文档库 最新最全的文档下载
当前位置:文档库 › 关于4PT电压互感器防谐振与开口三角接线说明

关于4PT电压互感器防谐振与开口三角接线说明

关于4PT电压互感器防谐振与开口三角接线说明
关于4PT电压互感器防谐振与开口三角接线说明

前言:电压互感器作为开关柜主要设备之一,进行电力计量、测量及继电保护作用。但是由于电力系统的不稳定性、特别是频繁发生谐振地区,对电压互感器的危害是很大的,大部份都导致电压互感器烧毁。

一、产生铁磁谐振的原因

由非线性电感(铁心线圈)和线性电容组成的回路,当外施电压发生变化时,由于电感的变化而产生谐振,这种现象称为铁磁谐振。

1、在中性点不接地系统中,虽然电源侧的中性点不直接接地,但电压互感器的高压侧中性点是接地的,若Ca,Cb,Cc为各回线路(包括电缆出线和架空线路)三相对地的等值电容,而La,Lb,Lc则为母线电压互感器的一次侧三个线圈的对地阻抗(忽略其线圈电阻),假设系统发生单相接地。此时,电压互感器的铁心线圈相当于与电容器并联,构成了可能产生谐振的并联电路,由于相对地电压升高√3倍,有可能使得电压互感器的铁心出现饱和或接近饱和,阻抗变小,电路中出现容抗和阻抗相等的情况,从而产生了并联谐振,此时互感器一次侧的电流最大,这样有可能使电压互感器的高压侧熔断件熔断,或者烧坏电压互感器。

此种情况往往在变电所投产初期(线路出线回路少)不是很明显,但随着线路出线回路的增多(各回线路对地的等值电容量增大,容抗增大)出现谐振的情况较多。

2、操作过电压:包括互感器在内的空载母线或送电线路的突然合闸,使得PT的某一相或二相绕组内产生巨大的涌流和磁饱和现象;

①由于合闸瞬间的三相触头不同期性,此时最慢接触的一相在触头间相当于串联上一个电容(如A相)。当电容的容抗等于互感器的感抗时即产生谐振,但该状态下只是使中央信号装置的电铃响了一下,仪表摆动一下,但随着操作的完成该现象随之消失。

②由于合闸过程中产生操作过电压,此时假设断路器在合闸操作过程中A相出现过电压,则有可能使A相电压互感器铁心出现饱和,使A相电压互感器线圈感抗变小,从而三相的总阻抗出现不平衡,使电压互感器的中性点对地电压发生位移现象。

3、雷击过电压:由于雷击或其它原因,线路中发生瞬间弧光接地,使得其它两相电压瞬间升到线电压,而故障相电压在接地消失后又瞬间恢复至相电压,以至造成暂态励磁电流的急剧增大和铁芯的磁饱和;

4、磁饱和的产生也可能由于另一绕组瞬间传递过来的过电压或者系统运行方式的突然改变、负荷剧烈波动等所引起的系统电压的强烈扰动。

二、铁磁谐振的种类

铁磁谐振是一个非常复杂的非线性振荡过程,PT伏安特性饱和得越快,谐振的区域越广。谐振大致分为分频谐振、基波谐振、高频谐振,基波和高次谐波的谐振过电压的幅值很少超过3Uj,故除非存在弱绝缘设备,是不会产生危险的。对于分频谐波,由于频率只有工频的一半,励磁感抗相应降低一半,使得励磁电流急剧增加,有时甚至达到额定值的100倍以上,使得互感器发生严重的磁饱和现象,因而限制了过电压幅值,通常在2Uj以下,中性点位移电压一般不超过Uj,但大电流持续时间过长,势必引起TV高压熔丝熔断,或者造成TV本身冒油和烧毁。

三、消除铁磁谐振的措施和方法

电力系统过电压现象十分普遍,如果没有防范措施,随时都有可能造成电气设备损坏和大面积的停电事故。目前,我国35 kV及以下配电网,仍大部分采用中性点不接地方式或采用老式的消弧线圈接地。从电网的运行实践证明,中性点不接地系统中由于电压互感器铁芯饱和引起的铁磁谐振过电压比较多,尽管采取了不少限制谐振过电压的措施,如:消谐灯、消谐器等等,但始终没有从根本上得到解决。由于谐振过电压作用时间长,所引起谐振现象的原因又很多,因此在选择保护措施方面造成了很大的困难。为了尽可能的防止谐振过电压的发

生,应着重从以下几个方面采取措施:

(1)采用质量好,技术性能优,铁心不易饱和的电压互感器。目前电压互感器采用的铁心都是由无取向硅钢片卷制而成,具有非线性特性。

(2)提高断路器的检修质量,确保合闸操作的同期性,减少操作过电压。

(3)必要时可采用改变操作顺序,以避免操作过程中产生谐振的条件。

(4)对在空载母线的充电中产生的谐振,可以采用投入空载线路的方法,以改变其谐振的条件。

(5)传统采用消谐的措施是在电压互感器的开口三角侧接上一个灯泡,该方法属于较为原始的方法,随着系统容量的增大和电缆线路的增加,实践运行表明该方法的消谐效果不是很明显。

(6)另一种方法是采用在电压互感器二次侧的开口三角上加装一种可控硅多功能消谐装置的方法,但该方法需要采用外加交流电源,有时由于装置的电子器件发生短路也会影响消谐效果。

(7)在电压互感器的一次侧中性点上串接LXQ型非线性电阻,以限制其产生谐振的方法。但是非线性电阻绝缘不好也会影响消谐效果。

(8)在电压互感器的一次侧中性点上串接一个相应绝缘水平的电压互感器,以限制产生谐振时避免电压互感器不损伤,保证工作人员查出故障并排除故障。此方法只要接线正确,一般不易烧毁互感器。

四、电磁式电压互感器的励磁特性

接地电压互感器的额定电压因数与系统中性点接地方式密切相关,三相系统的中性点有以下几种不同接地方式:

中性点绝缘系统除经保护、测量用的高阻抗接地外,中性点不接地的系统。在这种系统发生单相接地故障时,接地短路电流也就是对地电容电流很小,系统线电压的对称不被破坏,可以维持较长时间的运行,以便运行人员寻找故障点并设法消除故障。

中性点经阻抗(例如消弧线圈或适当的阻抗)接地系统随着线路的增长和电压的提高,中性点绝缘系统发生单相接地故障时,接地短路电流增加,接地电弧往往发生重燃,出现过电压。为此,在系统中性点和地之间接入一消弧线圈以补偿电容电流,减少流经故障点的电流。中性点经消弧线圈接地的系统又称谐振接地系统。

上述两种系统又称中性点非有效接地系统,或小接地电流系统。在我国,额定电压66kV 及以下电力系统都是中性点非有效接地系统。

中性点直接接地系统又称大接地电流系统。因为中性点直接接地,当发生单相接地故障时,短路电流很大。为了限制短路电流,往往只将部分变压器的中点接地,或经低阻抗接地。这种系统又称中性点有效接地系统。在我国,额定电压220kV及以上系统都是中性点有效接地系统。110kV系统大多是中性点有效接地系统,只在少数雷击较频繁地区的110kV 系统才采用中性点非有效接地系统

为了满足不同系统的使用要求,GB1207规定了电压互感器的额定电压因数的要求。额定电压因数是一个与额定一次电压相乘的系数,用以确定互感器必须满足规定时间内的有关热性能要求并满足有关准确级要求的最高电压。额定电压因数的标准值列于下表:

N 3组

图三相中性点经单相电压互感器接地接线图三相组的一次绕组三相组的二次绕组三相组的剩余电压绕组单相的一次绕组

电压表

额定电压因数 额定时间

一次绕组连接方式和系统接地方式 1.2

连续 任一电网的相间 任一电网中的变压器中性点与地之间 1.2

连续 1.5

30s 中性点有效接地系统中的相与地之间 1.2

连续 1.9

30s 带有自动切除对地故障装置的中性点非有效接地系统中的相与地之间 1.2

连续 1.9 8h

无自动切除对地故障装置的中性点绝缘系统或无自动切除对地故障装置的中性点共振接地系统中的相与地间 注:按制造厂与用户协议,表中所列的额定时间允许缩短

(1) 按系统接地方式,电压互感器分为接地电压互感器和不接地电压互感器。注意,这里所指的“接地”是一次绕组接地。二次绕组无论哪种互感器都是要求接地的。不接地电压互感器的一次绕组对地是绝缘的。

为了检测接地故障,一般都采用接地电压互感器。接地电压互感器均设有剩余电压绕组,利用剩余电压绕组的输出电压,检测系统的接地与否或对地绝缘状况。

(2) 电压互感器有额定电压的规定,这个参数实际是针对接地电压互感器的,对不接地电压互感器,额定电压因数均取1.2。

接地电压互感器的额定电压因数与系统接地方式有关。除了在额定电压因数1.2情况下,长期连续运行外,不同接地方式下的接地电压互感器对额定电压因数另有规定。

1) 额定电压因数是在可能的最高工作电压下,发生单相接地故障时,系统完好相对地电压对额定电压的比值。根据这一定义,额定电压因数取决单相接地情况下的系统完好相对地电压,显然,该电压取决于系统接地方式。额定电压因数为 Fv = 1.1× √ 3 Ke (K e 为接地系数)

2) 对中性点有效接地系统:Ke = 80%;中性点非有效接地系统:Ke=100%。则相应的额定电压因数分别为:1.1 × 0.8 × √ 3 =1.5和1.1 × √ 3 =1.9。注意,在接地故障情况下,中性点有效接地系统应通过保护装置在30s 内切除;而中性点非有效接地系统,则应通过检测装置,探测其位置,并在8h 内予以切除。

五、4PT 消谐原理

1、原理图如下图所

中性点绝缘系统中电磁式电压互感器的铁磁谐振发生的根本原因在于互感器铁心在某些激发条件下饱和而使其感抗变小而与线路对地电容的容抗相等所致。如果互感器一次绕组中性点不接地或经高阻抗接地,则各相绕组跨接在电源的相间电压上,不在与接地电容相并联,因而PT不会发生中性点位移,也就不产生谐振。因此采用了互感器中点经单相电压互感器接地的接线方式。

因单相电压互感器VT2工作时承受的是零序电压,因此也称零序电压互感器。由于该互感器励磁阻大,又具有普通电压互感器的绝缘水平,因此可以近似看作N′是对地绝缘,即为不接地点。

2、互感器中性点经单相电压互感器接地的运行原理

在正常运行时,三相电源对地电压对称,N′与N点对地均为0,即零序电压互感器不承受电压,其二次绕组没有输出电压,YJ继电器不会动作。当系统出现单相接地时(例如C 相在D点接地,即D点电位为0),根据克希科夫电路定律可列出如下方程式:对电源侧,在NODCN回路里:

-E C+U CO-U NO=0 因U CO=U DO=0由此得U NO=-E C (1)

在BDONB及ADONA回路里:

U BO-U NO-E B=0,U AO-U NO-E A=0 由此得U BO=U NO+E B,U AO=U NO+E A (2)

对于电压互感器侧,在N-A-A′-N′-O-N的回路里有:

U N′O-U NO-E A+U A′N′=0因E C= U A′N′

所以U N′O=U NO=-E C (3)

在N′-O-C′- N′回路有:U N′O-U C′O+U C′N′=0 因U C′O=U DO=0

U C′O=-U N′O=(-E C)=E C (4)

在A′N′O A′及B′N′O B′回路里有:

U A′O-U N′O-U A′N′=0

U B′O-U N′O+U B′N′=0

由此得U A′O=U A′N′+U N′O ;U B′O=U B′N′+U N′O

由式(1)、式(2)、式(3)可知:在电网出现单相接地时,零序电压互感器一次绕组上承受有电源的相电压,而三相组互感器的一次绕组仍然承受网络的对称电压,亦即与单相短路前并无变化。零序电压互感器在相电压下,其二次绕组则输出电压,启动继电器YJ而报警。其短接的开口三绕组N3无电流,而二次绕N2照常输出电压,但电压表(相电压)却在原相电压叠加了零序电压UN′O,短路相电压表为0,其余两相为二次线电压(见图2),

U

这也正确反映了绝缘接地情况。由于单相接地后,三相电压所承受电压与短路前不变,当短路消失后,各绕组仍然是承受对称电压,因此,三相组电压互感器的电感不变化,不存在饱和现象,也就不会发生谐振。另外,即使存在其他激发条件,但由于中性点不发生位移,也不会发生谐振。

3、对于产生分频谐谐振的情况 根据铁心磁密公式:

B — 磁场密度;U2—实际二次电压; f —频率;Ac —铁心截面积;N2—二次匝数 当发生1/2次分频谐振时,磁场密度B 增大1倍,此时在额定电压下,互感器铁心也容易饱和,导致励磁电流大幅度增加,从而铁心发热导致互感器烧毁。

所以4PT 方式当发生谐波谐振时并不能保证互感器不被烧毁。

4、4PT 不同接线方案的分析

4PT 接线方式有以下两种,如下图接线方式1与图接线方式2

接线方式1 接线方式2

根据4PT 消谐原理分析此两种接线方式作用都是一样的,差异部分如下面分析。 接线方式1由于三相电压互感器的开口角回路是短接的,因此三相电压互感器和零序电压互感器分别担负着正序电压和零序电压的测量功能。同时,这种接线方式也使零序回路中仅有单相电压互感器一种磁化电感,从根本上破坏了产生铁磁谐振的条件,也达到消谐效果。但是由于三相电压互感器零序阻抗被短路,消弱了对超低频振荡的抑制作用,若回路内电流过大而超出绕组热容量也可能导致产品烧坏。所以方式1这种4PT 接线消谐措施还有必要进行优化。

针对4PT 接线的上述优缺点,大一互有限公司提出了4PT 接线消谐措施的优化方案并申请了专利权(专利号 2004200704.1)。优化方案包含两方面,一是开放三相电压互感器的零序回路并对零序电压的测量回路进行补偿;二是大幅度提高零序阻抗。优化方案的原理电路图如接线方式2。

接线方式2可见,由于零序测量回路是三相电压互感器的开口角与零序电压互感器的一 T N fA U B c ,1044.4422×=(2a)(2n)(2n)(2a)(2n)(2a)a2

b2

c2零序PT 主PT YJ da

dn N A c1b1a1

(1a)(1n)(1a)(1n)(1n)(1a)da dn (da)(dn)(da)(dn)(da)(dn)(A)(N)(A)(N)(N)(A)C B A a n (2a)(2n)(2n)(2a)(2n)(2a)a2b2c2零序PT 主PT YJ da dn N A c1b1a1(1a)(1n)(1a)(1n)(1n)(1a)(da)(dn)(da)(dn)(da)(dn)

