文档库 最新最全的文档下载
当前位置:文档库 › 4105连杆机构设计

4105连杆机构设计

4105连杆机构设计
4105连杆机构设计

第2章 连杆组的设计

2.1连杆的工作情况、设计要求和材料选用

1、工作情况

连杆小头与活塞销相连接,与活塞一起做往复运动,连杆大头与曲柄销相连和曲轴一起做旋转运动。因此,连杆体除有上下运动外,还左右摆动,做复杂的平面运动。 2、设计要求

(1)结构简单,尺寸紧凑,可靠耐用。

(2)在保证具有足够强度和刚度的前提下,尽可能减轻重量,以降低惯性力。 (3)尽量缩短长度,以降低发动机的总体尺寸和总重量。 (4)大小头轴承工作可靠,耐磨性好。 (5)连杆螺栓疲劳强度高,连接可靠。 (6)易于制造,成本低。

连杆主要承受气体压力和往复惯性力所产生的交变载荷,因此,在设计时应首先保证连杆具有在足够的疲劳强度和结构钢度。如果强度不足,就会发生连杆螺栓、大头盖或杆身的断裂,造成严重事故,同样,如果连杆组刚度不足,也会对曲柄连杆机构的工作带来不好的影响。

所以设计连杆的一个主要要求是在尽可能轻巧的结构下保证足够的刚度和强度。为此,必须选用高强度的材料;合理的结构形状和尺寸。 3、材料的选择

为了保证连杆在结构轻巧的条件下有足够的刚度和强度,采用精选含碳量的优质中碳结构钢45模锻,表面喷丸强化处理,提高强度。

2.2连杆长度的确定

近代中小型告诉柴油机,为使发动机结构紧凑,最适合的连杆长度应该是,在保证连杆及相关机件在运动不与其他机件相碰的情况下,选取最小的连杆长度。

连杆长度l 与结构参数l

R

=λ(R 为曲柄半径)有关,此次设计选取286.0=λ。

mm S R

l 210286

.021202=?==

=

λλ

2.3连杆小头的设计

小头主要尺寸为连杆衬套内径d 和小头宽度1b 。 1.连杆衬套内径d

mm D d 3810536.036.0=?==

2.衬套厚度δ

mm d 5.238066.0066.0=?==δ

3.小头内径1d

mm d d 435.223821=?+=+=δ

4.小头宽度1b

mm d b 403805.105.11=?==

5.小头外径2d

mm d d 524321.121.112=?==

2.4连杆杆身的设计

连杆杆身从弯曲刚度和锻造工艺性考虑,采用工字形截面。 1.杆身截面高度H

mm D H 3410532.032.0=?==

2.杆身截面宽度B

mm H B 223465.065.0=?==

3.杆身截面中间宽度t

mm H t 53415.015.0=?==

为使连杆从小头到大头传力比较均匀,在杆身到小头和大头的过渡处用足够大的圆角半径。

2.5连杆大头的设计

本次大头采用斜切口大头的结构形式,切口角?=45ψ 1.大头孔直径1D

mm D D 7610572.072.01=?==

2.大头宽度2b

mm D b 457659.059.012=?==

3.连杆轴瓦厚度'δ

mm 3'=δ

4.连杆螺栓直径M d

mm D d M 1410513.013.0=?==

5.连杆螺栓孔中心距1l

mm D l 927621.121.11=?==

螺栓孔外侧壁厚不小于2毫米,取3毫米,螺栓头支承面到杆身或大头盖的过渡采用尽可能大的圆角。 6.大头高度21,H H

11)24.0~19.0(D H = 取0.21 mm D H 1621.011== 12)58.0~41.0(D H = 取0.50 mm D H 385.012==

7.定位方式

定位方式采用锯齿定位,齿形角为?60,齿距为mm 4

2.6连杆强度计算

1.连杆小头计算

(1)由衬套过盈配合和受热膨胀产生的应力 衬套最大装配过盈量

mm 0304.0381084=??=?-

衬套温度过盈量

mm td t 041.04312010)0.18.1()(51'=???-=?-=?-αα

式中α为连杆材料线膨胀系数,对于钢C ?=-1100.15α 'α为衬套材料线膨胀系数,对于青铜C ??=-1108.15'α 由总过盈量产生的径向均布压力

2

62

22

262222'

2212

21212

221221/2.179]

10

15.13.08.33.48.33.4102.23.03.42.53.42.5[3.40041

.0003.0]

[cm kgf E d d d d E d d d d d p t

=?--++?+-+?+=

--+++-+?+?=

μμ 式中E 为连杆材料的弹性模量,对于钢26/102.2cm kgf E ?= 'E 为衬套材料的弹性模量,对于青铜26'/1015.1cm kgf E ?= μ为泊桑比,3.0=μ 小头外表面由p 引起的应力

2

2

22212221'/07.7752.1793

.42.53.422cm kgf p d d d a

=?-?=-=σ (2)由惯性力拉伸引起的小头应力 活塞组的最大惯性力

kgf R g G P

j 494)286.01(06.015781

.955.2)1(22''max

=+???=+=λω 式中'G 为活塞组重量 ω为角速度 固定角

??

?=+++=+++=11850

2650

234

arccos 902arccos 902ρρ?r H c

小头平均半径

cm d d r 375.24

4

.32.5412=+=+=

小头中心截面(?=0?)上的弯矩

cm

kgf r P M c j ?=-???=-=84.10)0297.011800033.0(375.2494)

0297.000033.0('max 0?

小头中心截面(?=0?)上的法向力

kgf P N c j 93.235)1180008.0572.0(494)0008.0572.0('m ax 0=?-?=-=?

小头固定截面(c ??=)上的弯矩

cm

kgf r P r N M M c c j c ?=???--??+=---+=?12.41352.1375.24945.0)118cos 1(375.293.23584.10)

cos (sin 5.0)cos 1('max 002??? 查表可知352.1118cos 118sin =-?? 小头固定截面(c ??=)上的法向力

kgf

P N N c c j c 18.223352.14945.0118cos 93.235)cos (sin 5.0cos 'max 02=??+?=-+=???? 小头壁厚

cm d d h 45.02

3

.42.5212-=-=

小头截面积

21126.30.4)3.42.5()(cm b d d F =?-=?-=

衬套截面积

21'20.4)8.33.4()(cm b d d F =?-=?-=

系数K

77.02

1015.16.3102.26

.3102.26

66''=??+????=+=F E EF EF K 小头受拉时固定截面处外表面应力

2

122

/49.38245

.00.41

]18.22377.0)45.0375.22(45.045.0375.2612.412[)2(cm kgf h

b h r h aj =???++??+??

