文档库 最新最全的文档下载
当前位置:文档库 › 针对性训练-----几何探究题

针对性训练-----几何探究题

针对性训练-----几何探究题
针对性训练-----几何探究题

针对性训练-----几何探究题

1.如图1,在正方形ABCD 内有一点P 满足AP=AB ,PB=PC ,连结AC 、PD. (1)求证:△APB ≌△DPC ;(2)求证:∠PAC=

2

1

∠BAP ;(3)若将原题中的正方形ABCD 变为等腰梯形ABCD(如图2),AD ∥BC,且BA=AD=DC,形内一点P 仍满足AP=AB ,PB=PC,试问(2)中结论还成立吗?若成立请给予证明;若不成立,请说明理由.

2.如图1,在ABC △中,ACB ∠为锐角,点D 为射线BC 上一点,联结AD ,以AD 为

一边且在AD 的右侧作正方形ADEF .

(1)如果AB AC =,90BAC =∠,

①当点D 在线段BC 上时(与点B 不重合),如图2,线段CF BD 、所在直线的位置关系为 __________ ,线段CF BD 、的数量关系为 ;

②当点D 在线段BC 的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;

(2)如果AB AC ≠,BAC

∠是锐角,点D 在线段BC 上,当ACB ∠满足什么条件时,CF BC ⊥(点C F 、

不重合),并说明理由. (3)若AC=42,BC=3,在(2)的条件下,设正方形ADEF 的边DE 与线段CF 相交于点P ,求线段CP 长的最大值。

A B D C P 图

P C D A B 图图1 图2 C 图3 E

A B

C D

N A

C

E

N M

D C

B

A

图2

B

A

E

B

D

图1

3.如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE . (1)求证:CE =CF ;

(2)在图1中,若G 在AD 上,且∠GCE =45°,则GE =BE +GD 成立吗?为什么? (3)运用(1)(2)解答中所积累的经验和知识,完成下题:

如图2,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC =12,E 是AB 上一点,且∠DCE =45°,BE =4,求DE 的长.

4.如图,在Rt △ABC 中,∠A =90o,AB =6,AC =8,

D ,

E 分别是边AB ,AC 的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ ⊥BC 于Q ,过点Q 作QR ∥BA 交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ =x ,QR =y . (1)求点D 到BC 的距离DH 的长;

(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);

(3)是否存在点P ,使△PQR 为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.

5.如图17,点A 是△ABC 和△ADE 的公共顶点,∠BAC +∠DAE =180°,AB =k ·AE ,AC =k ·AD ,点M 是DE 的中点,直线AM 交直线BC 于点N . ⑴探究∠ANB 与∠BAE 的关系,并加以证明.

说明:如果你经过反复探索没解决问题,可以从下面①②中选取一个作为已知条件,再完成你的证明,选取①比选原题少得2分,选取②比选原题少得5分. ① 如图18,k =1;②如图19,AB =AC .

⑵若△ADE 绕点A 旋转,其他条件不变,则在旋转的过程中⑴的结论是否发生变化?如果没有发生变化,请写出一个可以推广的命题;如果有变化,请画出变化后的一个图形,并直接写出变化后∠ANB 与∠BAE 的关系.

A B C D E R P H Q A B

D E R P H A B

C

D

E R P

H

Q

6.已知,CD 是经过BCA ∠顶点C 的一条直线,CA CB =.E F ,分别是直线CD 上两点,且BEC CFA α∠=∠=∠.

(1)若直线CD 经过BCA ∠的内部,且E F ,在射线CD 上,请解决下面两个问题: ①如图9-1,若90BCA ∠=,90α∠=,

则BE CF ;EF

E A

F -(填“>”,“<”或“=”);

②如图9-2,若0180B C A <∠<,请添加一个关于α∠与BCA ∠关系的条件 ,使①中的两个结论仍然成立,并证明两个结论成立.

(2)如图9-3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,请提出EF BE AF ,,三条线段数量关系的合理猜想(不要求证明).

7.在等边ABC ?的两边AB 、AC 所在直线上分别有两点M 、N ,D 为ABC 外一点,且

?=∠60MDN ,?=∠120BDC ,BD=DC. 探究:当M 、N 分别在直线AB 、AC 上移动时,

BM 、NC 、MN

之间的数量关系及AMN ?的周长Q 与等边ABC ?的周长L 的关系.

图1 图2 图3

(I )如图1,当点M 、N 边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是 ; 此时

=L

Q

; (II )如图2,点M 、N 边AB 、AC 上,且当DM ≠DN 时,猜想(I )问的两个结论还

成立吗?写出你的猜想并加以证明;

(III ) 如图3,当M 、N 分别在边AB 、CA 的延长线上时, 若AN=x ,则Q= (用x 、L 表示).

A

B C

E F D

D

A B C

E F A

D

F

C E

B 图9-1

图9-2

图9-3

G

D E F

A B G 图1. (1)略(2)略

(3)设?=∠?=∠y BAP x PAC ,,?-=∠=∠)60(x DCA CAD 则 ?=∠y PDC

x y x X -+=+6060型得,由得x y 2=即BAP PAC ∠=

∠2

1

2.(1)①垂直,相等;……………1分

②当点D 在BC 的延长线上时①的结论仍成立.………………2分 由正方形ADEF 得 AD =AF ,∠DAF =90o. ∵∠BAC =90o,∴∠DAF =∠BAC , ∴∠DAB =∠F AC ,

又AB =AC ,∴△DAB ≌△F AC , ∴CF =BD , ∠ACF =∠ABD . ∵∠BAC =90o, AB =AC ,

∴∠ABC =45o,∴∠ACF =45o,

∴∠BCF =∠ACB +∠ACF =90o. 即 CF ⊥BD .…………5分 (2)当∠ACB =45o时,CF ⊥BD (如图). …………6分 理由:过点A 作AG ⊥AC 交CB 或CB 的延长线于点G ,

则∠GAC =90o, ∵∠ACB =45°,∠AGC =90°—∠ACB =45°, ∴∠ACB =∠AGC ,∴AC =AG ,

∵点D 在线段BC 上,∴点D 在线段GC 上,由(1)①可知CF ⊥BD . …7分 (3)如图:作AQBC 于Q ∵∠ACB=45° AC=42 ∴CQ=AQ=4 ∵∠PCD=∠ADP=90°∴∠ADQ+∠CDP=∠CDP+∠CPD=90°

∴△ADQ ∽△DPC ∴DQ PC =AQ CD

设CD 为x (0<x <3)则DQ=CQ -CD=4-x 则x PC -4=4

x

∴PC=

41(-x 2+4x)=-4

1

(x -2)2+1≥1 当x=2时,PC 最长,此时PC=1

3.(1)证明:如图1,在正方形ABCD 中,

∵BC =CD ,∠B =∠CDF ,BE =DF ,

∴△CBE ≌△CDF . ∴CE =CF .…….3分 (2)GE =BE +GD 成立.理由是:

∵△CBE ≌△CDF , ∴∠BCE =∠DCF .

