文档库 最新最全的文档下载
当前位置:文档库 › 15届港尾中学高职班数学复习材料——立体几何

15届港尾中学高职班数学复习材料——立体几何

15届港尾中学高职班数学复习材料——立体几何
15届港尾中学高职班数学复习材料——立体几何

立体几何(高职班)

第1节 空间几何体

一、基础知识梳理:

(一)。多面体:由若干个多边形围成的几何体,叫做多面体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点. 1。棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都平行,由这些面所围成的多面体叫做棱柱。两个互相平行的面叫做底面,其余各面叫做侧面. 2。棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

底面是正多边形,且各侧面是全等的等腰三角形的棱锥叫做正棱锥。

正棱锥的性质:各侧棱相等,各侧面都是全等的等腰三角形;顶点在底面上的射影是底面正

多边形的中心。 3。棱台:用一个平行于底面的平面去截棱锥,底面与截面之间的部分叫做棱台。 由正棱锥截得的棱台叫做正棱台。

正棱台的性质:各侧棱相等,各侧面都是全等的等腰梯形;正棱台的两底面以及平行于底面的截面是相似的正多边形

(二)。旋转体:由一个平面图形绕一条定直线旋转所形成的封闭几何体叫旋转体,这条定直线叫做旋转体的轴

1。圆柱、圆锥、圆台:分别以矩形的一边、直角三角形的直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫做圆柱、圆锥、圆台。

圆柱、圆锥、圆台的性质:平行于底面的截面都是圆;过轴的截面(轴截面)分别是全等的

矩形、等腰三角形、等腰梯形。 注:在处理圆锥、圆台的侧面展开图问题时,经常用到弧长公式R l α=

2.球: 以半圆的直径为旋转轴,旋转一周所成的曲面叫做球面.球面所围成的几何体叫做球体(简称球) (三)。简单空间图形的三视图:

(1)、空间几何体三视图:正视图(从前向后的正投影);

侧视图(从左向右的正投影); 俯视图(从上向下正投影).

(2)、三视图画法规则:

高平齐:主视图与左视图的高要保持平齐 长对正:主视图与俯视图的长应对正 宽相等:俯视图与左视图的宽度应相等

(四)。斜二测画法的画图规则:在已知图形中取互相垂直的两轴Ox,Oy,画直观图时,把它

画成对应的轴y O x O '''',,使y O x '''∠=45O (或135o

) .已知图形中平行于x 轴或y 轴的线段,在直观图中画成平行于x '轴、y '轴的线段;平行于x 轴的线段保持长度不变,平行于y 轴的线段长度变为原来的一半,

(五)。特殊几何体表面积公式(c 为底面周长,h 为高,'

h 为斜高,l 为母线):

ch S =直棱柱侧面积

rh S π2=圆柱侧 '2

1

ch S =

正棱锥侧面积 rl S π=圆锥侧面积 ')(2

1

21h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表

()

22R Rl rl r S +++=π圆台表 S 球面=2

4R π

(六)。柱体、锥体、台体和球的体积公式:

V Sh =柱 2V Sh r h π==圆柱 13

V S h =锥 h r V 23

1π=圆锥

'1()3V S S h =台

'2211()()33V S S h r rR R h π==++圆台

V 球=343R π 二、典型例题:

例1.(2013四川文)一个几何体的三视图如图所示,则该

几何体可以是( ) A .棱柱 B .棱台 C .圆柱

D .圆台

例2.(2010广东理6)如图1,△ ABC 为三角形,

AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=

3

2

BB '=CC ' =AB,则多面体△ABC -A B C '''的正视图是( )

例3.(2009天津理)如图是一个几何体的三视图,若它

的体积是=a _______

3 正视图

俯视图

左视图

例4.(2008山东6) 左下图是一个几何体的三视图,则该几何体的表面积是( ) A .9π B .10π C .11π D .12π

例5.(2013陕西理)某几何体的三视图如右上图所示, 则其体积为________. 例6.用斜二测画法画一个平面图形的直观图如图所示,则原来的图形是( )

例7.(2006山东)正方体的内切球与其外接球的体积之比为( )

(A)1∶3 (B)1∶3 (C )1∶33 (D)1∶9

三、基础训练:

1.(2008广东)将正三棱柱截去三个角(如图1所示A ,B ,C 分别是△GHI 三边的中点)得到几何体按图2所示方向的侧视图为( )

2.(2009福建文)某几何体的正视图与侧视图都是边长为1的正方形,且体积为1

2

。则该几何体的俯视图可以是(

)

3.(2007山东3)下列几何体各自的三视图中,有且仅有两个视图相同的是( )

A .①②

B .①③

C .①④

D .②④

俯视图

正(主)视图 侧(左)视图

①正方形 ②圆锥 ③三棱台 ④正四棱锥

4.(2001全国文)若圆锥的正视图是面积为3的正三角形,则这个圆锥的全面积是()(A)π3(B)π3

3(C)π6(D)π9

5.如图所示的直观图,其平面图形的面积为()

A.3B.6C

.D

2

6.(2007天津12)一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱的长分别为1,2,3则此球的表面积为.

7.(2009浙江理)若某几何体的三视图如左下图所示,则此几何体的体积是.

8.(2010浙江)若某几何体三视图(单位:cm)如右上图所示,则此几何体体积是_____3

cm .

四、巩固练习:

1.(2013广东理5)某四棱台的三视图如左下图所示,则该四棱台的体积是()A.4B.

14

3

C.

16

3

D.6

2.(2010湖南文13)图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则

h= cm

3.(2007全国2)一个正四棱柱的各个顶点在一个直径为2cm的球面上。如果正四棱柱的底

面边长为1cm,那么该棱柱的表面积为 cm2 .

俯视图

侧视图

5.(2010天津文12)一个几何体的三视图如图所示,则这个几何体的体积为 。

6.(2013龙岩)有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图),45ABC ∠=?,AB=AD=1,DC ⊥BC ,则这块菜地的面积为_________.

第2节 空间直线和平面

一、基础知识梳理:

1.平面概述

几何里的平面是无限伸展的. 平面通常用一个平行四边形来表示.

平面常用希腊字母α、β、γ…或拉丁字母M 、N 、P 来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.

在立体几何中,大写字母A ,B ,C ,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:

a) A ∈l —点A 在直线l 上;A ?α—点A 不在平面α内; b) l ?α—直线l 在平面α内; c) a ?α—直线a 不在平面α内; d) l ∩m=A —直线l 与直线m 相交于A 点; e) α∩l=A —平面α与直线l 交于A 点; f) α∩β=l —平面α与平面β相交于直线l. 2.平面的基本性质

公理1 若一条直线上的两点在一个平面内,则这条直线上所有的点都在这个平面内. 公理2 若两个平面有一个公共点,则它们有且只有一条通过这个点的公共直线. 推论1 经过一条直线和这条直线外一点,有且只有一个平面. 推论2 经过两条相交直线,有且只有一个平面. 推论3 经过两条平行直线,有且只有一个平面.

公理3 经过不在同一直线上的三个点,有且只有一个平面.

◆公理4:平行于同一条直线的两条直线互相平行.

◆等角定理:若空间中一个角的两边与另一个角的两边分别平行,则这两个角相等或互补.

3.空间线面的位置关系

共面 平行—没有公共点 (1)直线与直线 相交—有且只有一个公共点

异面(既不平行,又不相交)

直线在平面内—有无数个公共点 (2)直线和平面 直线不在平面内 平行—没有公共点 (直线在平面外) 相交—有且只有一公共点 (3)平面与平面 相交—有一条公共直线(无数个公共点)

平行—没有公共点

4.两异面直线所成的角:已知异面直线a,b.经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).如果两条异面直线所成的角是直角,我们就说这两条直线互相垂直.

二、典型例题:

例1. (2006重庆)对于任意的直线l 与平面α,在平面α内必有直线m ,使m 与l ( ) (A)平行 (B )相交 (C )垂直 (D)互为异面直线 例2. 下列结论正确的有

①平行于同一直线的两直线是平行直线 ②平行于同一直线的两平面是平行平面 ③平行于同一平面的两直线是平行直线 ④平行于同一平面的两平面是平行平面 ⑤垂直于同一直线的两直线是平行直线 ⑥垂直于同一直线的两平面是平行平面

⑦垂直于同一平面的两直线是平行直线 ⑧垂直于同一平面的两平面是平行平面 例3.(2007江苏4)已知两条直线,m n ,两个平面,αβ,给出下面四个命题:( )

