文档库 最新最全的文档下载
当前位置:文档库 › 土的物理性质、水理性质和力学性质

土的物理性质、水理性质和力学性质

土的物理性质、水理性质和力学性质
土的物理性质、水理性质和力学性质

第二章 土的物理性质、水理性质和力学性质

第一节 土的物理性质

土是土粒(固体相),水(液体相)和空气(气体相)三者所组成的;土的物理性质就是研究三相的质量与体积间的相互比例关系以及固、液两相相互作用表现出来的性质。 土的物理性质指标,可分为两类:一类是必须通过试验测定的,如含水量,密度和土粒比重;另一类是可以根据试验测定的指标换算的;如孔隙比,孔隙率和饱和度等。

一、土的基本物理性质

土的三相图(见教材P62图)

(一)土粒密度(particle density)

土粒密度是指固体颗粒的质量m s 与其体积Vs 之比;即土粒的单位体积质量:

s

s s V m =ρ g/cm 3 土粒密度仅与组成土粒的矿物密度有关,而与土的孔隙大小和含水多少无关。实际上是土中各种矿物密度的加权平均值。

砂土的土粒密度一般为:2.65 g/cm 3左右

粉质砂土的土粒密度一般为:2.68g/cm 3

粉质粘土的土粒密度一般为:2.68~2.72g/cm 3

粘土的土粒密度一般为:2.7-~2.75g/cm 3

土粒密度是实测指标。

(二)土的密度(soil density)

土的密度是指土的总质量m 与总体积V 之比,也即为土的单位体积的质量。其中:V=Vs+Vv; m=m s +m w

按孔隙中充水程度不同,有天然密度,干密度,饱和密度之分。

1.天然密度(湿密度)(density)

天然状态下土的密度称天然密度,以下式表示:

v

s w s V V m m V m ++==ρ g/cm3 土的密度取决于土粒的密度,孔隙体积的大小和孔隙中水的质量多少,它综合反映了土的物质组成和结构特征。

砂土一般是1.4 g/cm3

粉质砂土及粉质粘土1.4 g/cm3

粘土为1.4 g/cm3

泥炭沼泽土:1.4 g/cm3

土的密度可在室内及野外现场直接测定。室内一般采用“环刀法”测定,称得环刀内土样质量,求得环刀容积;两者之比值。

2.干密度(dry density )

土的孔隙中完全没有水时的密度,称干密度;是指土单位体积中土粒的重量,即:固体颗粒的质量与土的总体积之比值。

V

m s d =ρ g/cm3 干密度反映了土的孔隙生,因而可用以计算土的孔隙率,它往往通过土的密度及含水率计算得来,但也可以实测。

土的干密度一般常在1.4~1.7 g/cm3

在工程上常把干密度作为评定土体紧密程度的标准,以控制填土工程的施工质量。

3.饱和密度(saturatio density )

土的孔隙完全被水充满时的密度称为饱和密度。即,土的孔隙中全部充满液态水时的单位体积质量,可用下式表示:

V

V m w v s sat ρρ+= g/cm3 式中:w ρ :水的密度(工程计算中可取1 g/cm3)

土的饱和密度的常见值为1.8~2.30 g/cm3

此外:

(1)浮密度

土的浮密度是土单位体积中土粒质量与同体积水的质量之差,即

ρ’=(m s -v s ρw )/V 或w sat ρρρ-='

由此可见:同一种土在体积不变的条件下,它的各种密度在数值上有如下关系: 'ρρρρρ>>>>d sat s

(2)容重:单位体积的重量

(三)土的含水性

土的含水性指土中含水情况,说明土的干湿程度。

1.含水率(含水量)

土的含水量定义为土中水的质量与土粒质量之比,以百分数表示,即

%100%100?-=?=s

s s w m m m m m w 土的含水率也可用土的密度与干密度计算得到:

%100?-=s

s w ρρρ 室内测定:一般用“洪干法”,先称小块原状土样的湿土质量,然后置于烘箱内维持100~105摄氏度烘至恒重,再称干土质量,湿、干土质量之差与干土质量的比值就是土的含水量。

天然状态下土的含水率称土的天然含水率。一般砂土天然含水率都不超过40%,以10~30%最为常见;一般粘土大多在10~80%之间,常见值20~50%。

土的孔隙全部被普通液态水充满时的含水率称饱和含水率

%100?=s

w v sat m V w ρ w ρ水的密度,又称饱和水容度。

饱和含水率又称饱和水密度,它既反映了水中孔隙充满普通液态水时的含水特性,又反映了孔隙的大小。

土的含水率又可分为体积含水率与引用体积含水率:

体积含水率n w :为土中水的体积与体积之比。

%100?=V

V n w w 引用体积含水率e w :为土中水的体积与土粒体积之比。

%100?=V

V e w w 2.饱和度(degree of saturation )

定义为:土中孔隙水的体积与孔隙体积之比,以百分数表示,即:

%100?=v

w r v v s 或天然含水率与饱和含水率之比: %100?=

sat r w w s 饱和度愈大,表明土中孔隙中充水愈多,它在0~100%;干燥时Sr=0。孔隙全部为水充填时,Sr=100%。

工程上Sr 作为砂土湿度划分的标准。

Sr < 50% 稍湿的

Sr = 50~80% 很湿的

Sr > 80% 饱和的

工程研究中,一般将Sr 大于95%的天然粘性土视为完全饱和土;而砂土Sr 大于80%时就认为已达到饱和了。

(四)土的孔隙性

孔隙性指土中孔隙的大小,数量、形状、性质以及连通情况。

1.孔隙率(porosity )与孔隙比(void ratio)

孔隙率(n ):是土的孔隙体积与土体积之比,或单位体积土中孔隙的体积,以百分数表示,即:

%100?=V

V n v 孔隙比:定义为土中孔隙体积与土粒体积之比,以小数表示,即:

s

v V V e = 孔隙比和孔隙率(度)都是用以表示孔隙体积含量的概念。两者有如下关系: e e n +=

1或n n e -=1 土的孔隙比或孔隙度都可用来表示同一种土的松,密程度。它随土形成过程中所受的压力、粒径级配和颗粒排列的状况而变化。一般说:粗粒土的孔隙度小,细粒土的孔隙度大。 孔隙比e 是个重要的物理性指标,可以用来评价天然土层的密实程度。一般e<0.6的土是密实的低压缩性土;e>1.0的土是疏松的无压缩性土