?=+

(3)由最大压缩力c P 引起的应力 小头承受的最大压缩力

kgf P

D p P j z

c 55644944

5.1014.3704

2

'

m ax

2

=-??=+=π

辅助参数

c

c P N

r P M 00和 查表可得 0025.00010.00

=-=c

c P N r P M

小头受压时中央截面上的弯矩和法向力

kgf

P N cm kgf r P M c c 91.1355640025.00025.021.13375.255640010.00010.000=?==?-=??-=-=

小头固定截面处(c ??=)的)(?f 值 查表得 01228.0)118()(==?f f c ? 小头受压时固定截面处(c ??=)的弯矩和法向力

cm

kgf rf P r N M M c c c ?-=??--??+-=--+=?94.12601228.0375.25564)118cos 1(375.291.1321.13)

()cos 1(002??

kgf N f P N c c c 80.61118cos 91.1301228.05564cos )(02=?+?=+=???

小头受压时固定截面处外表面应力

2

122

/85845

.00.41

]8.6177.0)45.0375.22(45.045.0375.26)94.126(2[)2(cm kgf h

b h r h a

c -=???++??+??-?=+

(4)小头安全系数 材料的机械性能

查表可得 45钢2/60cm kgf B =σ

2

110211121/45005.1)6.1~4.1(/24008.0)9.0~7.0(/30005.0)55.0~45.0(cm kgf cm kgf cm kgf z B B =========------σσσσσσσσσ 角系数

33.04500

4500

3000220

1=-?=

-=

-σσσψσ

在固定角c ?截面的外表面处

应力幅2/2.620)]858(49.382[21

)(21cm kgf ac aj a =--=-=σσσ

平均应力2'

/3.537]07.7752)858(49.382[2

1)2(21cm kgf a ac aj m =?+-+=++=σσσσ

小头安全系数

69.13.53733.05

.02400"1=?+=

+=

-m a

a

z

n σψεσσσ

小头安全系数应不小于1.5,所以满足要求 (5)小头横向直径减小量 小头平均直径

cm r d m 75.42==

小头截面的惯性矩

43310304.012

45.00.412cm h b J =?==

横向直径减小量

cm

EJ

d P c m j 000621.00304.0102.210)90118(75.449410)90(662362

3

'max 1=???-??=

-=

??δ 为保证活塞销和连杆衬套不致咬死,应使21?<δ,实际计算结果2

1?

<δ,所以满足要求。 2.连杆杆身计算

(1)杆身中间截面处最大拉伸力j P 和最大压缩力c P

kgf R g

G G P j 708)286.01(06.015781.91.155.2)

1(22

'=+???+=++=λω

kgf P D p P j z

c 53507084

5.1014.37042

2

=-??=+=π 式中G G ,'分别为活塞组重量和位于计算截面以上那一部分连杆重量。 (2)杆身中间截面处的应力和安全系数 由最大拉伸力引起的拉伸应力

2/25.2212

.3708

cm kgf F

P j j ==

=

σ 式中F 为杆身中间截面积,计算约为:

22.3)88.04.3(5.0244.02.2cm F =-?+??≈

杆身中间截面的惯性矩

4

333394.4]52.2)5.02.2(4.32.2[12

1

])([121

cm h t B BH J x =?--?=--=

4

333381.0]5.052.22.2)52.24.3[(12

1

])[(121

cm ht B h H J y =?+?-=+-=

由最大压缩力引起的合成应力

22

21/1839535094

.41.200035.02.35350cm kgf P J l C F P c x c =??+=+=σ

22

2'2/1803535081

.0405.1500035.02.353504cm kgf P J l C F P c y c =???+=+=σ

式中C 为系数,对于各种钢材0005.0~0002.0=C cm D d l l 05.152

6

.73.421211'=+-=+-

= 杆身中间截面在摆动平面内的应力幅和平均应力

2

12

1/8092

)221(18392/10302)

221(18392cm kgf cm kgf j mx

j

ax =-+=+==--=

-=σσσσσσ 在垂直于摆动平面内的应力幅和平均应力

2

22

2/7912

)221(18032/10122)

221(18032cm kgf cm kgf j my

j

ay =-+=+==--=

-=σσσσσσ 在摆动平面和垂直于摆动平面内的安全系数

23

.179133.06.02400

21

.180933.06.01030

2400

1"

1=?+=+==?+=

+=

--my

ay z y mx ax z

x n n σψεσσσψεσσσσ

σσ

安全系数满足要求。 3.连杆大头计算 大头盖所受惯性力

kgf

R

g G G g G

G P

j 95606.0157]81.965.1)286.01(81.965.3[])1([2232'"max

=??++?=-+++=ωλ 根据大头盖截面图(图1)计算重心坐标

cm

F y F y i i c 75.07

.07.022.15.4)]2.127.0(7.07.0[222.12.15.4=??+?+???+??=

∑∑=

大头盖截面的惯性矩 422332

44.1)75.027.02.1(7.07.02)22.175.0(5.42.17.0127.022.1125.4cm r F J J i i i =-+???+-??+??+?=

∑+∑=大头盖计算截面的抗弯断面模数

3m ax

25.175

.09.144

.1cm y J Z =-=

=

轴瓦计算截面的惯性矩

43

3''

0081.012

3.06.312cm b J =?==δ

大头盖中央截面上的应力

2

''"max /212]08

.138.64

.0)

44

.10081.01(25.12.9023.0[956]4

.0)

1(023.0[

cm kgf F F J

J Z l P j =+++???=+++=σ

大头盖横向直径减小值

cm J J E l P j 0006.0)

44.10081.0(1022.99560024.0)

(0024.063

'3"max 1=+????=+=

δ 经轴承选择,1δ值小于轴承间隙的一半,所以满足要求。

2.7连杆螺栓设计

1.连杆螺栓的结构尺寸和材料选择

根据气缸直径D 初选连杆螺纹直径M d

mm D d M 1410513.013.0=?==

根据M d 选择螺栓,螺母,垫片标准件如下: 螺栓 GB/T 5782 M14x80 螺母 GB/T 6170 M14 垫片 GB/T 848 14

螺栓与螺母材料均采用40Cr 。 2.螺栓装配预紧力和屈服强度校核 (1)装配预紧力

每个螺栓由惯性力引起的工作负荷

kgf i

P P j jl 3382

45sin 956sin "m ax =?==

??