∴∠BCE +∠ECD =∠DCF +∠ECD 即∠ECF =∠BCD =90°, 又∠GCE =45°,

∴∠GCF =∠GCE =45°.

∵CE =CF ,∠GCE =∠GCF ,GC =GC ,

∴△ECG ≌△FCG . ……..4分

∴GE =GF ∴GE =DF +GD =BE +GD .…..5分

(3)解:过C 作CG ⊥AD ,交AD 延长线于G .

在直角梯形ABCD 中,∵AD ∥BC ∴∠A =∠B =90°.

又∠CGA =90°,AB =BC , ∴四边形ABCG 为正方形. ………6分

B

A E G

∴AG =BC =12. 已知∠DCE =45°,根据(1)(2)可知,ED =BE +DG ... 7分

设DE =x ,则DG =x -4, ∴AD =A G -DG=12-(x -4)=16-x . 在Rt △AED 中, ∵2

2

2

AE AD DE +=,即()22

2816+-=x x .

解这个方程,得:x =10. ∴DE =10.

4.(1)

Rt A ∠=∠,6AB =,8AC =,10BC ∴=. 点D 为AB 中点,

1

32BD AB ∴=

=.90DHB A ∠=∠=,B B ∠=∠. B H D

B A

C ∴△∽△, DH B

D AC BC ∴=,3128105

BD DH AC BC ∴==?=.---------------2分 (2)QR AB ∥,90QRC A ∴∠=∠=. C C ∠=∠,RQC ABC ∴△∽△, RQ QC AB BC ∴=,10610y x -∴=,即y 关于x 的函数关系式为:365

y x =-+. -------5分 (3)存在,分三种情况:

①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.

1290∠+∠=,290C ∠+∠=,1C ∴∠=∠. 84cos 1cos 105C ∴∠===,4

5QM QP ∴=,

136425125

5

x ??-+ ??

?∴=,185x ∴=. --------8分 ②当PQ RQ =时,312655

x -+=, 6x ∴=. -------10分

③当PR QR =时,则R 为PQ 中垂线上的点,

于是点R 为EC 的中点,11

224

CR CE AC ∴===. tan QR BA C CR CA ==,3

66528

x -+∴=,152x ∴=. -----13分

综上所述,当x 为185或6或15

2

时,PQR △为等腰三角形. -----14分

5.(1)∠ANB +∠BAE =180o.……1分 证明:(法一)如图1,延长AN 到F ,使MF =AM ,连接DF 、EF . ………………2分 ∵点M 是DE 的中点,∴DM =ME , ∴四边形ADFE 是平行四边形 ,……………3分 ∴AD ∥EF ,AD =EF , ∴∠DAE +∠AEF =180o, ∵∠BAC +∠DAE =180o, ∴∠BAC =∠AEF ,………4分 ∵AB =kAE ,AC =kAD , ∴

AD AC AE AB =, ∴EF

AC

AE AB =

……6分 ∴△ABC ∽△EAF ∴∠B =∠EAF …………8分 ∵∠ANB +∠B +∠BAF =180o ∴∠ANB +∠EAF +∠BAF =180o 即∠ANB +∠BAE =180o,…………10分

(法二)如图2,延长DA 到F ,使AF =AD ,连接EF .………2分 ∵∠BAC +∠DAE =180o,∠DAE +∠EAF =180o,

A

B

C D E R

P

H Q

M 2 1 H A B C D

E R

P H Q M A

D N E

B C

F

图1

A

F

∴∠BAC =∠EAF ,………………3分 ∵AB =kAE ,AC =kAD , ∴

AD

AC AE AB =, ∴AF AC

AE AB =

,………4分 ∴△ABC ∽△AEF ,………5分

∴∠B =∠AEF ,………6分 ∵点M 是DE 的中点,∴DM =ME , 又∵AF =AD , ∴AM 是△DEF 的中位线, ∴AM ∥EF ,……7分 ∴∠NAE =∠AEF ,

∴∠B =∠NAE ,……8分 ∵∠ANB +∠B +∠BAN =180

o, ∴∠ANB +∠NAE +∠BAN =180o,

即∠ANB +∠BAE =180o.………10分 (2)变化.如图3(仅供参考),∠ANB =∠BAE .……12分 选取(ⅰ),如图4.

证明:延长AM 到F ,使MF =AM ,连接DF 、EF . ∵点M 是DE 的中点,∴DM =ME

∴四边形ADFE 是平行四边形,…………4分 ∴AD ∥FE ,AD =EF , ∴∠DAE +∠AEF =180o,

∵∠BAC +∠DAE =180o, ∴∠BAC =∠DAE , ………6分

∵AB =kAE ,AC =kAD ,1=k , ∴AB =AE ,AC =AD ,

∴AC =EF ,……7分 ∴△ABC ≌△EAF , ∴∠B =∠EAF , ∵∠ANB +∠B +∠BAF =180o, ∴∠ANB +∠EAF +∠BAF =180即∠ANB +∠BAE =180o.……10分 选取(ⅱ),如图5.

证明:∵AB =AC ,∴∠B =2

1

(180o-∠BAC ),…………3分

∵∠BAC +∠DAE =180o, ∴∠DAE =180o-∠BAC , ∴∠B =

2

1

∠DAE , ∵AB =kAE ,AC =kAD , ∴AE =AD , ∵AM 是△ADE 的中线,AB =AC ,

∴∠EAM =2

1

∠DAE , ∴∠B =∠EAM ,………4分

∵∠ANB +∠B +∠BAM =180o, ∴∠ANB +∠EAM +∠BAM =180o,

即∠ANB +∠BAE =180o.…5分

图4

A

B

C

D

M N 图5

E

A

C

D E M

6.(1)①=;=; 2分 ②所填的条件是:180BCA α∠+∠=. 4分 证明:在BCE △中,180180CBE BCE BEC α∠+∠=-∠=-∠.

180BCA α∠=-∠,CBE BCE BCA ∴∠+∠=∠. 又ACF BCE BCA ∠+∠=∠,CBE ACF ∴∠=∠. 又BC CA =,BEC CFA ∠=∠, ()BCE CAF AAS ∴△≌△.

BE CF ∴=,CE AF =. 又EF CF CE =-,EF BE AF ∴=-. 7分

(2)EF BE AF =+.

