文档库 最新最全的文档下载
当前位置:文档库 › 超级资源:高中物理选修3-1复习全套导学案(附练习与答案)

超级资源:高中物理选修3-1复习全套导学案(附练习与答案)

超级资源:高中物理选修3-1复习全套导学案(附练习与答案)
超级资源:高中物理选修3-1复习全套导学案(附练习与答案)

第1课时 电荷守恒定律 库仑定律

导学目标 1.能利用电荷守恒定律进行相关判断.2.会解决库仑力参与的平衡及动力学问题.

一、电荷守恒定律 [基础导引]

如图1所示,用绝缘细线悬挂一轻质小球b ,并且b 球表面镀有一层 金属膜,在靠近b 球旁有一金属球a ,开始时a 、b 均不带电,若给a 球带电,则会发生什么现象? [知识梳理]

1.物质的电结构:构成物质的原子本身包括:__________的质子和

__________的中子构成__________,核外有带________的电子,整个原子对外

图2

____________表现为__________.

2.元电荷:最小的电荷量,其值为e =________________.其他带电体的电荷量皆为元电荷的__________. 3.电荷守恒定律

(1)内容:电荷既不会创生,也不会消灭,它只能从一个物体________到另一个物体,或者从物体的一部分________到另一部分;在转移过程中,电荷的总量____________. (2)起电方式:____________、____________、感应起电. (3)带电实质:物体带电的实质是____________.

思考:当两个完全相同的带电金属球相互接触时,它们的电荷如何分配? 二、库仑定律 [基础导引]

如图2所示,两个质量均为m 的完全相同的金属球壳a 和b ,其 壳层的厚度和质量分布均匀,将它们固定于绝缘支座上,两球心 间的距离l 为球半径的3倍.若使它们带上等量异种电荷,电荷

量的绝对值均为Q ,试比较它们之间的库仑力与kQ 2

l 2的大小关系,

如果带同种电荷呢? [知识梳理]

1.点电荷:是一种理想化的物理模型,当带电体本身的______和________对研究的问题影响很小时,可以将带电体视为点电荷. 2.库仑定律

(1)内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成____________,与它们的距离的二次方成________,作用力的方向在它们的________上. (2)公式:F =________________,其中比例系数k 叫做静电力常量,k =9.0×109 N·m 2/C 2.

(3)适用条件:①__________;②____________.

3.库仑定律的理解:库仑定律的适用条件是真空中的静止点电荷.点电荷是一种理想化的物理模型,当带电体间的距离远远大于带电体的自身大小时,可以视其为点电荷而适用库仑定律,否则不能适用.

思考:在理解库仑定律时,有人根据公式F =k q 1q 2

r 2,设想当r →0时得出F →∞的结论,

请分析这个结论是否正确

.

考点一 电荷守恒定律及静电现象 考点解读

1.使物体带电的三种方法及实质

摩擦起电、感应起电和接触带电是使物体带电的三种方法,它们的实质都是电荷的转

移.实现电荷转移的动力是同种电荷相互排斥、异种电荷相互吸引. 2.验电器与静电计的结构与原理

玻璃瓶内有两片金属箔,用金属丝挂在一根导体棒的下端,棒的上端通过瓶塞从瓶口伸出(如图3甲所示).如果把金属箔换成指针,并用金属做外壳,这样的验电器又叫静电计(如图乙所示).注意金属外壳与导体棒之间是绝缘的.

不管是静电计的指针还是验电器的箔片,它们张开角度的原因都是同种电荷相互排斥的结果.

图3

典例剖析

例1 使带电的金属球靠近不带电的验电器,验电器的箔片张开.下列各图表示验电器上感应电荷的分布情况,正确的是 ( )

特别提醒 电荷守恒定律是电学中的基本规律之一,对电荷守恒定律的考查每年都有,但往往渗透在各类电学题目中,很少单独考查;而对感应起电的考查难度不大,一般出现在选择题中.

跟踪训练1 把两个完全相同的金属球A 和B 接触一下,再分开一段距离,发现两球之间互相排斥,则A 、B 两球原来的带电情况可能是( ) A .带等量异种电荷 B .带等量同种电荷 C .带不等量异种电荷 D .一个带电,另一个不带电

考点二 库仑力作用下的平衡问题与动力学问题 考点解读

1.库仑定律的表达式为F =k q 1q 2

r 2,其适用条件是真空中两静止点电荷之间相互作用的静电

力.库仑定律与平衡问题联系比较密切,因此关于静电力的平衡问题是高考的热点内容,题型多以选择题为主.对于这部分内容,需要注意以下几点:一是明确库仑定律的适用

图4

图5

条件;二是知道完全相同的带电小球接触时电荷量的分配规律;三是进行受力分析,灵活应用平衡条件. 2.三个自由点电荷的平衡问题

(1)条件:两个点电荷在第三个点电荷处的合场强为零,或每个点电荷受到的两个库仑力必须大小相等,方向相反.

(2)规律:“三点共线”——三个点电荷分布在同一条直线上; “两同夹异”——正负电荷相互间隔; “两大夹小”——中间电荷的电荷量最小; “近小远大”——中间电荷靠近电荷量较小的电荷. 典例剖析

例2 (2009·江苏高考)两个分别带有电荷量-Q 和+3Q 的相同金属小球(均可视为点电荷),

固定在相距为r 的两处,它们间库仑力的大小为F .两小球相互接触后将其固定距离变为r

2,

则两球间库仑力的大小为 ( ) A.112F B.34F C.4

3F D .12F 思维突破 分析带电体力学问题的方法与纯力学问题的分析方法一样,学会把电学问题力学化.分析方法是:

(1)确定研究对象.如果有几个物体相互作用时,要依据题意,适当选取“整体法”或“隔离法”;

(2)对研究对象进行受力分析,多了个静电力(F =kq 1q 2

r 2);

(3)列平衡方程(F 合=0或F x =0,F y =0)或牛顿第二定律. 跟踪训练2 (2009·浙江理综)如图4所示,在光滑绝缘水平面上 放置3个电荷量均为q (q >0)的相同小球,小球之间用劲度系数 均为k 0的轻质弹簧绝缘连接.当3个小球处在静止状态时,每根弹

簧的长度为l .已知静电力常量为k ,若不考虑弹簧的静电感应,则每根弹簧的原长为( )

A .l +5kq 22k 0l 2

B .l -kq

2k 0l 2

C .l -5kq 24k 0l 2

D .l -5kq 2

2k 0l 2

18.挖掘隐含条件寻求解题突破

例3 如图5所示,竖直平面内有一圆形光滑绝缘细管,细管截面半径 远小于半径R ,在中心处固定一带电荷量为+Q 的点电荷.质量为 m 、带电荷量为+q 的带电小球在圆形绝缘细管中做圆周运动,当小 球运动到最高点时恰好对细管无作用力,求当小球运动到最低点时

对管壁的作用力是多大?

方法提炼 在审题过程中,不但要了解题目所描述的是什么物理现象,物理过程如何,求解什么问题,更重要的是要对题目文字和图象的关键之处仔细领会,从中获取有效信息,即所谓要挖掘题目中的隐含条件,对有些物理问题,能否快速正确地挖掘隐含条件可成为解

图6

图7

图8 题的关键.本题中“细管截面半径远小于半径R ”表明小球做圆周运动的半径就是R ;“小球在最高点时恰好对细管无作用力”表明在最高点时小球所需向心力由重力和库仑力二力的合力提供.另外库仑力参与的动力学问题与牛顿运动定律中的动力学问题本质上是相同的,值得注意的两点是:(1)列方程时,注意库仑力的方向,如本题中在最高点时向上,在最低点时向下;(2)本题中,库仑力总与速度方向垂直,库仑力不做功. 跟踪训练3 三个带电荷量均为Q (正电)的小球A 、B 、C 质量均为m , 放在水平光滑绝缘的桌面上,分别位于等边三角形的三个顶点,其边 长为L ,如图6所示,求:

(1)在三角形的中心O 点应放置什么性质的电荷,才能使三个带电小 球都处于静止状态?其电荷量是多少?

(2)若中心电荷带电荷量在(1)问基础上加倍,三个带电小球将加速运动,求其加速度大小; (3)若中心电荷带电荷量在(1)问基础上加倍后,仍保持三个小球相对距离不变,可让它们绕中心电荷同时旋转,求旋转的线速度大小.