①//,m n m n αα⊥?⊥ ②//,,//m n m n αβαβ??? ③//,////m n m n αα? ④//,//,m n m n αβαβ⊥?⊥ 其中正确命题的序号是

A .①③

B .②④

C .①④

D .②③

例4.(必修2 P48 2改编)长方体AC '中,2AB AD AA '=== (1) BC A C ''与所成的角是多少度 (2) BC ''AA 与所成的角是多少度 (3) BC ''AB 与所成的角的余弦值

三、基础训练:

1.已知a 、b 是异面直线,直线c 平行于直线a ,则下列结论正确的是( )

A. c 与b 一定是异面直线

B. c 与b 一定是相交直线 C . c 与b 不可能是平行直线 D. c 与b 不可能是相交直线 2.下列结论正确的有

①经过不同的三点有且只有一个平面 ②分别在两个平面内的两条直线一定是异面直线

③若点A 、B 、C 、D 共面,点A 、B 、C 、E 共面,则点A 、B 、C 、D 、E 共面; ④若直线a 、b 共面,直线a 、c 共面,则直线b 、c 共面; 3.已知两平面α与β平行,a ?α,下列结论正确的有 .

①a 与β内的所有直线平行 ②a 与β内的无数条直线平行 ③a 与β内的任何一条直线都不垂直 ④a 与β无公共点 4.(2008安徽3)已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )

A .,,αγβγαβ⊥⊥若则‖

B .,,m n m n αα⊥⊥若则‖

C .,,m n m n αα若则‖‖‖

D .,,m m αβαβ若则‖‖‖

5.(2008湖南5)已知直线m,n 和平面βα,满足βα⊥⊥⊥,,a m n m ,则 ( )

.A n β⊥ ,//.βn B 或β?n α⊥n C . D . ,//αn 或α?n

6.(2012莆田)“直线a,b 为异面直线”是“直线a,b 不相交”的( ) (A )充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件

7.(2008浙江9)对两条不相交的空间直线a 和b ,必定存在平面α,使得 ( )

(A ),a b αα?? (B ),//a b αα? (C ),a b αα⊥⊥ (D ),a b αα?⊥

8.(2008天津5) 设a b ,是两条直线,αβ,是两个平面,则a b ⊥的一个充分条件是( )

A .a b αβαβ⊥⊥,∥,

B .a b αβαβ⊥⊥,,∥

C .a b αβαβ?⊥,,∥

D .a b αβαβ?⊥,∥,

9.(2007广东文6)若,,l m n 是互不相同的空间直线,,αβ是不重合的平面,则下列命题中为真命题的是( )

D.

10.(2002上海春10)图9—12表示一个正方体表面的一种展开图,图中的四条线段

AB 、CD 、EF 和GH 在原正方体中相互异面的有 对

.

11.(2003京春)如图9—1,在正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H ,I ,

J 分别为AF ,AD ,BE ,DE 的中点.将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为( )

A .90°

B .60°

C .45°

D .0°

12.(2009年上海)若正四棱柱1111ABCD A BC D -的底面边长为2,高为4,则异面直线1BD 与AD 所成角的正切值是______________.

13.(2007全国)如图,正棱柱1111ABCD A BC D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )

A. 15

B. 25

C. 35 D . 45

第3节 空间直线平面平行的判定与性质定理

一、基础知识梳理:

1.线面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行?线面平行。符号表示: ////a b a a b ααα??

?

?????

2.面面平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

简记为:线线平行?面面平行。符号表示 : //////a b a b O a b ββαβαα∈?

?∈??

?=??

?

??

3.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,

那么这条直线和交线平行。

简记为:线面平行?线线平行. 符号表示: ////a a a b b α

βαβ??

????=?

4.面面平行的性质定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。

简记为:面面平行?线线平行 符号表示: ////a a b b αβαγβγ?

?

=???=?

二、典型例题:

例1.三棱柱111ABC A B C 中,E 、F 、分别是1111,A B AC 中点。

求证:(1)//EF 平面ABC ; (2),,,B C E F 四点共面

例2.(必修2 P57例2)正方体1AC 中,求证: 111//AB D C 平面平面BD

例3.(必修2 P56 2)正方体1AC 中,E 为1DD 中点,判断1BD 与平面AEC 的位置关系。

例4. 如图所示,在四棱锥S -ABCD 中,底面ABCD 为平行四边形,

E 、

F 分别为AB 、SC 的中点.求证:EF ∥平面SAD .