(A)(N)(A)(N)

(N)(A)C B A a n

个测量线圈按正极性串联,它包含了三相电压互感器的少部分零序电压,显然比方式1测量零序电压要精确,同时由于零序回路不是短接的,其零序电流不会过大而避免了零序回路绕组烧坏。为增强抑制超低频振荡,优化方案采取了增大零序电压互感器的阻抗和直流电阻分量的措施,也就是优化4PT 方案中的零序电压互感器是特殊设计的互感器。

技术部

质量部

2008.06.18

电压互感器接线方式

前言,电压互感器电力系统中通常有四种接线方式,电压互感器接线接地、相位等必须按严格的接法,并且电压互感器二次侧严禁短路。 1)Vv接线方式:广泛用于中性点绝缘系统或经消弧线圈接地的 35KV及以下的高压三相系统,特别是10KV三相系统,接线来源于三角形接线,只是“口”没闭住,称为Vv接,此接线方式可以节省一台电压互感器,可满足三相有功、无功电能计量的要求,但不能用于测量相电压,不能接入监视系统绝缘状况的电压表。 (2)Y,yn接线方式:主要采用三铁芯柱三相电压互感器,多用于小电流接地的高压三相系统,二次侧中性接线引出接地,此接线为了防止高压侧单相接地故障,高压侧中性点不允许接地,故不能测量对地电压。信息请登录:输配电设备网 (3)YN,yn接线方式:多用于大电流接地系统。 (4)YN,yn,do接线方式:也称为开口三角接线,在正常运行状态下,开口三角的输出端上的电压均为零,如果系统发生一相接地时,其余两个输出端的出口电压为每相剩余电压绕组二次电压的3倍,这样便于交流绝缘监视电压继电器的电压整定,但此接线方式在10KV及以下的系统中不采用。 一、一个单相电压互感器接线方式 一个单相电压互感器接线方式

一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器。 二、两个单相电压互感器互V/V型的接线方式 两个单相电压互感器互V/V型的接线方式 两个单相电压互感器的V/V形接线,可测量线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中。

电压互感器接线图之vv接法实物图:

JDZ-10电压互感器JDZJ-10电压互感器接线实物图

浅析电压互感器开口三角形接线错误的判断

浅析电压互感器开口三角形接线错误的判断 电压互感器二次接线柱通常有三个绕组,一组用于测计量接成星形状、一组用于保护接成星形状、另外一组接成三角形状用于零序电压保护。当开口三角形绕组发生接线错误时,会在开口处产生200V的高电压,需要保护人员快速定位接线错误处,排除故障。利用测量值来判断定位错误接线位置是一种快速的方法。 标签:电压互感器;开口三角;测量值 1 概述 电压互感器的星形接线绕组在一次额定电压运行下其二次理论值为57.7V,三角形接线的各绕组其二次理论值为100V,三角形开口处的电压理论值为0V;当开口三角形绕组的接线错误时,将会出现200V的高电压,严重影响设備的安全运行,造成零序电压保护误动作。因此,在变电站送电启动过程中及时解决开口三角绕组接线错误问题具有重要意义。 在110kV及以上电压等级的变电站中,电压互感器的二次绕组全部引入端子箱内,引出线多,出错概率大;而35kV及以下电压等级的电压互感器通常是开关柜形式,其二次接线在电压互感器二次端子上完成,引出线少,出错几率低。因此研究大电流接地系统中电压互感器的接线更有价值,文章将对开口三角接线中各相接反的情况进行相量计算,通过计算值与实际运行中的测量值对比,发现问题所在并快速处理。 2 开口三角形接线原理 开口三角形接线分为开口三角绕组的a头接地、a尾接地、c头接地、c尾接地四种情况。实际应用中多以开口三角绕组的a头接地运行,则a尾接b头,b 尾接c头,c尾出L。 4 结束语 电压互感器是变电站运行中重要的一次设备,其二次接线的正确性直接关系到设备安全及保护装置的可靠动作。综合上述,如果在电压互感器投运时出现开口三角电压异常,可对照上述计算结论判断出现接线错误相。为保证上述结论正确,检测时需注意首先保证星形接线侧电压相序、相位、幅值的正确性,再由于系统运行电压不一定是额定电压,所以计算值与实测值存在一定的偏差,但并不会影响判断。通过总结工作中的检测方法,希望对今后电压互感器的正确投运提供参考。 参考文献 [1]申晓平,张金龙,王世伟,等.电压互感器开口二次出现异常情况的处理

开口三角电压保护整定值计算

什么是开口三角形 开口三角形是指中性点不接地系统中电压互感器三相的三个二次绕组的接法,三相二次绕组按三角形接线连接,但最后有一点不连上,即构成开口三角。 此处没法作图,说一下:就是对电压互感器三相的三个二次绕组“a -x”、“b -x”、“c -x”,开口三角就是“a -x”的x 与“b -x”的b 相连,“b -x”中的x 与“c -x”的c 相连,从“a -x”的a 与“c -x”x 引出电压;这个没有完全闭合的三角形就是开口三角形,从这开口三角形引出的电压Ua-x ,就是开口三角电压。 正常情况下,开口三角上没有电压,当发生系统单相接地时,电压互感器一次绕组就会有一相上无电压,造成对应的二次绕组上也无电压,则开口三角上就会出现电压。通过检测开口三角上的电压,就可以知道高压系统是否有接地现象,这在系统上被称为“接地监察” 本装置电容器组按招标数据单要求,必须具备不平衡电流保护(或不平衡电压保护)功能。根据电容器组单台中性点不接地单星接线方式,本设备采用了“开口三角电压保护”实现不平衡电压保护。开口三角形即将电压互感器一次侧与单星接线的每相电容器并联,将互感器的二次线圈接成三角形,但将三角形的最后一个“角”不联接,构成从原理图上看即构成一个开口的三角形。正常情况下,三角开口上没有电压,而当发电容器发生故障时,将引起相间电压的不平衡,从而在三角的开口上形成电压输出,该电压也称为“零序电压”,该电压可做为电容器的保护动作信号。这种方式的优点是不受系统接地故障和系统电压不平衡的影响,也不受三次谐波的影响,灵敏度高,安装简单,可检测到单台电容器故障并实现保护,是电容器组经常与熔断器配合使用的不平衡保护方式之一。 1.1. 设计要点 在正常情况下,由于电机三相绕组、三相电容客观存在的不平衡,以及电网电压的不对称,开口三角存在着不平衡零序电压。为防止保护系统发生误动作,必须对开口三角电压保护整定值(只有一台电容器因故障切除时的开口电压输出值)进行计算、验证,确保其与正常不平衡零序电压之比不小于预定的可靠系数。 1.1.1. 开口三角电压保护整定值计算 开口三角电压公式如下: lm y ch dz K N U U = ex ch U K K M N K U 2)(33+-=

电压互感器常见接线图 (图文) 民熔

电压互感器接线图 电压互感器(Potential Transformer 简称PT,Voltage Transformer简称VT)和变压器类似,是用来变换电压的仪器。但变压器变换电压的目的是方便输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位; 而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。词条介绍了其基本结构、工作原理、主要类型、接线方式、注意事项、异常与处理、以及铁磁谐振等。 民熔电压互感器简介: JDZ-10高压电压互感器 10kv 半封闭式 0.5级 羊角型