A 组 对电荷及电荷守恒定律的考查

1.以下说法正确的是 ( ) A .物体所带的电荷量是任意实数 B .元电荷就是电子或质子

C .物体所带电荷量的最小值是1.6×10

-19

C

D .凡试探电荷都是点电荷,凡点电荷都能作试探电荷

2. 如图7所示,A 、B 是两个带有绝缘支架的金属球,它们原来均不带 电,并彼此接触.现使带负电的橡胶棒C 靠近A (C 与A 不接触),然 后先将A 、B 分开,再将C 移走.关于A 、B 的带电情况,下列判断 正确的是 ( ) A .A 带正电,B 带负电 B .A 带负电,B 带正电 C .A 、B 均不带电 D .A 、B 均带正电

B 组 库仑力作用下的平衡问题

3.两个可自由移动的点电荷分别放在A 、B 两处,如图8所示.A 处电荷带正电荷量Q 1,B 处电荷带负电荷量Q 2,且Q 2=4Q 1,

另取一个可以自由移动的点电荷Q 3,放在AB 直线上,欲使整个系统处 于平衡状态,则 ( ) A .Q 3为负电荷,且放于A 左方

图9

图10 B .Q 3为负电荷,且放于B 右方 C .Q 3为正电荷,且放于A 、B 之间 D .Q 3为正电荷,且放于B 右方

4. 如图9所示,质量分别是m 1和m 2,电荷量分别是q 1和q 2的小 球,用长度不等的绝缘轻丝线悬挂起来,两丝线与竖直方向的 夹角分别是α和β(α>β),两小球恰在同一水平线上,那么

( )

A .两球一定带异种电荷

B .q 1一定大于q 2

C .m 1一定小于m 2

D .m 1所受的电场力一定大于m 2所受的电场力

C 组 库仑力参与的动力学问题

5. 如图10所示,水平光滑的绝缘细管中,两相同的带电金属小球相向运动,当相距L 时,加速度大小均为a ,已知A 球带电荷量为+q ,B 球带电荷量为

-3q .当两球相碰后再次相距为L 时,两球加速度大小为多大?

图1

图2

课时规范训练

(限时:45分钟)

一、选择题

1.关于点电荷,下列说法正确的是 ( ) A .只有体积很小的带电体才可以看作点电荷 B .只有球形带电体才可以看作点电荷

C .带电体能否被看作点电荷既不取决于带电体大小也不取决于带电体的形状

D .一切带电体都可以看作点电荷

2.人类已探明某星球带负电,假设它是一个均匀带电的球体.将一带负电的粉尘置于该星球表面高h 处,粉尘恰处于悬浮状态.现将同样的带电粉尘带到距星球表面2h 处无初速度释放,则此带电粉尘将 ( ) A .向星球球心方向下落 B .被推向太空,远离星球 C .仍在那里悬浮

D .沿星球自转的线速度方向飞出

3.两个放在绝缘架上的相同金属球,相距r ,球的半径比r 小得多,带电荷量大小分别为q 和3q ,相互作用的斥力为3F .现让这两个金属球相接触,然后分开,仍放回原处,则它们之间的相互作用力将变为 ( )

A .F B.4F

3

C .4F

D .以上三个选项之外的一个值 4.如图1所示,可视为点电荷的小球A 、B 分别带负电和正电,B 球固定,其正下方的A 球静止在绝缘斜面上,则A 球受力个数 可能为 ( ) A .可能受到2个力作用 B .可能受到3个力作用 C .可能受到4个力作用 D .可能受到5个力作用

5.如图2所示,电荷量为Q 1、Q 2的两个正点电荷分别置于A 点 和B 点,两点相距为L ,在以L 为直径的光滑绝缘半圆环上, 穿着一个带电荷量为q 的小球(视为点电荷),在P 点平衡,若

不计小球的重力,那么P A 与AB 的夹角α与Q 1、Q 2的关系满足( ) A .tan 2α=Q 1Q 2 B .tan 2α=Q 2

Q 1

C .tan 3α=Q 1Q 2

D .tan 3α=Q 2

Q 1

6.(2011·海南理综·13)三个相同的金属小球1、2、3分别置于绝缘支架上,各球之间的距离远大于小球的直径.球1的带电量为q ,球2的带电量为nq ,球3不带电且离球1和球2很远,此时球1、2之间作用力的大小为F .现使球3先与球2接触,再与球1接触,然后将球3移至远处,此时1、2之间作用力的大小仍为F ,方向不变.由此可知 ( )

图3

图4

图5

图6

图7

A .n =3

B .n =4

C .n =5

D .n =6 7.放在水平地面上的光滑绝缘圆筒内有两个带正电小球A 、B ,A 位于筒 底靠在左侧壁处,B 在右侧筒壁上受到A 的斥力作用处于静止,如图 3所示.若A 的电荷量保持不变,B 由于漏电而下降少许重新平衡, 下列说法正确的是 ( ) A .A 对筒底的压力变小 B .B 对筒壁的压力变大 C .A 、B 间的库仑力变小 D .A 、B 间的电势能减小

8.如图4所示,半径相同的两个金属小球A 、B 带有电荷量大小相 等的电荷,相隔一定的距离,两球之间的相互吸引力大小为F .今 用第三个半径相同的不带电的金属小球C 先后与A 、B 两个球接 触后移开,这时,A 、B 两个球之间的相互作用力大小是 ( ) A.18F B.14F C.38F D.34F 9.如图5所示,A 、B 是带有等量的同种电荷的两小球,它们的质量 都是m ,它们的悬线长度都是L ,悬线上端都固定在同一点O ,B 球悬线竖直且被固定,A 球在力的作用下,在偏离B 球x 的地方静

止平衡,此时A 受到绳的拉力为F T ;现保持其他条件不变,用改变A

球质量的方法,使A 球在距离B 为x

2处静止平衡,则A 受到绳的拉力为( )

A .F T

B .2F T

C .4F T

D .8F T 二、非选择题

10.把带正电荷的导体球C 移近彼此接触的、不带电的绝

缘金属导体A 、B (如图6所示).则: (1)金属箔片是否张开?

(2)如果先把C 移走,再将A 和B 分开,上面的金属箔 片会怎样?

(3)如果先把A 和B 分开,然后移开C ,上面的金属箔片又会怎样?

(4)在(3)的基础上,再让A 和B 接触,上面的金属箔片又会怎样? 11.如图7所示,绝缘水平面上静止着两个质量均为m 、电荷量均

为+Q 的物体A 和B (A 、B 均可视为质点).它们间的距离为r , 与水平面间的动摩擦因数均为μ,求: (1)A 受的摩擦力为多大?

(2)如果将A 的电荷量增至+4Q ,两物体开始运动,当它们的加速度第一次为零时,A 、B 各运动了多远距离?

12.真空中有两个完全相同的金属小球,A 球带q A =6.4×10

-16

C 的正电荷,B 球带q B =-

3.2×10

-16

C 的负电荷,均可视为点电荷.求:

(1)当它们相距为0.5 m时,A、B间的库仑力为多大;

(2)若将两球接触后再分别放回原处,A、B间的库仑力又为多大.

复习讲义

基础再现 一、

基础导引 a 吸引b ,接触后,再把b 排斥开.

知识梳理 1.带正电 不带电 原子核 负电 较远位置 电中性 2.1.60×10-19

C 整数

倍 3.(1)转移 转移 保持不变 (2)摩擦起电 接触起电 (3)得失电子

思考:同种电荷电荷量平均分配,异种电荷先中和后平分. 二、

基础导引 当它们带异种电荷时,F 库>kQ 2

l

2,因为两个金属球此时距离较近,异种电荷分布

在两球内侧,不能将它们看作点电荷,当它们带同种电荷时,F 库

l

2.

知识梳理 1.大小 形状 2.(1)正比 反比 连线 (2)k q 1q 2

r 2 (3)①真空中 ②点电荷

思考:从数学角度分析是正确的,但从物理角度分析,这一结论是错误的.错误的原因是:当r →0时两电荷已失去了作为点电荷的前提条件,何况实际电荷都有一定的大小,根本不会出现r =0的情况.也就是说当r →0时,已不能再利用库仑定律计算两电荷间的相互作用力了. 课堂探究 例1 B 跟踪训练1 BCD 例2 C 跟踪训练2 C 例3 6mg

跟踪训练3 (1)负电荷 33Q (2)3kQ 2

mL 2

(3)Q k

Lm

分组训练 1.C 2.A 3.A 4.AC

课进规范训练

1.C 2.C 3.C 4.AC 5.D 6.D 7.B

8.A 9.D

10.见解析

解析 注意静电感应本质上是电荷间的作用,注意感应起电的特 点. (1)可以看到A 、B 上的金属箔片都张开了,表示A 、B 都带 上了电荷.

(2)如果先把C 移走,A 和B 上的金属箔片就会闭合.

(3)如果先把A 和B 分开,然后移开C ,A 和B 上的金属箔片仍然张开.

(4)再让A 和B 接触,它们就不再带电,A 和B 上的金属箔片会闭合.这说明A 和B 分开后所带的是等量异种电荷,重新接触后等量异种电荷发生中和. 11.(1)k Q 2

r 2 (2)均运动了Q

k μmg -r 2

12.(1)7.37×10-21

N (2)9.22×10-22

N

第2课时 电场的力的性质

导学目标 1.理解电场强度的概念.2.会分析计算在电场力作用下电荷的平衡及运动.3.会利用电场中的电场线分布分析问题.

一、电场及电场强度 [基础导引]

判断下列说法是否正确:

①电场强度反映了电场的力的性质,因此电场中某点的场强与试探电荷在该点所受的电场力成正比

( ) ②电场中某点的场强等于F /q ,但与试探电荷的受力大小及电荷量无关 ( ) ③电场中某点的场强方向即试探电荷在该点的受力方向

( ) ④公式E =F q 和E =k Q

r 2对于任何静电场都是适用的

( )

[知识梳理] 1.静电场

(1)电场是存在于电荷周围的一种________,静电荷产生的电场叫静电场.