例5.(例2.变式)正方体1AC 中,点E 在1DD 上,若1BD ∥平面AEC ,求1:DE ED 的值

例6.(2007北京文7理3)平面α∥平面β的一个充分条件是( ) A.存在一条直线a a ααβ,∥,∥

B.存在一条直线a a a αβ?,,∥

C.存在两条平行直线a b a b a b αββα??,,,,∥,∥ D.存在两条异面直线a b a a b αβα?,,,∥,∥

三、基础训练:

1.(2007福建理8文9)已知m 、n 为两条不同的直线,为两个不同的平面,则下列命题中正确的是( )

A. m n m ,,α?α?∥β,n ∥β? α∥β

B. m ⊥α,m ⊥n ?n ∥α

C. α∥β,α?α?n m ,,?m ∥n D . n ∥m,n ⊥α?m ⊥α

2.(2006北京)如图,在底面为平行四边形的四棱锥

P ABCD -中,A B A C ⊥,PA ⊥平面A B C D ,且P A A B =,点E 是PD 的中点. (Ⅱ)求证://PB 平面AEC ;

3.(2010北京文)如图,正方形ABCD 和四边形ACEF

所在的平面互相垂直。EF//AC ,(Ⅰ)求证:AF//平面BDE ;

4.(2009四川文)如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,

,,45AB AE FA FE AEF ?==∠=

(II )线段,CD AE 的中点分别为,P M ,

求证: PM ∥BCE 平面

5.(2006辽宁)已知正方形ABCD .E 、F 分别是AB 、CD 的中点,将ADE ?沿DE 折起,如图所示。 (I) 证明//BF 平面ADE ;

6.(2013年陕西文)如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥

平面ABCD

, 1AB AA =(Ⅰ) 证明: 平面A 1BD // 平面CD 1B 1;

(Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积.

7.(2010辽宁文)如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥ (Ⅱ)设D 是11AC 上的点,且1//A B 平面1B CD ,

求 11:A D DC 的值.

C

D

F

C

E

1

A

第4节 空间直线平面垂直的判定与性质定理

一、基础知识梳理:

1.线面垂直

定义:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,

记作l

α⊥,直线l 叫做平面α的垂线,平面α叫做直线l 的垂面。直线与平面垂直

时,它们唯一公共点P ,点P 叫做垂足。

判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 简记为:线线垂直?线面垂直。 符号表示:,,,,0l

a l

b a b a b l ααα⊥⊥??=?⊥,

2.面面垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。 简记为:线面垂直?面面垂直。符号表示:,,a a βααβ⊥??⊥,

3.线面垂直的性质定理:垂直于同一个平面的两条直线平行。

符号表示: ,,//a

b a b αα⊥⊥?

补充性质:, ,//a b a b αα⊥?⊥

4.面面垂直的性质定理: 若两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

简记为:面面垂直?线面垂直。符号表示: ,,,,a c a a c a βα

βαβ⊥=?⊥?⊥

5.直线和平面所成的角:一条直线PA 和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A 叫做斜足。过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线 AO 叫做斜线在这个平面上的射影。

平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角。一条直线垂直于平面,我们就说它们所成的角是直角。一条直线和平面平行,或在平面内,我们说它们所成的角是0°.

6.二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。 在二面角βα--l 的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角。二面角的平面角是多少度,就说这个二面角是多少度。

二、典型例题:

例1.如图,P 为ABC ?所在平面外一点,⊥PA 平面ABC ,

?=∠90ABC ,PB AE ⊥于E ,PC AF ⊥于F

求证:(1)⊥BC 平面PAB ;(2)⊥AE 平面PBC ;

(3)⊥PC 平面AEF .