特点:体积小精度高纯铜线圈一体成型安全可靠环氧材质优质钢片 电压互感器的电力系统通常有四种接线方式。电压互感器的接地和相位必须严格连接,严禁电压互感器二次侧短路。1、单相电压互感器接线方式 一个单相电压互感器接线方式一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器。二、两个单相电压互感器互V/V型的接线方式

两台单相电压互感器的V/V接线方式可以测量线电压,但不能测量相电压。广泛应用于20kV以下中性点不接地或经消弧图接地的电网。3、三台单相电压互 感器Y0/Y0接线方式 三个单相电压互感器Y0/Y0型的接线方式可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。四、三个单相三绕组电压互感器或一个三相五柱式三绕组电压互感器接成Y0/Y0/Δ型

铁磁谐振对电压互感器的危害及防范措施

铁磁谐振对电压互感器的危害及防范措施 【摘要】通过电力系统中实际案例说明分析了产生铁磁谐振的原因和产生的条件,总结了运行中经验教训,提出防止铁磁谐振的措施,最后问题得到圆满解决。 【关键词】铁磁谐振;电压互感器;接地 1.事故发生 大连西咀热力有限公司在2005年10月9日6:10 电气后台机报10kV系统接地,6:17分主母10kVII段PT发生爆炸起火,导致电厂供电2#联络线的213乙开关跳闸,全厂停电。事故后检查发现厂外10kV系统发生间歇性单相弧光接地,两相对地电压突然升高,使得中性点发生位移,电磁式电压互感器励磁电流突然增大而发生饱和,产生了严重的铁磁谐振过电压,过电压引起TV柜相间放电击穿,发生电弧短路,并对外壳放电,引起三相短路接地故障,从而烧坏TV 柜。由于厂区内10kV高压设备众多,经常出现设备在运行中发生单相接地事故,通过录波仪记录曾多次检测到开口三角电压不稳定,超过100V。 2.电压互感器产生磁谐振的原因 产生铁磁谐振的必要条件是电压互感器的感抗XL大于与之并联的线路对地容抗Xc,即XL>Xc,两者并联后为一等值电容,系统网络的对地阻抗呈现容性,电网中性点的位移基本接近于零。当有一个激发条件时,电压互感器中性点电压发生位移,相电压升高,位移电压可以是工频,也可以是谐波频率,主要有分频和高频,在过电压的作用下,电压互感器三相铁芯将出现不同程度的饱和,饱和后的电压互感器励磁电感变小,系统网络的对地阻抗趋于感性。当系统网络的对地感抗与对地容抗相互匹配时,就产生了铁磁谐振。其主要特点为: (1)谐振回路中铁心电感为非线性的,电感量随电流增大、铁心饱和而趋于平稳。 (2)铁磁谐振需要一定的激发条件,使电压、电流幅值从正常工作状态转移到谐振状态。如电源电压暂时升高、系统受到较强烈的电流冲击等。 (3)铁磁谐振存在自保持现象。激发因素消失后,铁磁谐振过电压仍然可以继续长期存在。 (4)铁磁谐振过电压一般非常高,过电压幅值主要取决于铁心电感的饱和程度。 在中性点不接地系统中,发生如下情况可能激发铁磁谐振:

PT开口三角接线引发的事故分析

PT开口三角形接线引发的事故分析 韩坚 (萍乡供电公司江西萍乡,337000) 在电力系统中, 电压互感器( P T) 是一种仪用变压器, 是一、二次系统的联络元件, 因其能正确地反映电气设备的正常运行和故障情况, 故在保护中的应用极其广泛。 当P T接线发生错误时往往会引起保护拒动或者误动, 从而严重危害电力系统的安全运行。 1、PT的基本知识 1. 1 P T的作用 (1)将一次设备的高电压变换成适用于二次设备的低电压( 二次额定电压一般为100V) , 供测量仪表和继电器使用; ( 2)将一次、二次设备安全隔离, 以保证工作人员安全; ( 3)取得零序电压分量与从电流互感器取得的零序电流分量配合, 反应接地故障的继电保护使用 1. 2 P T的接线方式及向量图 电压互感器的一次绕组为星形接线,每相电压维110/3kV。二次绕组有四组,供计量回路1组,接线为星形接线,每相电压维0.1/3kV。准确度级维0.2,输出容量为75V A;供测量用1组,接线为星形接线,每相电压为0.1/3kV,准确度级为0.5,输出容量为100V A。供保护用的有2组,一组为星形接线,每相电压为0.1/3kV,准确度级为0.5,输出容量为100V A。另一组为开口三角形接线,输出电压为0.1kV,准确度级为3P,输出容量为150V A。接线图和向量

图如下图所示。 a b c N a b c ‘a x 星形接线 开口三角形接线 Ua Ub Uc 星形接线的向量图 开口三角形的向量图 2、 开口三角形误接线分析 2010年12月8日,姚家洲110kV 变电站#2主变工作结束,恢复送电,合上102开关,主变充电正常。 当推上110kV Ⅱ段母线电压互感器 1522刀闸,PT 充电正常。此时,合 上110kV Ⅱ段母线电压互感器二次空 气开关,#2主变高后备零序过压Ⅰ段 保护动作,跳开102开关。

PT开口三角电压

ENR-DRY型电容电流测试仪使用说明书 保定市伊诺尔电气设备有限公司

目录 1.概述------------------------------------------3 2.测量基本原理----------------------------------4 3.性能指标--------------------------------------4 4.测量接线及注意事项----------------------------5 5.操作方法--------------------------------------6 6.ENR-DRY-2面板说明----------------------------6 7.界面显示--------------------------------------7 8.保护功能及其显示------------------------------8 9.附件------------------------------------------9 10.售后服务--------------------------------------9 保定市伊诺尔电气设备有限公司 2

1.概述 对于中性点不接地电网,当对地电容电流过大时将对系统的安全运行造成严重威胁,因此规程规定对地电容电流大于一定数值时必须装设消弧线圈进行补偿。为选择合适的消弧线圈容量或对已安装的老式消弧线圈进行调节,首先要对系统的对地电容电流进行测量。 对地电容电流进行测量方法有直接接地法和间接测量法,直接接地法是在系统中人为制造单相接地故障,直接测量接地线流过的电流。该方法操作多、接线复杂、危险程度高,且易引发绝缘薄弱点击穿造成两相短路事故,一般不轻易采用。间接测量法是采用外加电容的方法,虽可避免直接接地法可能引发事故的弊端,但测量时仍然要与一次侧打交道,同样存在操作多、接线复杂、危险程度高的缺点。 为解决上述问题,我公司技术人员经多年努力,研制成功“DRY-2型电容电流测量仪”,只需将母线PT开口三角的两端子与仪器信号输出端子连接,按下“测量”按钮,即可准确的测出系统对地电容电流,方便、快捷、安全。 该仪器的操作面板上有一个电源开关、两个输出端子和三个操作按钮。输出端子用于输出电流;有三个操作按钮“复位”、“设置”、“测量”。整个操作方法非常简单,将电流输出线接入PT的开口三角后,打开电源开关,然后按“设置”按钮选择相应的系统电压(从6kV-10kV-35KV-66kV-1kV-3kV循环显示),按下“测量”按钮,几秒钟后测量结果就显示出来,再次按下“测量”键可进行重复测量。测量结果包括系统电容、容抗和电容电流。 该测量仪的主要特点有: 保定市伊诺尔电气设备有限公司 3