(2)电荷间的相互作用是通过________实现的.电场的基本性质是对放入其中的电荷有____________. 2.电场强度

(1)物理意义:表示电场的________和________.

(2)定义:电场中某一点的电荷受到的电场力F 跟它的____________的比值叫做该点的电场强度. (3)定义式:E =F

q

.

(4)单位:N/C 或V/m.

(5)矢量性:电场强度是矢量,正电荷在电场中某点受力的方向为该点电场强度的方向,电场强度的叠加遵从__________定则. 3

二、电场线 [基础导引]

图1是等量同种电荷、等量异种电荷的电场线分布图,A 与A ′、B 与B ′关于连线上中点O 对称.试分析:连线上A 与A ′,中垂线上B 与B ′的场强关系.

图1

[知识梳理]

1.电场线的定义:为了直观形象地描述电场中各点电场强度的________及________,在电场中画出一系列的曲线,使曲线上各点的__________方向表示该点的电场强度方向,曲线的________表示电场强度的大小. 2.几种典型电场的电场线分布

(1)正点电荷的电场如图2甲所示:电场线由________出发,到________终止. (2)负点电荷的电场如图乙所示:电场线由________出发,到________终止. (3)匀强电场的电场线分布如图丙所示.特点:间隔相等的平行直线. (4)点电荷与带电金属板的电场线的分布如图丁所示.

图3

图4

图2

(5)等量同种点电荷和等量异种点电荷的电场

思考:在点电荷电场中,以点电荷为球心的同一球面上各点的场强相同吗?

考点一 电场强度的计算与叠加 考点解读

电场叠加原理:多个点电荷在电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的矢量和,这种关系叫电场强度的叠加,电场强度的叠加遵从平行四边形定则. 典例剖析

例1 如图3所示,位于正方形四个顶点处分别固定有点电荷A 、 B 、C 、D ,四个点电荷的带电量均为q ,其中点电荷A 、C 带正 电,点电荷B 、D 带负电,试确定过正方形中心O 并与正方形垂直 的直线上到O 点距离为x 的P 点处的电场强度的大小和方向. 思维突破 电场强度是矢量,叠加时遵从平行四边形定则,分析电场

叠加问题的一般步骤是:(1)确定要分析计算的位置;(2)分析该处存在的几个分电场,先计算出各个分电场电场强度的大小,判断其方向;(3)利用平行四边形定则作出矢量图,根据矢量图求解.

跟踪训练1 (2011·陕西西安市质检)如图4所示,一个绝缘圆环,当它的

1/4均匀带电且电荷量为q 时,圆心O 处的电场强度大小为E .现使半 圆ABC 均匀带电2q ;而另一半圆ADC 均匀带电-2q .则圆心O 处的场 强的大小和方向为 ( ) A .22E ,方向由O 指向D

图5

B .4E ,方向由O 指向D

C .22E ,方向由O 指向B

D .0

考点二 电场线的分布特点及应用 考点解读 1.特点

(1)不闭合:电场线起始于正电荷(或无穷远处),终止于无穷远处(或负电荷),即电场线不能形成闭合曲线.

(2)不中断、不相交:在没有电荷的空间,电场线不中断,两条电场线也不能相交. (3)不是电荷在电场中的运动轨迹:只有当电场线为直线、电荷初速度为零或初速度平行于电场线、电荷仅受电场力作用时,电荷的运动轨迹才与电场线重合. 2.应用

(1)表示场强的方向

电场线上每一点的切线方向和该点的场强方向一致. (2)比较场强的大小

电场线的疏密程度反映了场强的大小,即电场的强弱.同一电场中,电场线越密的地方场强越大,电场线越疏的地方场强越弱. (3)判断电势的高低

在静电场中,顺着电场线的方向电势越来越低. 特别提醒 1.电场线是人为引入的,不是客观存在的.

2.虽然电场线是用来描述电场的强弱和方向的,但只根据一条电场线无法判断电场强弱和场源情况.

3.沿电场线的方向电势虽然越来越低,但场强不一定越来越小. 典例剖析

例2 如图5所示,实线表示电场线,虚线表示只受电场力作用的带 电粒子的运动轨迹.粒子先经过M 点,再经过N 点.可以判定

( )

A .粒子在M 点受到的电场力大于在N 点受到的电场力

B .M 点的电势高于N 点的电势

C .粒子带正电

D .粒子在M 点的动能大于在N 点的动能 思维突破 正确分析电场中的“拐弯现象”

当带电粒子在电场中的运动轨迹是一条与电场线、等势线都不重合的曲线时,这种现象简称为“拐弯现象”,其实质为“运动与力”的关系.通常只有电场力,有时也有重力等.一般要综合性地运用“牛顿运动定律、功和能”的知识分析求解.

(1)“运动与力两线法”——画出“速度线”(运动轨迹在初始位置的切线)与“力线”(在初始位置电场线的切线方向),从二者的夹角情况来分析曲线运动的情景.

(2)“三不知时要假设”——电荷的正负、场强的方向或等势面电势的高低、电荷运动的

图6

图7

方向,是题意中相互制约的三个方面.若已知其中的任一个,可顺次向下分析判定各待求量;若三个都不知(三不知),则要用“假设法”分别讨论各种情况.有时各种情景的讨论结果是归一的.

(3)一般为定性分析,有时涉及简单计算.

跟踪训练2 (2010·新课标全国卷·17) 静电除尘器是目前普遍采用的一种 高效除尘器.某除尘器模型的收尘板是很长的条形金属板,图6中直线 ab 为该收尘板的横截面.工作时收尘板带正电,其左侧的电场线分布如 图所示;粉尘带负电,在电场力作用下向收尘板运动,最后落在收尘板 上.若用粗黑曲线表示原来静止于P 点的带电粉尘颗粒的运动轨迹,下列4幅图中可能

正确的是(忽略重力和空气阻力)

(

)

5.带电体的力电综合问题的分

析方法

例3 如图7所示,匀强电场方向与水平线间夹角θ=30°, 方向斜向右上方,电场强度为E ,质量为m 的小球带负 电,以初速度v 0开始运动,初速度方向与电场方向一致.

(1)若小球的带电荷量为q =mg

E

,为使小球能做匀速直线运

动,应对小球施加的恒力F 1的大小和方向各如何? (2)若小球的带电荷量为q =2mg

E ,为使小球能做直线运动,应对小球施加的最小恒力

F 2

的大小和方向各如何? 方法提炼 1.解答思路

2.运动情况反映受力情况

图8

(1)物体静止(保持):F 合=0. (2)做直线运动

①匀变速直线运动,F 合=0.

②变速直线运动:F 合≠0,且F 合与速度方向总是一致.

(3)曲线运动:F 合≠0,F 合与速度方向不在一条直线上,且总指向运动轨迹曲线凹的一 侧.(4)F 合与v 的夹角为α,加速运动:0°≤α<90°;减速运动:90°<α≤180°. (5)匀变速运动:F 合=恒量.

跟踪训练3 质量为m 、电荷量为+q 的小球在O 点以初速度v 0与水平 方向成θ角射出,如图8所示,如果在某方向加上一定大小的匀强电 场后,能保证小球仍沿v 0方向做直线运动,试求所加匀强电场的最小 值,加了这个电场后,经多少时间速度变为零?

A 组 电场强度和电场的叠加

1.关于电场强度的概念,下列说法正确的是 ( )

A .由E =F

q 可知,某电场的场强E 与q 成反比,与F 成正比

B .正负试探电荷在电场中同一点受到的电场力方向相反,所以某一点场强方向与放入试探电荷的正负有关

C .电场中某一点的场强与放入该点的试探电荷正负无关

D .电场中某一点不放试探电荷时,该点场强等于零

2.在如图所示的四个电场中,均有相互对称分布的a 、b 两点,其中a 、b 两点电势和场强都相同的是 (

)

B 组 带电粒子在电场中的运动

3.(2011·课标全国理综·20)一带负电荷的质点,在电场力作用下沿曲线abc 从a 运动到c ,已知质点的速率是递减的.关于b 点电场强度E 的方向,下列图所示中可能正确的是(虚线是曲线在b 点的切线) (

)

图9

图10

图11

4.如图9所示,虚线a 、b 、c 代表电场中的三个等势面,相邻等势面之间的电势差相等,即U ab =U bc ,实线为一带正电的质点仅在电场力作用下通过该区域时的运动轨迹,P 、Q 是这条轨迹上的两点,据此可知 ( ) A .三个等势面中,a 的电势最高 B .带电质点通过P 点时电势能较大 C .带电质点通过P 点时的动能较大 D .带电质点通过P 点时的加速度较大

C 组 力电综合问题

5.如图10所示,两个带等量正电荷的小球A 、B (可视为点电荷),被 固定在光滑的绝缘水平面上.P 、N 是小球连线的中垂线上的两 点,且PO =ON .现将一个电荷量很小的带负电的小球C (可视为质 点),由P 点静止释放,在小球C 向N 点运动的过程中,下列关于小

球C 的速度、加速度的图象中,可能正确的是 (

)