式中?为斜切口大头的切口角。

发动机工作时连杆螺栓受到两种力的作用:预紧力P 和最大拉伸载荷

j

P ,

预紧力由两部分组成:一是保证连杆轴瓦过盈度所必须具有的预紧力1P ;二是保证发动机工作时,连杆大头与大头盖之间的结合面不致因惯性力而分开所必须具有的预紧力0P 。

kgf P P P jl 19443382.21200)5.2~2(10=?+=+=

(2)材料屈服强度校核

确定0P 后,校核螺栓材料是否屈服,应满足:

n

F P s σσ<=

min 0 式中min F 为螺栓最小截面积,经计算2m in 86.153mm F = s σ为材料的屈服极限,一般2/80mm kgf s ≥σ n 为安全系数,一般为0.2~5.1

于是经计算 22

/7.4575

.180/6.1286

.1531944

mm kgf n mm kgf s ====

σσ

得n

s

σσ<

,所以满足要求。

平面连杆机构及其设计答案复习进程

第八章平面连杆机构及其设计 一、填空题: 1.平面连杆机构是由一些刚性构件用转动副和移动副连接组成的。 2.在铰链四杆机构中,运动副全部是低副。 3.在铰链四杆机构中,能作整周连续回转的连架杆称为曲柄。 4.在铰链四杆机构中,只能摆动的连架杆称为摇杆。 5.在铰链四杆机构中,与连架杆相连的构件称为连杆。 6.某些平面连杆机构具有急回特性。从动件的急回性质一般用行程速度变化系数表示。 7.对心曲柄滑块机构无急回特性。 8.平行四边形机构的极位夹角θ=00,行程速比系数K= 1 。 9.对于原动件作匀速定轴转动,从动件相对机架作往复直线运动的连杆机构,是否有急回 特性,取决于机构的极位夹角是否为零。 10.机构处于死点时,其传动角等于0?。 11.在摆动导杆机构中,若以曲柄为原动件,该机构的压力角α=00。 12.曲柄滑块机构,当以滑块为原动件时,可能存在死点。 13.组成平面连杆机构至少需要 4 个构件。 二、判断题: 14.平面连杆机构中,至少有一个连杆。(√) 15.在曲柄滑块机构中,只要以滑块为原动件,机构必然存在死点。(√) 16.平面连杆机构中,极位夹角θ越大,K值越大,急回运动的性质也越显著。(√) 17.有死点的机构不能产生运动。(×) 18.曲柄摇杆机构中,曲柄为最短杆。(√) 19.双曲柄机构中,曲柄一定是最短杆。(×) 20.平面连杆机构中,可利用飞轮的惯性,使机构通过死点位置。(√) 21.在摆动导杆机构中,若以曲柄为原动件,则机构的极位夹角与导杆的最大摆角相等。 (√) 22.机构运转时,压力角是变化的。(√) 三、选择题:

23.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和 A 其他两杆之和。 A ≤ B ≥ C > 24.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和小于或等于其他两杆之和,而 充分条件是取 A 为机架。 A 最短杆或最短杆相邻边 B 最长杆 C 最短杆的对边。 25.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 B 为机架时, 有两个曲柄。 A 最短杆相邻边 B 最短杆 C 最短杆对边。 26.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 A 为机架时, 有一个曲柄。 A 最短杆相邻边 B 最短杆 C 最短杆对边。 27.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 C 为机架时, 无曲柄。 A 最短杆相邻边 B 最短杆 C 最短杆对边。 28.铰链四杆机构中,若最短杆与最长杆长度之和 B 其余两杆长度之和,就一定是双摇杆 机构。 A < B > C = 29.对曲柄摇杆机构,若曲柄与连杆处于共线位置,当 C 为原动件时,此时机构处在死点位 置。 A 曲柄 B 连杆 C 摇杆 30.对曲柄摇杆机构,若曲柄与连杆处于共线位置,当 A 为原动件时,此时为机构的极限 位置。 A 曲柄 B 连杆 C 摇杆 31.对曲柄摇杆机构,当以曲柄为原动件且极位夹角θ B 时,机构就具有急回特性。 A <0 B >0 C =0 32.对曲柄摇杆机构,当以曲柄为原动件且行程速度变化系数K B 时,机构就具有急 回特性。 A <1 B >1 C =1 33.在死点位置时,机构的压力角α= C 。 A 0 o B 45o C 90o 34.若以 B 为目的,死点位置是一个缺陷,应设法通过。 A 夹紧和增力B传动 35.若以 A 为目的,则机构的死点位置可以加以利用。 A 夹紧和增力;B传动。

曲柄连杆机构课程设计

工程软件训练 目录 目录 (1) 第1章绪论 (3) 第2章活塞组的设计 (4) 2.1 活塞的设计 (4) 2.1.1 活塞的材料 (4) 2.1.2 活塞头部的设计 (4) 2.1.3 活塞裙部的设计 (5) 2.2 活塞销的设计 (5) 2.2.1 活塞销的结构 (5) 第3章连杆组的设计 (6) 3.1 连杆的设计 (6) 3.1.1 连杆材料的选用 (6) 3.1.2 连杆长度的确定 (6) 3.1.3 连杆小头的结构设计 (6) 3.1.4 连杆杆身的结构设计 (6) 3.1.5 连杆大头的结构设计 (6) 3.2 连杆螺栓的设计 (7) 第4章曲轴的设计 (8) 4.1 曲轴的结构型式和材料的选择 (8) 4.1.1 曲轴的结构型式 (8) 4.1.2 曲轴的材料 (8) 4.2 曲轴的主要尺寸的确定和结构细节设计 (8) 4.2.1 曲柄销的直径和长度 (8) 4.2.2 主轴颈的直径和长度 (9) 4.2.3 曲柄 (9) 4.2.4 平衡重 (9) 4.2.5 油孔的位置和尺寸 (10) 4.2.6 曲轴两端的结构 (10) 1

工程软件训练 第5章曲柄连杆机构的创建 (11) 5.1 活塞的创建 (11) 5.2 连杆的创建 (11) 5.3 曲轴的创建 (11) 第六章曲柄连杆机构静力学分析 (13) 6.1 活塞的静力分析 (13) 6.2 连杆的静力分析 (13) 2

工程软件训练 第1章绪论 曲柄连杆机构是发动机的传递运动和动力的机构,通过它把活塞的往复直线运动转变为曲轴的旋转运动而输出动力。因此,曲柄连杆机构是发动机中主要的受力部件,其工作可靠性就决定了发动机工作的可靠性。随着发动机强化指标的不断提高,机构的工作条件更加复杂。在多种周期性变化载荷的作用下,如何在设计过程中保证机构具有足够的疲劳强度和刚度及良好的动静态力学特性成为曲柄连杆机构设计的关键性问题[1]。 通过设计,确定发动机曲柄连杆机构的总体结构和零部件结构,包括必要的结构尺寸确定、运动学和动力学分析、材料的选取等,以满足实际生产的需要。 在传统的设计模式中,为了满足设计的需要须进行大量的数值计算,同时为了满足产品的使用性能,须进行强度、刚度、稳定性及可靠性等方面的设计和校核计算,同时要满足校核计算,还需要对曲柄连杆机构进行动力学分析。 为了真实全面地了解机构在实际运行工况下的力学特性,本文采用了多体动力学仿真技术,针对机构进行了实时的,高精度的动力学响应分析与计算,因此本研究所采用的高效、实时分析技术对提高分析精度,提高设计水平具有重要意义,而且可以更直观清晰地了解曲柄连杆机构在运行过程中的受力状态,便于进行精确计算,对进一步研究发动机的平衡与振动、发动机增压的改造等均有较为实用的应用价值。 本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。 3