电压互感器接线形式接法

电压互感器V-V接线正确与错误接法(图) 发布日期:2008-5-21 浏览次数:622 图1、图2是正确的Vv接法,但图3是VΛ接法,AB、C B两相电压反向了180°,所以V变成v后,反相成对顶状态。故,图3不是Vv接法。

常用电压互感器的接线 电压互感器在三相电路中常用的接线方式有四种,如下图 1.一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器,如图1(a)。 2.两个单相电压互感器的V/V形接线,可测量线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接 地的电网中。如图1(b)。 3.三个单相电压互感器接成Y0/Y0形,如图1(c)。可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电 压表。 4.一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图1(d)所示。接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。 V/V型的接线图分析 V/V连接的两个电压互感器二次侧两个开口端之间的电压与其一次侧的两个开口端电压存在对应的相量关系。也就是说,二次侧两个开口端及公共端之间的电压也同样满足电源三相电压的关系。因此,虽然“B相无电压”(未施加任何电压),输出端的电量仍然是三相电量。左图是正确接线,从相量图看三相平衡;右图是错误接线,从相量图看三相不平衡。

根据ab和ub的线电压可以计算出ca线电压,。若二次侧ab相接反,从相量图看,则ca 线电压变为。 电压互感器几种常见接地点的作用 一次侧中性点接地 由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。如下图所示。因为电压互感器在系统中不仅有电压测量,而且 还起继电保护的作用。

关于4PT电压互感器防谐振与开口三角接线说明

前言:电压互感器作为开关柜主要设备之一,进行电力计量、测量及继电保护作用。但是由于电力系统的不稳定性、特别是频繁发生谐振地区,对电压互感器的危害是很大的,大部份都导致电压互感器烧毁。 一、产生铁磁谐振的原因 由非线性电感(铁心线圈)和线性电容组成的回路,当外施电压发生变化时,由于电感的变化而产生谐振,这种现象称为铁磁谐振。 1、在中性点不接地系统中,虽然电源侧的中性点不直接接地,但电压互感器的高压侧中性点是接地的,若Ca,Cb,Cc为各回线路(包括电缆出线和架空线路)三相对地的等值电容,而La,Lb,Lc则为母线电压互感器的一次侧三个线圈的对地阻抗(忽略其线圈电阻),假设系统发生单相接地。此时,电压互感器的铁心线圈相当于与电容器并联,构成了可能产生谐振的并联电路,由于相对地电压升高√3倍,有可能使得电压互感器的铁心出现饱和或接近饱和,阻抗变小,电路中出现容抗和阻抗相等的情况,从而产生了并联谐振,此时互感器一次侧的电流最大,这样有可能使电压互感器的高压侧熔断件熔断,或者烧坏电压互感器。 此种情况往往在变电所投产初期(线路出线回路少)不是很明显,但随着线路出线回路的增多(各回线路对地的等值电容量增大,容抗增大)出现谐振的情况较多。 2、操作过电压:包括互感器在内的空载母线或送电线路的突然合闸,使得PT的某一相或二相绕组内产生巨大的涌流和磁饱和现象; ①由于合闸瞬间的三相触头不同期性,此时最慢接触的一相在触头间相当于串联上一个电容(如A相)。当电容的容抗等于互感器的感抗时即产生谐振,但该状态下只是使中央信号装置的电铃响了一下,仪表摆动一下,但随着操作的完成该现象随之消失。 ②由于合闸过程中产生操作过电压,此时假设断路器在合闸操作过程中A相出现过电压,则有可能使A相电压互感器铁心出现饱和,使A相电压互感器线圈感抗变小,从而三相的总阻抗出现不平衡,使电压互感器的中性点对地电压发生位移现象。 3、雷击过电压:由于雷击或其它原因,线路中发生瞬间弧光接地,使得其它两相电压瞬间升到线电压,而故障相电压在接地消失后又瞬间恢复至相电压,以至造成暂态励磁电流的急剧增大和铁芯的磁饱和; 4、磁饱和的产生也可能由于另一绕组瞬间传递过来的过电压或者系统运行方式的突然改变、负荷剧烈波动等所引起的系统电压的强烈扰动。 二、铁磁谐振的种类 铁磁谐振是一个非常复杂的非线性振荡过程,PT伏安特性饱和得越快,谐振的区域越广。谐振大致分为分频谐振、基波谐振、高频谐振,基波和高次谐波的谐振过电压的幅值很少超过3Uj,故除非存在弱绝缘设备,是不会产生危险的。对于分频谐波,由于频率只有工频的一半,励磁感抗相应降低一半,使得励磁电流急剧增加,有时甚至达到额定值的100倍以上,使得互感器发生严重的磁饱和现象,因而限制了过电压幅值,通常在2Uj以下,中性点位移电压一般不超过Uj,但大电流持续时间过长,势必引起TV高压熔丝熔断,或者造成TV本身冒油和烧毁。 三、消除铁磁谐振的措施和方法 电力系统过电压现象十分普遍,如果没有防范措施,随时都有可能造成电气设备损坏和大面积的停电事故。目前,我国35 kV及以下配电网,仍大部分采用中性点不接地方式或采用老式的消弧线圈接地。从电网的运行实践证明,中性点不接地系统中由于电压互感器铁芯饱和引起的铁磁谐振过电压比较多,尽管采取了不少限制谐振过电压的措施,如:消谐灯、消谐器等等,但始终没有从根本上得到解决。由于谐振过电压作用时间长,所引起谐振现象的原因又很多,因此在选择保护措施方面造成了很大的困难。为了尽可能的防止谐振过电压的发

开口三角

开口三角 这种接线方法在三相五柱式电压互感器上使用较多,也就是在电压互感器的次级除了有一个三相绕组以外还有一个辅助绕组,其接法是将三相按照首尾相连的方式连接好,但是第一相的头和最后一相的尾并不连在一起,而起接一个电压继电器,该继电器在电路三相运行正常时向量和是零,因此继电器不动作,而当电路中有接地时,三相电压的向量和不为零了,有电压产生,达到继电器定值后继电器动作。 这个概念是供电中的。开口三角形是指中性点不接地系统中电压互感器三相的三个二次绕组的接法,三相二次绕组按三角形接线连接,但最后有一点不连上,即构成开口三角。此处没法作图,说一下:就是对电压互感器三相的三个二次绕组“a-x”、“b-x”、“c-x”,开口三角就是“a-x”的x与“b-x”的b相连,“b-x”中的x与“c-x”的c相连,从“a-x”的a与“c-x”x引出电压;这个没有完全闭合的三角形就是开口三角形,从这开口三角形引出的电压Ua-x,就是开口三角电压。正常情况下,开口三角上没有电压,当发生系统单相接地时,电压互感器一次绕组就会有一相上无电压,造成对应的二次绕组上也无电压,则开口三角上就会出现电压。通过检测开口三角上的电压,就可以知道高压系统是否有接地现象,这在系统上被称为“接地监察” 用来测量零序电压,匝数是相绕组的13。 开口三角形端电压等于三相对地电压的向量和的13。 当三相对地电压平衡时,向量和等于零,开口电压为零。 当发生一相接地时,向量和等于3线电压,开口电压等于线电压,越限报 警。 当一相高压熔丝熔断时,向量和等于线电压,开口电压等于相电压,越限报警。 将三相按照首尾相连的方式连接好,但是第一相的头和最后一相的尾并不连在一起,形成一个开口,电路三相运行正常时向量和是零,因此开口的电压矢量和为0,而当电路中有接地时,三相电压的向量和不为零了,有电压产生。 图上是一个星形接法,一个开口三角接法

