文档库 最新最全的文档下载
当前位置:文档库 › 线段的和差倍分 培优

线段的和差倍分 培优

线段的和差倍分 培优
线段的和差倍分 培优

线段的和差倍分问题

例1 如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 中点. 求证:DM =

2

1AB 分析:如图,因为

2

1

AB 等于△ABC 的 中位线NM 的长,所以原命题就转化为证明DM =NM 。∵DN 为Rt △ADC 斜边上的中线,∴DN =NC ;∴∠2=∠C ,又∵2∠C =∠B =∠1=∠2+∠3,∴∠2=∠3=∠C ,∴DM =MN ,问题得证。

变式:如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,求证:CD=AB+BD 例2 如图,在△ABC 中,BD =FC ,FG ∥DE ∥BA ,D 、F 在BC 上,E 、G 在AC 上. 求证:FG =AB -DE

分析:本题的关键在于构造一条线段, 使之等于(AB -DE ),如图,在AB 上载取线 段AH =DE ,则AB -DE =BH ,从而把原命题转化

为证明FG =BH 的问题,进而通过证△BHD ≌FGC ,使原命题得证。

例3 如图,P 是正方形ABCD 的边BC 上的任意一点,AQ 平分∠PAD . 求证:AP =BP +DQ .

证明:延长PB 至E ,使BE =DQ , ∵四边形ABCD 是正方形, ∴BA =AD ,∠EBA =∠QDA =90°

∴△ABE ≌△ADQ ,∴∠E =∠4,∠3=∠1, ∵∠1=∠2,∴∠

3=∠2,∴∠PAQ =∠BAQ =∠4

∴∠E =∠PAE ,∴PE =AP ,既BP +BE =AP , ∴BP +DQ =AP

变式:如图,正方形ABGE 中,点D 在EG 上,点C 在BG 上,且045DAC ∠=,求

证:CD=DE+CB.

变式2:如图,在上题中,若点D 在EG 的延长线上,点C 在GB 的延长线上,其余

条件不变.求证:

DE=BC+CD.

D

例4 如图,△ABC 中,∠BAC =90°,AB=AC ,AE 是经过点A 的一条直线,交BC 于F ,且B 、C 在AE 在的异侧,BD ⊥AE 于D ,CE ⊥AE 于E ,

求证:DB =DE +CE 。

分析:通过分析题目的已知条件可知: △ABD ≌△CAE ,从而得AD =CE ,则DE +CE =AE , 而BD =AE

,原命题得证。

C

G

三角形培优训练100题集锦

E D F C B A 三角形培优训练专题 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 6、已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。 7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 1、已知,如图△ABC中,AB=5,AC=3,求中线AD的取值范围. 2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.

证题技巧之三——证明线段或角的和差倍分(推荐文档)

证题技巧之三一一证明线段或角的和差倍分 一、证明线段或角的倍分 1、方法:①长(或大)折半 ②短(或小)加倍 2、判断:两种方法有时对同一个题都能使用,但存在易繁的问 题,因此,究竟是折半还是加倍要以有利于利用已知条件为准。 3、添线:①为折半或加倍而添;②为折半或加倍后创造条件或 利于利用已知条件而添。 4、传递:在加倍或折半后,还不易或不能证明结论,则要找与 被证二量有等量关系的量来传递,或者添加这个量来传递。此时,添 线从两方面考虑:①造等量②为证等量与被证二量相等而添。参考例 4、例 5、例6。 例1 AD 是^ ABC 的中线,ABEF 和ACGH 是分别以AB 和 AC 为边向形外作的正方形。求证:FH=2AD / BAC+ / ACN=180 证明:延长AD 至N 使AD=DN 则ABNC 是平行四边形 CN=AB=FA AC=AH 又/ FAH+ / BAC=180 ???△ FAHY NCA ??? FH=AN 例 2、△ ABC 中,/ B=2 / C , AD 是高,M 是BC 边上的中点。 $ ???

1 求证:DM=2 AB / 2=Z B ???/ 2=2Z 1 ???/ 1 = / DNM 又 AN=DN=ND ? DM=2 A B 1 贝J BFAC ??? BF=AE ???△ AEC 心 BFD ?DF 二CE 二 CD=2CE 作业: 1、在△ABC 中,D 为BC 的中点,E 为AD 的中点,BE 的延长 1 线交AC 于F ,求证:AF=2 FC 2、AB 和AC 分别切? O 于B 和C, BD 是直径。求证/ BAC 二Z CBD 3、圆内接△ ABC 的AB=AC ,过C 作切线交AB 的延长线于D , DE 垂直于AC 的延长线于E 。求证:BD=2CE 例4从平行四边形的钝角顶点 A 向BC 边作垂线,垂足为E , 证明:取AB 的中点N ,连接MN 、DN 贝J MN // AC / 1 = / C ??? DM=DN 例 3 △ ABC 中,AB=AC , E 是 AB 的中点,D 在AB 的延长线上,且 DB=AC 。求证:CD=2CE 证明:过B 作CD 的中线BF V AB=AC , E 是AB 的中点 又 DB=AC

初中几何经典培优题型(三角形)

全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等; (3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等; (4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: 1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.