饱和含水率是用质量比率来反映土的孔隙性结构指标的,它与孔隙率和孔隙比,有如下关系: w

d sat w n ρρ?= w

s sat w e ρρ?= 2.砂土的相对密度

对于砂土,孔隙比有最大值与最小值,即最松散状态和最紧密状态的孔隙比。 min e :一般采用“振击法”测定;

max e :一般用“松砂器法”测定。

砂土的松密程度还可以用相对密度来评价:

nin

r e e e e D --=max max 式中:max e :最大孔隙比。

min e :最小孔隙比。

e :天然孔隙比。

砂土按相对密度分类:

33.00≤

66.033.0≤

166.0≤

通常砂土的相对密度的实用表达式为:

()()d

d d d d d Dr ρρρρρρmin max max min --= 因为最大或最小干密度可直接求得。

Dr 在工程上常应用于:(1)评价砂土地基的允许承载力;(2)评价地震区砂体液化;(3)评价砂土的强度稳定性。

例题:某天然砂层,密度为1.47g/cm3,含水量13%,由试验求得该砂土的最小干密度为1.20g/cm3;最大干密度为1.66 g/cm3;问该砂层处于哪种状态?

解:已知:47.1=ρ %13=w

g /c m 320.1min =d ρ g/cm366.1max =d ρ 由公式:w +=1ρ

ρ 得g/cm330.1=d ρ

()()()()28.030

.120.166.166.120.130.1min max max min =?-?-=--=d d d d d d Dr ρρρρρρ 33.028.0<=r D

该砂层处于疏松状态。

(五)基本物理性质指标间的相互关系

1、孔隙比与孔隙率的关系

设土体内土粒体积Vs =1,则孔隙体积e V v =,土体体积e V V V v s +=+=1,于是,由e

e V V n v +==1或n n e -=1 2、干密度与湿密度和含水量的关系

设土体体积V=1,则土体内土粒质量d s m ρ=

,水的质量:d w w m ρ= 于是由:()w V

m m V m d w s +=+==1ρρ w d +=1ρ

ρ

3、孔隙比与比重和干密度的关系

设土体内土粒体积1=Vs ,则孔隙体积e V v =,土粒质量s s m ρ=,于是:由V

m s =ρ得: e s d +=

1ρρ 1-=d

s e ρρ 1-=d w s G e ρρ

4、饱和度与含水量,比重和孔隙比的关系

设土体内土粒体积Vs=1,则孔隙体积e V v =,土粒质量s s m ρ=,孔隙水质量s w w m ρ=

01第一章 土的物理性质及工程分类

兰州交通大学博文学院教案 课题: 第一章土的物理性质及工程分类 一、教学目的:1.了解土的生成和工程力学性质及其变化规律; 2.掌握土的物理性质指标的测定方法和指标间的相互转换; 3.熟悉土的抗渗性与工程分类。 二、教学重点:土的组成、土的物理性质指标、物理状态指标。 三、教学难点:指标间的相互转换及应用。 四、教学时数: 6 学时。 五、习题:

第一章土的物理性质及工程分类 一、土的生成与特性 1.土的生成 工程领域土的概念:土是指覆盖在地表的没有胶结和弱胶结的颗粒堆积物,土与岩石的区分仅在于颗粒胶结的强弱,土和石没有明显区分。 土的生成:岩石在各种风化作用下形成的固体矿物、流体水、气体混合物。 不同风化形成不同性质的土,有下列三种: (1)物理风化:只改变颗粒大小,不改变矿物成分。由物理风化生成土为粗粒土(如块碎石、砾石、砂土),为无粘性土。 (2)化学风化:矿物发生改变,生成新成分—次生矿物。由化学风化生成土为细粒土,具有粘结力(粘土和粘质粉土),为粘性土。 (3)生物风化:动植物与人类活动对岩体的破坏。矿物成分没有变化。 2.土的结构和构造 (1)土的结构 定义:土颗粒间的相互排列和联结形式称为土的结构。 1)种类: ●单粒结构:每一个颗粒在自重作用下单独下沉并达到稳态。 ●蜂窝结构:单个下沉,碰到已下沉的土颗粒,因土粒间分子引力大于重力不再下沉,形成大孔隙蜂窝状结构。 ●絮状结构:微粒极细的粘土颗粒在水中长期悬浮,相互碰撞吸引形成小链环状土集粒。小链之间相互吸引,形成大链环,称絮状结构。 图1.1 土的结构 3)工程性质: 密实的单粒结构工程性质最好,蜂窝结构与絮状结构如被扰动破坏天然结构,则强度低、压缩性高,不可用做天然地基。

土的物理性质指标

第一章 土的物理性质及工程分类 第一节 土的组成与结构 一、 土的组成 天然状态下的土的组成(一般分为三相) ⑴ 固相:土颗粒—构成土的骨架决定 土的性质—大小 、形状、 成分、组成、排列 ⑵ 液相:水和溶解于水中物质 ⑶ 气相:空气及其他气体 (1)干土=固体+气体(二相) (2)湿土=固体+液体+气体(三相) (3)饱和土=固体+液体(二相) 二、土的固相 (一)、土的矿物成分和土中的有机质。 土粒的矿物成分不同、粗细不同、形状不同、土的性质也不同 矿物成分取决于(1)成土母岩的成分 (2)所经受的风化作用①物理风化——原生矿物(化学成分无变化) ②化学风化——次生胯矿物(化学成分变化) 次生矿物(1)三大黏土矿物①高岭石(土) ②伊利石(土) ③蒙脱石(土) (2)水溶盐①难溶:CaCO 3 ②中溶:石膏 CaSO4.2H2O ③易溶:NaCl kcl CaCl2 K Na 的 SoO42- CO 3 2- 2.各粒组中所含的主要矿物成分 土颗粒据粒组范围划分不同的粒组名称 石英、长石——砾石、砂的主要矿物成分——性质稳定、强度高 云母——薄片状——强度低、压缩性大、易变形 粘土矿物——亲水性、粘聚性、可塑性、膨胀性、收缩性 (1) 蒙脱石——透水性小多个晶体层——结构不稳定、颗粒最小、亲水性 (2) 伊利石——介于两者之间,较接近蒙脱石 (3) 高岭石——颗粒相对较大——亲水性较弱晶体结构较稳定 ρd 粘土中的水溶盐 3.土中的有机质——亲水性强,压缩性大,强度低 (二)土的粒组划分 (三)土的颗粒级配 1. 颗粒大小分析试验——颗分试验 方法(1)筛分法:适用60—0.075mm 的粗粒土 (2)密度计法:适用小于0.075mm 的细粒土 2. 颗粒级配曲线——半对数坐标系 3. 级配良好与否的判别 (一) 定性判别(1)坡度渐变——大小连续——连续级配 (级配曲线)(2)水平段(台阶)——缺乏某些粒径——不连续级配 (4) 曲线形状平缓——粒径变化范围大——不均匀——良好 (5) 曲线形状较陡——变化范围小——均匀——不良 (二) 定量判别 (1)不均匀系数 10 60d d C u