6.如图11所示,A 、B 、C 三个小球(可视为质点)的质量分别为m 、2m 、 3m ,B 小球带负电,电荷量为q ,A 、C 两小球不带电,(不考虑小球间 的电荷感应),不可伸长的绝缘细线将三个小球连接起来悬挂在O 点, 三个小球均处于竖直向上的匀强电场中,电场强度大小为E .则以下说 法正确的是 ( ) A .静止时,A 、B 两小球间细线的拉力为5mg +qE B .静止时,A 、B 两小球间细线的拉力为5mg -qE

C .剪断O 点与A 小球间细线瞬间,A 、B 两小球间细线的拉力为1

3qE

D .剪断O 点与A 小球间细线瞬间,A 、B 两小球间细线的拉力为1

6

qE

图1

图2

图3

图4

图5

课时规范训练

(限时:45分钟)

一、选择题

1.如图1所示为两个点电荷在真空中所产生电场的电场线(方向未标 出).图中C 点为两点电荷连线的中点,MN 为两点电荷连线的中 垂线,D 为中垂线上的一点,电场线的分布关于MN 左右对称.则 下列说法中正确的是 ( ) A .这两点电荷一定是等量异种电荷 B .这两点电荷一定是等量同种电荷 C .D 、C 两点的电场强度一定相等 D .C 点的电场强度比D 点的电场强度小

2.(2011·上海单科·1)电场线分布如图2所示,电场中a ,b 两点的电 场强度大小分别为E a 和E b ,电势分别为φa 和φb ,则 ( ) A .E a >E b ,φa >φb B .E a >E b ,φa <φb C .E a φb D .E a

3.如图3所示,在一真空区域中,AB 、CD 是圆O 的两条直 径,在A 、B 两点上各放置电荷量为+Q 和-Q 的点电荷, 设C 、D 两点的电场强度分别为E C 、E D ,电势分别为φC 、 φD ,下列说法正确的是 ( ) A .E C 与E D 相同,φC 与φD 不相等 B .E C 与E D 不相同,φC 与φD 相等 C .E C 与E D 相同,φC 与φD 相等 D .E C 与E D 不相同,φC 与φD 不相等

4.如图4所示,图中实线是一簇未标明方向的由点电荷产生的电场 线,虚线是某带电粒子通过该电场区域时的运动轨迹,a 、b 是轨迹 上的两点,若带电粒子在运动过程中只受到电场力作用,根据此图 可以作出的正确判断是 ( ) A .带电粒子所带电荷的正、负 B .带电粒子在a 、b 两点的受力方向 C .带电粒子在a 、b 两点的加速度何处较大 D .带电粒子在a 、b 两点的速度何处较大

5.有一负电荷自电场中的A 点自由释放,只受电场力作用,沿电场 线运动到B 点,它运动的速度图象如图5所示,则A 、B 所在电 场区域的电场线分布可能是下图中的 ( )

图6

图7

图8

图9

图10

6.如图6所示,AC 、BD 为圆的两条互相垂直的直径,圆心为O ,将 带有等量电荷q 的正、负点电荷放在圆周上,它们的位置关于AC 对称.要使圆心O 处的电场强度为零,可在圆周上再放置一个带适 当电荷量的正点电荷+Q ,则该点电荷+Q 应放在 ( ) A .A 点 B .B 点 C .C 点 D .D 点

7.某静电场的电场线分布如图7所示,图中P 、Q 两点的电场强度 的大小分别为E P 和E Q ,电势分别为φP 和φQ ,则 ( ) A .E P >E Q ,φP >φQ B .E P >E Q ,φP <φQ C .E P φQ D .E P

8.如图8所示,两个带等量负电荷的小球A 、B (可视为点电荷),被固 定在光滑的绝缘水平面上,P 、N 是小球A 、B 的连线的水平中垂 线上的两点,且PO =ON .现将一个电荷量很小的带正电的小球 C (可视为质点),由P 点静止释放,在小球C 向N 点的运动的过程 中,关于小球C 的说法可能正确的是 ( ) A .速度先增大,再减小 B .电势能先增大,再减小

C .加速度先增大再减小,过O 点后,加速度先减小再增大

D .加速度先减小,再增大

9.(2011·重庆理综·19)如图9所示,电量为+q 和-q 的点电荷分别 位于正方体的顶点,正方体范围内电场强度为零的点有 ( ) A .体中心、各面中心和各边中点 B .体中心和各边中点 C .各面中心和各边中点 D .体中心和各面中心

10.如图10所示,电荷均匀分布在半球面上,在这半球的中心O 处

电场强度等于E 0.两个平面通过同一条直径,夹角为α(α<π

2),从

半球中分出这一部分球面,则剩余部分球面上(在“大瓣”上)的 电荷(电荷分布不变)在O 处的电场强度 ( )

图11

图12

A .E =E 0sin α2cos α

2 B .E =E 0sin αcos α

C .E =E 0sin α2

D .

E =E 0cos α

2

二、非选择题

11.一根长为l 的丝线吊着一质量为m ,带电荷量为q 的小球静止在水平

向右的匀强电场中,如图11所示,丝线与竖直方向成37°角,现突 然将该电场方向变为竖直向下且大小不变,不考虑因电场的改变而带 来的其他影响(重力加速度为g ,cos 37°=0.8,sin 37°=0.6),求: (1)匀强电场的电场强度的大小; (2)小球经过最低点时丝线的拉力.

12.如图12所示,一带电荷量为+q 、质量为m 的小物块处于一

倾角为37°的光滑斜面上,当整个装置置于一水平向右的匀 强电场中,小物块恰好静止.重力加速度取g ,sin 37°= 0.6,cos 37°=0.8.求:

(1)水平向右的电场的电场强度;

(2)若将电场强度减小为原来的1

2,小物块的加速度是多大;

(3)电场强度变化后小物块下滑距离L 时的动能.

匀变速直线运动高中物理一轮复习专题

匀变速直线运动的规律的应用 例1.车站的一名工作人员站在站台上靠近火车第一节车厢的车头旁.当火车从静止开始做匀加速直线运动时,测得第一节车厢经过该工作人员需要3 s,则该工作人员在9 s内能看到从他身旁经过几节车厢? 例2.(1)航空母舰是大规模战争中的重要武器,灵活起降的飞机是它主要的攻击力之一.民航客机起飞时要在2.5 min内使飞机从静止加速到44 m/s,而舰载飞机借助助推设备,在2 s内就可把飞机从静止加速到83 m/s.设起飞时飞机在跑道上做匀加速运动,供客机起飞的跑道长度约是航空母舰的甲板跑道长度的() A.800倍 B.80倍 C.400倍 D.40倍 (2)航空母舰上的飞机起飞时,航空母舰以一定速度航行以保证飞机能安全起飞.某航空母舰上的战斗机起飞过程的最大加速度是4.5 m/s2,速度大于60 m/s才能起飞.该航空母舰甲板长225 m.为了使飞机能安全起飞,航空母舰的最小速度为_________m/s. (3)若航空母舰上的直升机垂直于甲板匀加速飞行到高度为H的天空,如果加速度a和每秒钟的耗油量Q之间的关系是Q=a·α+β(α、β为大于零的常数),应当选择怎样的加速度,才能使这架飞机上升到H高度时的耗油量最低? 例 3.原地跳起时,先屈腿下蹲,然后突然蹬地.从开始蹬地到离地是加速过程(视为匀加速),加速过程中重心上升的距离称为“加速距离”.离地后重心继续上升,在此过程中重心上升的最大距离称为“竖直高度”.现有下列数据:人原地上跳的“加速距离”d1=0.50m,“竖直高度”h1=1.0m;跳蚤原地上跳的“加速距离”d2=0.000 80m,“竖直高度”h2=0.10m.假想人具有与跳蚤相等的起跳加速度,而“加速距离”仍为0.50m 练:从车站开出的汽车,一直做匀加速直线运动,走了12 s时,发现一位乘客还没有上来,于是立即做匀减速直线运动至停车,从启动到停止运动总共历时20 s,行进了60 m,求: (1)汽车的最大速度; (2)汽车在前12 s运动的加速度; (3)汽车的刹车位移. 例4.已知O、A、B、C为同一直线上的四点,AB间的距离为l1,BC间的距离为l2,一物体自O点从静止出发,沿此直线做匀加速运动,依次经过A、B、C三点.已知物体通过AB段与BC段所用的时间相等.求O与A的距离.