发动机曲柄连杆机构的设计

. 摘要 以桑塔纳2000AJR型发动机为例,基于相关参数对发动机曲柄滑块机构主要零部件进行结构设计计算,同时进行强度、刚度等方面的校核,并进行相关力学分析和机构运动仿真分析,以达到良好的生产经济效益。 目前国外对发动机曲柄连杆机构的动力学分析的方法很多,而且已经完善和成熟,但仍缺乏一种基于良好生产效益、经济效益上的综合性分析,本次设计在清晰、全面剖析的基础上,有机地将各研究模块联系起来,达到既简便又清晰的设计目的,力求为发动机曲柄滑块机构的设计提供一种综合全面的思路。 分析研究的主要模块分为以下三个部分:第一,对发动机曲柄滑块机构进行力学分析,着重分析活塞的位移、速度、加速度以及工质的作用力和机构的惯性力;第二,进行曲柄滑块机构活塞组、连杆组以及曲轴的结构设计,并对其强度和刚度进行校核;第三,应用Pro∕Engineer 建立曲柄滑块机构主要零部件的几何模型,并利用Pro/Mechanism进行机构仿真。 关键词:发动机;曲柄滑块机构;力学分析;机构仿真

目录 第一章绪论 (1) 1.1国外发展现状 (1) 1.2研究的主要容 (1) 第二章总体方案的设计 (2) 2.1原始参数的选定 (2) 2.2原理性方案设计 (2) 2.3 结构的设计 (3) 2.4 确定设计方案 (3) 第三章中心曲柄连杆机构的设计 (5) 3.1 气缸的作用力分析 (5) 3.2 惯性力的计算 (5) 第四章活塞以及连杆组件的设计 (8) 4.1 设计活塞组件 (8) 4.2 设计活塞销 (9) 4.3 活塞销座 (9) 4.4 连杆的设计 (9) 第五章曲轴的设计 (11) 5.1 曲轴的材料的选择 (11) 5.2 确定曲轴的主要尺寸和结构细节 (11) 第六章曲柄连杆机构的创建 (13)

平面连杆机构及其设计(参考答案)

一、填空题: 1.平面连杆机构是由一些刚性构件用低副连接组成的。 2.由四个构件通过低副联接而成的机构成为四杆机构。 3.在铰链四杆机构中,运动副全部是转动副。 4.在铰链四杆机构中,能作整周连续回转的连架杆称为曲柄。 5.在铰链四杆机构中,只能摆动的连架杆称为摇杆。 6.在铰链四杆机构中,与连架杆相连的构件称为连杆。 7.某些平面连杆机构具有急回特性。从动件的急回性质一般用行程速度变化系数表示。 8.对心曲柄滑快机构无急回特性。9.偏置曲柄滑快机构有急回特性。 10.对于原动件作匀速定轴转动,从动件相对机架作往复运动的连杆机构,是否有急回特性,取决于机构的极位夹角是否大于零。 11.机构处于死点时,其传动角等于0。12.机构的压力角越小对传动越有利。 13.曲柄滑快机构,当取滑块为原动件时,可能有死点。 14.机构处在死点时,其压力角等于90o。 15.平面连杆机构,至少需要4个构件。 二、判断题: 1.平面连杆机构中,至少有一个连杆。(√) 2.平面连杆机构中,最少需要三个构件。(×) 3.平面连杆机构可利用急回特性,缩短非生产时间,提高生产率。(√) 4.平面连杆机构中,极位夹角θ越大,K值越大,急回运动的性质也越显著。(√) 5.有死点的机构不能产生运动。(×) 6.机构的压力角越大,传力越费劲,传动效率越低。(√) 7.曲柄摇杆机构中,曲柄为最短杆。(√) 8.双曲柄机构中,曲柄一定是最短杆。(×) 9.平面连杆机构中,可利用飞轮的惯性,使机构通过死点位置。(√) 10.平面连杆机构中,压力角的余角称为传动角。(√) 11.机构运转时,压力角是变化的。(√) 三、选择题: 1.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和 A 其他两杆之和。 A <=; B >=; C > 。 2.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和小于或等于其他两杆之和,而充分条件是取 A 为机架。 A 最短杆或最短杆相邻边; B 最长杆; C 最短杆的对边。3.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 B 为机架时,有两

连杆机构设计word版

第2章连杆组的设计 2.1连杆的工作情况、设计要求和材料选用 1、工作情况 连杆小头与活塞销相连接,与活塞一起做往复运动,连杆大头与曲柄销相连和曲轴一起做旋转运动。因此,连杆体除有上下运动外,还左右摆动,做复杂的平面运动。 2、设计要求 (1)结构简单,尺寸紧凑,可靠耐用。 (2)在保证具有足够强度和刚度的前提下,尽可能减轻重量,以降低惯性力。(3)尽量缩短长度,以降低发动机的总体尺寸和总重量。 (4)大小头轴承工作可靠,耐磨性好。 (5)连杆螺栓疲劳强度高,连接可靠。 (6)易于制造,成本低。 连杆主要承受气体压力和往复惯性力所产生的交变载荷,因此,在设计时应首先保证连杆具有在足够的疲劳强度和结构钢度。如果强度不足,就会发生连杆螺栓、大头盖或杆身的断裂,造成严重事故,同样,如果连杆组刚度不足,也会对曲柄连杆机构的工作带来不好的影响。 所以设计连杆的一个主要要求是在尽可能轻巧的结构下保证足够的刚度和强度。为此,必须选用高强度的材料;合理的结构形状和尺寸。 3、材料的选择 为了保证连杆在结构轻巧的条件下有足够的刚度和强度,采用精选含碳量的优质中碳结构钢45模锻,表面喷丸强化处理,提高强度。 2.2连杆长度的确定 近代中小型告诉柴油机,为使发动机结构紧凑,最适合的连杆长度应该是,在保证连杆及相关机件在运动不与其他机件相碰的情况下,选取最小的连杆长度。

连杆长度l 与结构参数l R =λ(R 为曲柄半径)有关,此次设计选取286.0=λ。 mm S R l 210286 .021202=?===λλ 2.3连杆小头的设计 小头主要尺寸为连杆衬套内径d 和小头宽度1b 。 1.连杆衬套内径d mm D d 3810536.036.0=?== 2.衬套厚度δ mm d 5.238066.0066.0=?==δ 3.小头内径1d mm d d 435.223821=?+=+=δ 4.小头宽度1b mm d b 403805.105.11=?== 5.小头外径2d mm d d 524321.121.112=?== 2.4连杆杆身的设计 连杆杆身从弯曲刚度和锻造工艺性考虑,采用工字形截面。 1.杆身截面高度H mm D H 3410532.032.0=?== 2.杆身截面宽度B mm H B 223465.065.0=?== 3.杆身截面中间宽度t mm H t 53415.015.0=?==