7.(I )如图1, BM 、NC 、MN 之间的数量关系 BM+NC=MN .此时 3

2

=L Q . (II )猜想:结论仍然成立.

证明:如图,延长AC 至E ,使CE=BM ,连接DE .

CD BD =,且 120=∠BDC .∴ 30=∠=∠DCB DBC .

又ABC ?是等边三角形,∴90MBD NCD ∠=∠=.

在MBD ?与ECD ?中:

??

?

??=∠=∠=DC BD ECD MBD CE

BM ∴??MBD ECD ?(SAS) .∴DM=DE, CDE BDM ∠=∠ ∴ 60=∠-∠=∠MDN BDC EDN 在MDN ?与EDN ?中:

??

?

??=∠=∠=DN DN EDN MDN DE DM ∴??M D N E D N ?(SAS) ∴MN=NE=NC+BM AMN ?的周长Q=AM+AN+MN=AB+AC =2AB

而等边ABC ?的周长L=3AB ∴

3

232==AB AB L Q . (III )如图3,当M 、N 分别在AB 、CA 的延长线上时,若AN=x ,

则Q=2x +

L 3

2

(用x 、L 表示). 8.如图24-1,正方形ABCD 和正方形QMNP , M 是正方形ABCD 的对称中心,MN 交AB 于F ,

QM 交AD 于E .

(1)猜想:ME 与MF 的数量关系

初中数学动态几何问题

[导读] 点动、线动、形动构成的问题称之为动态几何问题。它主要以几何图形为载体,运动变化为主线 摘要:本文结合笔者的教学实践对初中数学教学中的动态几何问题进行了探讨。 关键词:二次函数;动点;动线;动态 作者简介:郭兴淑,任教于云南腾冲一中。 点动、线动、形动构成的问题称之为动态几何问题。它主要以几何图形为载体,运动变化为主线,函数为背景,集多个知识点为一体,集多种解题思想于一题。这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.本类问题主要有动点、动线、动面三个方面的问题。其中动点问题有单动点和双动点两种类型,无论是动点、动线、单动点还是双动点,我们都要注意到如何在动中求静,在静中求解,找到相应的关系式,把想知道的量用常量或含自变量的关系式表示出来。下面就以二次函数为背景的动态问题和单纯几何图形变化的动态问题采撷几例加以分类浅析,供读者参考。 动态问题在中考中占有相当大的比重,主要由综合性问题构成,就运动而言,可以分为三类:动点、动线、动形;就题型而言,包括计算题、证明题和应用题等。它的题型特点和考查功能决定了审题思考的复杂性和解题设计的多样性。一般的,解题设计要因题定法。无论是整体考虑还是局部联想,确定方法都必须遵循的原则是:熟悉化原则、具体化原则;简单化原则、和谐化原则等。 动态问题一直是近几年数学中考的一个热点,随着编者的不断刨新,动态问题又有升温,比如双动问题就是中考中的最新风景区,他可以培养同学们在运动变化中发展空间想象能力.这类问题只要我们掌握“动中有静,静观其变,动静结合”的基本解题策略,我们就能以不变碰多变.以下列举近几年数学中考的两类双动问题供读者参考交流. 随着新课程改革的进行,全国各地的中考试卷异彩纷呈,尤其是解答题中的动态问题,集数与代数、空间与图形两大内容于一体,题型新颖,阅读量大,考查面广.为体现中考试

对一道课本试题的变式

对一道课本习题的变式、推广与思考 波利亚指出:“拿一个有意义又不复杂的题目去帮助学生发掘问题的各个方面,使得通过这个题目就好像通过一道门户,把学生引入一个完整的领域。” 题目:已知ABC ?两个顶点()()0,6,0,6B A -,边BC AC ,所在直线的斜率之积等于9 4-,求顶点C 的轨迹方程。(北师大版数学选修2-1第三章§1椭圆习题3-1A 组第8题) 一、动手实践,掌握方法 解析:设()y x C ,,则直线BC AC ,的斜率分别是()6,66 ,621-≠≠-= +=x x x y k x y k , 根据题意,9 4 21- =?k k ,所以 9 4 362 2-=-x y ,化简,得()6,6116362 2 -≠≠=+x x y x 所以顶点C 的轨迹是椭圆,去掉左右顶点。 评析:(1)典型的用直接法求动点的轨迹方程,注意6,6-≠≠x x ,一方面它保证了直线BC AC ,的斜率的存在性,另一方面符合C 为ABC ?的一个顶点,C B A ,,不能共线。 (2)题目的几何条件包括“两个定点、一个动点、一个定值,两条直线的斜率,一个等量关系”。 (3)轨迹是椭圆,去掉左右顶点。 二、引进参数,化静为动 变式1、已知两个定点()()()00,,0, a a B a A -,动点C 满足直线BC AC ,的斜率之积等于()0≠m m ,试讨论动点C 的轨迹。 分析:首先确定动点C 的轨迹方程,然后依据方程判定它的轨迹。 解析:设()y x C ,,则直线BC AC ,的斜率分别是 a x y k a x y k -=+= 21,,()a x + - ≠,根据题意,m k k =?2 1 , 所以m a x y =-2 22,化简,得动点C 的轨迹方程122 22=-ma y a x ,所以 1、当0 m 时,动点C 的轨迹是焦点在x 轴上的双曲线,去掉它的两个顶点; 2、当0 m 时 (1)若1-=m ,则动点C 的轨迹方程为2 2 2 a y x =+,所以它的轨迹是圆心在原点,半径为a 的圆,去掉 与x 轴的两个交点; (2)当01 m -时,2 2ma a - ,所以动点C 的轨迹是焦点在x 轴上的椭圆,去掉左右顶点; (3)当1- m 时,2 2ma a - ,所以动点C 的轨迹是焦点在 y 轴上的椭圆去掉左右顶点。 评析:引进参数,化静为动,培养学生分类讨论的数学思想,发展学生的数学思维能力。注意到变式1并没有改变题目中的几何关系,但是参数值及它的的符号决定了轨迹的不同形式——圆、椭圆、双曲线,这也从一个侧面说明三种曲线之间有着内在的联系,可以想象当参数m 由()+∞→≠→-→∞-001变化时,动点 c 的轨迹由焦点在y 轴上的椭圆,变为圆,再变为焦点在x 轴上椭圆,然后蜕变为焦点在x 轴上的双曲线,