土的力学性质

土的力学性质 土的力学性质 土的力学性质是指土在外力作用下所表现的性质,主要包括压应力作用下体积缩小的压缩性和在剪应力作用下抵抗剪切破坏的抗剪性,.其次是在动荷作用下所表现的一些性质。第一节土的压缩性. 一、土压缩变形的特点与机理 土的压缩性指土在压力作用下体积压缩变小的性能。土受压后体积缩小是土中固、液、气三相组成部分中的各部分体积减小的结果(主要是气体、水分挤出、土粒相互移动靠拢的结果)。 二、压缩试验压缩定律试验方法 : 室内现场据压缩条件: 无侧向膨胀(有侧限)试验有侧向膨胀(无侧限)试验主要是室内无侧向膨胀压缩试验 土的无侧向膨胀压缩试验是先用金属环刀切取土样,然后将土样连同环刀一起放入压缩仪内,由于土样受环刀和护环等刚性护壁约束,在压缩过程中只能发生竖向压缩,不可能发生侧向膨胀.。 试验时,通过加荷装臵将压力均匀地施加到土样上,压力由小到大逐级增加,每级压力待压缩稳定后,再施加下一级压力,土的压缩量可通过微表观测,并据每级压力下的稳定变形量,计算出与各级压力相应的稳定孔隙比。 若试验前试样的截面积为A,土样原始高度为h0,原始孔隙比e0, 当加压P1后土样压缩量为△h1,土样高度由h0减小到h1=h0-△h ,相应孔隙比由e0变为e1. 由于土样压缩时不可能产生侧向膨胀,故压缩前后横截面积不变,加压过程中土的体积是不变的.即: A h0/(1+e0)=A(h0-△h1)(1+ e1) e1=e0-△h1/h0(H e0) 通过试验,求的各级压力Pi作用下,土样压缩性稳定后相应的孔隙比ei,以纵坐标表示孔隙比e, 横坐标表示压力ρ。据压缩试验数据,可绘制出孔隙比与压力的关系曲线------压缩曲线。

水的基本物理化学性质(冰水汽)解答

水的基本物理化学性质 一. 水的物理性质(形态、冰点、沸点): 常温下(0~100℃),水可以出现固、液、气三相变化,利用水的相热转换能量是很方便的。 纯净的水是无色、无味、无臭的透明液体。水在1个大气压时(105Pa),温度 1)在0℃以下为固体,0℃为水的冰点。 2)从0℃-100℃之间为液体(通常情况下水呈液态)。 3)100℃以上为气体(气态水),100℃为水的沸点。 4)水是无色、无臭、无味液体,在浅薄时是清澈透明,深厚时呈蓝绿色。 5)在1atm时,水的凝固点(f.p.)为0℃,沸点(b.p.)为100℃。 6)水在0℃的凝固热为5.99 kJ/mole(或80 cal/g)。 7)水在100℃的汽化热为40.6 kJ/mole(或540 cal/g)。 8)由於水分子间具有氢键,故沸点高、莫耳汽化热大,蒸气压小。 9)沸点: (1)沸点:液体的饱和蒸气压等於液面上大气压之温度,此时液体各点均呈剧烈汽 化现象,且液气相可共存若液面上为1 atm(76 mmHg)时,则该沸点称为「正常沸点」,水的正常沸点为100℃。 (2)若液面的气压加大,则液体需更高的蒸气压才可沸腾;而更高的温度使得更高 的蒸气压,故液体的沸点会上升。液面上蒸气压愈大,液体的沸点会愈高。 (3)反之,若液面上气压变小,则液面的沸点将会下降。 10)水在4℃(精确值为3.98℃)时的体积最小、密度最大,D = 1g/mL。 11)三相点:指在热力学里,可使一种物质三相(气相,液相,固相)共存的一个温度 和压力的数值。举例来说,水的三相点在0.01℃(273.16K)及611.73Pa 出现。 12)临界点(critical point):物理学中因为能量的不同而会有相的改变(例如:冰 →水→水蒸气),相的改变代表界的不同,故当一事物到达相变前一刻时我们称它临 界了,而临界时的值则称为临界点。之温度为临界温度,压力为临界压力。 13)临界温度:加压力使气体液化之最高温度称为临界温度。如水之临界温度为374℃, 若温度高於374℃,则不可能加压使水蒸气液化。 14)临界压力:在临界温度时,加压力使气体液化的最小压力称之。临界压力等於该液 体在临界温度之饱和蒸气压。 二. 水的比热: 把单位质量的水升高1℃所吸收的热量,叫做水的比热容,简称比热,水的比热为4.18xKJ/Kg.K。 在所有的液体中,水的比热容最大。因此水可作为优质的热交换介质,用于冷却、储热、传热等方面。 三. 水的汽化热: 在一定温度下单位质量的水完全变成同温度的气态水(水蒸气)所需的热量,叫做水的汽化热。 水从液态转变为气态的过程叫做汽化,水表面的汽化现象叫做蒸发,蒸发在任何温度下都能进行。 水的汽化热为2257KJ/Kg。一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从1℃加热到100℃所需要的热量。