PT开口三角(三相五柱式电压互感器)的工作原理

PT 开口三角(三相五柱式电压互感器)的工作原理 电压互感器是将电力系统的一次电压按一定变比缩小为要求的二次电压,向测量表计和继电器供电,其工作原理与变压器基本相同。电压互感器通常有单相、三相三柱式、三相五柱式电压互感器等几种,由于使用方法不同,各有优、缺点。三相五柱式电压互感器,是磁系统 具有五个磁柱的三相三绕组电压互感器,广泛采用于大中型企业,具有低电压、过电压保护、低电压启动等各种保护功能;备自投等所有电压继电器电压值均来自电压互感器二次。 信息来自:输配电设备网 1 三相五柱式电压互感器的接地方式 信息请登陆:输配电设备网 电压互感器二次绕组接地方式与保护、测量表计及同步电压回路有关,有b 相接地和中性点接地两种方式,其接线方式见图1、2。信息来源:https://www.wendangku.net/doc/305522265.html, 图1 电压互感器二次通过 b 相及JB 接地原理图信息来源:https://www.wendangku.net/doc/305522265.html, 图2 电压互感器二次不接地原理图信息来源:https://www.wendangku.net/doc/305522265.html,

1.1 电压互感器二次绕组两种接地方式的比较信息:输配电设备网 1.1.1 在同步回路中在 b 相接地系统中,对中性点非直接接地系统,单相接地时,中性 点位移,不能用相电压同步,必须用线电压同步。如同步点两侧均为 b 相接地,其中一相公用,同步开关档数减少(如采用综保,则接线更为简单),同步接线简单。对中性点直接接地 系统,可用辅助二次绕组的相电压同步。信息来自:https://www.wendangku.net/doc/305522265.html, 1.1.2 在保护回路中信息来源:https://www.wendangku.net/doc/305522265.html, 在b 相接地系统中,①在零线上串接的隔离开关辅助触点G,如不可靠而断开时,会使10kV 以上电压距离保护断线闭锁装置失去作用,这时若再发生一相或两相断线,将导致保 护误动作。②因为辅助信息请登陆:输配电设备网 绕组的一端与 b 相接地点相连,由于基本二次侧绕组上有负荷电流流过,在电缆芯出上产生电压降,使正常开口三角形有电压3U0 ,对零序方向元件不利。若单独从接地点引接零序方向继电器回路,则接线 信息来自:https://www.wendangku.net/doc/305522265.html, 较为复杂。 信息来自:https://www.wendangku.net/doc/305522265.html, 在中性点接地系统中,由于中性点无任何断开触点,可靠性高。因中性点没有电流通过,无电压降,对保护无影响。信息请登陆:输配电设备网 1.1.3 在测量表计回路中信息来自:https://www.wendangku.net/doc/305522265.html,

常用电压互感器的接线

常用电压互感器的接线 电压互感器在三相电路中常用的接线方式有四种,如下图 1.一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器,如图1(a)。 2.两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中。如图1(b)。 3.三个单相电压互感器接成Y0/Y0形,如图1(c)。可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。 4.一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图1(d)所示。接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。

V/V型的接线图分析 V/V连接的两个电压互感器二次侧两个开口端之间的电压与其一次侧的两个开口端电压存在对应的相量关系。也就是说,二次侧两个开口端及公共端之间的电压也同样满足电源三相电压的关系。因此,虽然“B相无电压”(未施加任何电压),输出端的电量仍然是三相电量。左图是正确接线,从相量图看三相平衡;右图是错误接线,从相量图看三相不平衡。 图1 (正确)图2(错误) 图3 根据ab和ub的线电压可以计算出ca线电压,。若二次侧ab相接反,从相量图看,则ca线电压变为。

电压互感器几种常见接地点的作用 一次侧中性点接地 由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。如下图所示。因为电压互感器在系统中不仅有电压测量,而且还起继电保护的作用。 当系统中发生单相接地时,系统中会出现零序电流。如果一次侧中性点没有接地,那么一次侧就没有零序电流通路,二次侧开口三角形线圈两端也就不会感应出零序电压,继电器KV就不会动作,发不出接地信号。 对于三相五柱式电压互感器,其一次侧中性点同样要接地。 由两只单相电压互感器组成的V-V形接线时,其一次侧是不允许接地的,因为这相当于系统的一相直接接地。而应在二次中性点接地,如下图所示。 二次侧接地 电压互感器二次侧要有一个接地点,这主要是出于安全上的考虑。当一次、二次侧绕组间的

开口三角电压保护整定值计算

开口三角电压保护整定 值计算 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

什么是开口三角形 开口三角形是指中性点不接地系统中电压互感器三相的三个二次绕组的接法,三相二次绕组按三角形接线连接,但最后有一点不连上,即构成开口三角。 此处没法作图,说一下:就是对电压互感器三相的三个二次绕组“a-x”、“b-x”、“c-x”,开口三角就是“a-x”的x与“b-x”的b相连,“b-x”中的x与“c-x”的c相连,从“a-x”的a与“c-x”x引出电压;这个没有完全闭合的三角形就是开口三角形,从这开口三角形引出的电压Ua-x,就是开口三角电压。 正常情况下,开口三角上没有电压,当发生系统单相接地时,电压互感器一次绕组就会有一相上无电压,造成对应的二次绕组上也无电压,则开口三角上就会出现电压。通过检测开口三角上的电压,就可以知道高压系统是否有接地现象,这在系统上被称为“接地监察” 本装置电容器组按招标数据单要求,必须具备不平衡电流保护(或不平衡电压保护)功能。根据电容器组单台中性点不接地单星接线方式,本设备采用了“开口三角电压保护”实现不平衡电压保护。开口三角形即将电压互感器一次侧与单星接线的每相电容器并联,将互感器的二次线圈接成三角形,但将三角形的最后一个“角”不联接,构成从原理图上看即构成一个开口的三角形。正常情况下,三角开口上没有电压,而当发电容器发生故障时,将引起相间电压的不平衡,从而在三角的开口上形成电压输出,该电压也称为“零序电压”,该电压可做为电容器的保护动作信号。这种方式的优点是不受系统接地故障和系统电压不平衡

防止谐振过电压的措施

防止谐振过电压的措施 电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种振荡回路,在一定的能源作用下,会产生串联谐振现象,导致系统某些元件出现严重的过电压。 谐振过电压分为以下几种: 1、线性谐振过电压谐振回路由不带铁芯的电感元件(如输电线路的电感,变压器的漏感)或励磁特性接近线性的带铁芯的电感元件(如消弧线圈)和系统中的电容元件所组成。 2、铁磁谐振过电压谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。因铁芯电感元件的饱和现象,使回路的电感参数是非线性的,这种含有非线性电感元件的回路在满足一定的谐振条件时,会产生铁磁谐振。 3、参数谐振过电压由电感参数作周期性变化的电感元件(如凸极发电机的同步电抗在Xd~Xq间周期变化)和系统电容元件(如空载线路)组成回路,当参数配合时,通过电感的周期性变化,不断向谐振系统输送能量,造成参数谐振过电压。 限制谐振过电压的主要措施有: 1、提高开关动作的同期性由于许多谐振过电压是在非全相运行条件下引起的,因此提高开关动作的同期性,防止非全相运行,可以有效防止谐振过电压的发生。 2、在并联高压电抗器中性点加装小电抗用这个措施可以阻断非