中考数学综合专题训练【几何综合题】(几何)精品解析

中考数学综合专题训练【几何综合题】(几何)精品解析 在中考中,几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。学生通常需要在熟悉基本几何图形及其辅助线添加的基础上,将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。 在解决几何综合题时,重点在思路,在老师讲解及学生解题时,对于较复杂的图形,根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形,将新题目与已有经验建立联系从而找到思路,之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后,注重解题反思,总结题目中的基本图形及辅助线添加方法,将题目归类整理;对于典型的题目,可以解析题目条件,通过拓展题目条件或改变条件,给出题目的变式,从而对于题目及相应方法有更深入的理解。同时,在授课过程中,将同一类型的几何综合题成组出现,分析讲解,对学生积累对图形的“感觉”有一定帮助。 一.考试说明要求 图形与证明中要求:会用归纳和类比进行简单的推理。 图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。 图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。 二.基本图形及辅助线 解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。 举例: 1、与相似及圆有关的基本图形

初三数学几何综合练习题

初三数学几何综合练习题 1.在△ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B、C重合),连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE. (1)如图1,点D在BC边上. ①依题意补全图1; ②作DF⊥BC交AB于点F,若AC=8,DF=3,求BE的长; (2)如图2,点D在BC边的延长线上,用等式表示线段AB、BD、BE之间的数量关系 (直接写出结论). 图1图2

B A C 2. 已知:Rt △A ′BC ′和 Rt △ABC 重合,∠A ′C ′B =∠ACB =90°,∠BA ′C ′=∠BAC =30°,现将Rt △A ′BC ′ 绕点B 按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C ′C 和线段AA ′相交于点D ,连接BD . (1)当α=60°时,A ’B 过点C ,如图1所示,判断BD 和A ′A 之间的位置关系,不必证明; (2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明; (3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由. 3.如图1,已知线段BC =2,点B 关于直线AC 的对称点是点D ,点E 为射线CA 上一点,且ED =BD ,连接DE ,BE .

(1) 依题意补全图1,并证明:△BDE 为等边三角形; (2) 若∠ACB =45°,点C 关于直线BD 的对称点为点F ,连接FD 、FB .将△CDE 绕点D 顺时针旋转α度(0°<α<360°)得到△''C DE ,点E 的对应点为E ′,点C 的对应点为点C ′. ①如图2,当α=30°时,连接'BC .证明:EF ='BC ; ②如图3,点M 为DC 中点,点P 为线段'' C E 上的任意一点,试探究:在此旋转过程中,线段PM 长度的取值范围? 4.(1)如图1 ,在四边形ABCD 中,AB=BC ,∠ABC =80°,∠A +∠C =180°,点M 是AD 边上一点,把射线BM 绕点B 顺时针旋转40°,与CD 边交于点N ,请你补全图形,求MN ,AM ,CN 的数量关系; 图1 图2 图3

最新初中数学动态几何探究题汇总大全

最新初中数学动态几何探究题汇总大全 【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角 函数等知识的综合运用. 【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解 决几何计算问题.还要灵活运用其他的数学思想方法等. 【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的主要特点是包含知识点多、 覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含 的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决. 【提醒】几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综 合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势. 为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题. 类型1 操作探究题 1.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连接BD,过点D 作DF⊥AC于点F. (1)如图1,若点F与点A重合,求证:AC=BC; (2)若∠DAF=∠DBA. ①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由; ②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.

几何练习题精选

几何练习题精选 题型一、相似三角形的判定与性质 1、 如图1、在ABC ?中, 90=∠BAC ,BC 边的垂直平分线EM 与AB 及CA 的延长线分别交于D 、E ,连接AM , 求证:EM DM AM ?=2 2、 如图2,已知梯形ABCD 为圆内接四边形,AD//BC ,过C 作该圆的切线,交AD 的延长线于E ,求证:ABC ?相似于EDC ? 3、 如图3,D B ∠=∠,AE ⊥BC , 90=∠ACD ,且AB=6,AC=4,AD=12,求BE 的长。

4、 如图4,O Θ和O 'Θ相交于A ,B 两点,过A 作两圆的切线分别交两圆于C 、D 两点, 连接DB 并延长交O Θ于点E ,证明:(1)AB AD BD AC ?=?;(2)AC=AE 题型二、截割定理与射影定理的应用 1、 如图5,已知E 是正方形ABCD 的边AB 延长线上一点,DE 交CB 于M ,MN//AE 于 N ,求证:MN=MB 2、 如图6,在ABC Rt ?中, 90=∠BAC ,AD 是斜边BC 上的高,若AB :AC=2:1, 求AD :BC 的值。

3、 如图7,AB 是半圆O 的直径,C 是半圆上异于A 、B 的点,CD ⊥AB ,垂足为D ,已 知AD=2,CB=34,求CD 的长。 4、 如图8,在ABC ?中,DE//BC ,EF//CD ,若BC=3,DE=2,DF=1,求AB 的长。 题型三、圆内接四边形的判定与性质 1、 如图9、AB ,CD 都是圆的弦,且AB//CD ,F 为圆上一点,延长FD ,AB 相交于点E , 求证:BD=AC ;(2)DE AF AC AE ?=?

八年级数学动态几何综合探究题训练大全

八年级数学动态几何综合探究题训练大全 1.如图1,在正方形ABCD 中,点E ,F 分别是边BC ,AB 上的点,且CE=BF .连接DE ,过点E 作EG ⊥DE ,使EG=DE ,连接FG ,FC . (1)请判断:FG 与CE 的数量关系是________,位置关系是________; (2)如图2,若点E ,F 分别是边CB ,BA 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明; (3)如图3,若点E ,F 分别是边BC ,AB 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断. 2.如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交 ∠BCA 的角平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:EO =FO ; (2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论. A B C E F M N O (第19题图) B C

3.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α. (1)如图①,若α=90°,求AA′的长; (2)如图②,若α=120°,求点O′的坐标; (3)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时, 求点P′的坐标(直接写出结果即可) 4.正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE ⊥MN于点E,过点B作BF⊥MN于点F. (1)如图1,当O、B两点均在直线MN上方时,求证:AF+BF=2OE; (2)当正方形ABCD绕点A顺时针旋转至图2时.线段AF,BF与OE具有什么数量关系?并说明理由. (3)当运动到图3的位置时,线段AF、BF、OE之间又有怎样的数量关系?请直接写出你 的猜想.