基于matlab的连杆机构设计

目录 1平面连杆机构的运动分析 (1) 1.2 机构的工作原理 (1) 1.3 机构的数学模型的建立 (1) 1.3.1建立机构的闭环矢量位置方程 (1) 1.3.2求解方法................................................................... ..2 2 基于MATLAB程序设计 (4) 2.1 程序流程图 (4) 2.2 M文件编写 (6) 2.3 程序运行结果输出 (7) 3 基于MATLAB图形界面设计 (11) 3.1界面设计 (11) 3.2代码设计 (12)

4 小结 (17) 参考文献 (18) 1平面连杆机构的运动分析 1.1 机构运动分析的任务、目的和方法 曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。 对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。还可以根据机构闭环矢量方程计算从动件的位移偏差。上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。 机构运动分析的方法很多,主要有图解法和解析法。当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。 1.2 机构的工作原理 在平面四杆机构中,其具有曲柄的条件为: a.各杆的长度应满足杆长条件,即: 最短杆长度+最长杆长度≤其余两杆长度之和。 b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。 在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。

曲柄连杆机构课程设计

曲柄连杆机构课程 设计

目录 目录 (1) 第1章绪论 (3) 第2章活塞组的设计 (4) 2.1 活塞的设计 (4) 2.1.1 活塞的材料 (4) 2.1.2 活塞头部的设计 (4) 2.1.3 活塞裙部的设计 (5) 2.2 活塞销的设计 (5) 2.2.1 活塞销的结构 (5) 第3章连杆组的设计 (6) 3.1 连杆的设计 (6) 3.1.1 连杆材料的选用 (6) 3.1.2 连杆长度的确定 (6) 3.1.3 连杆小头的结构设计 (6) 3.1.4 连杆杆身的结构设计 (6) 3.1.5 连杆大头的结构设计 (6) 3.2 连杆螺栓的设计 (7) 第4章曲轴的设计 (8) 4.1 曲轴的结构型式和材料的选择 (8) 4.1.1 曲轴的结构型式 (8) 4.1.2 曲轴的材料 (8)

4.2 曲轴的主要尺寸的确定和结构细节设计 (8) 4.2.1 曲柄销的直径和长度 (8) 4.2.2 主轴颈的直径和长度 (9) 4.2.3 曲柄 (9) 4.2.4 平衡重 (9) 4.2.5 油孔的位置和尺寸 (10) 4.2.6 曲轴两端的结构 (10) 第5章曲柄连杆机构的创立 (11) 5.1 活塞的创立 (11) 5.2 连杆的创立 (11) 5.3 曲轴的创立 (11) 第六章曲柄连杆机构静力学分析 (13) 6.1 活塞的静力分析 (13) 6.2 连杆的静力分析 (13)

第1章绪论 曲柄连杆机构是发动机的传递运动和动力的机构,经过它把活塞的往复直线运动转变为曲轴的旋转运动而输出动力。因此,曲柄连杆机构是发动机中主要的受力部件,其工作可靠性就决定了发动机工作的可靠性。随着发动机强化指标的不断提高,机构的工作条件更加复杂。在多种周期性变化载荷的作用下,如何在设计过程中保证机构具有足够的疲劳强度和刚度及良好的动静态力学特性成为曲柄连杆机构设计的关键性问题[1]。 经过设计,确定发动机曲柄连杆机构的总体结构和零部件结构,包括必要的结构尺寸确定、运动学和动力学分析、材料的选取等,以

平面连杆机构及其设计

第4章平面连杆机构及其设计 教学目标: 平面连杆机构是由一些简称“杆”的构件通过平面低副相互连接而成,故又称平面低副机构。平面连杆机构被广泛地应用,近年来,随着电子计算机应用的普及,设计方法的不断改进,平面连杆机构的应用范围还在进一步扩大。本章的教学将使读者了解平面连杆机构的基本形式及其演化过程;对平面四杆机构的一些基本知识(包括曲柄存在的条件、急回运动及行程速比系数、传动角及死点、运动的连续性等)有明确的概念;能按已知连杆三位置、两连架杆三对应位置、行程速比系数等要求设计平面四杆机构。 教学重点和难点: ●平面四杆机构的一些基本知识; ●按已知连杆三位置、两连架杆三对应位置、行程速比系数等要求设计平面四杆 机构。 案例导入: 我们知道,用三根木条钉成的木框是稳定的,即使把钉子换成转动副(铰链),三角形也不会运动。而用四根木条钉成的木框是不稳固的,如果把钉子换成铰链,四边形即可以运动了。依此类推,五边形等也都是可以运动的(图4-1)。因此我们说:三角形是不能运动的最基本图形,而四边形是能运动的最基本图形。把四边形各顶点装上铰链,把一边作为机架,即构成平面四杆机构。因此,四杆机构是最基本的连杆机构。复杂的多杆机构(多边形)也可由其组成。通过本章的学习,读者将了解这种最基本机构的特性,认识这类机构千变万化的应用并掌握其设计方法。 图4-1 三角形和四杆机构 4.1铰链四杆机构的基本形式及应用 连杆机构的优点是运动副为面接触,压强较小、磨损较轻、便于润滑,故可承受较大载荷;低副几何形状简单,加工方便;能实现轨迹较复杂的运动,因此,平面连杆机构在各种机器及仪器中得到广泛应用。其缺点是运动副的制造误差会使误差累积较大,致使惯

第二章平面连杆机构和设计与分析报告

第二章平面连杆机构及其设计与分析 §2-1 概述 平面连杆机构(全低副机构):若干刚性构件由平面低副联结而成的机构。 优点: (1)低副,面接触,压强小,磨损少。 (2)结构简单,易加工制造。 (3)运动多样性,应用广泛。 曲柄滑块机构:转动-移动 曲柄摇杆机构:转动-摆动 双曲柄机构:转动-转动 双摇杆机构:摆动-摆动 (4)杆状构件可延伸到较远的地方工作(机械手) (5)能起增力作用(压力机) 缺点: (1)主动件匀速,从动件速度变化大,加速度大,惯性力大,运动副动反力增加,机械振动,宜于低速。 (2)在某些条件下,设计困难。 §2-2平面连杆机构的基本结构与分类 一、平面连杆机构的基本运动学结构 铰链四杆机构的基本结构 1.铰链四杆机构 所有运动副全为回转副的四杆机构。Array AD-机架 BC-连杆 AB、CD-连架杆 连架杆:整周回转-曲柄 往复摆动-摇杆