全相运行时工频电压传递及串联谐振。 3、破坏发电机产生自励磁的条件,防止参数谐振过电压。 4、严格执行调度规程 在运行方式上和倒闸操作过程中,防止断路器断口电容器与空 载母线及母线PT构成串联谐振回路,以防止因谐振过电压损坏设备。它包括两个方面: ①应避免用带断口电容器的断路器切带电磁式电压互感器的 空载母线。 ②避免用带断口电容器的回路的刀闸对带电磁式电压互感器的 空载母线进行合闸操作。 具体可采用下述方式来实现:在切空母线时,先拉开电压互 感器,对母线断电;在投空母线时,先断开被送电母线PT, 对母线送电,再合母线电压互感器。 5、避免操作过电压 在进行投切空母线操作时,加强母线电压监测,发生铁磁谐振 时,应立即合上带断口电容器的断路器,切除回路电容,终止 谐振,防止隐患发展形成事故。 6、中性接地点 增加母线对地电容或减少系统中电压互感器压中性点接地台数,即增大母线的对地感抗,从而减少自振固有频率,避免因系统由东而发生母线铁磁谐振过电压,如:在变电站基建设计时,采用

最新电压互感器VV接线如何取三相电压

电压互感器VV接线如何取三相电压? 一般V-V接线的电压互感器是由二个相同的单相电压互感器组成的,每个单相电压互感器的一次绕组(高压绕组)的二个引出端分别标有A和X,而这个单相电压互感器的二次绕组(低压绕组)的二个引出端分别标有a和x; 标准的接法是第一个单相电压互感器的高压引出端A接电源A相,第一个单相电压互感器的高压引出端X与第二个单相电压互感器的高压引出端A按在一起,接到电源B相,第二个单相电压互感器的高压引出端X接到电源C相,组成AX-AX 接线; 但对这样的单相电压互感器,哪一个引出端当A,哪一个引出端当X都无所谓,只是需要将电压互感器的二次引出端和一次相对应就行,即高压接成了“XA-XA”,低压也要接成“xa-xa”;虽然“XAXA”、“AXXA”、“XAAX”这些接法只要二次跟着变换,原理就没有错,功能也能实现,但不算标准,容易出现问题,在工程实践中,还是要选用标准接法。 V/V 接线一般是由2个PT分别接与线电压Uab\Ucb上得到的,一、二次侧接线均呈V字形,故称为V/V接线,其二次侧B相也接地,但是一次测不接地,否则造成接地短路。

这种接线方式其实就是由两个单相互感器接线形成不完全星形,其接法是A-X、B、A-X-C,所以怎么量,ABC三相都是导通的,不导通就不对了。 VV 接线的目的: 用两只互感器能够完成三只互感器的工作,如计量PT就用V/V接线完成三相电压的采集。 说的更白些就是将两只互感器分别装在A、C相上,然后将A 相互感器的尾与C相互感器的头相连,在这个连接点上接入B相电,省了一个B相互感器。 但请注意: VV 接线只能用来测线电压,而无法测量相对地电压,所以无法反映单相接地故障!但可以满足计量要求,比较经济,多用于小电流接地系统,大部分是中小型工厂的高压配电室采用,而变电站中很少用这种解法。

三相抗谐振电压互感器

三相抗谐振电压互感器JSZK1-10,JSZK2-10,JSZK2-10F 为改进型抗铁磁谐振三相电压互感器,提高了抗谐振防烧毁的能力,同时提高了计量精度,降低铁损。产品为半浇注式,体积小,气候适应性强,抗分频、工频谐振,不会过励烧毁。互感器采用芯式结构,使用优质冷轧硅钢片叠装成方型, 2、额定绝缘水平:12/42/75kV; 3、当系统发生单相接地时,可长期无损伤地承受系统单相接地时产生的高电压; 4、由于产品中性点采取消谐措施,安装时中性点直接接地; 使用条件: (1)海拔高度不超过1000米; (2)周围气温最大变化不超过-5℃~+40℃; (3)相对湿度不大于80%的地方; (4)安装环境中无腐蚀性的气体、蒸气或沉降物; (5)无导电尘埃(炭末、金属末等)的地方; (6)不可能发生火灾和危险的地方; (7)无强烈的震动或撞击的地方; 三相抗谐振电压互感器JSZK1-10,JSZK2-10,JSZK2-10F 为三相五柱式电压互感器之后,为消除因电力系统不同程度接地后而导致互感器发生铁磁谐振大量烧毁而设计的抗铁磁谐振的改进型产品,适用于交流 50Hz、额定电压10kV户外装置的电力系统中作电压、电能测量及继电保护用. 本型电压互感器为改进型抗铁磁谐振三相电压互感器,提高了抗谐振防烧毁的能力,同时提高了计量精度,降低铁损。产品采用三相三柱铁芯,零序回路采用独立铁芯。一次绕组为非全绝缘(故只能做感应耐压试验),一、二次绕组均用环氧树脂浇注绝缘,套装在铁芯柱上,组成三相一体结构,吊装在钢桶中。接线原

1、本型互感器能在120%额定电压下长期工作; 2、额定绝缘水平:12/42/75kV; 3、当系统发生单相接地时,可长期无损伤地承受系统单相接地时产生的高电压; 4、由于产品中性点采取消谐措施,安装时中性点直接接地; 使用条件: (1)、户外装置; (2)、环境温度:-30℃~+40℃; (3)、海拔高度不超过1000米; (4)、不可能发生火灾和危险的地方; (5)、无强烈的震动或撞击的地方;

开口三角电压

正常时,由于3U 取自PT的变比为//,因此PT开口三角所属 三绕组电压U a =U b =U c =100/3 V, (1)开口三角绕组接反 一相(c相)接反时,3=-2 c ,即3U =66.7V; 两相(b、c)接反时,3 0= a - b - c =2 a ,即3U =66.7V。 (2)二次中性线断线 二次中性线断线时,由于各相二次负载相同,二次三相电压不变,指示为 U a =U b =U c =100/=57.7V;当一次系统发生单相接地时,由于二次三相 电压所构成的电压三角形Δabc为等边三角形,相同的各相二次负载所产生的三相对称电压在二次中性线断口形成57.7V的断口电压,因此二次三相电压仍不变,指示为57.7V,但开口三角电压为100V。 (3)一次一相(两相)断线 由于PT二次相间和各相均有负载,其负载阻抗所形成电路决定断相电压,以及三相磁路系统的影响,断相电压不为0,但要降低,其它相电压正常。 图1 单电源单回线断线运行 一相(C相)断线时,3 0= a + b =- c ,即3U =33.3V;两相(B、C)断 线时,3 0= a ,即3U =33.3V。 (4)二次一相(两相)断线 由于无磁路系统的影响,断相电压比一次断线时要低,其他相正常。 电压互感器二次侧有基本二次侧和辅助二次侧,变比是不同的,一般应为10/0.1/(0.1/√3)。开口三角是辅助二次侧,所以应为10/(0.1/√3)。