如何对几何习题拓展变式

如何对几何习题拓展变式 “变式”原为心理学上的名词,其含义是变换材料的出现形式。在教学中的所谓变式,即是指对数学概念、定义、定理、公式,以及问题背景不同角度、不同层次、不同情形、不同背景的变化,使其面目不一,而本质特征不变。 在数学教学中,可以充分利用变式,有意识地把教学过程施行为数学思维活动的过程,充分调动和展示学生的思维过程,让学生积极、主动地参与教学的全过程,培养学生独立分析和解决问题的能力,以及大胆创新、勇于探索的精神,从而真正把学生能力的培养落到实处。 通过变式练习,可以使学生在全面、深刻的理解和掌握知识的同时,思维品质也获得良好的发展。 通过变式教学,使一题多用,多题重组,常给人以新鲜感,能唤起学生的好奇心和求知欲,因而能产生主动参与的动力,保持其参与教学过程的兴趣和热情。 通过变式训练,可以帮助学生提出问题、分析问题、解决问题,搞清问题的内涵和外延,提高数学能力。 “变式训练”的实质是根据学生的心理特点在设计问题的过程中,创设认知和技能的最近发展区,诱发学生通过探索、求异的思维活动,发展能力。 对习题的变式可以从以下几种不同的角度进行: 一、一题多解、一题多变、一题多思、多题一法…… 1、一题多解,培养思维的发散性 一题多解实际上是解题或证明定理、公式的变式,因为它的实质是以不同的论证方式反映条件和结论问的同一必然的本质联系,运用这种变式教学,可以引导学生对同一材料,从不同角度、从不同方位、用各种途径、多种方法思考问题,探求不同的解答方案,这样,既可暴露学生解题的思维过程,增加教学透明度,

又能够拓广学生思路,使学生熟练掌握知识的内在联系,使思维向多方向发展,培养思维的发散性。这方面的例子很多,尤其是几何证明题。 例如:已知:点O是等边△ABC内一点, OA=4,OB=5,OC=3 求∠AOC的度数。 练习:把此题适当变式: 在△ABC中,AB=AC,∠BAC=90° OA=4,OB=6,OC=2 求∠AOC的度数。 变式2:如图,点O是等边△ABC内一点,∠AOB=110°, ∠BOC=135° 试问:(1)以OA、OB、OC为边能否构成一个三角形?若能,请求出三角形各内角的度数;若不能,请说明理由. (2)如果∠AOB的大小保持不变,那么当∠BOC等于多少度时, 以OA、OB、OC为 边的三角形是一个直角三角形? 2、一题多变,培养思维的灵活性 一题多变是题目结构的变式,是指变换题目的条件或结论,或者变换题目的 B C A B C O A B C O

初二数学几何综合训练题及答案

初二几何难题训练题 1,如图矩形ABCD对角线AC、BD交于O,E F分别是OA、OB的中点(1)求证△ADE≌△BCF:(2)若AD=4cm,AB=8cm,求CF的长。 2,如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF∥AB,交AD于点E,CF=4cm. (1)求证:四边形ABFE是等腰梯形; (2)求AE的长.

3,如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF分别交于P、Q, (1)若AB=6,求线段BP的长; (2)观察图形,是否有三角形与△ACQ全等?并证明你的结论 4,已知点E,F在三角形ABC的边AB所在的直线上,且AE=BF,FH//EG//AC,FH、EC分别交边BC所在的直线于点H,G 1 如果点E。F在边AB上,那么EG+FH=AC,请证明这个结论 2 如果点E在AB上,点F在AB的延长线上,那么线段EG,FH,AC的长度关系是什么? 3 如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG,FH,AC的长度关系是什么? 4 请你就1,2,3的结论,选择一种情况给予证明 5,如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15mm,DO=24mm,DC=10mm,我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离.

6,如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C,(1)求证:△ABF∽△EAD ;(2)若AB=5,AD=3,∠BAE=30°,求BF 的长 7,如图,AB与CD相交于E,AE=EB,CE=ED,D为线段FB的中点,GF与AB相交于点G,若CF=15cm,求GF之长。 8, 如图1,已知四边形ABCD是菱形,G是线段CD上的任意一点时,连接BG交AC于F,过F作FH∥CD交BC于H,可以证明结论FH/AB =FG /BG 成立.(考生不必证明)(1)探究:如图2,上述条件中,若G在CD的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由; (2)计算:若菱形ABCD中AB=6,∠ADC=60°,G在直线CD上,且CG=16,连接BG 交AC所在的直线于F,过F作FH∥CD交BC所在的直线于H,求BG与FG的长.(3)发现:通过上述过程,你发现G在直线CD上时,结论FH /AB =FG /BG 还成立吗?

中考数学复习指导:一道几何旋转变换题的变式训练

一道几何旋转变换题的变式训练 如图,分别以△ABC的边AB、AC为一边向外作正方形AEDB和正方形ACFG,连结CE、BG。 求证:BG=CE 变式一:条件不变、增加探究结论 (2)观察图形猜想CE与BG之间的位置关系,并证明你的猜想。 (3)图中哪个三角形是由哪个三角形变换得到?请说出是怎样的变换? 变式二:图形旋转,探究原结论 (4)正方形AEDB绕点A逆时针方向旋转,使AE与AG重合时,如图(1)上述两个结论是否成立?(5)继续旋转到如图(2)位置,上述两个结论是否成立?

变式三:图形旋转,探究新结论 (6)如图(2),连结DF ,求CE :BG :DF 的值. 变式四:添加条件,探索新结论 如图,AB =11,AC =7,连结EG ,求2 2 BC EG +的值 变式五:改变图形,探究原结论 把“正方形AEDB 和正方形ACFG ”改为“矩形AEDB 、ACFG (长宽不等)”且AG AC AE AB =, 线段CE 、BG 有怎样的关系呢?

如图,分别以△ABC 的边AB 、AC 为一边向外作正三角形ABD 和正三角形ACE ,连结CD 、BE 。 (1)求证:BE =DC (2)求直线CD 与直线BE 的所夹锐角 变式七:根据结论,探究条件 如图,在△ABC 中,分别以AB ,AC ,BC 为边在BC 的同侧作等边三角形ABD ,ACE ,BCF (1)求证:四边形DAEF 是平行四边形; (2)探究下列问题 ①当△ABC 满足什么条件时,四边形DAEF 是矩形? ②当△ABC 满足什么条件时,四边形DAEF 是菱形? ③当△ABC 满足什么条件时,以D ,A ,E ,F 为顶点的四边形不存在?