完整word版,高中物理笔记(人教版){最新_最全}

高中物理 第一节力,重力 一.力是物体对物体的作用 1.力不能脱离物体而存在。(物质性) 2.要产生力至少要两个物体。 3.力是物体(施力物体)对物体(受力物体)的作用。 4. 研究支持力时:桌面为施力物体,木块为受力物体 研究压力时:木块为施力物体,而桌面为受力物体 二.力的三要素 1.内容:力的大小,方向和作用点。(问题:①作用点是否一定在物体上?不一定②作用在物体上不同的点效果是否一样?也不一定) 2.力的单位:国际单位牛顿(N) 3.力的图示法和示意图:图示法要求三要素(大小,方向和作用点)都具备,另外还有标度。 示意图只要求两个要素(方向和作用点,高中作图多是这种)三.力的分类 1.按性质命名:如重力,弹力,摩擦力等。 2.按效果命名:如推力,拉力,向心力等。 记忆技巧:按性质命名的力由名称可知其产生原因,按效果命名的力由名称可知其作用结果。四.重力 1.定义:由于地球的吸引而使物体受到的力。(区别于地球的吸引力) 2.重力的方向:正确说法有①竖直向下②垂直于该处水平面向下 3.重力的大小: ①计算公式:G = mg ②重力的大小与位置有关:在地球表面随纬度的升高重力的大小逐渐增大; 在地球上同一地方 随高度的升高重力的大小逐渐减小。(根据万有引力来推导) 注意:重力的大小变化实质上是由g的大小变化引起的。(质量在任何地方都是不变的)所以g 的大小变化规律和重力的大小变化规律一样。 4.重力的作用点(即为重心) ①质量分布均匀,形状规则的物体,重心在其几何中心。 ②重心可以不在物体上。例3:铁环,篮球等 ③悬挂法(只)可以测薄板形物体的重心。悬挂法是利用二力平衡的原理测物体的重心。但注意悬挂法并非任何时候都可适用,有条件成立,强调薄板,物体厚度可忽略,其他条件不需要。 第二节弹力 一.弹力的产生过程(弹力的定义)

高中物理必修 选修全套公式

高中物理必修 选修全套公式 高中物理必修1公式 1.平均速度: ①总 总 t s v =(通用) ②2 12 12v v v v v += (s 1=s 2时,v 1、v 2为前半程、后半程的平均速度) ③22 1v v v += (t 1=t 2时,v 1、v 2为前半段时间、后半段时间内的平均速度) ④2 0t v v v += (用于匀变速直线运动) ⑤中t v v =(用于计算匀变速直线运动纸带上某点的瞬时速度) 2.匀变速直线运动: (1)基本公式(知三求二) ①at v v t +=0 ②202 1at t v s += ③as v v t 22 2=- ④t v v s t ?+= 2 0 ⑤22 1at t v s t -= (2)辅助公式 ①位移中点的瞬时速度:2 220 t s v v v +=中 ②逐差法:2 1 234569T s s s s s s a ---++= (3)比值公式 ①第N 秒末的速度(v 0=0):v Ⅰ:v Ⅱ:v Ⅲ=1:2:3 ②第N 秒内的位移(v 0=0):s Ⅰ:s Ⅱ:s Ⅲ=1:3:5 ③前N 秒内的位移(v 0=0):s 1:s 2:s 3=1:4:9 ④连续相等时间内的位移差:s N -s N -1=aT 2 ⑤相等位移内的时间比(v 0=0): )23(:)12(:1::321--=t t t 3.力学公式: ①重力:mg G = ②弹簧的弹力:kx F = ③滑动摩擦力:m f N f ≈=μ 静摩擦力:m f f <<静0,平衡时:动力静F f = ④合力的范围:21F F -≤合F ≤21F F + 当F 1=F 2且夹角为120°时:F 1= F 2= F 合 当F 1=F 2且夹角为θ时:2 cos 21θF F =合 ⑤斜面上物体重力的分解: 下滑分力:G 1=mgsinθ 垂直分力(压力):G 2=mgcosθ 4.牛顿第二定律:ma F = ①光滑斜面上物体自由下滑时:θsin g a = ②粗糙斜面上物体匀速下滑的条件:θμtan = ③一根连续的绳子上的拉力处处相等。 ④牛二定律的瞬时性: 弹簧、皮筋等软性物体的弹力不能突变, 桌面、绳子等硬性物体的弹力可以突变, 重力、电场力不能突变。 ⑤连接体问题:下图中无论地面是否有摩擦力,中间绳子的拉力均为:F m m m T 2 11 += 5.超重与失重: ①当加速度竖直向上或竖直分加速度向上时,物体超重:)(a g m N +=或)(y a g m N += ②当加速度竖直向下或竖直分加速度向下时,物体失重:)(a g m N -=或)(y a g m N -=

高中物理选修3-1《电场》全套同步练习,答案在后面

高中物理选修3-1《电场》全套同步练习 第01节 电荷及其守恒定律 [知能准备] 1.自然界中存在两种电荷,即 电荷和 电荷. 2.物体的带电方式有三种: (1)摩擦起电:两个不同的物体相互摩擦,失去电子的带 电,获得电子的带 电. (2)感应起电:导体接近(不接触)带电体,使导体靠近带电体一端带上与带电体相 的电荷,而另 一端带上与带电体相 的电荷. (3)接触起电:不带电物体接触另一个带电物体,使带电体上的 转移到不带电的物体上.完全 相同的两只带电金属小球接触时,电荷量分配规律:两球带异种电荷的先中和后平均分配;原来两球带同 种电荷的总电荷量平均分配在两球上. 3.电荷守恒定律:电荷既不能 ,也不能 ,只能从一个物体转移到另一个物体;或从物体的一部 分转移到另一部分,在转移的过程中,电荷的总量 . 4.元电荷(基本电荷):电子和质子所带等量的异种电荷,电荷量e =1.60×10-19C.实验指出,所有带电体 的电荷量或者等于电荷量e ,或者是电荷量e 的整数倍.因此,电荷量e 称为元电荷.电荷量e 的数值最早 由美国科学家 用实验测得的. 5.比荷:带电粒子的电荷量和质量的比值 m q .电子的比荷为kg C m e e /1076.111?=. [同步导学] 1.物体带电的过程叫做起电,任何起电方式都是电荷的转移,而不是创造电荷. 2.在同一隔离系统中正、负电荷量的代数和总量不变. 例1 关于物体的带电荷量,以下说法中正确的是( ) A .物体所带的电荷量可以为任意实数 B .物体所带的电荷量只能是某些特定值 C .物体带电+1.60×10-9C ,这是因为该物体失去了1.0×1010个电子 D .物体带电荷量的最小值为1.6×10-19C 解析:物体带电的原因是电子的得、失而引起的,物体带电荷量一定为e 的整数倍,故A 错,B 、C 、D 正 确. 如图1—1—1所示,将带电棒移近两个不带电的导体球, 两个导体球开始时互相接触且对地绝缘,下述几种方法中能使两球 都带电的是 ( ) A .先把两球分开,再移走棒 B .先移走棒,再把两球分开 C .先将棒接触一下其中的一个球,再把两球分开 D .棒的带电荷量不变,两导体球不能带电 解析:带电棒移近导体球但不与导体球接触,从而使导体球上的电荷重新分布,甲球左侧感应出正电荷, 乙球右侧感应出负电荷,此时分开甲、乙球,则甲、乙球上分别带上等量的异种电荷,故A 正确;如果先 移走带电棒,则甲、乙两球上的电荷又恢复原状,则两球分开后不显电性,故B 错;如果先将棒接触一下 其中的一球,则甲、乙两球会同时带上和棒同性的电荷,故C 正确.可以采用感应起电的方法使两导体球 图1—1—1

高中物理一轮复习《力的合成与分解》练习题

高二物理一轮复习《力的合成与分解》练习题 1.F1、F2是力F的两个分力.若F=10 N,则下列不可能是F的两个分力的是() A.F1=10 N F2=10 N B.F1=20 N F2=20 N C.F1=2 N F2=6 N D.F1=20 N F2=30 N 2.如图所示,F1、F2、F3恰好构成封闭的直角三角形,这三个力的合力最大的是( ) 3.在研究共点力合成实验中,得到如图所示的合力与两力夹角θ 的关系曲线,关于合力F的范围及两个分力的大小,下列说法中 正确的是() A.2 N≤F≤14 N B.2 N≤F≤10 N C.两力大小分别为2 N、8 N D.两力大小分别为6 N、8 N 4.如图5所示的水平面上,橡皮绳一端固定,另一端连接两根弹簧,连接点P在F1、F2和F3三力作用下保持静止。下列判断正确的是() A. F1 > F2> F3 B. F3 > F1> F2 C. F2> F3 > F1 D. F3> F2 > F1

5一物体受到三个共面共点力F1、F2、F3的作用,三力的矢量关系如图所示(小方格边长相等),则下列说法正确的是( ) A.三力的合力有最大值F1+F2+F3,方向不确定 B.三力的合力有唯一值3F3,方向与F3同向 C.三力的合力有唯一值2F3,方向与F3同向 D.由题给条件无法求出合力大小 6.如图所示,物体A在同一平面内的四个共点力F1、F2、F3和F4的作用下处于静止状态,若其中力F1沿逆时针方向转过120°而保持其大小不变,且其他三个力的大小和方向均不变,则此时物体所受的合力大小为() A.2F1 B.3F1 C.F1 D. 3 2F1 7. 滑滑梯是小孩子很喜欢的娱乐活动.如右图所示,一个小孩正在滑梯上匀速下滑,则() A.小孩所受的重力与小孩所受的弹力大小相等 B.小孩所受的重力与小孩所受的摩擦力大小相等 C.小孩所受的弹力和摩擦力的合力与小孩所受的重力大小相等 D.小孩所受的重力和弹力的合力大于小孩所受的摩擦力大小 8.作用于同一点的两个力,大小分别为F1=5 N,F2=4 N,这两个力的合力F与F1的夹角为θ,则θ可能为( ) A.30° B.45° C.60° D.75°