3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的 思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是 全等变换中的“平移”或“翻转折叠” 5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相 等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 常见辅助线写法: ⑴过点A作BC的平行线AF交DE于F ⑵过点A作BC的垂线,垂足为D ⑶延长AB至C,使BC=AC ⑷在AB上截取AC,使AC=DE ⑸作∠ABC的平分线,交AC于D ⑹取AB中点C,连接CD交EF于G点

线段与角的和差倍分计算

专题八__线段与角的和差倍分计算__[学生用书A62] 一线段的和差倍分计算 教材P153作业题第4题) 已知线段AB=a(如图1),延长BA至点C,使AC=1 2AB.D为线段BC的中点. (1)求CD的长; (2)若AD=3 cm,求a的值. 在一条直线上顺次取A,B,C三点,已知AB=5 cm,点O是线段AC 的中点,且OB=1.5 cm,则BC的长是() A.6 cm B.8 cm C.2 cm或6 cm D.2 cm或8 cm 如图2,某汽车公司所运营的公路AB段有四个车站依次是A,C,D,B, AC=CD=DB.现想在AB段建一个加油站M,要求使A,C,D,B站的各一辆汽车到加油站M所花的总时间最少,则M的位置在() A.在AB之间B.在CD之间C.在AC之间D.在BD之间如图3,点D是线段AB的中点,C是线段AD的中点,若AB=4 cm, 求线段CD的长度. 如图4,已知点C是线段AB上一点,AC<CB,D,E分别是AB,CB 的中点,AC=8,EB=5,求线段DE的长.

如图5,线段AC ∶CD ∶DB =3∶4∶5,M ,N 分别是CD ,AB 的中点, 且MN =2 cm ,求AB 的长. 如图6,点C 分线段AB 为5∶7,点D 分线段AB 为5∶11,已知CD = 2 cm ,求AB 的长. 如图7,已知线段AB 上有两点C ,D ,且AC =BD ,M ,N 分别是线段 AC ,AD 的中点.若AB =a cm ,AC =BD =b cm ,且a ,b 满足(a -10)2+???? ??b 2-4=0.求线段MN 的长度. 二 角的和差倍分计算 如图10,已知直线AB 上一点O ,∠AOD =44°,∠BOC =32°,∠EOD =90°,OF 平分∠COD ,求∠FOD 与∠EOB 的度数. 已知∠α和∠β互为补角,并且∠β的一半比∠α小 30°,求∠α,∠β. 如图11,从点O 引出6条射线OA ,OB ,OC ,OD ,OE ,OF ,且∠AOB =100°,OF 平分∠BOC ,∠AOE =∠DOE ,∠EOF =140°,求∠ 的度数.

2014年人教版数学八上能力培优11.1与三角形有关的线段

第十一章三角形 11.1与三角形有关的线段(附答案) 专题一三角形个数的确定 1.如图,图中三角形的个数为() A.2 B.18 C.19 D.20 2.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形__________个. 3.阅读材料,并填表: 在△ABC中,有一点P1,当P1、A、B、C没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图).当△ABC内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样? 专题二根据三角形的三边不等关系确定未知字母的范围 4.三角形的三边分别为3,1-2a,8,则a的取值范围是() A.-6<a<-3 B.-5<a<-2 C.2<a<5 D.a<-5或a>-2 5. 在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,如果b=4,则这样的三角形共有______个. 6.若三角形的三边长分别是2、x、8,且x是不等式 2 2 x+ > 12 3 x - -的正整数解,试求第 三边x的长.

状元笔记 【知识要点】 1.三角形的三边关系 三角形两边的和大于第三边,两边的差小于第三边. 2.三角形三条重要线段 (1)高:从三角形的顶点向对边所在的直线作垂线,顶点与垂足之间的线段叫做三角形的高. (2)中线:连接三角形的顶点与对边中点的线段叫做三角形的中线. (3)角平分线:三角形内角的平分线与对边相交,顶点与交点之间的线段叫做三角形的角平分线. 3.三角形的稳定性 三角形具有稳定性. 【温馨提示】 1.以“是否有边相等”,可以将三角形分为两类:三边都不相等的三角形和等腰三角形.而不是分为三类:三边都不相等的三角形、等腰三角形、等边三角形,等边三角形是等腰三角形的一种. 2.三角形的高、中线、角平分线都是线段,而不是直线或射线. 【方法技巧】 1.根据三角形的三边关系判定三条线段能否组成三角形时,要看两条较短边之和是否大于最长边. 2.三角形的中线将三角形分成两个同底等高的三角形,这两个三角形面积相等.