动态几何型压轴题

C 动态几何型压轴题 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、以动态几何为主线的压轴题 (一)点动问题. 1.(09年徐汇区)如图,ABC ?中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD , 以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长; (2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时, 求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. [题型背景和区分度测量点] 本题改编自新教材九上《相似形》24.5(4)例六,典型的一线三角(三等角)问题,试题在原题的基础上改编出第一小题,当E 点在AB 边上运动时,渗透入圆与圆的位置关系(相切问题)的存在性的研究形成了第二小题,加入直线与圆的位置关系 (相切问题)的存在性的研究形成了第三小题.区分度测量点在直线与圆的位置关系和圆与圆的位置关系,从而利用方程思想来求解. [区分度性小题处理手法] 1.直线与圆的相切的存在性的处理方法:利用d=r 建立方程. 2.圆与圆的位置关系的存在性(相切问题)的处理方法:利用d=R ±r(r R >)建立方程. 3.解题的关键是用含x 的代数式表示出相关的线段. [ 略解] 解:(1) 证明CDF ?∽EBD ?∴ BE CD BD CF = ,代入数据得8=CF ,∴AF=2 (2) 设BE=x ,则,10==AC d ,10x AE -=利用(1)的方法 x CF 32 = , 相切时分外切和内切两种情况考虑: 外切, x x 32 1010+ -=,24=x ;

一道解析几何题的研究与思考

一道解析几何题的研究与思考 发表时间:2019-07-19T11:45:05.693Z 来源:《中国教师》2019年9月刊作者:李开成 [导读] 解题的正确思路得出后,选择合理的解题方法才能使“思路”迅速、简捷. 训练解题方法的多样化,并从中评选出最佳方案,是提高解题速度、能力的有效方式. 平时应加强一题多解,一题多变的训练。我以一道典型的解析几何题为例,对其进行解法研究和变式思考。李开成浦江职业技术学校 322200 【摘要】解题的正确思路得出后,选择合理的解题方法才能使“思路”迅速、简捷. 训练解题方法的多样化,并从中评选出最佳方案,是提高解题速度、能力的有效方式. 平时应加强一题多解,一题多变的训练。我以一道典型的解析几何题为例,对其进行解法研究和变式思考。【关键词】思维品质;一题多解;一题多变 中图分类号:G652.2 文献标识码:A 文章编号:ISSN1672-2051(2019)09-188-02 数学教学大纲在教学目的中提出,数学教学要“注意培养学生良好的思维品质”。怎样更好地实现这个目标呢?我在教学中发现,采用一题多解和一题多变的教学方式是比较有效的途径。所谓一题多解就是对同一问题从不同角度去分析、寻找不同的解题途径。通过一题多解可以沟通各种知识的内在联系,使已学知识形成系统,同时,学生也学会从不同角度去观察思考问题,遇到问题时,能多向联想、随机应变,提高学生的应变能力和思维能力。所谓一题多变,就是不断变换所提供的材料或问题呈现的形式,使事物的非本质特征时隐时现,而事物的本质特征却保持不变。通过变式练习,可以使学生在全面、深刻的理解和掌握知识的同时,思维品质也获得良好的发展。 下面我以一个典型的解析几何题为例,对其进行解法研究和变式思考。 题目:在椭圆上求一点,使它与两焦点的连线互相垂直。 解法1(向量法)设点,由题设知 为. ∵, 即(1) 又点P在椭圆上,∴(2) 联立(1)、(2),解得点P的坐标为(3,±4),(-3,±4). 解法2(交轨法)设点, ∵,∴P点在以F1F2为直径的圆上,即,以下同解法1. 解法3(应用斜率)设, ∴,∴, 即.以下同解法1. 解法4(应用焦半径公式)设,∵, 则,. ∵,∴, ∴.以下同解法1. 解法5(面积法)设点,则.由椭圆定义知,∴ =180,又,∴, ∴. ∴,,以下同解法1. 解法6(几何法)如图,以坐标原点O为圆心,以|F1F2|为直径画圆与椭圆交于A、B、C、D四点,由直径所对的圆周角是直角可知:当点P位于A、B、C、D四点时,∠F1PF2为直角,以下同解法2. 比较上述六中解法,笔者认为第六种解法最直观,简洁,易懂,让学生能够很清楚地看到点P在什么位置时是直角,锐角,或者钝角,在下面的变式题目中也有很好的启示作用。对本题的思考还没有结束,接着我们对它尝试着做如下的变式训练: 变式1:椭圆的两个焦点是F1、F2,,点P为它上面一动点,当∠F1PF2为钝角时,点P的横坐标的取值范围是___________。 分析:受原题的启发,无论是钝角还是锐角,都是以直角为参照,该题解法很多,但以几何法最为简洁。当点P位于椭圆上弧AB或弧CD上时,∠F1PF2为钝角;锐角的情况不言而喻,易求点P横坐标的取值范围是。 变式2:双曲线的两个焦点为F1、F2,点P在双曲线上,且PF1⊥PF2,则点P到x轴的距离为_____________。 分析:该题将原题中的椭圆改为双曲线,而点到x轴的距离等于点的纵坐标的绝对值,以|F1F2|为直径作圆与双曲线的交点(即点P)的坐标,易求点P的纵坐标为,故所求距离为。 变式3:已知椭圆的左、右焦点分别为F1、F2,点P在椭圆上,若P、F1、F2为直角三角形的三个顶点,则点P到x轴的距离为() A. B.3 C. D. 分析:该题是将原题中∠为直角改为△为直角三角形,题中没确定哪个角为直角,从而使该题更具有开放性,当∠=90°时,只要找以|F1F2|为直径的圆与椭圆的交点纵坐标,显然以|F1F2|为直径的圆的方程与椭圆无交点,故此种情况无解;当∠=90°或∠=90°时,易求点P到x轴的距离为,故选D。 变式4:已知F1、F2是椭圆C:的两焦点,在C上满足PF1⊥PF2的点P的个数为_____。 分析:该题只将求点的坐标改为判断点的个数,但解法是相同的,只是求以|F1F2|为直径的圆与椭圆的交点个数,显然以|F1F2|为直径的圆方程为,与椭圆C:相切于椭圆短轴端点,故点P的个数为2个。 变式5:设椭圆的两个焦点是F1(-c,0),F2(c,0),c>0,且椭圆上存在点P,使得PF1与PF2垂直,求实数m的取值范围。分析:显然该题在椭圆中引入参数,将求点的坐标改为“求参数的取值范围”的热点问题,解法是相同的,要使椭圆上存在点使

(902)截一个几何体专项练习30题(有答案)ok教学教材

(902)截一个几何体专项练习30题(有答 案)o k

截一个几何体专项练习30题(有答案)1.用平面去截正方体,在所得的截面中,边数最少的截面是()A . 六边形B . 五边形C . 四边形D . 三角形 2.如图所示,用一个平面去截一个圆柱,则截得的形状应为() A . B . C . D . 3.如下图,一正方体截去一角后,剩下的几何体面的个数和棱的条数分别为() A . 6,14 B . 7,14 C . 7,15 D . 6,15 A . 圆柱B . 圆锥C . 长方体D . 正方体 A . 8 B . 6 C . 7 D . 10 6.如图,用平面去截圆锥,所得截面的形状是() A . B . C . D . 7.给出以下四个几何体,其中能截出长方形的几何体共有() A . 4个B . 3个C . 2个D . 1个 8.请指出图中几何体截面的形状()