高中物理公式大全一览表

高中物理公式大全一览表 高中物理有很多公式,经过高中三年的学习相信大家都有很多物理知识点需要总结,为了方便大家学习物理,小编为大家整理了高中物理公式,希望对大家有帮助。 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a0;反向则a0} 8.实验用推论s=aT2 {s为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 注:(1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点.位移和路程.参考系.时间与时刻;速度与速率.瞬时速度。 2)自由落体运动

1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s210m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s210m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

高中物理选修3-1全套同步习题

高中物理选修3-1同步练习题 第一节 电荷及其守恒定律 [同步检测] 1、一切静电现象都是由于物体上的 引起的,人在地毯上行走时会带上电,梳头 时会带上电,脱外衣时也会带上电等等,这些几乎都是由 引起的. 2.用丝绸摩擦过的玻璃棒和用毛皮摩擦过的硬橡胶棒,都能吸引轻小物体,这是因为 ( ) A.被摩擦过的玻璃棒和硬橡胶棒一定带上了电荷 B.被摩擦过的玻璃棒和硬橡胶棒一定带有同种电荷 C.被吸引的轻小物体一定是带电体 D.被吸引的轻小物体可能不是带电体 3.如图1—1—2所示,在带电+Q 的带电体附近有两个相互接触的金属导体A 和B ,均放 在绝缘支座上.若先将+Q 移走,再把A 、B 分开,则A 电,B 电;若先将A 、 B 分开,再移走+Q ,则A 电,B 电. 4.同种电荷相互排斥,在斥力作用下,同种电荷有尽量 的趋势,异种电荷相互吸 引,而且在引力作用下有尽量 的趋势. 5.一个带正电的验电器如图1—1—3所示, 当一个金属球A 靠近验电器上的金属球B 时,验电 器中金属箔片的张角减小,则( ) A .金属球A 可能不带电 B .金属球A 一定带正电 C .金属球A 可能带负电 D .金属球A 一定带负电 6.用毛皮摩擦过的橡胶棒靠近已带电的验电器时,发现它的金属箔片的张角减小,由此可 判断( ) A .验电器所带电荷量部分被中和 B .验电器所带电荷量部分跑掉了 C .验电器一定带正电 D .验电器一定带负电 7.以下关于摩擦起电和感应起电的说法中正确的是 A.摩擦起电是因为电荷的转移,感应起电是因为产生电荷 B.摩擦起电是因为产生电荷,感应起电是因为电荷的转移 C.摩擦起电的两摩擦物体必定是绝缘体,而感应起电的物体必定是导体 D.不论是摩擦起电还是感应起电,都是电荷的转移 8.现有一个带负电的电荷A ,和一个能拆分的导体B ,没有其他的导体可供利用,你如何 能使导体B 带上正电? 9.带电微粒所带的电荷量不可能是下列值中的 A. 2.4×10-19C B.-6.4×10-19C C.-1.6×10-18C D.4.0×10-17C 10.有三个相同的绝缘金属小球A 、B 、C ,其中小球A 带有2.0×10-5C 的正电荷,小球B 、 C 不带电.现在让小球C 先与球A 接触后取走,再让小球B 与球A 接触后分开,最后让小 球B 与小球C 接触后分开,最终三球的带电荷量分别为qA= , qB= ,qC= . 图1—1—2 图1—1—3

高中物理一轮复习习题

9 一、选择题(本题共9个小题,每小题6分,共54分,在每个小题给出的4个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得6分,选不全的得3分,有错选或不答的得0分) 1. (2013·北京海淀区一模)如图所示,空间存在足够大、正交的匀强电、磁场,电场强度为E ,方向竖直向下,磁感应强度为B 、方向垂直纸面向里.从电、磁场中某点P 由静止释放一个质量为m 、带电荷量为+q 的粒子(粒子受到的重力忽略不计),其运动轨迹如图虚线所示.对于带电粒子在电、磁场中下落的最大高度H ,下面给出了四个表达式,用你已有的知识计算可能会有困难,但你可以用学过的知识对下面的四个选项作出判断.你认为正确的是( ) A.2mE B 2q B.4mE 2B 2q C.2mB E 2q D.mB 2Eq

2.(2013·江西省高三上学期七校联考)在竖直放置的光滑绝缘圆环中,套有一个带电荷量为-q、质量为m的小环,整个装置放在如图所示的正交电磁场中,电场强度E=mg/q.当小环从大环顶无初速度下滑时,在滑过多少弧度时所受洛伦兹力最大() A.π/4 B.π/2 C.3π/4 D.π 3.(2013·江苏百校大联考)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电源两极相连接的两个D形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示,设D形盒半径为R,若用回旋加速器加速质子时,匀强磁场的磁感应强度为B,则下列说法正确的是()

A.质子在磁场中运动的周期和交变电流的周期相等 B.质子被加速后的最大速度与加速电场的电压大小无关 C.只要R足够大,质子的速度可以被加速到任意值 D.不改变磁场的磁感应强度和交变电流的频率,该回旋加速器也能用于加速α粒子 4.(2013·广东汕头一模)如图,一束带电粒子以一定的初速度沿直线通过由相互正交的匀强磁场(B)和匀强电场(E)组成的速度选择器,然后粒子通过平板S上的狭缝P,进入另一匀强磁场(B′),最终打在A1A2上.下列表述正确的是() A.粒子带负电 B.所有打在A1A2上的粒子,在磁场B′中运动时间都相同

高一物理笔记总结归纳

高一物理笔记总结归纳 学习物理要学会对知识点进行归纳整理,高一物理笔记都整理好了吗?下面是小编为大家整理的高一物理笔记,希望对大家有所帮助! 高一物理笔记总结 一、运动学的基本概念 1、参考系:运动是绝对的,静止是相对的。一个物体是运动的还是静止的,都 是相对于参考系在而言的。通常以地面为参考系。 2、质点: (1)定义:用来代替物体的有质量的点。质点是一种理想化的模型,是科学的抽象。 (2)物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的 影响可以忽略。且物体能否看成质点,要具体问题具体分析。 (3)物体可被看做质点的几种情况: ①平动的物体通常可视为质点。 ②有转动但相对平动而言可以忽略时,也可以把物体视为质点。 ③同一物体,有时可看成质点,有时不能.当物体本身的大小对所研究问题的影响 不能忽略时,不能把物体看做质点,反之,则可以。 【注】质点并不是质量很小的点,要区别于几何学中的“点”。 3、时间和时刻: 时刻是指某一瞬间,用时间轴上的一个点来表示,它与状态量相对应;时间是指起 始时刻到终止时刻之间的间隔,用时间轴上的一段线段来表示,它与过程量相对应。 4、位移和路程: 位移用来描述质点位置的变化,是质点的由初位置指向末位置的有向线段,是矢量; 路程是质点运动轨迹的长度,是标量。 5、速度: 用来描述质点运动快慢和方向的物理量,是矢量。 (1)平均速度:是位移与通过这段位移所用时间的比值,其定义式为,方向与位移 的方向相同。平均速度对变速运动只能作粗略的描述。

(2)瞬时速度:是质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,它可以精确变速运动。瞬时速度的大小简称速率,它是一个标量。 6、加速度:用量描述速度变化快慢的的物理量,其定义式为。 加速度是矢量,其方向与速度的变化量方向相同(注意与速度的方向没有关系),大小由两个因素决定。 补充:速度与加速度的关系 1、速度与加速度没有必然的关系,即: (1)速度大,加速度不一定也大; (2)加速度大,速度不一定也大; (3)速度为零,加速度不一定也为零; (4)加速度为零,速度不一定也为零。 2、当加速度a与速度V方向的关系确定时,则有: (1)若a 与V方向相同时,不管a如何变化,V都增大。 (2)若a 与V方向相反时,不管a如何变化,V都减小。 二、匀变速直线运动的规律及其应用: 1、定义:在任意相等的时间内速度的变化都相等的直线运动。 2、匀变速直线运动的基本规律,可由下面四个基本关系式表示: (1)速度公式 (2)位移公式 (3)速度与位移式 (4)平均速度公式 3、几个常用的推论: (1)任意两个连续相等的时间T内的位移之差为恒量 △x=x2-x1=x3-x2=……=xn-xn-1=aT2 (2)某段时间内时间中点瞬时速度等于这段时间内的平均速度,。 (3)一段位移内位移中点的瞬时速度v中与这段位移初速度v0和末速度vt的关系为。 4、初速度为零的匀加速直线运动的比例式(2)初速度为零的匀变速直线运动中的几个重要结论: ①1T末,2T末,3T末……瞬时速度之比为:

高中物理主要公式

高中物理主要公式 必修1 1、速度公式:t x v ??= 2、加速度:定义式:t v a ??= 决定式:m F a 合= 3、匀变速直线的规律: ⑴、速度公式:at v v +=0 ⑵、位移公式:2 02 1at t v x + = ⑶、速度与位移公式:ax v v 22 02=- ⑷ 、两个重要推论: 相邻相等时间间隔T 内的位移之差2 aT x =? 2 2t v v v v =+= 4、自由落体运动规律: gt v = 2 2 1gt h = gh v 22= 5、竖直上抛运动规律: gt v v -=0 202 1gt t v h - = gh v v 2202-=- 6、胡克定律:kx F = 7、滑动摩擦力:N F f μ= 8、牛顿第二定律:ma F 合= 解题步骤: 1. 选取研究对象;