第一章土的物理性质及工程分类及答案

第一章土的物理性质及工程分类 一、思考题 1、土是由哪几部分组成的? 2、建筑地基土分哪几类?各类土的工程性质如何? 3、土的颗粒级配是通过土的颗粒分析试验测定的,常用的方法有哪些?如何判断土的级配情况? 4、土的试验指标有几个?它们是如何测定的?其他指标如何换算? 5、粘性土的含水率对土的工程性质影响很大,为什么?如何确定粘性土的状态? 6、无粘性土的密实度对其工程性质有重要影响,反映无粘性土密实度的指标有哪些? 二、选择题 1、土的三项基本物理性质指标是() A、孔隙比、天然含水率和饱和度 B、孔隙比、相对密度和密度 C、天然重度、天然含水率和相对密度 D、相对密度、饱和度和密度 2、砂土和碎石土的主要结构形式是() A、单粒结构 B、蜂窝结构 C、絮状结构 D、层状结构 3、对粘性土性质影响最大的是土中的( ) A、强结合水 B、弱结合水 C、自由水 D、毛细水 4、无粘性土的相对密实度愈小,土愈() A、密实 B、松散 C、居中 D、难确定 5、土的不均匀系数C u 越大,表示土的级配() A、土粒大小不均匀,级配不良 B、土粒大小均匀,级配良好 C、土粒大小不均匀,级配良好 6、若某砂土的天然孔隙比与其能达到的最大孔隙比相等,则该土() A、处于最疏松状态 B、处于中等密实状态 C、处于最密实状态 D、无法确定其状态 7、无粘性土的分类是按() A、颗粒级配 B、矿物成分 C、液性指数 D、塑性指数 8、下列哪个物理性质指标可直接通过土工试验测定() A、孔隙比 e B、孔隙率 n C、饱和度S r D、土粒比重 d s 9、在击实试验中,下面说法正确的是() A、土的干密度随着含水率的增加而增加 B、土的干密度随着含水率的增加而减少 C、土的干密度在某一含水率下达到最大值,其它含水率对应干密度都较小 10、土粒级配曲线越平缓,说明()

土的组成及物理性质分类

一思考题 1 什么叫土?土是怎样形成的?粗粒土和细粒土的组成有何不同? 2 什么叫残积土?什么叫运积土?他们各有什么特征? 3 何谓土的级配?土的粒径分布曲线是怎样绘制的?为什么粒径分布 曲线用半对数坐标? 4 何谓土的结构?土的结构有哪几种类型?它们各有什么特征? 5 土的粒径分布曲线的特征可以用哪两个系数来表示?它们定义又如 何? 6 如何利用土的粒径分布曲线来判断土的级配的好坏? 7 什么是吸着水?具有哪些特征? 8 什么叫自由水?自由水可以分为哪两种? 9 什么叫重力水?它有哪些特征? 10 土中的气体以哪几种形式存在?它们对土的工程性质有何影响? 11 什么叫的物理性质指标是怎样定义的?其中哪三个是基本指标? 12 什么叫砂土的相对密实度?有何用途?

1-13 何谓粘性土的稠度?粘性土随着含水率的不同可分为几种状态? 各有何特性? 14 何谓塑性指数和液性指数?有何用途? 15 何谓土的压实性?土压实的目的是什么? 16 土的压实性与哪些因素有关?何谓土的最大干密度和最优含水率? 17 土的工程分类的目的是什么? 18 什么是粗粒土?什么叫细粒土? 19 孔隙比与孔隙率是否是一回事?说明理由,并导出两者之间的关 系式。 20 试述粘性土液性指数的定义、简要的测定方法,以及如何根据其大 小来确定粘性土所处的物理状态? 二计算题 1有A、B两个图样,通过室内实验测得其粒径与小于该粒径的土粒质量如下表所示,试绘出它们的粒径分布曲线并求出和值。 A土样实验资料(总质量500g) 粒径d(mm)5210.50.250.10.075小于该粒径的质量(5004603101851257530

土的物理性质与工程分类习题解答全讲解学习

土的物理性质与工程分类习题解答全

二 土的物理性质与工程分类 一、填空题 1. 土是由固体颗粒、_________和_______组成的三相体。 2. 土颗粒粒径之间大小悬殊越大,颗粒级配曲线越_______,不均匀系数越______,颗粒级配越______。为了获得较大的密实度,应选择级配________的土料作为填方或砂垫层的土料。 3. 塑性指标P I =________,它表明粘性土处于_______状态时的含水量变化范围。 4. 根据___________可将粘性土划分为_________、_________、 _________、________、和___________五种不同的软硬状态。 5. 反映无粘性土工程性质的主要指标是土的________,工程上常用指标 ________结合指标________来衡量。 6. 在土的三相指标中,可以通过试验直接测定的指标有_________、_________和________,分别可用_________法、_________法和________法测定。 7. 土的物理状态,对于无粘性土,一般指其________;而对于粘性土,则是指它的_________。 8. 土的结构是指由土粒单元的大小、形状、相互排列及其连接关系等因素形成的综合特征,一般分为_________、__________和__________三种基本类型。 9. 土的灵敏度越高,结构性越强,其受扰动后土的强度降低就越________。 10. 工程上常用不均匀系数u C 表示土的颗粒级配,一般认为,u C ______的土属级配不良,u C ______的土属级配良好。有时还需要参考__________值。 11. 土的含水量为土中_______的质量与_________的质量之比。 12. 某砂层天然饱和重度sat γ20=KN/m 3,土粒比重的68.2=s d ,并测得该砂土的最大干密度33max 1.7110kg /m d ρ=?,最小干密度33min 1.5410kg /m d ρ=?,则 天然孔隙比e 为______,最大孔隙比m ax e 为______,最小孔隙比m in e 为______。 13. 岩石按风化程度划分为__________,__________,________;按其成因可分为

水的特性

水的基本特性 在自然界中,几乎水的全部物理性质,要么是独特的,要么是处于这种性质范围的极端状态。由此,导致了它在化学上的特殊性。这些在物理及化学上的特点,又使得它在生物学上具有不可代替的作用。这就可以清楚的看出,水在自然地理研究中的价值。 让我们首先来熟悉一下水分子的结构。由两个氢原子和一个氧原子所组成的水分子,呈非对称分布,共形状略作V字形,这是依据水分子的电子云分布决定的。现已清楚的是,氧原子居于中心,两个氢原子位于类似正方体之一个面的两个对角。H—O—H之间的角度(也就是V字形结构之角度)为104°31′,而不是真正的正方体所应有的109°30′。氧原子的8个电子分布是:两个靠近原子核,两个包含在与氢原子结合的键中。另外两对孤对电子则形成两个臂,伸向与包含氢原子那个面相对的另一个面中,分别位于该面的两个对角(见图7.1)。这两个臂的电子云,特别引起人们的关注,因为它们显示出了一个带负电区,能吸引邻近水分子中氢原子的局部正电区,借此力量把水分子互相连接起来,这就是水分子所表现出来的“极性”。 正因极性作用的缘故,水聚结在一起而不轻易地汽化,就是说在通常气压下,水不致在较低的温度时就沸腾。由于水分子中电荷的分布,它产生了1.84×10-18静电单位的偶极矩。如果水分子没有带负电的电子云臂及偶极矩,水分子之间的结合就不会如现在这样,海洋中所有液态水势必完全汽化,生命的形成必然是不可能的。借助于极性,水分子能连接起来一直升高到近百米高的树顶,光靠毛管力及大气压力是无法解释的。 我们已经提到,液态水几乎在其所有的物理化学性质方面都是异乎寻常的。例如仅从它发生相变时的温度来说,就十分独特。元素周期表中第ⅥA族各元素的氢化物,随着分子量由H2S、H2Se,到H2Te的增大,其熔点也按照这样的序列