A . B . C . D . 9.如图是一个长方形截去两个角后的立体图形,如果照这样截去长方形的八个角,那么新的几何体的棱有() A . 26条B . 30条C . 36条D . 42条 A.用一个平面去截一个圆锥,可以是椭圆 B.棱柱的所有侧棱长都相等 C.用一个平面去截一个圆柱体,截面可以是梯形 D.用一个平面去截一个长方体截面不能是正方形 A.长方体的截面一定是长方形B.正方体的截面一定是正方形 C.圆锥的截面一定是三角形D.球体的截面一定是圆 A.圆柱的截面可能是三角形B.球的截面有可能不是圆 C.圆锥的截面可能是圆D.长方体的截面不可能是六边形 13.如图所示,几何体截面的形状是() A . B . C . D . A . 七边形B . 六边形C . 五边形D . 四边形

高一数学空间几何体综合练习题

人教A 必修2第一章空间几何体综合练习卷 本试卷分第Ⅰ卷和第Ⅱ卷两部分.共150分. 第Ⅰ卷(选择题,共50分) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.不共面的四点可以确定平面的个数为 ( ) A . 2个 B . 3个 C . 4个 D .无法确定 2.利用斜二测画法得到的 ①三角形的直观图一定是三角形; ②正方形的直观图一定是菱形; ③等腰梯形的直观图可以是平行四边形; ④菱形的直观图一定是菱形. 以上结论正确的是 ( ) A .①② B . ① C .③④ D . ①②③④ 3.棱台上下底面面积分别为16和81,有一平行于底面的截面面积为36,则截面戴的两棱台高 的比为 ( ) A .1∶1 B .1∶1 C .2∶3 D .3∶4 4.若一个平行六面体的四个侧面都是正方形,则这个平行六面体是 ( ) A .正方体 B .正四棱锥 C .长方体 D .直平行六面体 5.已知直线a 、b 与平面α、β、γ,下列条件中能推出α∥β的是 ( ) A .a ⊥α且a ⊥β B .α⊥γ且β⊥γ C .a ?α,b ?β,a ∥b D .a ?α,b ?α,a ∥β,b ∥β 6.如图所示,用符号语言可表达为( ) A .α∩β=m ,n ?α,m ∩n =A B .α∩β=m ,n ∈α,m ∩n =A C .α∩β=m ,n ?α,A ?m ,A ? n D .α∩β=m ,n ∈α,A ∈m ,A ∈ n 7.下列四个说法 ①a //α,b ?α,则a // b ②a ∩α=P ,b ?α,则a 与b 不平行 ③a ?α,则a //α ④a //α,b //α,则a // b 其中错误的说法的个数是 ( ) A .1个 B .2个 C .3个 D .4个 8.正六棱台的两底边长分别为1cm,2cm,高是1cm,它的侧面积为 ( ) A .279cm 2 B .79cm 2 C .32 3cm 2 D .32cm 2 9.将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶4. 再将它们卷成两个圆锥侧 面,则两圆锥体积之比为 ( ) A .3∶4 B .9∶16 C .27∶64 D .都不对 10.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D —ABC 的体积为 ( )

动态几何问题的解题技巧

动态几何问题的解题技 巧 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

动态几何问题的解题技巧 解这类问题的基本策略是: 1.动中觅静:这里的“静”就是问题中的不变量、不变关系 ........,动中觅静就是在运动 变化中探索问题中的不变性 .... 2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓 住“静”的瞬间,使一般情形转化为特殊问题 ...........,从而找到“动”与“静”的关系. 3.以动制动:以动制动就是建立图形中两个变量的函数关系 .........,通过研究运动函数,用联系发展的观点来研究变动元素的关系. 总之,解决动态几何问题的关键是要善于运用运动与变化的眼光去观察和研究图形, 把握图形运动与变化的全过程,抓住变化中的不变,以不变应万变 .............。 这类问题与函数相结合时,注意使用分类讨论的思想,运用方程的思想、数形结合思想、转化的思想等。 1、在△ABC中,∠C=90°,AC=BC=2,将一块三角板的直角顶点放在斜边AB的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC、CB与点D、点E,图①,②,③是旋转得到的三种图形。

(1)观察线段PD 和PE 之间的有怎样的大小关系,并以图②为例,加以说明; (2)△PBE 是否构成等腰三角形若能,指出所有的情况(即求出△PBE 为等腰三角形时CE 的长, 直接写出结果);若不能请说明理由。 2、如图,等腰Rt △ABC(∠ACB =90°)的直角边与正方形DEFG 的边长均为2,且AC 与DE 在同一直线上,开始时点C 与点D 重合,让△ABC 沿这条直线向右平移,直到点A 与点E 重合为止.设CD 的长为x ,△ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y , (1)求y 与x 之间的函数关系式; (2)当△ABC 与正方形DEFG 重合部分的面积为32 时,求CD 的长. 3、在平面直角坐标系中,直线1l 过点A(2,0)且与轴y 平行,直线2l 过点B(0,1)且与轴x 平行,直线1l 与2l 相交于点P 。点E 为直线2l 上一点,反比例函数 0,0(>>=k x x k y 且k ≠2)的图象过点E 且与直线1l 相交于点F. (1)写出点E 、点F 的坐标(用k 的代数式 表示); (2)求 PF PE 的值; (3)连接OE 、OF 、EF , 若△OEF 为直角三角形,求k 的值。 4、如图,在Rt △ABC 中,∠C=90°,AC=4cm ,BC=5cm ,点D 在BC 上,且CD=3cm ,现有两个动点P ,Q 分别从点A 和点B 同时出发,其中点P 以1厘米/秒的速度沿AC 向终点C 运动;点Q 以厘米/秒的速度沿BC 向终点C 运动.过点P 作PE ∥BC 交AD 于点E ,连接EQ .设动点运动时间为t 秒(t >0).