2. 受力分析(关键); 3. 建立直角坐标系:一般沿着加速度方向和垂直于加速度方向建立直角坐标系。 4. 列方程求解:方程变为:0 ==y x F ma F ;或者:ma F F y x == 0 9、平抛运动规律: ⑴、位移公式: 水平方向:t v x 0= 竖直方向:2 2 1gt y = 合位移大小:22y x s += 合位移方向:x y =αtan (其中α为:合位移与水平方向的夹角) ⑵、速度公式: 水平速度:保持0v 不变 竖直速度:gt v y = 合速度大小:220y v v v += 合速度方向:0 tan v v y =θ(其中θ为:合速度与水平方向的夹角) 10、圆周运动公式: ⑴、线速度:)(弧长与时间的比值t s v ??= ⑵、角速度:)(t 角度一定用弧度。圆心角与时间的比值,??=θ ω ⑶、线速度与角速度的关系:r v ω= ⑷、线速度与周期的关系:T r v 2π= ⑸、角速度与周期的关系:T π ω2= ⑹、车速与角速度的关系:n 2πω=[公式中转速n 的单位必需是:转/秒(r/s)]

高中物理必修3物理 全册全单元精选试卷专题练习(解析版)

高中物理必修3 物理 全册全单元精选试卷专题练习(解析版) 一、必修第3册 静电场及其应用解答题易错题培优(难) 1.“顿牟掇芥”是两千多年前我国古人对摩擦起电现象的观察记录,经摩擦后带电的琥珀能吸起小物体,现用下述模型分析研究。在某处固定一个电荷量为Q 的点电荷,在其正下方h 处有一个原子。在点电荷产生的电场(场强为E )作用下,原子的负电荷中心与正电荷中心会分开很小的距离l ,形成电偶极子。描述电偶极子特征的物理量称为电偶极矩p , q =p l ,这里q 为原子核的电荷量。实验显示,p E α=,α为原子的极化系数,反映其 极化的难易程度。被极化的原子与点电荷之间产生作用力F 。在一定条件下,原子会被点电荷“掇”上去。 (1)F 是吸引力还是排斥力?简要说明理由; (2)若将固定点电荷的电荷量增加一倍,力F 如何变化,即求 (2) () F Q F Q 的值; (3)若原子与点电荷间的距离减小一半,力F 如何变化,即求() 2() h F F h 的值。 【答案】(1)吸引力,(2)4,(3)32。 【解析】 【详解】 (1)F 为吸引力。理由:当原子极化时,与Q 异种的电荷移向Q ,而与Q 同种的电荷被排斥而远离Q ,这样异种电荷之间的吸引力大于同种电荷的排斥力,总的效果是吸引; (2)设电荷Q 带正电(如图所示): 电荷Q 与分离开距离l 的一对异性电荷间的总作用力为: 2332222 ()222()()22(4 ) kQ q kQq hl kQql kQp F kQq l l l h h h h h --= +=≈-=--+- 式中: q =p l 为原子极化形成的电偶极矩,负号表示吸引力,由于l h ,故: 2 2 24 l h h -≈ 又已知: p E α=

最全面届高三人教版高中物理一轮复习基本知识点总结(精华版)

高中物理基本知识点总结 一.教学内容: 1.摩擦力方向:与相对运动方向相反,或与相对运动趋势方向相反 静摩擦力:0 注意:若到最高点速度从零开始增加,杆对球的作用力先减小后变大。 = 相同,,轮上边缘各点v 相同,v A =v B C 3.传动装置中,特点是:同轴上各点 A 4.同步地球卫星特点是:①,② ①卫星的运行周期与地球的自转周期相同,角速度也相同; ②卫星轨道平面必定与地球赤道平面重合,卫星定点在赤道上空36000km 处,运行速度 3.1km/s 。 m1 m2 2 r F = G ,卡文迪许扭秤实验。 5.万有引力定律:万有引力常量首先由什么实验测出: g' =GM/r 2 6.重力加速度随高度变化关系: 7.地球表面物体受重力加速度随纬度变化关系:在赤道上重力加速度较小,在两极,重力加速度较大。

2 GM r GMm mv r GM 2 g' = 2 r r 、 v = 、 、 8.人造地球卫星环绕运动的环绕速度、周期、向心加速度 2 GMm mv 2 r = m ω 2 2 r R = m ( 2π /T ) R GM r gR gR 2 v 变小;当 r =R ,为第一宇宙速度 v 1= =GM 当 r 增大, = 应用:地球同步通讯卫星、知道宇宙速度的概念 9.平抛运动特点: ①水平方向 ②竖直方向 ③合运动 ④应用:闪光照 ⑤建立空间关系即两个矢量三角形的分解:速度分解、位移分解 ⑥在任何两个时刻的速度变化量为△ v = g △ t ,△ p = mgt x x 轴上的 2 处,在电场中也有应用 ⑦ v 的反向延长线交于 v 0 平抛的小球,落到了斜面上的 B 点,求: S AB 10.从倾角为 α的斜面上 A 点以速度 1 2 2 gt s = v 0 t ,可以发现它们之间的几何关系。 在图上标出从 A 到 B 小球落下的高度 h = 和水平射程 v 0 抛出的小球,落到倾角为 α的斜面上的 B 点,此时速度与斜面成 90°角,求: 11.从 A 点以水平速度 S AB 在图上把小球在 B 点时的速度 v 分解为水平分速度 v 0 和竖直分速度 v y = g t ,可得到几何关系: gt v 0 tg α,求出时间 t ,即可得到解。 12.匀变速直线运动公式: 2 R v 2 13.匀速圆周周期公式: T = 角速度与转速的关系: ω = 2π n 转速( n : r/s ) 14 水平弹簧振子为模型:对称性——在空间上以平衡位置为中心。掌握回复力、位移、速度、加

高中物理必修一笔记

第一章运动的描述 第一节质点参考系和坐标系 机械运动:物体在空间中所处位置发生变化,这样的运动叫做机械运动。 运动的特性:普遍性,永恒性,多样性 质点 1.在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。 2.质点条件: 1)物体中各点的运动情况完全相同(物体做平动) 2)物体的大小(线度)<<它通过的距离 3.质点具有相对性,而不具有绝对性。 举例:质点(地球公转长途运行的火车,长跑运动员);非质点(自转的物体上的点,火车过桥,体操运动员) 4.理想化模型:根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。(为便于研究而建立的一种高度抽象的理想客体,实际上不存在) 参考系 1.任何运动都是相对于某个参照物而言的,这个参照物称为参考系。 2.参考系的选取是自由的。 1)比较两个物体的运动必须选用同一参考系。 2)参照物不一定静止,但被认为是静止的。 坐标系 为了定量地描述物体的位置及位置的变化,需要在参考系上建立适当的坐标系。三要素:原点、正方向、单位长度。 第二节时间位移 时间与时刻 1.钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。两 个时刻之间的间隔称为时间,时间在时间轴上对应一段。△t=t 2—t 1 2.时间和时刻的单位都是秒,符号为s,常见单位还有min,h。 3.通常以问题中的初始时刻为零点。

路程和位移 1.路程表示物体运动轨迹的长度,但不能完全确定物体位置的变化,是标量。 2.从物体运动的起点指向运动的终点的有向线段称为位移,是矢量。 3.物理学中,只有大小的物理量称为标量;既有大小又有方向的物理量称为矢量。 4.只有在质点做单向直线运动是,位移的大小等于路程。两者运算法则不同。 典型题: 一质点绕半径为R 的圆周运动了一圈,则其位移大小为 ,路程是 。若质点运动了 1.75 周,则其位移大小为 ,路程是 ,运动过程中最大位移是 第三节 运动运动的描述——速度 1.直线运动的位置和位移: 坐标的正负表示位置在原点的哪一侧,坐标的数值表示位置到原点的距离 用位置坐标的变化量表示物体位移 ,用正、负表示运动物体位移的方向△X=X 2—X 1 2.物体通过的位移与所用的时间之比叫做速度。v=s/t 速度是矢量,方向是物体运动的方向;物理意义:描述物体运动(位置变化)的快慢 3.平均速度(与位移、时间间隔相对应) 物体运动的平均速度v 是物体的位移s 与发生这段位移所用时间t 的比值。v=s/t 其方向与物体的位移方向相同。单位是m/s 。物理意义:粗略地描述物体运动的快慢 4.瞬时速度(与位置时刻相对应) 瞬时速度是物体在某时刻前后无穷短时间内的平均速度。其方向是物体在运动轨迹上过该点的切线方向。瞬时速率(简称速率)即瞬时速度的大小。 0 1 2 3 4 n-1 n t /s 第3秒初 第3秒(内) 第3秒末 第n 秒

高中物理全部公式大全汇总

[转] 高中所有物理公式整理,参考下的。 超级全面的物理公式!!!很有用的说~~~(按照咱们的物理课程顺序总结的)1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh

(3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 2)匀速圆周运动 1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

最全高中物理基本知识点总结加习题练习状元笔记)