土的物理性质

第一章土的物理性质 第一节土的成因和工程特性 第二节土的组成及结构构造 一、名词解释 1粒径:土粒的直径大小。 2粒组:实际工程中常按粒径大小将土粒分组,粒径在某一范围之内的分为一组。 3粒径级配:各粒组的质量占土粒总质量的百分数。 4筛分法:适用粒径大于0.075mm的土。利用一套孔径大小不同的标准筛子,将称过质量的干土过筛,充分筛选,将留在各级筛上的土粒分别称重,然后计算小于某粒径的土粒含量。 5土的结构:指土中颗粒之间的联系和相互排列形式。 6土的构造:指同一土层中成分和大小都相近的颗粒或颗粒集合体相互关系的特征。 7土的有效粒径(d10):小于某粒径的土粒质量累计百分数为10%时,相应的粒径。 二、填空题 1.平缓大好良好 2.压缩性高承载力低渗透性强 3.单粒结构蜂窝结构絮状结构4.Cu≥5且Cc=1~3 5.固液 6固,液,气 7.缺乏某些粒径——不连续级配 8.不均匀系数Cu。 9. 小 10. B,A 11.二相土三相土二相土 三、选择题 1.C 2.C 3.B 4.B 5.A 6.C 7.A 第三节土的物理性质指标 一、名词解释 1.土的含水量ω:是指土中水的质量和土粒质量之比或重力之比。 2.土的密度ρ:指单位体积土的质量。 ρ:土中孔隙完全被水充满时单位体积土的质量。 3.饱和密度 sat 4.干密度ρd:单位体积土中土粒的质量。 5.土粒相对密度 Gs: 是土粒的质量与同体积纯蒸馏水在4℃时的质量之比。 6.孔隙比e:是指土中孔隙的体积与土粒体积之比。 7.孔隙率n:是指土中孔隙的体积与土的总体积之比。 8.土的饱和度Sr:是指土中水的体积与孔隙体积之比。

常用土层和岩石物理力学性质

(E, ν) 与(K, G)的转换关系如下: ) 1(2ν+= E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 土的弹性特性值(实验室值)(Das,1980) 表7.2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5 中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3 流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量

K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7.4) 其中 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱和体积模量为: n K K K f u + = (7.5) 不排水的泊松比为: ) G 3K (22G 3K u u u +-= ν (7.6) 这些值应该和排水常量k 和ν作比较,来估计压缩的效果。重要的是,在FLAC 3D 中,排水特性是用在机械连接的流变计算中的。对于可压缩颗粒,比奥模量对压缩模型的影响比例与流动。 7.3 固有的强度特性 在FLAC 3D 中,描述材料破坏的基本准则是摩尔-库仑准则,这一准则把剪切破坏面看作直线破坏面: s 13N f φσσ=-+ (7.7)

第四章:土壤物理性质

第四章土壤物理性质 主要教学目标:本章将要求学生掌握土壤物理性质如土壤质地、土壤结构以及土壤孔隙等内容。并在学习的基础上掌握改良不太适宜林业生产的某些土壤物理性质的一些方法。如客土、土壤耕作、施用化学肥料和土壤结构改良剂等。 第一节土壤质地 一、几个概念 1、单粒:相对稳定的土壤矿物的基本颗粒,不包括有机质单粒; 2、复粒(团聚体):由若干单粒团聚而成的次生颗粒为复粒或团聚体。 3、粒级:按一定的直径范围,将土划分为若干组。 土壤中单粒的直径是一个连续的变量,只是为了测定和划分的方便,进行了人为分组。土壤中颗粒的大小不同,成分和性质各异;根据土粒的特性并按其粒径大小划分为若干组,使同一组土粒的成分和性质基本一致,组间则的差异较明显。 4、土壤的机械组成:又叫土壤的颗粒组成,土壤中各种粒级所占的重量百分比。 5、土壤质地:将土壤的颗粒组成区分为几种不同的组合,并给每个组合一定的名称,这种分类命名称为土壤质地。如:砂土、砂壤土、轻壤土、中壤土、重壤土、粘土等 二、粒级划分标准: 我国土粒分级主要有2个 1、前苏联卡庆斯基制土粒分级(简明系统) 将0.01mm作为划分的界限,直径>0.01mm的颗粒,称为物理性砂粒;而<0.01mm的颗粒,称为物理性粘粒。 2、现在我国常用的分级标准是: 这个标准是1995年制定的。 共8级: 2~1mm极粗砂;1~0.5mm粗砂;0.5~0.25mm中砂;0.25~0.10mm细砂;0.10~ 0.05mm极细砂;0.05~0.02mm粗粉粒;0.02~0.002mm细粉粒;小于0.002mm粘粒 三、各粒级组的性质 石砾:主要成分是各种岩屑 砂粒:主要成分为原生矿物如石英。比表面积小,养分少,保水保肥性差,通透性强。 粘粒:主要成分是粘土矿物。比表面积大,养分含量高,保肥保水能力强,但通透性差。粉粒:性质介于砂粒和粘粒之间。 四、土壤质地分类 1、国际三级制,根据砂粒(2—0.02mm)、粉砂粒(0.02mm—0.002mm)和粘粒(<0.002mm)的含量确定,用三角坐标图。 2、简明系统二级制,根据物理性粘粒的数量确定。考虑到土壤条件对物理性质的影响,对不同土类定下不同的质地分类标准。在我国较常用。 3、我国土壤质地分类系统: 结合我国土壤的特点,在农业生产中主要采用前苏联的卡庆斯基的质地分类。对石砾含量较高的土壤制定了石砾性土壤质地分类标准。将砾质土壤分为无砾质、少砾质和多砾质三级,可在土壤质地前冠以少砾质或多砾质的名称。 五、土壤质地与土壤肥力性状关系 从两个方面来论述 1、土壤质地与土壤营养条件的关系 肥力性状砂土壤土粘土 保持养分能力小中等大 供给养分能力小中等大