一般10kV系统电压互感器的变比应该是10/0.1/(0.1/3). 当高压一相熔丝熔断时,开口三角对应相电压为零,故开口三角侧电压为另外两相电压之相量和,大小与相电压相等,所以是100/3V。 当系统出现接地时,由于10kV系统是中性点不接地系统,所以接地相对地电压为零,而另外两相电压对地电压升高√3倍,而它们的相量和是3倍的相电压,所以开口三角侧为100V。

PT开口三角(三相五柱式电压互感器)的工作原理

PT开口三角(三相五柱式电压互感器)的工作原理 2010/10/18 11:14 电压互感器是将电力系统的一次电压按一定变比缩小为要求的二次电压,向测量表计和继电器供电,其工作原理与变压器基本相同。电压互感器通常有单相、三相三柱式、三相五柱式电压互感器等几种,由于使用方法不同,各有优、缺点。三相五柱式电压互感器,是磁系统具有五个磁柱的三相三绕组电压互感器,广泛采用于大中型企业,具有低电压、过电压保护、低电压启动等各种保护功能;备自投等所有电压继电器电压值均来自电压互感器二次。 信息来自:输配电设备网 1 三相五柱式电压互感器的接地方式 信息请登陆:输配电设备网 电压互感器二次绕组接地方式与保护、测量表计及同步电压回路有关,有b 相接地和中性点接地两种方式,其接线方式见图1、2。信息来 源:https://www.wendangku.net/doc/305522265.html, 图1 电压互感器二次通过b相及JB接地原理图信息来 源:https://www.wendangku.net/doc/305522265.html, 图2 电压互感器二次不接地原理图信息来源:https://www.wendangku.net/doc/305522265.html,

1.1 电压互感器二次绕组两种接地方式的比较信息:输配电设备网 1.1.1 在同步回路中在b相接地系统中,对中性点非直接接地系统,单相接地时,中性点位移,不能用相电压同步,必须用线电压同步。如同步点两侧均为b相接地,其中一相公用,同步开关档数减少(如采用综保,则接线更为简单),同步接线简单。对中性点直接接地系统,可用辅助二次绕组的相电压同步。信息来自:https://www.wendangku.net/doc/305522265.html, 1.1.2 在保护回路中信息来源:https://www.wendangku.net/doc/305522265.html, 在b相接地系统中,①在零线上串接的隔离开关辅助触点G,如不可靠而断开时,会使10kV以上电压距离保护断线闭锁装置失去作用,这时若再发生一相或两相断线,将导致保护误动作。②因为辅助信息请登陆:输配电设备网 绕组的一端与b相接地点相连,由于基本二次侧绕组上有负荷电流流过,在电缆芯出上产生电压降,使正常开口三角形有电压3U0,对零序方向元件不利。若单独从接地点引接零序方向继电器回路,则接线 信息来自:https://www.wendangku.net/doc/305522265.html, 较为复杂。 信息来自:https://www.wendangku.net/doc/305522265.html, 在中性点接地系统中,由于中性点无任何断开触点,可靠性高。因中性点没有电流通过,无电压降,对保护无影响。信息请登陆:输配电设备网

电压互感器接线图及含义

电压互感器接线图及含义 电压互感器的含义:

双绕组和三绕组电压互感器的结构: 供测量用的电压互感器,一般都做成单相双绕组结构.当两端绝缘等级相同时,可以单相使用,也可以组合起来作三相使用。对这种电压互感器的主要技术要求是保证必要的准确级。 供接地保护用的电压互感器还具有一个辅助二次绕组,称三绕组电压互感器。三相的辅助二次绕组结成开口三角形,一旦系统发生单相接地时中性点出现位移,辅助二次绕组上会出现一个零序电压,所以辅助二次绕组现称零序电压线组。 三绕组电压互感器一般做成单相,做成三相时应采用三相五拄式(三相三柱旁扼式)铁心,且电压在10kv及以下,这是为了提供零序磁通的回路。对于这种电压互感器,零序电压绕组的准确级要求不高,一般为3B级或6B级,以保证开口三角端子电压在一定范围之内,但要求具有一定的过励磁特性。 三相五柱式电压互感器与单相电压互感器: 三相五柱设计是高压侧Y0接线,低压侧是Y0(三柱) +开口三角(两柱) 低压侧是Y0(三柱)用于线电压和相电压的测量,中性点接地系统。不接地系统只能测线电压,无专用计量PT时,供计量表计电压量。 开口三角(两柱)在开口三角接有电压继电器,用于监视开口三角电压,检测系统的整体绝缘,用来反映系统发生接地时的零序电压。当开口三角电压达到启动值时,提供给保护需要的零序电压。小接地电流系统通常用于发信号。 这种互感器只限制制成10KV以下电压等级。应用于10KV以下系统。其优点是投资小,接线简单,操作及运行维护方便;其缺点是只发出系统接地的无选择性预告信号,不能确切判定发生接地的故障线路,运行人员需要通过拉路分割电网的方法来进一步判定故障线路,影响了非故障线路的连续供电。该装置的优点是以牺牲非故障线路的供电可靠性为代价的。 当然两个或三个同型号同规格单相互感器也可以组合来测量线电压、相电压或继电器保护之用。以及和电度表、功率表组合量电用。电压等级可以比集成的五柱式做得更高,且可以灵活配置,适用范围更广。

关于PT辅助开口三角电压的问题

在10kV,35kV中低压配电网中,为了提高供电的可靠性,中性点一般采取不接地的方式,为了监视三相对地电压,变电站母线上接有电压互感器,而且母线上安装的电磁式电压互感器通常是Yo/Yo/开口三角接线。 电压互感器二次额定电压,我国规定接入三相系统中,相与相之间的单相电压互感器二次电压为100V;相与地之间的单相电压互感器,其二次额定电压为 。零序电压绕组二次额定电压,供中性点直接接地用的电压互感器,其零序电压绕组的二次额定电压为100V。供中性点不直接接地用的电压互感器, 其零序电压绕组的二次额定电压为 。 1.单相金属性接地时,PT二次开口三角的电压是多少?

U A,U B,U C为故障前一次侧相电压,U A’,U B’,U C’为故障后相电压。 C相单相接地后:非故障相电压升高到线电压,故障相电压为0,即U A’= U A -U C,U B’=U B-U C,U C’=0;中性点电压升为相电压即:U N=-Uc;此时|3U0|= |U A’+ U B’|= =| U AC + U BC AC |=3|U A|,即系统零序电压U0为相电压。变换到压变二 次侧开口三角电压即为|3U0’|=|3U0|/n’=3|U A|/n’=100V(以10kV不接地系统为例, n’ /(100/3)为高压侧对低压侧开口三角电压变比) 2.PT高压侧一相熔断时,二次开口三角电压是多少? 高压保险C相完全熔断,对于系统来说,系统电压正常,没有零序电压,但压变高压侧电压变化为Uc=0,Ua=Ua’,Ub=Ub’为相电压,由于高压侧一次绕组中性点接地,所以中性点不会位移,由此3U0=Ua+Ub+Uc=Ua’+Ub’=-Uc’,反映到 压变二次开口三角的电压3U0’=3U0/n’=-Uc’/n’ ’=100/3=33.3V(以 Uc’o Ub’ Ua’ 熔断前 U C N U B U A 正常

相关文档
相关文档 最新文档