(完整版)线段的和差倍分专项训练题2

线段的和差倍分专项训练题2 1.如图,已知线段AB 长为40mm ,C 是AB 的中点,延长AB 到D 点,使CD=3CB ;E 点在线段AB 的反向延长线上,且BD=2EA ,求线段ED 的中点M 到C 点的距离. 2.如图,已知线段AB=3cm ,请读题、画图、计算并作答:(1)根据下列语句画出图形:在线段AB 上取一点K ,使AK=BK ,在线段AB 的延长线上取一点C ,使AC=3BC ,在线段BA 的延长线上取一点D ,使AD=AB ;(2)在(1)所画出的图形中,求线段BC 、DC 的长;(3)在(1)所画出的图形中,点K 是哪些线段的中点?请写出来. 3.如图,已知线段AB ,点C 在AB 的延长线上,AC=35BC ,D 在AB 的反向延长线上,BD=5 3DC .(1)在图上画出点C 和点D 的位置;(2)设线段AB 长为x ,则BC=;AD=;(用含x 的代数式表示)(3)若AB=12cm ,求线段CD 的长 4.已知线段AB=4,将线段AB 延长至C ,使BC= 2 1AB ,D 为AC 的中点,反向延长AB 至E ,使EA=AD ,根据题意画出图形并求AE 的长

5.如图,延长线段AB 至点C ,使BC=21AB ,反向延长AB 至D ,使AD=3 1AB .(1)依题意画出图形,求BC :AD 的结果;(2)若点E 为BC 的中点,且BD-2BE=10,求AB 的长 6.已知线段AB=a ,小明在线段AB 上任意取了点C 然后又分别取出AC 、BC 的中点M 、N ,的线段MN (如图1),小红在线段AB 的延长线上任意取了点D ,然后又分别取出AD 、BD 的中点E 、F ,的线段EF (如图2).(1)试判断线段MN 与线段EF 的大小,并说明理由;(2)若EF=x ,AD=4x+1,BD=x+3,求x 的值 7.如图,C 为线段AB 上一点,D 是线段AC 的中点,E 为线段CB 的中点.(1)如果AC=6cm ,BC=4cm ,试求DE 的长;(2)如果AB=a ,试探求DE 的长度;(3)若C 在线段AB 的延长线上,且满足AC ﹣BC=bcm ,D ,E 分别为AC ,BC 的中点,你能猜想DE 的长度吗?直接写出你的结论,不需要说明理由 8.已知:点A 、B 、C 在直线l 上,线段AB=10,M 是线段AC 的中点,N 是线段BC 的中点.(1)如图①,若点C 在线段AB 上,且AC=6,求线段MN 的长;(2)若点C 是线段AB 上任一点,其他条件不变,能求出线段MN 的长度吗?请说明理由;(3)若点C 在线段AB 外,M 、N 仍分别是AC 、BC 的中点,你能猜想MN 的长度吗?请在备用图②、③中画出相应的图形,写出你的结论,并说明理由

三角形培优解析

有同学问我:“我听课能听懂,但是不会做题,这是怎么回事?”其实这样的同学大多数问题就出在这里:(1)你只听懂了浅层次的知识,没有深入,所掌握的东西达不到应用的高度;(2)有的同学浅尝辄止,会了一点就认为都会了,比如一个例题老师讲3种方法,他听懂一种就不再听其他解法了;(3)听懂了知识,但是没记住,或没弄明白怎么应用;(4)缺乏数学思想和数学方法的指导,像方程思想、分类讨论思想等都是重要的数学思想和方法;另外,还有些同学因为信心不足,认为数学很难,没有兴趣学,这样就失去了入门的过程,因此更没法深入。 知识点透析: 一.三角形的有关概念 1.三角形的概念包涵三层含义: (1)不在同一条直线上;(2)三条线段;(3)首尾顺次相连. 2.平时所说的三角形的角是指三角形的内角。 3.在表示三角形时,三个字母没有先后顺序,只要三个字母相同就表示同一个三角形。 二.三角形的分类 1.三角形的两种分类方法是各自独立的,但是同一个三角形可以同属于两种不同类别,例如,等腰直角三角形既是等腰三角形,又是直角三角形。 2.等边三角形是特殊的等腰三角形,等边三角形也叫正三角形。 3.在等腰三角形中,若没有指明腰和底边或顶角和底角,则解题时要分类讨论。 三.三角形的高 1.三角形的高是一条线段,即顶点到对边的垂直线段。 2.任意三角形都有三条高。 四.三角形的中线 1.三角形的中线是一条线段,即顶点到其对边中点之间的线段。 2.三角形的一条中线将这个三角形分成两个面积相等的三角形。 五.三角形的角平分线 1.三角形的角平分线是线段,不是直线,不是射线。 2.一个三角形有三条角平分线,他们在三角形的内部,且交于一点。 六.三角形的稳定性 三角形的稳定性说明三角形三条边的长度确定后,其形状和大小也随之确定。 七.三角形的内角和定理 1.三角形内角和定理适用于任意三角形。 2.在三角形中,已知任意两个角,可以求出第三个角。 3.已知三角形中三个内角的关系,可以求出各个内角的度数,通常利用方程的知识来解决。 4.直角三角形的两锐角互余。 八.三角形的外角 1.在三角形的每个顶点处都有两个外角,这个两个外角相等。 2.三角形的外角等于与它不相邻的两个内角的和,特别注意“不相邻”。 3.三角形的一个外角大于与它不相邻的每一个内角。 九.多边形 1.多边形是由不在同一直线上的线段首尾顺次相连接组成的封闭图形,多边形的边数大于等于3,有几条边就是几边形。 2.用大写字母表示多边形时,字母必须按顺/逆时针的顺序排列。 3.正多边形必须具备的两个条件: (1)边相等(2)角相等。二者缺一不可。