初中趣味物理知识:趣谈水的几个物理特性

初中趣味物理知识:趣谈水的几个物理特性 在我们人类生活的地球表面上,有70%的地方由液态水覆盖着,可以说地球是个名副其实的水球。几乎所有的生命形式的主要构成成分都是水,没有水就没有生命的存在,也不会有今天有滋有味的生活。水有很多我们熟知的特性,如无色、无味、能溶解许多物质、在0℃时结冰、100℃时汽化、能吸收大量的热能、能形成晶莹的水珠等等。虽然一般人对水都比较了解,但仍有很多值得研究的地方,即使是它那些熟知的特性也显得是如此地巧妙,因而让人类居住的这个神秘的星球有了无比丰富的生命与多姿多彩的生活。 水比其他任何液体都能溶解更多的物质,这要得力于它独特的分子结构,特别是水分子的有极性。我们都知道水的分子式是H2O.水的分子结构非常简单,由两个氢原子和一个氧原子呈一定对称性组成V字型分子。这种结构导致水分子在氧的一边出现微弱的负电,而在氢的一边形成微弱正电,所以水分子很容易相互形成立体的连接,也使它很容易与其他物质的原子因电荷的吸引而相互接合,因而使水有很强的溶解其他物质的能力。比如当我们将盐加到水中时,水分子的有极性使它与盐分子间形成微弱结合,使得晶体盐粒均匀分散到水中。正是这一特性才使得我们的生活中有那么多的美味,我们每一天都在不知不觉中喝下了各种水溶液,酸甜

苦辣样样都有。水的这种强溶解性,使得动物体内的水溶液携带着各种所需要的物质在体内循环,从而也为生命的代谢起了重要的作用。 在地球环境条件下,水是已知惟一三态共存的自然物质。水的不同状态对应分子的不同排列形式,在固体状态下分子呈高度有序态存在。大多数物质在一定压力下,随着温度的下降,其密度会上升;而水却比较特殊,在温度大于4℃时,水是遵循这一规律的,包括从气态水到液态的过程。但在低于4℃后,水的密度反而开始减小,即水在4℃时的密度最大。水的这种固态密度大于液态密度的特性在自然界中几乎是独一无二的。在地球的大部分能结冰的地方,冬天来临时,水开始结冰,然后浮在水面上,这样将冰下方的液态水与冰上方的冷空气隔离开,从而阻止或是减缓了冰下液态水的固化,也保证了水中以液态水为生活条件的生命形式比如鱼类、水草等的存活。当第二年春天到来时,上升的气温会熔化掉浮在水面上的冰,水又重新回到流动的液态。试想一下,如果水没有这一特殊的物理性质会是什么样的结果?上面的水结冰后往下沉,涌上来的水又结成冰,如此反复,最终是一条河或整个湖都变成硕大的冰疙瘩,水中的生命也就无法生存下去了。果真如此,生命形式是否还这样丰富多彩也就很难说了。 对液态的水来说,它的水分子由于有极性会处于一种半

土石坝中土石料的物理力学性质

土石坝中土石料的物理力学性质 摘要 随着筑坝技术的发展,近代的高土石坝大量地使用了当地的粗颗粒土石料(以下简称土石料)。铁路、公路以及一些高层、重型建筑物,目前也遇到了此类材料的问题。“土石料”一词,一般泛指诸如砂卵石、石料、石碴料、风化料、砾质土、冰磺土以至人工掺合土等粗颗粒的土石材料。其最大粒径一般都超过75(60)毫米而达到600甚至800毫米以上。近年来,由于筑坝技术的发展,对筑坝材料的要求已逐渐放宽。土石料中的物理力学性质对土石坝的设计,施工有很大的影响,所以我们要修好土石坝,必须研究清楚土石坝的各种物理力学性质。 关键字 土石料砂卵石石碴料风化料物理力学性质

类型 土石坝常按坝高、施工方法或筑坝材料分类。 土石坝按照坝高分类,土石坝按坝高可分为:低坝、中坝和高坝。我国《碾压式土石坝设计规范》(SL 274-2001)规定:高度在30米以下的为低坝;高度在30米~70米之间的为中坝;高度超过70米的为高坝。 土石坝按其施工方法可分为:碾压式土石坝;冲填式土石坝;水中填土坝和定向爆破堆石坝等。应用最为广泛的是碾压式土石坝。 按照土料在坝身内的配置和防渗体所用的材料种类,碾压式土石坝可分为以下几种主要类型: 1)、均质坝。坝体断面不分防渗体和坝壳,基本上是由均一的黏性土料(壤土、砂壤土)筑成。 2)、土质防渗体分区坝。即用透水性较大的土料作坝的主体,用透水性极小的黏土作防渗体的坝。包括黏土心墙坝和黏土斜墙坝。防渗体设在坝体中央的或稍向上游且略为倾斜的称为黏土心墙坝。防渗体设在坝体上游部位且倾斜的称为黏土斜墙坝,是高、中坝中最常用的坝型。 3)、非土料防渗体坝。防渗体由沥青混凝土、钢筋混凝土

常用土层和岩石物理力学性质

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 土的弹性特性值(实验室值)(Das,1980) 表7.2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5 中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用

各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3 流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7.4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。

水的物理性质之一

水的物理性质之一 纯净的水是没有颜色、没有味道、没有气味 的透明的液体。 随着温度的变化,水会发生状态变化。在 101.3kPa的压强下,液态的水冷却到0℃时凝固 成固态的冰。因此,水的凝固点是0℃(或称冰的 熔点是0℃)。在同样的压强下,液态的水到100℃ 时沸腾,因此水的沸点是100℃。 水沸腾后变成水蒸气时,体积迅速膨胀。据 科学实验测定,1cm3的水变成101.3kPa压强、 100℃时的水蒸气,体积约为1700cm3,扩大约1700 倍。 水在4℃时的密度(ρ)是1g/cm3。当水结冰时,体积比液态水约增大9%。因此,冰的密度比水小,能浮在水面上,起隔热保温作用,冰下的水仍在流动,鱼儿照样能生存。 水的物理性质之二 纯净的水是无色、无味的透明液体。在1.0×105Pa下,水的凝固点(熔点)为0.00℃,沸点为100.00℃。水的密度比较特殊。在0℃~4℃之间随着温度的升高密度不是减小而是增大,0℃时为0.999841g/cm3,到4℃时达到最大值为1.000000g/cm3,4℃以后和一般物质一样随温度升高而逐渐减小(20℃为0.998203g/cm3,100℃时为0.958354g/cm3。水的这一性质使其广泛用于住宅的采暖,散热后的冷水密度大,可对热源处的热水

