一门极其重要的学科和技术领域。数字信号处理已在通信、语音、图像、自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用。在数字信号处理中,数字滤波占有极其重要的地位,目前对数字滤波器的设计有多种方法,其中著名的MATLAB 软件包在多个研究领域都有着广泛的应用,它的频谱分析[1]和滤波器的分析设计功能很强,从而使数字信号处理变得十分简单、直观。本文分析了数字滤波器的设计方法,举出了基于MATLAB 软件的信号处理工具在数字滤波器设计中的应用。 2. 卡尔曼滤波基本原理 卡尔曼滤波过程实际上是获取维纳解的递推运算过程[2]。从维纳解导出的卡尔曼滤波器实际上是卡尔曼滤波过程结束后达到稳态的情况,这时Kalman Filtering 的结果与Wiener Solution 是相同的[3]。具体推导如下: )()1|1(?)|(?n Gy n n x f n n x +??= )|(?)()(n n x n x n e ?= 已知由此求c a cG a f F G n e E n ,)1(( ..min )]([)(2?=??→?==ε 由 f G f G ,0??????????=??εε ⑴ )]1|1(?)()[()1|1(?)|(????+??=n n x ac n y n G n n x a n n x 可以是时变的,非平稳的随机信号 ⑵ Q n a n P +?=)1()(2 ε均为正数。 ⑶ ) () ()(2n P C R n CP n G += ⑷ )()](1[)()(n P n CG n G C P n ??== ε )(n G 是个随时间变化的量,每次输入输出,)(n G 就调整一次,并逐渐逼近Kalman Filter 的增益G ,而)1()(?

FIR低通滤波器+matlab编程+滤波前后图形

Matlab实现振动信号低通滤波 附件txt中的数字是一个实测振动信号,采样频率为5000Hz,试设计一个长度为M=32的FIR低通滤波器,截止频率为600Hz,用此滤波器对此信号进行滤波。要求: (1)计算数字截止频率; (2)给出滤波器系数; (3)绘出原信号波形; (4)绘出滤波后的信号波形; 解答过程: 第一部分:数字截止频率的计算 =600/5000/2=0.24 数字截止频率等于截止频率除以采样频率的一半,即 n 第二部分:滤波器系数的确定 在matlab中输入如下程序,即可得到滤波器系数: n=32 Wn=0.24 b=fir1(n,Wn) 得到的滤波器系数b为 Columns 1 through 9 -0.0008 -0.0018 -0.0024 -0.0014 0.0021 0.0075 0.0110 0.0077 -0.0054 Columns 10 through 18 -0.0242 -0.0374 -0.0299 0.0087 0.0756 0.1537 0.2166 0.2407 0.2166 Columns 19 through 27 0.1537 0.0756 0.0087 -0.0299 -0.0374 -0.0242 -0.0054 0.0077 0.0110 Columns 28 through 33 0.0075 0.0021 -0.0014 -0.0024 -0.0018 -0.0008 第三部分:原信号波形 将附件4中的dat文件利用识别软件读取其中的数据,共1024个点,存在TXT 文档中,取名bv.txt,并复制到matlab的work文件夹。 在matlab中编写如下程序: x0=load('zhendong.txt'); %找到信号数据地址并加载数据。 t=0:1/5000:1023/5000; %将数据的1024个点对应时间加载

维纳最速下降法滤波器卡尔曼滤波器设计及Matlab仿真

信息融合大作业 ——维纳最速下降法滤波器,卡尔曼滤波器设计及Matlab仿真 1.滤波问题浅谈 估计器或滤波器这一术语通常用来称呼一个系统,设计这样的系统是为了从含有噪声的数据中提取人们感兴趣的,接近规定质量的信息。由于这样一个宽目标,估计理论应用于诸如通信、雷达、声纳、导航、地震学、生物医学工程、 金融工程等众多不同的领域。例如,考虑一个数字通信系统,其基本形式由发