线段和差倍分

部分内容来源于网络,有侵权请联系删除! 怎样证明线段的和差倍分问题 怎样证明线段的倍分问题 【典型例题】 常规题型1、已知:如图所示,点D 、E 分别是等边ABC ?的边AC 、BC 上的点,AD=CE ,BD 、AE 交于点P ,AE BQ ⊥于Q .求证:PB PQ 2 1 = . 常规题型2、已知:如图所示,在ABC ?中,AB=AC ,?=∠120A ,AB 的垂直平分线MN 分别交BC 、AB 于点M 、N .求证:CM=2BM . 能力挑战1、如图所示,在ABC ?中,BC AB 2 1 =,D 是BC 的中点,M 是BD 的中点.求证:AC=2AM . 能力挑战2、已知:如图所示,在ABC ?中,BD 是AC 边上的中线,BH 平分BH AF CBD ⊥∠,,分别交BD 、BH 、BC 于E 、G 、F .求证:2DE=CF . A D P C B Q M A D B A M N B C A E G B D H

部分内容来源于网络,有侵权请联系删除! 【经典练习】 1、如图所示,已知ABC ?中,21∠=∠,AD=DB ,AC DC ⊥.求证:AB AC 2 1 = . 2、已知:如图所示,D 是ABC ?的边BC 上一点,且CD=AB ,BAD BDA ∠=∠,AE 是ABD ?的中线.求证:AC=2AE . 3、已知:如图所示,在ABC ?中,AB=AC ,?=∠120BAC ,D 是BC 的中点,AB DE ⊥于E .求证:EB=3EA . 4、已知:如图所示,在ABC ?中,AB=AC ,?=∠120BAC ,P 是BC 上一点,且?=∠90BAP .求证:PB=2PC . 5、已知:如图所示,锐角ABC ?中,C B ∠=∠2,BE 是角平分线,BE AD ⊥,垂足是D .求证:AC=2BD . A B E D E CE A D E B C A D E B A P B C A D B C 1 2

线段的和差倍分问题的证明2017

线段的和差倍分问题的证明 一、运用定理法 即直接或间接运用某些涉及线段和差倍分关系的定理或推论进行证明。此类定理和推论有:三角形中位线定理;梯形中位线定理;直角三角形30°的锐角所对的直角边等于斜边的一半;直角三角形斜边上的中线等于斜边的一半。 例1 如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 中点. 求证:DM = 2 1AB 对应练习 1、已知:如图所示,点D 、E 分别是等边ABC ?的边AC 、BC 上的点,AD=CE ,BD 、AE 交于点P ,AE BQ ⊥于Q .求证:PB PQ 2 1 = . 2、如图所示,在ABC ?中,AB=AC ,?=∠90BAC ,BE 平分ABC ∠,交AC 于D ,BE CE ⊥于E 点,求证:BD CE 2 1 =. 3、如图所示,在ABC ?中,BC AB 2 1 = ,D 是BC 的中点,M 是BD 的中点.求证:AC=2AM . 4、已知:如图所示,D 是ABC ?的边BC 上一点,且CD=AB ,BAD BDA ∠=∠,AE 是ABD ?的中线.求证:AC=2AE . Q A D P C B E M A D B A B E D C A