例2.(必修2 P69 例3)设AB 是⊙O 的直径, C 是⊙O 上不同于A 、B 的一点, P 是平面⊙O 外一点, PA 垂直于⊙O 所在平面, 求证:PBC PAC 平面平面⊥

例3. (必修2 P74 4)已知ABC VC 面⊥,D,E 分别是V A ,VC 中点,AB 是⊙O 的直径,C 是圆周上不同于A 、B 的一点,判断DE 与平面VBC 的关系,并证明

例4.四棱锥P-ABCD 中,底面是长方形,且ABCD PAB 平面平面⊥,求证BC PA ⊥

C P O A B F

E

P

C

B

A

例5. 如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中, (1) 求三棱锥B-ACB 1体积.

(2) 求三棱锥B-ACB 1的高(即“点B 到平面ACB 1的距离” )

例6.(2012北京文16)如图1,在Rt △ABC 中,∠C=90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图2。

(I)求证:DE ∥平面A 1CB ; (II)求证:A 1F ⊥BE ;

例7. 长方体AC '

中,1,A A AB BC '=== (1) 直线'A B 与平面ABCD 所成的角 (2) 直线'BD 与平面ABCD 所成的角 (3) 直线'''BD 与平面ABB A 所成的角

例8.(2009山东理)已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( )

A.充分不必要条件 B .必要不充分条件

C.充要条件

D.既不充分也不必要条件

D 1

C 1

B 1

A

C

D

B

A

三、基础训练:

1.(2007安徽文6) n m l ,,为直线,其中n m ,在平面α内,则“l ⊥α”是“l m l n ⊥⊥且”的( ) (A )充分不必要条件 (B)必要不充分条件

(C)充分必要条件

(D)既不充分也不必要条件

2.(2006浙江)如图,正三棱柱111ABC A B C -的各棱长都2, E ,F 分别是11,AB AC 的中点,则EF 的长是( ) (A)2

(C

)

3.(2013漳州)如图,PA ⊥正方形ABCD,下列结论中不正确的是 ( )

(A)PB ⊥BC (B)PD ⊥CD (C )PD ⊥BD (D)PA ⊥BD

4.(2009江苏)设α和β为不重合的两个平面,给出下列命题:(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l 与α内的一条直线平行,则l 和α平行;(3)设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直;(4)直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直。上面命题中,真命题...

的序号 (写出所有真命题的序号).5.(2008福建文6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为( )

A.

3 B.23

C.4

D .13

6.(2013厦门)如图是某个正方体的侧面展开图,则在正方体中,

1l 与2l ( )

(A)互相平行 (B)异面且互相垂直 (C)异面且夹角为

3π (D )相交且夹角为3

π 7.(2009北京文)若正四棱柱1111ABCD A BC D -的底面边长为1,

1AB 与底面ABCD 成60°角,则11AC 到底面ABCD 的距离为 ( )

A

3

B . 1

C .

D

C 1

C

8.(2008江苏) 在四面体ABCD 中,CB= CD, AD ⊥BD ,且E ,F 分别是AB,BD 的中点,求证:(Ⅰ)直线EF ∥平面ACD ; (Ⅱ)平面EFC ⊥平面

BCD .

9.(2006天津文19)如图,在五面体ABCDEF 中,点O 是矩形ABCD 的对角线的交点,面CDE 是等边三角形,棱12

EF BC ∥。 (I )证明FO ∥平面;CDE ;

(II )设,BC =证明EO ⊥平面.CDF 。

10. (2010山东临沂)在直平行六面体AC 1中,四边形ABCD 是菱形,∠DAB =60°,AC ∩BD =O ,AB =AA 1. (1)求证:C 1O ∥平面AB 1D 1; (2)求证:平面AB 1D 1⊥平面ACC 1A 1.

D

C

A

B

E

O

F

M B

C A

F D E

11.(2011广州调研)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,△PAD 是等边三角形,已知BD =2AD =4,AB =2DC =2 5.

(1)求证:BD ⊥平面PAD ; (2)求三棱锥A -PCD 的体积.

12.正方形ABCD 中,AB=2,E 是AB 边的中点,F 是BC 边上一点,将△AED 及△DCF 折起,使A 、C 点重合于A ′点。

(1)证明A ′D ⊥EF ; (2)当BF=4

1

BC ,求三棱锥A ′-EFD 的体积。

13.如图,在底面为长方形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,AP =AD =2AB ,其中E ,F

分别是PD ,PC 的中点.

(1)证明:EF ∥平面PAB ;

(2)在线段AD 上是否存在一点O ,使得BO ⊥平面PAC ?若存在,请指出点O 的位置并证明BO ⊥平面PAC ;若不存在,请说明理由.