形成压力,形成自动循环。0℃冰的密度为0.91671g/cm3,比同温度水的密度还小,因而水结冰时体积膨胀,这种膨胀力很大,可以冻裂水管和汽车发动机水箱,这就是冬天的夜晚汽车要放掉冷却水的原因。在河水或湖水中,结成的冰浮在水面上,可使冰下的水温处于比较稳定状态,保证了水中生物的生存。水的这种密度特性是水分子的排列结构造成的。冰的结构中,每个水分子皆以四面体顶角的方向被另外四个水分子所包围,形成一种很不紧凑的架状结构,因此冰的密度较小。冰熔化时,这种结构被拆散,水分子趋于密集,使水的密度增大。4℃后,随温度的升高,水分子振动加剧,水分子间距离增大,水的密度变小。水的这些性质是使用高纯水测定的,天然水中或多或少地含有某些杂质,其性质和高纯水比较会略有差异。

初中化学《水的性质》教学设计

3.1 水 第2课时水的性质 教学目标: 1.知识与技能 (1)知道水是一种重要的分散剂 (2)初步认识悬浊液、乳浊液、溶液的概念,辨析它们的区别 (3) 掌握二氧化碳、生石灰、硫酸铜和水的反应以及水合现象,懂得结晶水合物 2.过程与方法 (1)观察、收集生活中的实例,交流各种分散体系。 (2)通过实验,记录、观察二氧化碳、生石灰、硫酸铜反应,学习水的化学性质。 3.情感态度与价值观 (1)体验各种分散体系对人类生活生命的重要意义 (2)培养仔细观察的科学实验态度 重点和难点: 教学重点:二氧化碳、生石灰、硫酸铜和水的反应 教学难点:区别溶液、悬浊液、乳浊液 教学用品: 药品:植物油、汽水、食盐、蒸馏水、泥土、生石灰、石蕊、硫酸铜 仪器:烧杯、试管、玻璃棒、药匙、镊子、吸管 教学过程: [展示]烧杯中有浮动的冰,鱼照样能自由的生存。这是为什么? 今天我们就来学习“水”,解释这一现象。 [提问]物质的物理性质包括哪几方面? [提问]水是我们最熟悉的物质,就你知道的,观察到的水具有哪些物理性质? [板书] 3.1水 三、水的性质 1.水的物理性质:无色、无味、液体。在标准状态下,沸点100℃,凝固点0℃。 [提问]看书p70表,比较一下水的密度,说说水在什么温度时密度最大? [板书]4℃时,水的密度最大。 [讲述]由于,4℃时,水的密度最大,0℃时密度却变小,这种现象称为反膨胀,这种性质跟分子的缔合有关。 正由于水具有的这种反常膨胀的奇特性质,使冰能浮在水面上,在寒冷的冬天,水生生物在河流和湖泊中的以生存。 (解释课开始时的现象) 2.水的特性: 1)缔合性 [设问]为什么在工厂里、我们生活中,通常我们用冷水来降低物质的温度,又用温水去预热物质,起到节约能源的作用呢? [讲述]由于水就有吸收大量热量的功能 [讲述]水还有极高的溶解和分散其他物质的能力。 [演示]饮料、注射用药水 [板书] 2)分散性

黄土的物理力学性质

黄土的物理力学性质 §2-1 黄土的物理性质 试验用黄土采用甘肃兰(州)海(石湾)高速公路工程现场扰动土,其物理性质主要由它的物理性质指标来体现,其物理性质指标主要有:孔隙率、天然含水量、容重和液塑限等。 由于黄土的生成与存在条件比较特殊,它的孔隙率比普通土的孔隙率要大。一般黄土中存在肉眼易见的孔隙,这些孔隙多为铅直圆孔,这类孔隙通称为大孔隙。大孔隙比例的多少在一定程度上决定了黄土湿陷性的大小,大孔隙多的黄土湿陷程度大;反之则小。 试验所用黄土的天然含水量很低,一般在10%以下。含水量在剖面上的变化与黄土层的厚度和埋藏深度没有直接关系。黄土的容重、比重取决于黄土的矿物成分、结构和含水量,而黄土的颗粒分散度、矿物成分、形状和弹性在一定程度上决定了黄土的液塑性。 黄土的物理性质随成岩时代、成岩地区的不同而表现出一定的差异。为了得到该黄土的物理性质,我们根据《公路土工试验规程》(JTJ 051-93)的要求,分别采用联合液塑限仪、烘箱和重型击实等方法进行了有关指标的测定,测定结果如表2-1所示。 黄土的物理性质表2-1 一.主要成分分析 组成黄土的矿物约有60种,其中轻矿物(d﹤)含量占粗矿物(d﹥)总量的90%以上。黄土中粘土矿物(d﹤)以不同的方式同水和孔隙中的水溶液相互作用,显示出不同的亲水性,故粘土矿物的成分和比例,在某种程度上体现了黄土的湿陷性。 水溶盐的种类和含量与黄土的湿化、收缩和透水性关系密切,直接影响着黄土的工程性质。 水溶盐包括易溶盐、中溶盐和难溶盐三种。易溶盐(氧化物,硫酸镁和碳酸钠)极易溶于水或与水发生作用。它的含量直接影响到黄土的湿陷性。 中溶盐(石膏为主)的存在状态决定其与水的作用情况。以固体结晶形态存在时,

土的物理力学性质的形成

土的物理力学性质的形成 土是连续、坚固的岩石在风化作用下形成的大小悬殊的颗粒,在原地残留或经过不同的搬运方式,在各种自然环境中形成的堆积物。由于土的形成年代和自然条件的不同,是各种土的工程物理力学性质有很大差异。 一、土的物理性质的形成 土的物理性质包括土粒密度、土的密度、含水性及孔隙性等,以及由此延伸出的细粒土的稠度和可塑性,一般土的胀缩性、崩解性、毛细性级透水性。 就像一开始提到的,土的物理性质直接受到其矿物成分的影响,包括原生矿物及次生矿物,原生矿物成分中含有石英、长石、角闪石、云母等,因此其物理力学性质较为稳定,但颗粒粗大,为卵石、砂砾、粉粒的主要组成成分,性质坚硬。而次生矿物又分为可溶矿物和不可溶矿物,可溶矿物含有卤化物、硫酸盐、碳酸盐等,经结晶沉淀,填充于土粒空隙中,构成不稳定胶结物;不可溶矿物常见的有游离氧化物和粘土矿物,这些成分组成的土颗粒,大都细小,并且有一定的亲水性,胶结能力十分强。 矿物成分影响土颗粒成分及大小,进而影响土的透水性、胶结性并对土的结构和构造起相当的影响作用。比如土的膨胀性,对于土吸水膨胀、失水收缩的性质,最普遍的看法是粘粒与土中水作用后,由于双电层的形成使扩散层或若结合水的厚度发生变化;或由于某些亲水性较强的粘土矿物层间结合水的吸入或析出有关。而土的毛细性,则同时受内外因的作用而形成,主要受以土的粒度成分、矿物成分、水溶液的化学成分、土的结构为主的内因和以气温、蒸发等因素为主的外因有关。 至于土粒密度、土的密度、含水性及孔隙性等物理性质,主要受矿物成分矿物密度级配土颗粒排列的疏密程度决定。 二、土的力学性质的形成 土的力学性质主要包括:土的压缩性、抗剪性和击实性。 土是三相介质,多孔、松散,土粒间仅有微弱的连结或无连结,因此,土在外力作用下易变形,强度低,但土的力学性质说明了土有一定的抵抗外力变形的能力。 土的压缩性,是在外力作用下,土的体积缩小的性质。因为是三相介质,所以土的压缩,有三种可能:○1土粒本身的压缩变形;○2孔隙中水和气体的压缩变形;○3孔隙中部分水和气体的排出,土颗粒相互靠拢使空隙减小。因此影响土的压缩性的因素中,密实度最为主要。还有土的矿物成分是否坚硬、土体的结构是否松散、土本身受到的外力的大小,土颗粒的连结和摩擦是否紧密等。土的压缩变形,体现了结构、孔隙比和含水率的变化。而且,由于物质组成的关系,不同粒径的土的压缩性也不尽相同。粗粒土颗粒大,矿物亲水性弱,单粒结构,无连