5、已知:如图所示,锐角ABC ?中,C B ∠=∠2,BE 是角平分线,BE AD ⊥,垂足是D .求证:AC=2BD . 二、割补线段法 这是证明线段的和差倍分问题的一种重要方法。即通过“分割”或“添补”的形式,在相关线段或其延长线上构造一线段,使之能够表示几条线段的和差倍分关系,从而将多线段问题转化为两线段问题。在证明线段的和差倍分关系时,往往通过添辅助线,构造出能表示线段的和差倍分关系的线段,促使问题的转化。但在添加辅助线之前一定要结合题意和图形深入分析,想一想,图形中是否已经存在能表示有关线段和差倍分关系的线段,否则乱添加辅助线只能把图形复杂化,使思路步人歧途。下面请看一个例子。 例2、P 是正方形ABCD 的边BC 上的任意一点,AQ 平分∠PAD . 求证:AP =BP +DQ . 例3、 如图,△ABC 中,∠BAC =90°,AE 是经过点A 的一条直线,交BC 于F ,且B 、C 在AE 在的异侧,BD ⊥AE 于D ,求证:DB =DE +CE 。 对应练习 1、如图所示,已知ABC ?中,?=∠60A ,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O .求证:BE+CD=BC . A D E B C A O E B C D

三角形培优训练100题集锦(学生用)

三角形培优训练专题 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 6、 已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。 7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 1、已知,如图ABC ?中,5=AB ,3=AC ,求中线AD 的取值范围。 分析:本题的关键是如何把AB ,AC ,AD 三条线段转化到同一个三角形当中。 解:延长AD 到E ,使DA DE =,连接BE 又∵CD BD =,CDA BDE ∠=∠ ∴()SAS CDA BDE ???,3==AC BE ∵BE AB AE BE AB +- (三角形三边关系定理) 即822 AD ∴41 AD 2、如图,ABC ?中,E 、F 分别在AB 、AC 上,DF DE ⊥,D 是中点,试比较CF BE +与 EF 的大小。 证明:延长FD 到点G ,使DF DG =,连接BG 、EG ∵CD BD =,DG FD =,CDF BDG ∠=∠ ∴CDF BDG ??? E C A B D A

第三讲--线段的和差倍分问题

如图,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明. (3)解:BE+DF=EF;理由如下: 延长AB至点N,使BN=DF,连接CN,如图3所示: ∵∠ABC+∠D=180°,∠NBC+∠ABC=180°, ∴∠NBC=∠D, 在△NBC和△FDC中,, ∴△NBC≌△FDC(SAS), ∴CN=CF,∠NCB=∠FCD, ∵∠BCD=140°,∠ECF=70°, ∴∠BCE+∠FCD=70°, ∴∠ECN=70°=∠ECF, 在△NCE和△FCE中,, ∴△NCE≌△FCE(SAS), ∴EN=EF, ∵BE+BN=EN, ∴BE+DF=EF. 26.已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C 向直线BP作垂线,垂足分别为点E、F,点O为AC的中点. (1)当点P与点O重合时如图1,易证OE=OF(不需证明) (2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明. 【考点】四边形综合题. 【分析】(1)由△AOE≌△COF即可得出结论. (2)图2中的结论为:CF=OE+AE, 延长EO交CF于点G,只要证明 △EOA≌△GOC,△OFG是等边三角 形,即可解决问题. 图3中的结论为:CF=OE﹣AE,延长 EO交FC的延长线于点G,证明方法 类似. 【解答】解:(1)∵AE⊥PB,CF⊥BP,

线段和差倍分及其应用专题

线段的和差倍分及其应用专题【例1】、如图,D是AB的中点, E是BC的中 点 ,BE= 5 1 AC=2cm,线段DE的长,求线段DE的长. 练习: 1、如图,AB=24cm,C、D点在线段AB上,且CD=10cm,M、N分别是AC、BD的中点,求线段MN的长. 2、如图,C为线段AB的中点,N为线段CB的中点,CN=1cm。求图中所有线段的长度的和. 3、在同一条公路旁,住着五个人,他们在同一家公司上班,如图9,不妨设这五个人的家分别住在点ABDEF位置,公司在C点,若AB=4km,BC=2km,CD=3km,DE=3km,EF=1km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价3元(3km以内,包括3km),以后每千米1.5元(不足1km,以1km计算),每辆车能容纳3人. (1)若他们分别乘出租车去上班,公司需支付车费多少元? (2)如果你是公司经理,你对他们有没有什么建议?