14.(2010江苏)如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900

(1)求证:PC ⊥BC ; (2)求点A 到平面PBC 的距离。

第5节 空间直角坐标系

一、基础知识梳理:

1、空间直角坐标系:空间直角坐标系中,O 为坐标原点,x ,y ,z 轴统称为坐标轴。坐标轴确定的平面称为坐标平面,x ,y 轴确定的平面记作xOy 平面,y ,z 轴确定的平面记作yOz 平面,x ,z 轴确定的平面记作xOz 平面.

2、坐标轴上的点与坐标平面上的点的坐标的特点:

x 轴上的点P 的坐标的特点:P( , , ),纵坐标和竖坐标都为零. y 轴上的点的坐标的特点: P( , , ),横坐标和竖坐标都为零. z 轴上的点的坐标的特点: P( , , ),横坐标和纵坐标都为零. x Oy 坐标平面内的点的特点:P( , , ),竖坐标为零. x Oz 坐标平面内的点的特点:P( , , ),纵坐标为零. y Oz 坐标平面内的点的特点:P( , , ),横坐标为零. 3、已知空间两点A(1x ,1y , 1z ),B(2x ,2y 2z ),则AB 中点的坐标为( , , ). 距离公式|AB|= 4、一个点关于坐标轴和坐标平面的对称点的坐标:

点P (x ,y ,z)关于坐标原点的对称点为 1P ( , , ); 点P (x ,y ,z)关于坐标横轴(x轴)的对称点为2P ( , , ); 点P (x ,y ,z)关于坐标纵轴(y轴)的对称点为3P ( , , ); 点P (x ,y ,z)关于坐标竖轴(z轴)的对称点为4P ( , , ); 点P (x ,y ,z)关于xOy坐标平面的对称点为 5P ( , , ); 点P (x ,y ,z)关于yOz坐标平面的对称点为 6P ( , , ) 点P (x ,y ,z)关于zOx坐标平面的对称点为 7P ( , , )

二、典型例题

例1.已知点A在x轴上,点B(1,2,0),且则点A的坐标是_________________. 例2.求点A(1,2,-1)关于坐标平面xoy及x轴对称点的坐标。

三、基础训练

1、有下列叙述:

①在空间直角坐标系中,在ox轴上的点的坐标一定是(0,b,c);

②在空间直角坐标系中,在yoz平面上的点的坐标一定是(0,b,c);

③在空间直角坐标系中,在oz轴上的点的坐标可记作(0,0,c);

④在空间直角坐标系中,在xoz平面上的点的坐标是(a,0,c)。

其中正确的个数是()

A、1

B、2

C、3

D、4

2、已知点A(-3,1,4),则点A关于原点的对称点的坐标为()

A、(1,-3,-4)

B、(-4,1,-3)

C、(3,-1,4)

D、(4,-1,3)

3、已知点A(-3,1,-4),点A关于x轴的对称点的坐标为()

A、(-3,-1,4)

B、(-3,-1,-4)

C、(3,1,4)

D、(3,-1,-4)

4、点(2,3,4)关于xoz平面的对称点为()

A、(2,3,-4)

B、(-2,3,4)

C、(2,-3,4)

D、(-2,-3,4)

5、点(1,1,1)关于z轴的对称点为()

A、(-1,-1,1)

B、(1,-1,-1)

C、(-1,1,-1)

D、(-1,-1,-1)

6、已知点P(1,2,3),M(1,1,2),则P,M两点间距离为()

A、1

B、

C、

D、2

高中数学立体几何知识点总结(详细)

高中数学立体几何知识点总结 一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各 个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二) 几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 棱柱的分类 棱柱 四棱柱 平行六面体直平行六面体 长方体正四棱柱 正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 棱长都相等 底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是四边形

1.3 棱柱的面积和体积公式 ch S =直棱柱侧(c 是底周长,h 是高) S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h 2 、棱锥的结构特征 2.1 棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积: 1 '2 S ch = 正棱椎(c 为底周长,'h 为斜高) 体积:1 3 V Sh = 棱椎(S 为底面积,h 为高) 正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为 a 2 2 的正方体问题。 A B C D P O H

立体几何复习知识点汇总(全)