物理重要知识点总结(状元笔记) 学好物理要记住:最基本的知识、方法才是最重要的。秘诀:“想” 学好物理重在理解 ........(概念、规律的确切含义,能用不同的形式进行表达,理解其适用条件)A(成功)=X(艰苦的劳动)十Y(正确的方法)十Z(少说空话多干实事) (最基础的概念,公式,定理,定律最重要);每一题中要弄清楚(对象、条件、状态、过程)是解题关健 物理学习的核心在于思维,只要同学们在平常的复习和做题时注意思考、注意总结、善于归纳整理,对于课堂上老师所讲的例题做到触类旁通,举一反三,把老师的知识和解题能力变成自己的知识和解题能力,并养成规范答题的习惯,这样,同学们一定就能笑傲考场,考出理想的成绩! 对联: 概念、公式、定理、定律。(学习物理必备基础知识) 对象、条件、状态、过程。(解答物理题必须明确的内容) 力学问题中的“过程”、“状态”的分析和建立及应用物理模型在物理学习中是至关重要的。说明:凡矢量式中用“+”号都为合成符号,把矢量运算转化为代数运算的前提是先规定正方向。 答题技巧:“基础题,全做对;一般题,一分不浪费;尽力冲击较难题,即使做错不后悔”。“容易题不丢分,难题不得零分。“该得的分一分不丢,难得的分每分必争”,“会做?做对?不扣分” 在学习物理概念和规律时不能只记结论,还须弄清其中的道理,知道物理概念和规律的由来。

受力分析入手(即力的大小、方向、力的性质与特征,力的变化及做功情况等)。 再分析运动过程(即运动状态及形式,动量变化及能量变化等)。 最后分析做功过程及能量的转化过程; 然后选择适当的力学基本规律进行定性或定量的讨论。 强调:用能量的观点、整体的方法(对象整体,过程整体)、等效的方法(如等效重力)等解决Ⅱ运动分类:(各种运动产生的力学和运动学条件及运动规律 .............)是高中物理的重点、难点高考中常出现多种运动形式的组合追及(直线和圆)和碰撞、平抛、竖直上抛、匀速圆周运动等 ①匀速直线运动F合=0 a=0 V0≠0 ②匀变速直线运动:初速为零或初速不为零, ③匀变速直、曲线运动(决于F合与V0的方向关系) 但F合= 恒力 ④只受重力作用下的几种运动:自由落体,竖直下抛,竖直上抛,平抛,斜抛等 ⑤圆周运动:竖直平面内的圆周运动(最低点和最高点);匀速圆周运动(关键搞清楚是什么力提供作向心力) ⑥简谐运动;单摆运动; ⑦波动及共振; ⑧分子热运动;(与宏观的机械运动区别) ⑨类平抛运动; ⑩带电粒在电场力作用下的运动情况;带电粒子在f洛作用下的匀速圆周运动 Ⅲ。物理解题的依据: (1)力或定义的公式(2)各物理量的定义、公式 (3)各种运动规律的公式(4)物理中的定理、定律及数学函数关系或几何关系 Ⅳ几类物理基础知识要点: ①凡是性质力要知:施力物体和受力物体; ②对于位移、速度、加速度、动量、动能要知参照物; ③状态量要搞清那一个时刻(或那个位置)的物理量; ④过程量要搞清那段时间或那个位侈或那个过程发生的;(如冲量、功等) ⑤加速度a的正负含义:①不表示加减速;②a的正负只表示与人为规定正方向比较的结果。 ⑥如何判断物体作直、曲线运动; ⑦如何判断加减速运动; ⑧如何判断超重、失重现象。 ⑨如何判断分子力随分子距离的变化规律

高中物理所有公式总结

一, 质点的运动(1)----- 直线运动 1)匀变速直线运动 1.平均速度V平=S / t (定义式) 2.有用推论Vt 2 –V0 2=2as 3.中间时刻速度Vt / 2= V平=(V t + V o) / 2 4.末速度V=Vo+at 5.中间位置速度Vs / 2=[(V_o2 + V_t2) / 2] 1/2 6.位移S= V平t=V o t + at2 / 2=V t / 2 t 7.加速度a=(V_t - V_o) / t 以V_o为正方向,a与V_o同向(加速)a>0;反向则a<0 8.实验用推论ΔS=aT2 ΔS为相邻连续相等时间(T)内位移之差 9.主要物理量及单位:初速(V_o):m/ s 加速度(a):m/ s2 末速度(Vt):m/ s 时间(t):秒(s) 位移(S):米(m)路程:米 速度单位换算:1m/ s=3.6Km/ h 注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(V_t - V_o)/ t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/ 2) 自由落体 1.初速度V_o =0 2.末速度V_t = g t 3.下落高度h=gt2 / 2(从V_o 位置向下计算) 4.推论V t2 = 2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。 (2)a=g=9.8≈10m/s2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。 3) 竖直上抛 1.位移S=V_o t –gt 2 / 2 2.末速度V_t = V_o –g t (g=9.8≈10 m / s2 ) 3.有用推论V_t 2 - V_o 2 = - 2 g S 4.上升最大高度H_max=V_o 2 / (2g) (抛出点算起) 5.往返时间t=2V_o / g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。 平抛运动

高中物理第一轮复习选修3-1 第七章 专题突破

专题突破带电粒子(或带电体)在电场中运 动的综合问题 突破一带电粒子在交变电场中的运动 1.此类题型一般有三种情况 (1)粒子做单向直线运动(一般用牛顿运动定律求解); (2)粒子做往返运动(一般分段研究); (3)粒子做偏转运动(一般根据交变电场的特点分段研究)。 2.两条分析思路:一是力和运动的关系,根据牛顿第二定律及运动学规律分析;二是功能关系。 3.注重全面分析(分析受力特点和运动规律),抓住粒子的运动具有周期性和空间上具有对称性的特征,求解粒子运动过程中的速度、位移等,并确定与物理过程相关的边界条件。 考向粒子的单向直线运动 【例1】如图1甲所示,两极板间加上如图乙所示的交变电压。开始A板的电势比B板高,此时两板中间原来静止的电子在电场力作用下开始运动。设电子在运动中不与极板发生碰撞,向A板运动时为速度的正方向,则下列图象中能正确反映电子速度变化规律的是(其中C、D两项中的图线按正弦函数规律变化) () 图1

解析 电子在交变电场中所受电场力大小恒定,加速度大小不变,故C 、D 两项 错误;从0时刻开始,电子向A 板做匀加速直线运动,12 T 后电场力反向,电子向A 板做匀减速直线运动,直到t =T 时刻速度变为零。之后重复上述运动,A 项正确,B 项错误。 答案 A 考向 粒子的往返运动 【例2】 (多选)如图2所示为匀强电场的电场强度E 随时间t 变化的图象。当t =0时,在此匀强电场中由静止释放一个带电粒子,设带电粒子只受电场力的作用,则下列说法中正确的是( ) 图2 A .带电粒子将始终向同一个方向运动 B .2 s 末带电粒子回到原出发点 C .3 s 末带电粒子的速度为零 D .0~3 s 内,电场力做的总功为零 解析 设第1 s 内粒子的加速度为a 1,第2 s 内的加速度为a 2,由a =qE m 可知, a 2=2a 1,可见,粒子第1 s 内向负方向运动,1.5 s 末粒子的速度为零,然后向正方向运动,至3 s 末回到原出发点,粒子的速度为0,v -t 图象如图所示,由动能定理可知,此过程中电场力做的总功为零,综上所述,可知C 、D 正确。

高中物理常用公式

高中物理常用公式Newly compiled on November 23, 2020

力学常用公式 一. 静力学 1. 重力:G=mg 2. 滑动摩擦力:N f μ= 3. 最大静摩擦力:N f f m μ=> 在某些计算中:N f f m μ=≈ 4. 静摩擦力:m f f ≤≤静0 5. 根据动力学方程F 合=F+f +……=ma 求 解。 6. 重要方法:同一直线上的矢量的计 算、力的平行四边形法则、力的矢量三角形法则、正交分解法 二. 运动学 1. 匀速直线运动:(结合s-t 图、v-t 图理 解) (1) 速度:t s v = (2) 位移:s=vt 2. 匀变速直线运动: (1) 基本公式:(结合v-t 图理解) ① 加速度:t v v a t 0 -= ② 位移:2021 at t v s += ③ 速度:at v v t +=0 ④ 常用推论:as v v t 22 2=- ⑤ 平均速度:2 0t v v t s v += = (2) 结论: ① 初速度为零时,物体的速度之比: ② 初速度为零时,物体的位移之比: ③ 初速度为零时,物体在连续相等时间 间隔里的位移之比: )1-2(:......:3:1:......::21 n s s s n =''' ④ 物体在连续相等时间间隔T 的位移之 差: 一般情况:2)(aT n m s s n m -=- ⑤ 中间时刻的瞬时速度:2 02 t t v v v v += = ⑥ 中点位置的瞬时速度:22 202 t s v v v += ⑦ 连续相等位移的时间之比: ⑧ 补充: (3) 其他: 三. 动力学 1. 牛顿第二定律:ma F =合 2. 牛顿第三定律:F =-F / 3. 重要方法:整体法、隔离法 四. 物体的平衡

相关文档
相关文档 最新文档