4、如图所示,沿江街AB 段上有四处居民小区A .C .D .B ,且有AC=CD=DB ,为改善居民的购物环境,想在AB 上建一家超市,每个小区的居民各执一词,难以定下具体的建设位置,高经理是超市负责人,从便民、获利的角度考虑,你觉得他会把超市建在哪儿?为什么? 【例2】、点C 、D 顺次将线段AB 分成三部分,且AC = 2CD,CD :DB = 1 :3,M 、N 分别为AC 、BD 的中点,MN = 7cm,求线段AB 的长度。 练习: 1、M 、N 是线段E 、F 上两点,已知3:2:1:: BF AB EA ,M 、N 分别是EA 、BF 的中点,且MN=8cm ,试求EF 的长。 2、已知点C 在线段AB 上, AC=72AB ,M 是线段BC 的中点,AM=9 cm,试求AB 的长. · · · · · · A B C D M N A B M C

三角形中常见辅助线培优专题

三角形中常见辅助线 的作法 1、延长中线构造全等三角形 例1如图1,已知△ ABC 中,AD 是厶ABC 的中线,AB=8 AC=6求AD 的取值范围. 2、引平行线构造全等三角形 例2如图2,已知△ ABC 中,AB = AC D 在AB 上, E 是AC 延长线上一点,且 BD= CE DE 与BC 交于点F . 求证:DF=EF 3、作连线构造等腰三角形 例 3 如图 3,已知 RT ^ ACB 中,/ C=90 , AC=BC AD=AC DEI AB,垂足为 D,交 BC 于E. 求证:BD=DE=CE 提示:连结DC 证厶ECD 是等腰三角形. 图3 4、利用翻折,构造全等三角形 . A C E

例4如图4,已知△ ABC中,/ B= 2/ C, AD平分/ BAC交BC于D.求证:AC= AB+ BD.

、已知:AB=4 , AC=2 , D是BC中点,AD是整数,求AD D 2 已知:/ 1 = / 2, CD=DE , EF//AB,求证:EF=AC 3?已知:AD 平分/ BAC , AC=AB+BD,求证:/ B=2 / C D 4.如图,△ ABC中,/ BAC=90度,AB=AC, BD是/ ABC的平分线,BD的延长线垂直于过C 点的直线于E,直线CE交BA的延长线于F . D

5?已知:AC 平分/ BAD ,CE 丄AB , B+ / D=180 求 证:AE=AD+BE 6.如图,四边形ABCD 中,AB // DC, BE、CE 分别平分/ABC、/ BCD,且点E 在AD 上。求证:BC=AB+DC。 7.P 是/ BAC 平分线AD 上一点,AC>AB,求证: PC-PB

2021年中考数学热点专题复习:例析线段和差倍分问题的求解策略

2021年中考数学热点专题复习:例析线段和差倍分问题的求解策略在几何问题中,要证明一条线段是另外几条线段的和差,或是另一线段的几倍或几分之几,我们统称为线段的和差倍分问题,处理这类问题的指导思想是化归为线段的相等问题. 一、利用全等形或相似形 对于线段的倍分问题,通常可利用图形中特殊的分点为解题的突破口,找出图形中较短线段的倍分线段,再用全等三角形证明它与较长线段相等,或围绕特殊分点对应线段所在三角形寻找相似三角形,利用相似形对应线段的比例关系达到求证的目的.例1如图1,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD =45°,AD与BE交于点F,连CF. (1)求证:BF=2AE; (2)若CD=2,求AD的长. 分析由图形的对称性,不难发现点E为AC的中点,即AC=2AE,故问题(1)只要证明BF=AC. (2)略. 例2如图2,点A、B、C、D在⊙O上,AC⊥BD于点E,过点O作OF⊥BC于点F. (1)求证:△AEB∽△OFC; (2)AD=2OF.

二、取长补短法 对于线段的和差问题,通常采用延长较短线段或截取较长线段的方式,化归为线段的相等问题(俗称取长补短法). 例3 如图3,已知点A、B、C、D顺次在⊙O上,且AB=BD,BM⊥AC于点M,求证:AM=CD+CM. 证明(延长法) 延长DC至点N,使CN=C M,下面只要证明AM=DN即可.连BN,则由AB=BD,得 ∠ACB=∠ADB=∠BAD=∠BCN, 又CN=CM,BC为公共边, 例4 如图4,在菱形ABCD中,F为BC边的中点,DF与对角线AC交于点M,过点M作ME⊥CD于点E,∠1=∠2. (1)若CE=1,求BC的长; (2)求证:AM=DF+ME.