立体几何知识点汇总(全) 1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a、b异面,a平行于平面α,b与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一.点.向这个平面所引的垂线段和斜线段) ⑦b a,是夹在两平行平面间的线段,若 a,的位置关系为相交或平行或异面. a=,则b b ⑧异面直线判定定理:过平面外一点与平 面内一点的直线和平面内不经过该点的直线是

异面直线.(不在任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 (直线与直线所成角]90,0[??∈θ)(向量与向量所成角])180,0[οο∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能 叫1L 与2L 平行的平面) 3. 直线与平面平行、直线与平面垂直. (1). 空间直线与平面位置分三种:相交、平行、在平面内. (2). 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行?线面平行”) [注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) ③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑥直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交) (3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行?线线

高考数学一轮复习立体几何知识点

2019年高考数学一轮复习立体几何知识点数学上,立体几何是3维欧氏空间的几何的传统名称,查字典数学网小编整理了2019年高考数学一轮复习立体几何知识点,希望对考生复习有帮助。 1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 能够用斜二测法作图。 2.空间两条直线的位置关系:平行、相交、异面的概念; 会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法。 3.直线与平面 ①位置关系:平行、直线在平面内、直线与平面相交。 ②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。 ③直线与平面垂直的证明方法有哪些? ④直线与平面所成的角:关键是找它在平面内的射影,范围是 ⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理. 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线. 4.平面与平面

(1)位置关系:平行、相交,(垂直是相交的一种特殊情况) (2)掌握平面与平面平行的证明方法和性质。 (3)掌握平面与平面垂直的证明方法和性质定理。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。 (4)两平面间的距离问题点到面的距离问题 (5)二面角。二面角的平面交的作法及求法: ①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形; 要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。 这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。要求学生抽空抄录并且阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。如此下去,除假期外,一年便可以积累40多则材料。如果学生的脑海里有了

高中数学立体几何专项练习

立体几何简答题练习 1、正方形ABCD 与正方形ABEF 所在平面相交于AB,在AE 、BD 上各有一点P 、Q,且AP=DQ 。求证:PQ ∥平面BCE.(用两种方法证明) 2、如图所示,P 是平行四边形ABCD 所在平面外一点,E 、F 分别在PA 、BD 上,且PE:EA=BF:FD,求证:EF ∥平面PBC. 3、如图,E ,F ,G ,H 分别是正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点。 求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .

4、如图所示,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别为AB 、PC 的中点,平面PAD ∩平面PBC =l. (1)求证:l ∥BC ; (2)MN 与平面PAD 是否平行?试证明你的结论。 5、如图,在四棱锥S-ABCD 中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA=SB ,点M 是SD 的中点,AN ⊥SC ,且交SC 于点N 。 (1)求证:SB ∥平面ACM ; (2)求证:平面SAC ⊥平面AMN ; (3)求二面角D-AC-M 的余弦值。 6、如图,在四棱锥P-ABCD 中,底面ABCD 是边长为2的正方形,侧面PAD ⊥底面ABCD,且PA=PD= 2 2 AD,E 、F 分别为PC 、BD 的中点. 求证:(1) 求证:EF ∥平面PAD; (2) 求证:平面PAB ⊥平面PDC; (3) 在线段AB 上是否存在点G,使得二面角C-PD-G 的余弦值为3 1 ?说明理由.

高中数学立体几何知识点归纳总结60996

高中数学立体几何知识点归纳总结 一、立体几何知识点归纳 第一章空间几何体 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.棱柱 棱柱——有两个面互相平行,其余各面都是四边形,并且每相 邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫 做棱柱。 相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ① ? ? ??????→ ?? ?????→? ? ?? ?L 底面是正多形 棱垂直于底面 斜棱柱 棱柱正棱柱 直棱柱 其他棱柱 侧棱垂直于底面底面为矩形 侧棱与底面边长相等 棱柱的性质:

①侧棱都相等,侧面是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。 长方体的性质: ①长方体一条对角线长的平方等于一个顶点上三条棱的 平方和;【如图】2222 11AC AB AD AA =++ ②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所 成 的 角 分 别 是 αβγ ,,,那么 222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=; ③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则2 2 2 cos cos cos 2αβγ++=,2 2 2 sin sin sin 1αβγ++=. 侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 面积、体积公式: 2S c h S c h S S h =?=?+=?直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱 柱的高) 2.圆柱 圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形. 侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 面积、体积公式: 侧面 母线