射机、信道和接收机连接组成。发射机的作用是把数字源(例如计算机)产生的0、1符号序列组成的消息信号变换成为适合于信道上传送的波形。而由于符号间干扰和噪声的存在,信道输出端收到的信号是含有噪声的或失真的发送信号。接收机的作用是,操作接收信号并把原消息信号的一个可靠估值传递给系统输出端的某个用户。随着通信系统复杂度的提高,对原消息信号的还原成为通信系统中最为重要的环节,而噪声是接收端需要排除的最主要的干扰,人们也设计出了针对各种不同条件应用的滤波器,其中最速下降算法是一种古老的最优化技术,而卡尔曼滤波器随着应用条件的精简成为了普适性的高效滤波器。2.维纳最速下降算法滤波器 2.1 最速下降算法的基本思想 考虑一个代价函数,它是某个未知向量的连续可微分函数。函数 将的元素映射为实数。这里,我们要寻找一个最优解。使它满足如下条件 (2.1) 这也是无约束最优化的数学表示。 特别适合于自适应滤波的一类无约束最优化算法基于局部迭代下降的算法: 从某一初始猜想出发,产生一系列权向量,使得代价函数在算法的每一次迭代都是下降的,即 其中是权向量的过去值,而是其更新值。 我们希望算法最终收敛到最优值。迭代下降的一种简单形式是最速下降法,该方法是沿最速下降方向连续调整权向量。为方便起见,我们将梯度向量表示为

(完整word版)扩展卡尔曼滤波算法的matlab程序

clear all v=150; %%目标速度 v_sensor=0;%%传感器速度 t=1; %%扫描周期 xradarpositon=0; %%传感器坐标yradarpositon=0; %% ppred=zeros(4,4); Pzz=zeros(2,2); Pxx=zeros(4,2); xpred=zeros(4,1); ypred=zeros(2,1); sumx=0; sumy=0; sumxukf=0; sumyukf=0; sumxekf=0; sumyekf=0; %%%统计的初值 L=4; alpha=1; kalpha=0; belta=2; ramda=3-L; azimutherror=0.015; %%方位均方误差rangeerror=100; %%距离均方误差processnoise=1; %%过程噪声均方差 tao=[t^3/3 t^2/2 0 0; t^2/2 t 0 0; 0 0 t^3/3 t^2/2; 0 0 t^2/2 t]; %% the input matrix of process G=[t^2/2 0 t 0 0 t^2/2 0 t ]; a=35*pi/180; a_v=5/100; a_sensor=45*pi/180; x(1)=8000; %%初始位置

y(1)=12000; for i=1:200 x(i+1)=x(i)+v*cos(a)*t; y(i+1)=y(i)+v*sin(a)*t; end for i=1:200 xradarpositon=0; yradarpositon=0; Zmeasure(1,i)=atan((y(i)-yradarpositon)/(x(i)-xradarpositon))+random('Normal',0,azimutherror,1,1); Zmeasure(2,i)=sqrt((y(i)-yradarpositon)^2+(x(i)-xradarpositon)^2)+random('Normal',0,rangeerror,1,1); xx(i)=Zmeasure(2,i)*cos(Zmeasure(1,i));%%观测值 yy(i)=Zmeasure(2,i)*sin(Zmeasure(1,i)); measureerror=[azimutherror^2 0;0 rangeerror^2]; processerror=tao*processnoise; vNoise = size(processerror,1); wNoise = size(measureerror,1); A=[1 t 0 0; 0 1 0 0; 0 0 1 t; 0 0 0 1]; Anoise=size(A,1); for j=1:2*L+1 Wm(j)=1/(2*(L+ramda)); Wc(j)=1/(2*(L+ramda)); end Wm(1)=ramda/(L+ramda); Wc(1)=ramda/(L+ramda);%+1-alpha^2+belta; %%%权值 if i==1 xerror=rangeerror^2*cos(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*sin(Zmeasure(1,i))^2; yerror=rangeerror^2*sin(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*cos(Zmeasure(1,i))^2; xyerror=(rangeerror^2-Zmeasure(2,i)^2*azimutherror^2)*sin(Zmeasure(1,i))*cos(Zmeasure(1,i)); P=[xerror xerror/t xyerror xyerror/t; xerror/t 2*xerror/(t^2) xyerror/t 2*xyerror/(t^2); xyerror xyerror/t yerror yerror/t;

基于MATLAB的巴特沃斯滤波器

数字信号处理课程设计 2015年 6 月25 日

目录 一.设计目的: (3) 二.设计要求: (3) 三.设计内容: (4) 3.1选择巴特涡斯低通数据滤波器及双线性变换法的原因 (4) 3.2巴特沃思低通滤波器的基本原理 (4) 3.3双线性变换法原理 (5) 3.4数字滤波器设计流程图 (7) 3.5数字滤波器的设计步骤 (7) 四.用matlab实现巴特沃斯低通数字滤波器的仿真并分析 (9) 4.1巴特沃斯低通数字滤波器技术指标的设置 (9) 4.2用matlab实现巴特沃斯低通数字滤波器的仿真 (9) 4.3波形图分析: (12) 五.总结与体会 (13) 六.附录参考文献 (14) 2