有关三角形及其概念经典习题

11、三角形及有关概念 【知识精读】 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2. 三角形中的几条重要线段: (1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质 (1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180° (3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5)三角形具有稳定性。 4. 补充性质:在?ABC中,D是BC边上任意一点,E是AD上任意一点,则 ?=?。 S S S S ???? ABE CDE BDE CAE

三角形是最常见的几何图形之一,在工农业生产和日常生活中都有广泛的应用。三角形又是多边形的一种,而且是最简单的多边形,在几何里,常常把多边形分割成若干个三角形,利用三角形的性质去研究多边形。实际上对于一些曲线,也可以利用一系列的三角形去逼近它,从而利用三角形的性质去研究它们。因此,学好本章知识,能为以后的学习打下坚实的基础。 5. 三角形边角关系、性质的应用 【分类解析】 例1. 锐角三角形ABC 中,∠C =2∠B ,则∠B 的范围是( ) A. 1020?<?∠∠B C 90 ∴>?390∠B ,即∠B >?30 ∴?<

与线段的和差倍分有关问题的处理

与线段的和差倍分有关问题的处理 1. 如图,已知⊿ABC 中,0 90BAC ∠=,AB=AC ,点P 为BC 边上一动点(BP

3. 如图,正方形ABGE (四边相等,四个角都等于0 90)中,点D 在EG 上,点C 在BG 上,且045DAC ∠=,求证:CD=DE+CB. 一道老题. 4. 如图,在上题中,若点D 在EG 的延长线上,点C 在GB 的延长线上,其余条件不变. 求证:DE=BC+CD. G E A B D 先证明三角形BAC 全等于EA*,然后证明绿蓝两个图形全等,做等边转化. C G E D

5.如图,AB=AE ,AB⊥AE ,AD=AC ,AD⊥AC ,点M为BC的中点,求证:DE=2AM. M D E B A C 1.倍长中线是这道题的第一难点.辅助线做出来就做出了一大半. 2.证明角CAN和角EAD相等是本题的第二关键,在于角BAC和角AED+角ADE的相等转化到三角形ANC当中,做等量代换. 6.如图,AD是⊿ABC的中线,点E在BC的延长线上,CE=AB ,∠BAC=∠BCA,求 证:AE=2AD. 一. 倍长中线的使用,作AD等长的线段DE. 二. 证明蓝绿两三角形全等. A C

第二节 与三角形有关的角-学而思培优

第二节与三角形有关的角一、课标导航 二、核心纲要 1.三角形内角和定理及其应用 180 (1)三角形内角和定理:三角形三个内角的和是. (2)三角形内角和定理的应用 ①在三角形中已知两角可求第三角,或已知各角之间关系,求各角; ②证明角之间的关系. 2.三角形的外角 (1)定义:三角形一边与另一边的延长线组成的角,叫做三角形的外角. (2)性质:三角形的一个外角等于与它不相邻的两个内角之和, 三角形的一个外角大于与它不相邻的任何一个内角. 360 (3)三角形外角和定理:三角形外角和是. (4)三角形外角的性质的应用 ①已知外角和与它不相邻两个内角中的一个可求“另一个”; ②可证一个角等于另两个角的和; ③利用它作为中间关系式证明两个角相等; ④利用它证明角的不等关系. 3.几何模型

4.思想方法 (1)分类讨论. (2)方程思想, 本节重点讲解:一个性质(外角的性质),两大定理(三角形内、外角和定理),两个思想,四个模型(“小旗”模型,“飞镖”模型,“8”字模型和角平分线相关模型). 三、全能突破 基 础 演 练 1.-副三角板,按图11-2—1所示方式叠放在一起,则图中α∠的度数是( ). 75.A o B 60. 65.C o D 55. 2.如图11-2 -2所示,在△ABC 中,,,ABD A BDC C ABC ∠=∠∠=∠=∠则A ∠的度数为( ). 36.A 72.B 108.C 144.D 3.我们知道:等腰三角形的两个底角相等,已知等腰三角形的一个内角为,40 则这个等腰三角形的顶角 为( ). 40.A 100.B o C 10040.或 005070.或D

三角形培优经典题型

《三角形》练习题 班级_________ 姓名__________ 分数__________一、选择题(每题4分) 1.等腰三角形的两边长分别是3和7,那么它的周长是() A、13 B、16 C、17 D、13或17 2、如图1,图中三角形的个数为() A.17 B.18 C.19 D.20 3、在△ABC中,∠A-∠C=25°,∠B-∠A=10°,则∠B=() A、28° B、35° C、15° D、21° 4、如图2,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点, ∠A=50°,则∠D=() A.15°B.20°C.25°D.30° 5、已知一个多边形的每一个内角都等于135°,则这个多边形是() A. 五边形 B. 六边形 C. 七边形 D. 八边形 6、如图3,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°, 则∠P的度数为() A.15°B.20°C.25°D.30° 7、一个多边形截去一个内角后,形成另一个多边形,它的内角和为2520°, 则原来多边形的边数不可能是() A、15条 B、16条 C、17条 D、18条 8、已知三条线段分别是a、b、c且a<b<c(a、b、c均为整数), 若c=6,则线段a、b、c能组成三角形的个数为() A、3个 B、4个 C、5个 D、6个