土的物理力学性质

第一章 土的物理性质、水理性质和力学性质 第一节 土的物理性质 土是土粒(固体相),水(液体相)和空气(气体相)三者所组成的;土的物理性质就是研究三相的质量与体积间的相互比例关系以及固、液两相相互作用表现出来的性质。 土的物理性质指标,可分为两类:一类是必须通过试验测定的,如含水量,密度和土粒比重;另一类是可以根据试验测定的指标换算的;如孔隙比,孔隙率和饱和度等。 一、土的基本物理性质 (一)土粒密度(particle density) 土粒密度是指固体颗粒的质量m s 与其体积Vs 之比;即土粒的单位体积质量: s s s V m =ρ g/cm 3 土粒密度仅与组成土粒的矿物密度有关,而与土的孔隙大小和含水多少无关。实际上是土中各种矿物密度的加权平均值。 砂土的土粒密度一般为:2.65 g/cm 3左右 粉质砂土的土粒密度一般为:2.68g/cm 3 粉质粘土的土粒密度一般为:2.68~2.72g/cm 3 粘土的土粒密度一般为:2.7-~2.75g/cm 3 土粒密度是实测指标。 (二)土的密度(soil density)

土的密度是指土的总质量m 与总体积V 之比,也即为土的单位体积 的质量。其中:V=Vs+Vv; m=m s +m w 按孔隙中充水程度不同,有天然密度,干密度,饱和密度之分。 1.天然密度(湿密度)(density) 天然状态下土的密度称天然密度,以下式表示: v s w s V V m m V m ++==ρ g/cm 3 土的密度取决于土粒的密度,孔隙体积的大小和孔隙中水的质量多少,它综合反映了土的物质组成和结构特征。 砂土一般是1.4 g/cm3 粉质砂土及粉质粘土1.4 g/cm3 粘土为1.4 g/cm3 泥炭沼泽土:1.4 g/cm3 土的密度可在室内及野外现场直接测定。室内一般采用“环刀法”测定,称得环刀内土样质量,求得环刀容积;两者之比值。 2.干密度(dry density ) 土的孔隙中完全没有水时的密度,称干密度;是指土单位体积中土粒的重量,即:固体颗粒的质量与土的总体积之比值。 V m s d =ρ g/cm 3 干密度反映了土的孔隙生,因而可用以计算土的孔隙率,它往往通过土的密度及含水率计算得来,但也可以实测。 土的干密度一般常在1.4~1.7 g/cm3

土的组成和物理性质

第四讲土的组成和物理性质 一、内容提要: 本讲主要讲述土的三相组成和三相指标、土的矿物组成和颗粒级配、土的结构、粘性土的界限含水量、塑性指数、液性指数、砂土的相对密实度、土的最佳含水量和最大干密度、土的工程分类 二、重点、难点: 土的物理力学性质指标的计算 一、土的三相组成 土是由固体颗粒、水和气体三部分组成的,通常称为土的三相组成。随着三相物质的质量和体积的比例不同,土的性质也将不同。 【例题1】土的三相组成中不包括的部分是()。 A. 水 B. 气体 C. 固体颗粒 D. 矿物成分答案:D (一)土的固相 土的固相物质包括无机矿物颗粒和有机质,是构成土的骨架最基本的物质,称为土粒。对土粒应从其矿物成分、颗粒的大小和形状来描述。 1. 土的矿物成分 土中的矿物成分可以分为原生矿物和次生矿物两大类。 原生矿物是指岩浆在冷凝过程中形成的矿物,如石英、长石、云母等。 次生矿物是由原生矿物经过风化作用后形成的新矿物,如三氧化二铝、三氧化二铁、次生二氧化硅、粘土矿物以及碳酸盐等。 【例题2】在下列各类矿物中,属于次生矿物的是()。 A. 石英 B. 长石 C. 云母 D. 蒙脱石答案:D 2. 土的粒度成分(颗粒级配) 天然土是由大小不同的颗粒组成的,土粒的大小称为粒度。工程上常用不同粒径颗粒的相对含量来描述土的颗粒组成情况,这种指标称为粒度成分。

(1)土的粒组划分 工程上常把大小相近的土粒合并为组,称为粒组。粒组间的分界线是人为划定的,划分时应使粒组界限与粒组性质的变化相适应,并按一定的比例递减关系划分粒组的界限值。 对粒组的划分,我国有关规范均将砂粒粒组与粉粒粒组的界限为0.075mm。其余粒组划分标准可参见《岩土工程勘察规范》(GB50021-2001)和《土的工程分类标准》(GBJl45-90)等。 (2)粒度成分及其表示方法 土的粒度成分是指土中各种不同粒组的相对含量(以干土质量的百分比表示),它可用以描述土中不同粒径土粒的分布特征。 常用的粒度成分的表示方法是累计曲线法,也称颗分曲线法,它是一种图示的方法,通常用半对数纸绘制,横坐标(按对数比例尺)表示某一粒径,纵坐标表示小于某一粒径的土粒的百分含量,如图15-4-1所示。 在累计曲线上,可确定两个描述土的级配的指标:

相关文档