初中数学变式习题的设计

数学变式习题的设计 习题是训练学生的思维材料,是教师将自己的思想、方法以及分析问题和解决问题的技能技巧施达于学生的载体。要想不被千变万化的表象所迷惑,抓住本质的东西,变式教学是一种有效的办法。通常可以利用习题变式训练学生的思维,使学生在多变的问题中受到磨练,举一反三,加深理解。如将练习中的条件或结论做等价性变换,变更练习的形式或内容,形成新的练习变式,可有助于学生对问题理解的逐步深化。下面本人结合理论学习和数学课堂教学的实践,谈谈在数学教学中如何进行变式训练培养学生的思维能力。 一、利用变式来改变题目的条件或结论,培养学生转化、推理、归纳、探索的思维能力。 (一)、一题多问,通过变式培养学生的创新意识和探究、概括能力 牛顿说过:“没有大胆的猜想就做不出伟大的发现。”中学生的想象力丰富,因此,可以通过例题所提供的结构特点,鼓励、引导学生大胆地猜想,以培养学生的创造性思维和发散思维。 例题1.如图(1)已知△ABC中,∠BAC的平分线与边BC和外接圆分别相交于点D和E.求证:△ABD∽△AEC 此题是很简单的证明题,将图形变式,添加切线BF,则可变为: [变式训练]1. 如图(2)已知△ABC中,∠BAC的平分线与边BC和外接圆分别相交于点D和E.过B作⊙O的切线交CE延长线与F点. 求证:CE:BC=BF:CF 本题需证△BEF∽△CBF,若将条件进一步发展,延长AD交BF于N,则有: 2. 如图(3)已知△ABC中,∠BAC的平分线与边BC和外接圆分别相交于点D和 E.过B作⊙O的切线交CE延长线于F点,交AE延长线于N点. 求证:BN·DE=BD·EN 本题需证BE平分∠FBC和△ABD∽△CDE,并借助中间比推证,若再将F为BF、CE交点改为F是由C点作切线BN垂线的垂足,则又变为: 3. 如图(4)已知△ABC中,∠BAC的平分线与边BC和外接圆分别相交于点D和 E.过B作⊙O的切线交AE延长线于N点,作EF⊥BN. 求证:BN·DE=BD·EN

截一个几何体专项练习30题(有答案)ok

截一个几何体专项练习30题(有答案) 1.用平面去截正方体,在所得的截面中,边数最少的截面是() A.六边形B.五边形C.四边形D.三角形 2.如图所示,用一个平面去截一个圆柱,则截得的形状应为() A.B.C.D. 3.如下图,一正方体截去一角后,剩下的几何体面的个数和棱的条数分别为() A.6,14 B.7,14 C.7,15 D.6,15 4.用平面去截一个几何体,如截面为长方形,则几何体不可能是()A.圆柱B.圆锥C.长方体D.正方体 5.一块豆腐切三刀,最多能切成块数(形状,大小不限)是() A.8B.6C.7D.10 6.如图,用平面去截圆锥,所得截面的形状是() A.B.C.D. 7.给出以下四个几何体,其中能截出长方形的几何体共有() ①球;②圆锥;③圆柱;④正方体. A.4个B.3个C.2个D.1个

8.请指出图中几何体截面的形状() A.B.C.D. 9.如图是一个长方形截去两个角后的立体图形,如果照这样截去长方形的八个角,那么新的几何体的棱有() A.26条B.30条C.36条D.42条 10.下列说法中,正确的是() A.用一个平面去截一个圆锥,可以是椭圆 B.棱柱的所有侧棱长都相等 C.用一个平面去截一个圆柱体,截面可以是梯形 D.用一个平面去截一个长方体截面不能是正方形 11.下列说法上正确的是() A.长方体的截面一定是长方形B.正方体的截面一定是正方形 C.圆锥的截面一定是三角形D.球体的截面一定是圆 12.下列说法中正确的是() A.圆柱的截面可能是三角形B.球的截面有可能不是圆 C.圆锥的截面可能是圆D.长方体的截面不可能是六边形 13.如图所示,几何体截面的形状是() A.B.C.D.

郴州数学圆 几何综合专题练习(解析版)

郴州数学圆几何综合专题练习(解析版) 一、初三数学圆易错题压轴题(难) 1.已知:四边形ABCD内接于⊙O,∠ADC=90°,DE⊥AB,垂足为点E,DE的锯长线交⊙O于点F,DC的延长线与FB的延长线交于点G. (1)如图1,求证:GD=GF; (2)如图2,过点B作BH⊥AD,垂足为点M,B交DF于点P,连接OG,若点P在线段OG上,且PB=PH,求∠ADF的大小; (3)如图3,在(2)的条件下,点M是PH的中点,点K在BC上,连接DK,PC,D交PC点N,连接MN,若AB=122,HM+CN=MN,求DK的长. 【答案】(1)见解析;(2)∠ADF=45°;(3)1810 . 【解析】 【分析】 (1)利用“同圆中,同弧所对的圆周角相等”可得∠A=∠GFD,由“等角的余角相等”可得∠A=∠GDF,等量代换得∠GDF=∠GFD,根据“三角形中,等角对等边”得GD=GF;(2)连接OD、OF,由△DPH≌△FPB可得:∠GBH=90°,由四边形内角和为360°可得:∠G=90°,即可得:∠ADF=45°; (3)由等腰直角三角形可得AH=BH=12,DF=AB=12,由四边形ABCD内接于⊙O,可得:∠BCG=45°=∠CBG,GC=GB,可证四边形CDHP是矩形,令CN=m,利用勾股定理可求得m=2,过点N作NS⊥DP于S,连接AF,FK,过点F作FQ⊥AD于点Q,过点F 作FR⊥DK交DK的延长线于点R,通过构造直角三角形,应用解直角三角形方法球得DK.【详解】 解:(1)证明:∵DE⊥AB ∴∠BED=90° ∴∠A+∠ADE=90° ∵∠ADC=90° ∴∠GDF+∠ADE=90° ∴∠A=∠GDF ∵BD BD ∴∠A=∠GFD

中考压轴题动态几何之其他问题2

中考压轴题动态几何之其他问题2 数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等.解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射. 动态几何之其他问题(解析几何)是除前述动态几何问题以外的平面几何问题,本专题原创编写动态几何之其他问题(解析几何)模拟题. 在中考压轴题中,其他问题(解析几何)的难点在于准确应用适当的定理和方法进行探究. 原创模拟预测题1.在平面直角坐标系中,点P (x ,0)是x 轴上一动点,它与坐标原点O 的距离为y ,则y 关于x 的函数图象大致是( ) A . B . C . D . 【答案】A . 【解析】 试题分析:x <0时,y=﹣x ,x >0时,y=x .故选A . 考点:动点问题的函数图象. 原创模拟预测题2.如图,已知直线334y x =-+分别交x 轴、y 轴于点A 、B ,P 是抛物线 21252y x x =-++的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线334y x =-+于点Q ,则当PQ=BQ 时,a 的值是 . 【答案】﹣1,4,425+,425- 【解析】

相关文档
相关文档 最新文档