图1 图2 图3 二、填空题(每题4分) 9、若△ABC的三边长分别是4,X,9,则X的取值范围是_____, 周长L的取值范围是_____;当周长为奇数时,X=_____ 10、一条线段的长为a,若要使3a—l,4a+1,12-a这三条线段组成一个三角形,则a 的取值范围__________. 11、等腰三角形一腰上的中线把这个等腰三角形的周长分成12和10两部分, 则此等腰三角形的腰长是_____ 12、如图4,小亮从A点出发,沿直线前进100m后向左转30°,再沿直线前进100m, 又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了________m 13、如图5,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,S△ABC=12, 则S△ADF -S△BEF=_____. 14、如图6,∠A+∠B+∠C+∠D+∠E+∠F的度数是______° 15、如图7,DC平分∠AD B,E C平分∠AEB,若∠DAE=α, ∠D BE=β,则∠D CE=______ (用α、β表示). 16、如图8,DO平分∠CDA,BO平分∠CBA,∠A=20°,∠C=30°,∠O=______°.

线段的和差倍分教案

线段的和差倍分教案 篇一:三角形专题线段的和差倍分 专题:三角形之线段的和差倍分 1、在△ABC中,∠ACB= 900,AC=BC,直线MN经过点C,且AD ⊥MN于D,BE⊥MN于E。 (1)当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE。(2)当直线MN绕点C旋转到图2的位置时,问DE 、AD、BE 有何关系,并说明理由。 A 2、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D. 求证:DE?AD?BE. 3、如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交BC的延长线于点F. 求证:(1)FC=AD; (2)AB=BC+AD 4、如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线 垂直于过C点的直线于E,直线CE交BA的延长线于F. 求证:?BD=CF ?BD=2CE.

5、?如图,在△ABC中,BD平分∠ABC,CD平分∠ACB,过D 点作EF∥BC交AB于E, 交AC于F,求证:EF=BE+CF. ?在△ABC中,BD平分∠ABC,CD平分∠ACG,过D点作EF∥BC 交AB于E,交AC于F, 试探究BE、EF与CF的数量关系. 篇二:【教案】2.4线段的和与差 2.4线段的和与差 教学目标 1.理解线段可以相加减,掌握用直尺、圆规作线段的和、差. 2.利用线段的和与差进行简单的计算。 教学重点和难点 重点:用直尺、圆规作线段的和、差。 难点:进行简单的计算。 教学时间:1课时 教学类型:新授 教学过程: 一、复习旧知,作好铺垫 1.已知线段AB,用圆规、直尺画出线段CD,使线段CD=AB. 2.两点间的距离是指() A.连结两点的直线的长度; B.连结两点的线段的长度;

全等三角形综合培优测试题

。 AC与 4、如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF.猜 想线段AC与EF 的关系,并证明你的结论. 5、如图∠ABC=90°AB=BC,D为AC上一点分别过A.C作BD的垂线, 垂足分别为E.F,求证:EF=CF-AE. 6、如图,已知AB∥CD,AD∥BC,E.F是 上两点,且BF=DE,则图中共有对 全等三角形. 7、如图,AB∥CD,AD∥BC,OE=OF,图中全等三 角形共有______对. 8、两三角形有以下元素对应相等,不能判定全等的是() A. 两角和一边 B. 两边及夹角 C. 三个角 D. 三条边 9、如果两个三角形两边对应相等,且其中一边所对的角也相等,那么 这两个三角形() A. 一定全等 B. 一定不全等 C. 不一定全等 D. 面积相等 10 11 DE 则 12 13、已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC, 且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相 交于点G。 (1)求证:BF=AC; (2)求证:CE= 2 1 BF; 14、如图,已知在△ABC中,AB=AC,D为BC上一点,BF=CD,CE=BD,那么∠ EDF等于( ) A..90°-∠A B. 90°- 2 1 ∠A C. 180°-∠A D. 45°- 2 1 ∠A 15、已知如图(1),△ABC中,∠BAC=90°,AB=AC,AE是过A的一条 直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:(1)BD =DE+CE;(2)若直线AE绕A点旋转到(2)位置时(BD<CE),其余条件 不变,问BD与DE、CE的关系如何?请予证明.(3)若直线AE绕A点旋 转到图(3)位置时,(BD>CE),其余条件不变,问BD与DE、CE的关系 如何?请直接写出结果,不须证明.(4)归纳(1)、(2)、(3),请用简捷 语言表述BD、DE、CE的关系. 16、已知:如图,在四边形ABCD中,CD AB=,CDA BAD∠ = ∠。 求证:DCB ABC∠ = ∠。 17、已知:如图5—132,点C在线段AB上,以AC和BC为边在AB的 同侧作正三角形△ACM和△BCN,连结AN、BM,分别交CM、CN于点P、 Q.求证:PQ∥AB. A B E O F D C F G E D C B A D A C B

相关文档
相关文档 最新文档