2.三种基本型式 (1)曲柄摇杆机构 定义:两连架杆一为曲柄,另一为摇杆的铰链四杆机构。 特点:?、β0~360°, δ、ψ<360° 应用:鳄式破碎机缝纫机踏板机构揉面机(2)双曲柄机构 定义:两连架杆均作整周转动的铰链四杆机构。 由来:将曲柄摇杆机构中曲柄固定为机架而得。 应用特例:双平行四边形机构(P35),天平 反平行四边形机构(P45) 绘图机构 (3)双摇杆机构 定义:两连架杆均作往复摆动的铰链四杆机构。 由来:将曲柄摇杆机构中摇杆固定为机架而得。 应用:翻台机构,夹具,手动冲床 飞机起落架,鹤式起重机 二.铰链四杆机构具有整转副和曲柄存在的条件 上述机构中,有些机构有曲柄,有些没有曲柄。机构有无曲柄,不是唯一地由取哪个构件为机架决定,机构有曲柄的首要条件是:机构中各构件长度间应满足一定的尺寸关系,该条件是首要条件。 然后,再看以哪个构件作为机架。 下面讨论机构中各构件长度间应满足的尺寸关系。铰链四杆机构曲柄存在的条件

汽车曲柄连杆机构设计

摘要 本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。 首先,以运动学和动力学的理论知识为依据,对曲柄连杆机构的运动规律以及在运动中的受力等问题进行详尽的分析,并得到了精确的分析结果。其次分别对活塞组、连杆组以及曲轴进行详细的结构设计,并进行了结构强度和刚度的校核。再次,应用三维CAD软件:Pro/Engineer建立了曲柄连杆机构各零部件的几何模型,在此工作的基础上,利用Pro/E软件的装配功能,将曲柄连杆机构的各组成零件装配成活塞组件、连杆组件和曲轴组件,然后利用Pro/E软件的机构分析模块(Pro/Mechanism),建立曲柄连杆机构的多刚体动力学模型,进行运动学分析和动力学分析模拟,研究了在不考虑外力作用并使曲轴保持匀速转动的情况下,活塞和连杆的运动规律以及曲柄连杆机构的运动包络。仿真结果的分析表明,仿真结果与发动机的实际工作状况基本一致,文章介绍的仿真方法为曲柄连杆机构的选型、优化设计提供了一种新思路。 关键词:发动机;曲柄连杆机构;受力分析;仿真建模;运动分析;Pro/E

ABSTRACT This article refers to by the Jeeta EA113 gasoline engine’s related parameter achievement, it has carried on the structural design compution for main parts of the crank link mechanism in the gasoline engine with four cylinders, and has carried on theoretical analysis and simulation analysis in computer in kinematics and dynamics for the crank link mechanism. First, motion laws and stress in movement about the crank link mechanism are analyzed in detail and the precise analysis results are obtained. Next separately to the piston group, the linkage as well as the crank carries on the detailed structural design, and has carried on the structural strength and the rigidity examination. Once more, applys three-dimensional CAD software Pro/Engineer establishing the geometry models of all kinds of parts in the crank link mechanism, then useing the Pro/E software assembling function assembles the components of crank link into the piston module, the connecting rod module and the crank module, then using Pro/E software mechanism analysis module (Pro/Mechanism), establishes the multi-rigid dynamics model of the crank link, and carries on the kinematics analysis and the dynamics analysis simulation, and it studies the piston and the connecting rod movement rule as well as crank link motion gear movement envelopment. The analysis of simulation results shows that those simulation results are meet to true working state of engine. It also shows that the simulation method introduced here can offer a new efficient and convenient way for the mechanism choosing and optimized design of crank-connecting rod mechanism in engine. Key words: Engine;Crankshaft-Connecting Rod Mechanism;Analysis of Force; Modeling of Simulation;Movement Analysis;Pro/E

连杆机构设计__轨迹生成机构的运动设计

连杆机构设计:轨迹生成机构的运动设计 1 图谱法 这种方法是利用编纂汇集的连杆曲线图册来设计平面连杆机构。现举一例说明如下:例如生产上需要设计带停歇运动的机构(这种机构常用于打包机等一些机器中),首先查阅连杆曲线图册,找到连杆曲线上有一段接近圆弧的铰链四杆机构如图所示,图中连杆曲线的每一段短线的大小相当于曲柄AB转过50时连杆上点M所描绘的距离。整个连杆曲线由72段短线所组成。将曲柄的长度作为基准并取为1,其他构件的长度对曲柄的长度成比例,因此按图册上表示的杆长成比例地放大或缩小机构时,并不改变连杆曲线的特性。由图上可找出连杆曲线上的点P至点Q部分接近于圆弧,其曲率半径f=。这段圆弧由十八段短线组成,因此当点M运动经过这段圆弧时,曲柄转过900,而其曲率中心G保持不动。再将另一构件MF的一端与连杆上的点M铰接,另一端F与滑块在点G处铰接,该构件的长度即等于曲率半径的大小(G处的输出件可以是滑块也可以是摇杆,视实际需要而定)。这样在图示机构中,当点M自点P运动至点Q时,滑块F静止不动;点M至点Q运动至点R时,滑块F向下运动;点M至点R运动至点P时,滑块F作返回运动。滑块F的行程H=,调整滑块导路倾角b的大小,就能改变滑块行程H的大小和往返行程的时间比。但需注意机构的最小传动角不得小于许用值。 由上述可知,使用图谱法可从连杆曲线图册中查到与所要求实现的轨迹非常接近的连杆曲线,从而确定了该机构的参数,使设计过程大大简化。 2 解析法

对于图示铰链四杆机构,以A点为原点、机架AD为x'轴建立直角坐标系Ax'y'。若连杆上一点M在该坐标系中的位置坐标为x'、y',则有 或: 由式和消去f,得: 由式和消去y,得: 再由式和消去b,则得在坐标系Ax'y'中表示的M点曲线方程: 式中: 式是关于x'、y'的一个六次代数方程。 在用铰链四杆机构的连杆点M再现给定轨迹时,给定轨迹通常在另一坐标系Oxy中表示。如图所示,若设A在Oxy中的位置坐标为xA、yA,x轴正向至x'轴正向沿逆时针方向的夹角为f0,M点在Oxy中的坐标为x、y,则有

机械原理课程设计-连杆机构b完美版.

机械原理课程设计 任务书 题目:连杆机构设计B4 姓名:戴新吉 班级:机械设计制造及其自动化2011级3班 设计参数 设计要求: 1.用解析法按计算间隔进行设计计算; 2.绘制3号图纸1张,包括: (1)机构运动简图; (2)期望函数与机构实现函数在计算点处的对比表; (3)根据对比表绘制期望函数与机构实现函数的位移对比图;

3.设计说明书一份; 4.要求设计步骤清楚,计算准确。说明书规范。作图要符合国家标。按时独立完成任务。 目录 第1节平面四杆机构设计............................................ 1.1连杆机构设计的基本问题........................................... 1.2作图法设计四杆机构 (3) 1.3作图法设计四杆机构的特点 (3) 1.4解析法设计四杆机构 (3) 1.5解析法设计四杆机构的特点 (3) 第2节设计介绍.................................................... 2.1按预定的两连架杆对应位置设计原理 ................................ 2.2 按期望函数设计.................................................. 第3节连杆机构设计................................................ 3.1连杆机构设计..................................................... 3.2变量和函数与转角之间的比例尺 (8) 3.3确定结点值 (8)