一.设计目的: 该课程设计是测控技术与仪器专业的必修课,开设课程设计的目的使学生掌握数字信号处理的基本概念和基本理论,能够利用辅助工具进行FIR和IIR数字滤波器的设计,进行一维信号的频谱分析,并进行仿真验证。加强实践教学环节,加强学生独立分析、解决问题的能力,培养学生动手能力和解决实际问题的能力,实现宽口径教育。 (1)理解低通滤波器的过滤方法。 (2)进一步熟悉低通滤波器的基本应用。 (3)用仿真工具matlab软件对设计的滤波器进行软件和硬件仿真。 (6)将对仿真结果进行比较,从而检验滤波器滤波性能的准确性。 二.设计要求: 地震发生时,除了会产生地震波,还会由地层岩石在断裂、碰撞过程中所发生的震动产生次声波。它的频率大约在每秒十赫兹到二十赫兹之间(可以用11Hz和15Hz的两个信号的和进行仿真,幅度可以分别设定为1、2)。大气对次声波的吸收系数很小,因此它可以传播的很远,而且穿透性很强。通过监测次声波信号可以监测地震的发生、强度等信息,因为自然界中广泛存在着各种次声波,这就对地震产生的次声波产生了干扰(可以用白噪声模拟,方差为5),需要采取一定的处理方法,才能检测到该信号,要求设计检测方案;并处理方法给出具体的软件(可以以51系列单片机、STM32F407、TMS320F28335或TMS320F6745为例)。 假设地震次声波信号为x,输入x=sin(2*π*11*t)+2*sin(2*π*15*t)和伴有白噪声的合成信号,经过滤波器后滤除15Hz以上的分量,即只保留x=sin(2*π*11*t)+2*sin(2*π*15*t)的分量信号,来验证设计的滤波器是否达到了设计要求。 3

卡尔曼滤波简介及其实现(附C代码)

卡尔曼滤波简介及其算法实现代码(C++/C/MATLAB) 卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: https://www.wendangku.net/doc/3c5234070.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5 条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

卡尔曼滤波简介及其算法实现代码

卡尔曼滤波简介及其算法实现代码 卡尔曼滤波算法实现代码(C,C++分别实现) 卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: https://www.wendangku.net/doc/3c5234070.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就

卡尔曼滤波两例题含matlab程序汇总

设高度的测量误差是均值为0、方差为1的高斯白噪声随机序列,该物体的初始高度0h 和速度0V 也是高斯分布的随机变量,且0000019001000,var 10/02Eh h m P EV m s V ???????? ===? ??????? ???? ????。试求该物体高度和速度随时间变化的最优估计。(2/80.9s m g =) 解: 1. 令()()()h k X k v k ?? =? ??? t=1 R (k )=1 Q(k)=0 根据离散时间卡尔曼滤波公式,则有: (1)(1,)()()X k k k X k U k φ+=++ (1)(1)(1)(1)Y k H k X k V k +=++++ (1,)k k φ+= 11t -?? ??? ? ()U k = 20.5gt gt ??-???? (1)H k +=[]10 滤波初值:^ 1900(0|0)(0)10X EX ?? ==???? 0100(0|0)var[(0)]2P X P ?? ===? ??? 一步预测:^^ (1|)(1,)(|)()X k k k k X k k U k φ+=++ (1|)(1,)(|)(1,)T P k k k k P k k k k φφ+=++ 滤波增益:1 (1)(1|)(1)[(1)(1|)(1)(1)]T T K k P k k H k H k P k k H k R k -+=+++++++ 滤波计算:^ ^ ^ (1|1)(1|)(1)[(1)(1)(1|)]X k k X k k K k Y k H k X k k ++=++++-++ (1|1)[(1)(1)](1|)P k k I K k H k P k k ++=-+++ 2. 实验结果

卡尔曼滤波 matlab仿真

随机信号处理上机作业

题目:假设有一个二坐标雷达对一平面上运动目标的进行观察,目标在t =0~400秒沿y 轴作恒速直线运功,运动速度为-15m/s ,目标的起点为(2000m ,10000m ),雷达扫描周期为2秒,x 和y 独立地进行观察,观察噪声的标准差均为100m 。试建立雷达对目标的跟踪算法,并进行仿真分析,给出仿真结果,画出目标真实轨迹、对目标的观察和滤波曲线。 一、跟踪算法 考虑利用卡尔曼滤波算法对目标的运动状态进行估计。由于目标在二维平面内做匀速运动,因此这里只考虑匀速运动情况。 1. 建立模型 由于目标沿y 轴作匀速直线运动,取状态变量 ?? ?? ??????=y v y x S 状态方程: ()()k AS k S =+1 (1) 观测方程: ()()()k V k CS k Z += (2) 其中, ???? ? ?????=10010001T A ??????=010001C

?? ? ???=y x z z Z ??????=y x v v V 对目标位置和速度的同时滤波与一步预测的方程组如下: 预测估计方程: ()() 11/^ ^-=-k A k k S S 预测误差协方差: ()()T A k AP k k P 11/-=- 滤波估计增益: ()()()R C k k C k k C k B T T +--=1/1/,其中 ??? ?????=2200y x R σσ 滤波估计方程: ()()()()()???? ??--+-=1/1//^ ^ ^ k k k Z k B k k k k S S S 滤波误差协方差: ()()[]()1/1/--=k k P C k B k k P 2. 初始化 利用目标的前几个测量值建立状态的其实估计,采用两点起始法。 ()??????????????-=∧T Z Z Z Z S y y y x )1()2()2()2(2/2 ()?? ????????????? ?=T T T P y y y y x 2222 220000 2/2σσσσσ

matlab设计低通滤波器

个matlab程序怎么编?(设计低通滤波器) 通带边缘频率10khz 阻带边缘频率22khz 阻带衰减75db 采样频率50khz 要求设计这个低通滤波器 画出脉冲响应的图形 还有滤波器的形状 具体程序怎么编? 谢谢各位大虾的指点!!! 最佳答案 1.1 实验目的 1.了解数字信号处理系统的一般构成; 2.掌握奈奎斯特抽样定理。 1.2 实验仪器 1.YBLD智能综合信号源测试仪1台 2.双踪示波器1台 3.MCOM-TG305数字信号处理与现代通信技术实验箱1台 4.PC机(装有MATLAB、MCOM-TG305配套实验软件)1台 1.3 实验原理 一个典型的DSP系统除了数字信号处理部分外,还包括A/D和D/A两部分。这是因为自然界的信号,如声音、图像等大多是模拟信号,因此需要将其数字化后进行数字信号处理,模拟信号的数字化即称为A/D转换。数字信号处理后的数据可能需还原为模拟信号,这就需要进行D/A转换。一个仅包括A/D和D/A两部分的简化数字信号处理系统功能如图1所示。 A/D转换包括三个紧密相关的过程,即抽样、量化和编码。A/D转换中需解决的以下几个重要问题:抽样后输出信号中还有没有原始信号的信息?如果有能不能把它取出来?抽样频率应该如何选择?

奈奎斯特抽样定理(即低通信号的均匀抽样定理)告诉我们,一个频带限制在0至fx以内的低通信号x(t),如果以fs≥2fx的抽样速率进行均匀抽样,则x(t)可以由抽样后的信号xs(t)完全地确定,即xs(t)包含有x(t)的成分,可以通过适当的低通滤波器不失真地恢复出x(t)。最小抽样速率fs=2fx称为奈奎斯特速率。 低通 译码 编码 量化 抽样 输入信号样点输出滤波输出 A/D(模数转换)D/A(数模转换) 图1 低通采样定理演示 为方便实现,实验中更换了一种表现形式,即抽样频率固定(10KHz),通过改变输入模拟信号的频率来展示低通抽样定理。我们可以通过研究抽样频率和模拟信号最高频率分量的频率之间的关系,来验证低通抽样定理。 1.4 实验内容 1.软件仿真实验:编写并调试MATLAB程序,分析有关参数,记录有关波形。 2.硬件实验:输入不同频率的正弦信号,观察采样时钟波形、输入信号波形、样点输出波形和滤波输出波形。 1.5 MATLAB参考程序和仿真内容 %*******************************************************************% %f—余弦信号的频率

相关文档
相关文档 最新文档