125cc摩托车风冷发动机曲柄连杆机构设计

毕业设计 125cc 摩托车风冷发动 机曲柄连杆机构设计 学生姓名: 学号: 系 部: 专 业: 指导教师: 二〇一四年六月六日 颜人帅 102012237 机械工程系 机械电子工程 刘嘉

诚信声明 本人郑重声明:本论文及其研究工作是本人在指导教师的指导下独立完成的,在完成论文时所利用的一切资料均已在参考文献中列出。 本人签名:年月日

毕业设计任务书 设计题目:125cc摩托车风冷发动机的曲柄连杆机构设计 系部:机械工程系专业:机械电子工程学号:102012237 学生:颜人帅指导教师(含职称):刘嘉(讲师)专业负责人:张焕梅1.设计的主要任务及目标 (1)根据某款125cc摩托车的技术指标完成对相应发动机曲柄连杆机构的设计;(2)完成零部件的建模及运动仿真。 2.设计的基本要求和内容 (1)完成对摩托车发动机曲柄连杆机构的设计并撰写设计说明书一份; (2)完成仿真模型一份; (3)完成零件图及装配图一份。 3.主要参考文献 《机械设计》高等教育出版社 《发动机设计》机械工业出版社 《汽车设计》清华大学出版社 4.进度安排 设计(论文)各阶段名称起止日期 1 开题准备2013.12.15-2014.3.01 2 完成曲柄连杆机构的设计2014.3.01-2014.4.15 3 完成软件建模仿真2014.4.16-2014.5.30 4 完成说明书撰写2014.6.01-2014.6.10 5 提交设计,答辩2014.6.11-2014.6.20

125cc摩托车风冷发动机曲柄连杆机构设计 摘要:本文以铃木GP125摩托车发动机的相关参数作为参考,对125cc摩托车风冷发动机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论校核分析与计算机仿真分析。 本文分别对活塞组、连杆组以及曲轴进行详细的结构设计,并进行了结构强度和刚度的校核。再次,应用三维CAD软件:Pro/Engineer建立了曲柄连杆机构各零部件零件图与几何模型,装配成功后进行运动仿真。 通过设计建模,校核以及运动仿真,得出的结论基本符合设计思路与理论值。完成了设计方案上的要求。 关键词:曲柄连杆机构,受力分析,仿真建模,运动分析 Design of air engine crank connecting rod mechanism of motorcycle Abstract:Based on the related parameters Suzuki GP 125 motorcycle engin as a reference, The main components of air-cooled engine 125cc motorcycle crank linkage structural design calculations carried out, and carried out on the crank linkage theory about kinematics and dynamics analysis and computer simulation analysis check. This paper analysis the structural design on piston, connecting rod and crankshaft group, and the structural strength and rigidity check. Application of 3D CAD software: Pro/Engineer established the spare parts diagram and geometric model of the crank and connecting rod mechanism again, After the success of the assembly motion simulation and finite element simulation model. Through the design modeling,Check and movement simulation,Conclusion basic conform to the design thought and the theoretical https://www.wendangku.net/doc/3a5912329.html,pleted the design requirements. Through the design modeling, check and motion simulation, conclusion basic conform to the design thought and the theoretical value. Completed the design requirements. Key word: Crank Mechanism,Stress Analysis,Simulation Modeling,Motion Analysis

曲柄连杆机构设计

课程设计说明书 题目:曲柄连杆机构设计 姓名: 班级: 学号: 指导老师: 完成时间: 目录 第1章绪论 (4) 1.1题目分析 (4)

1.2设计研究的主要内容 (4) 第2章连杆组的设计 (15) 2.1连杆的工作情况、设计要求和材料选用 (15) 2.2连杆长度的确定 (16) 2.3连杆小头的设计 (16) 2.4连杆杆身的设计 (17) 2.5连杆大头的设计 (17) 2.6连杆强度计算 (18) 2.7连杆螺栓设计 (25) 2.8本章小结 (27) 第3章活塞组的设计 (5) 3.1活塞的工作条件和设计要求 (5) 3.2活塞的材料 (6) 3.3活塞的主要尺寸 (7) 3.4活塞的头部设计 (9) 3.5活塞的销座设计 (9) 3.6活塞的裙部设计 (10) 3.7活塞强度计算 (11) 3.8活塞销的设计 (12) 3.9活塞环的设计 (13) 3.10本章小结 (15) 第4章曲轴组的设计 (27) 4.1曲轴的结构型式和材料的选择 (27) 4.2曲轴的主要尺寸确定 (28) 4.3曲轴油孔位置 (30) 4.4曲轴端部结构 (30) 4.5曲轴平衡块 (31) 4.6曲轴的轴向定位 (31)

4.7曲轴疲劳强度计算 (32) 4.8飞轮的设计 (41) 4.9本章小结 (42) 总结 (43) 参考文献 (44) 致谢 (45) 第1章绪论

1.1 题目分析 曲柄连杆机构是发动机的传递运动和动力的机构,通过它把活塞的往复直线运动转变为曲轴的旋转运动而输出动力。因此,曲柄连杆机构是发动机中主要的受力部件,其工作可靠性就决定了发动机工作的可靠性。随着发动机强化指标的不断提高,机构的工作条件更加复杂。在多种周期性变化载荷的作用下,如何在设计过程中保证机构具有足够的疲劳强度和刚度及良好的动静态力学特性成为曲柄连杆机构设计的关键性问题。 通过设计,确定发动机曲柄连杆机构的总体结构和零部件结构,包括必要的结构尺寸确定、运动学和动力学分析、材料的选取等,以满足实际生产的需要。 在传统的设计模式中,为了满足设计的需要须进行大量的数值计算,同时为了满足产品的使用性能,须进行强度、刚度、稳定性及可靠性等方面的设计和校核计算,同时要满足校核计算,还需要对曲柄连杆机构进行动力学分析。 为了真实全面地了解机构在实际运行工况下的力学特性,本文采用了多体动力学仿真技术,针对机构进行了实时的,高精度的动力学响应分析与计算,因此本研究所采用的高效、实时分析技术对提高分析精度,提高设计水平具有重要意义,而且可以更直观清晰地了解曲柄连杆机构在运行过程中的受力状态,便于进行精确计算,对进一步研究发动机的平衡与振动、发动机增压的改造等均有较为实用的应用价值。 本次设计柴油机型号为4105型柴油机,基本参数为: 2 z kgf/cm 70p rpn 1500n mm 120105====最高爆发压力转速行程缸径S mm D 1.2 设计研究的主要内容 对内燃机运行过程中曲柄连杆机构受力分析进行深入研究,其主要的研究内容有:

机械原理连杆机构设计和分析5

部讲义,请勿流传 第五讲 平面连杆机构及其设计 连杆机构的传动特点: 1.因为其运动副一般为低副,为面接触,故相同载荷下,两元素压强小,故可承受较大载荷;低副元素便于润滑,不易磨损;低副元素几何形状简单,便于制造。2.当原动件以同样的运动规律运动时,若改变各构件的相对长度,可使从动件得到不同的运动规律。3.利用连杆曲线满足不同的规矩要求。4.增力、扩大行程、实现远距离的传动(主要指多杆机构)。 缺点: 1.较长的运动链,使各构件的尺寸误差和运动副中的间隙产生较大的积累误差,同时机械效率也降低。2.会产生系统惯性力,一般的平衡方法难以消除,会增加机构动载荷,不适于高速传动。 平面四杆机构的类型和应用 一、平面四杆机构的基本型式 1.曲柄摇杆机构2.双曲柄机构 3.双摇杆机构 二、平面四杆机构的演化型式 1.改变构件的形状和运动尺寸 曲柄摇杆机构 -----曲柄滑块机构 2.改变运动副的尺寸 偏心轮机构可认为是将曲柄滑块机构中的转动副的半径扩大,使之超过曲柄的长度演化而成的。 3.选用不同的构件为机架 (a ) 曲柄滑块机构 (b )ABBC 为摆动导杆机构) (c )曲柄摇块机构(d )直动滑杆机构(定块机构) 平面四杆机构的基本知识 一、平面四杆机构有曲柄的条件 1.铰链四杆机构中曲柄存在的条件 (1)存在周转副的条件是: ①其余两杆长度之和最长杆长度最短杆长度 ≤+,此条件称为杆长条件。 ②组成该周转副的两杆中必有一杆为最短杆。(意即:连架杆和机架中必有一杆是最短杆) 2满足杆长条件下,不同构件为机架时形成不同的机构

①以最短构件的相邻两构件中任一构件为机架时,则最短杆为曲柄,而与机架相连的另一构件为摇杆,即该机构为曲柄摇杆机构。 ②以最短构件为机架,则其相邻两构件为曲柄,即该机构为双曲柄机构。 ③以最短构件的对边为机架,则无曲柄存在,即该机构为双摇杆机构。 3.不满足杆长条件的机构为双摇杆机构。 注:曲柄滑块机构有曲柄的条件:a + e ≤ b 导杆机构:a < b时,转动导杆机构; a > b时,摆动导杆机构。 例题:

曲柄连杆机构机体组-教案设计

曲柄连杆机构机体组教案 一、教学内容分析 机体组是发动机的支架,是曲柄连杆机构、配气机构和发动机各系统主要零部件的装配机体。本次课的内容对汽车专业的学生在今后的学习和实践动手操作中起着重要的作用,只有掌握了发动机机体各组件的结构、作用和工作过程,才能继续深入学习与发动机有关的后续知识。 二、三维目标: 知识与技能: 1、掌握曲柄连杆机构的组成和作用; 2、掌握机体组的组成和作用; 3、掌握机体的结构形式主要有哪些。 过程与方法: 通过本次机体组这节课的学习,同学们将了解机体组各组成部件的结构形式及作用。由于同学们刚开始接触发动机,对发动机各个组成部件的相关知识还较生疏,所以,在讲解机体组这部分内容的时候以多媒体的方式来进行教学,通过课件上的图片或者视频的展示,以加强学生对发动机机体组知识的理解。 情感态度与价值观: 通过任务驱动和教师的引导,让学生自主探究学习和小组协作学习,在完成一个个具体的任务过程中机体组的组成和各零部件的作用,从而培养学生独立分析问题、解决问题的能力、举一反三的能力。 三、教学重难点 1、教学重点:曲柄连杆机构的组成和作用; 机体组的组成和作用; 机体组各零部件的作用。 2、教学难点:汽缸体的结构形式; 机体内各种结构形式的燃烧室结构。 四、教学方法:讲授法、讨论法、多媒体演示法 五、课时安排:1课时 六、教学过程: 复习旧课:回顾发动机总体构造内容,用提问的方式检验学生的掌握程度。 设计意图:1)通过提问,可以让同学们集中注意力; 2)通过提问,让学生回顾发动机总体构造知识,将有利于学生对发动机机体组这部分内容的学习。 引入新课:在本课教学开始,利用上个环节的提问内容来引出本次课将学的内容,并提醒学生本次课内容的重点。 一、观看曲柄连杆机构相关视频 学生带着问题观看相关视频,问题如下: 1、发动机曲柄连杆机构有哪几部分组成? 2、发动机曲柄连杆机构的作用是什么呢? 二、小组讨论:

最新4105连杆机构设计汇总

4105连杆机构设计

第2章连杆组的设计 2.1连杆的工作情况、设计要求和材料选用 1、工作情况 连杆小头与活塞销相连接,与活塞一起做往复运动,连杆大头与曲柄销相连和曲轴一起做旋转运动。因此,连杆体除有上下运动外,还左右摆动,做复杂的平面运动。 2、设计要求 (1)结构简单,尺寸紧凑,可靠耐用。 (2)在保证具有足够强度和刚度的前提下,尽可能减轻重量,以降低惯性力。(3)尽量缩短长度,以降低发动机的总体尺寸和总重量。 (4)大小头轴承工作可靠,耐磨性好。 (5)连杆螺栓疲劳强度高,连接可靠。 (6)易于制造,成本低。 连杆主要承受气体压力和往复惯性力所产生的交变载荷,因此,在设计时应首先保证连杆具有在足够的疲劳强度和结构钢度。如果强度不足,就会发生连杆螺栓、大头盖或杆身的断裂,造成严重事故,同样,如果连杆组刚度不足,也会对曲柄连杆机构的工作带来不好的影响。 所以设计连杆的一个主要要求是在尽可能轻巧的结构下保证足够的刚度和强度。为此,必须选用高强度的材料;合理的结构形状和尺寸。 3、材料的选择 为了保证连杆在结构轻巧的条件下有足够的刚度和强度,采用精选含碳量的优质中碳结构钢45模锻,表面喷丸强化处理,提高强度。

2.2连杆长度的确定 近代中小型告诉柴油机,为使发动机结构紧凑,最适合的连杆长度应该是,在保证连杆及相关机件在运动不与其他机件相碰的情况下,选取最小的连杆长度。 连杆长度l 与结构参数l R =λ(R 为曲柄半径)有关,此次设计选取286.0=λ。 mm S R l 210286 .021202=?=== λλ 2.3连杆小头的设计 小头主要尺寸为连杆衬套内径d 和小头宽度1b 。 1.连杆衬套内径d mm D d 3810536.036.0=?== 2.衬套厚度δ mm d 5.238066.0066.0=?==δ 3.小头内径1d mm d d 435.223821=?+=+=δ 4.小头宽度1b mm d b 403805.105.11=?== 5.小头外径2d mm d d 524321.121.112=?== 2.4连杆杆身的设计 连杆杆身从弯曲刚度和锻造工艺性考虑,采用工字形截面。 1.杆身截面高度H

相关文档
相关文档 最新文档