高中数学立体几何知识点归纳总结

高中数学立体几何知识 点归纳总结 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-

高中数学立体几何知识点归纳总结一、立体几何知识点归纳 第一章空间几何体 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.棱柱 棱柱——有两个面互相平行,其余各面都是四边 形,并且每相邻两个四边形的公共边都互相平行, 由这些面所围成的几何体叫做棱柱。 相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正 棱柱)的关系: ① ? ? ??????→ ?? ?????→? ? ?? ? 底面是正多形 棱垂直于底面 斜棱柱 棱柱正棱柱 直棱柱 其他棱柱

底面为平行四边形 侧棱垂直于底面 底面为矩形 底面为正方形 棱柱的性质: ①侧棱都相等,侧面是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。 长方体的性质: ①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】 222211AC AB AD AA =++ ②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是 αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=; ③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=. 侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.

高中数学立体几何知识点总结

高中数学之立体几何 平面的基本性质 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理3 经过不在同一直线上的三个点,有且只有一个平面. 根据上面的公理,可得以下推论. 推论1 经过一条直线和这条直线外一点,有且只有一个平面. 推论2 经过两条相交直线,有且只有一个平面. 推论3 经过两条平行直线,有且只有一个平面. 空间线面的位置关系 共面平行—没有公共点 (1)直线与直线相交—有且只有一个公共点 异面(既不平行,又不相交) 直线在平面内—有无数个公共点 (2)直线和平面直线不在平面内平行—没有公共点 (直线在平面外) 相交—有且只有一公共点 (3)平面与平面相交—有一条公共直线(无数个公共点) 平行—没有公共点 异面直线的判定 证明两条直线是异面直线通常采用反证法. 有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”. 线面平行与垂直的判定 (1)两直线平行的判定 ①定义:在同一个平面内,且没有公共点的两条直线平行. ②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,aβ,α∩β=b,则a∥b. ③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c. ④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b ⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b ⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b. (2)两直线垂直的判定

文科立体几何知识点方法总结高三复习

立体几何知识点整理(文科) 一.直线和平面的三种位置关系: 1. 线面平行 l 符号表示: 2. 线面相交 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。 方法二:用面面平行实现。 方法 用线 直实 现。 若α α⊥ ⊥m l,,则m l//。 方法四:用向量方法: 若向量和向量共线且l、m不重合,则m l//。 2.线面平行: 方法一:用线线平行实现。 方法二:用面面平行实现。 方法三:用平面法向量实现。 若n为平面α的一个法向量,l n⊥且α ? l,则 α // l。 3.面面平行: 方法一:用线线平行实现。 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 方法二:用线面平行实现。 三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 3.线线垂直: 方法一:用线面垂直 实现。 方法二:三垂线定理及其逆定理。 方法三:用向量方法: 若向量和向量的数量积为0,则m l⊥。 三.夹角问题。 (一)异面直线所成的角: (1) 范围:] 90 , 0(? ? (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: (计算结果可能是其补角 ) θ c b a l

方法二:向量法。转化为向量的夹角 (计算结果可能是其补角): (二) 线面角 (1)定义:直线l 上任取一点P (交点除外),作PO ⊥α于O,连结AO ,则AO 为斜线PA 在面α内的射影,PAO ∠(图中θ)为直线l 与面α所成的角。 (2)范围:]90,0[?? 当?=0θ时,α?l 或α//l 当?=90θ时,α⊥l (3)求法: 方法一:定义法。 步骤1:作出线面角,并证明。 步骤2:解三角形,求出线面角。 (三) 二面角及其平面角 (1)定义:在棱l 上取一点P ,两个半平面内分别作l 的垂线(射线)m 、n ,则射线m 和n 的夹角θ为二面角α—l —β的平面角。 (2)范围:]180,0[?? (3)求法: 方法一:定义法。 步骤1:作出二面角的平面角(三垂线定理),并证明。 步骤2:解三角形,求出二面角的平面角。 方法二:截面法。 步骤1:如图,若平面POA 同时垂直于平面βα和,则交线(射线)AP 和AO 的夹角就是二面角。 步骤2:解三角形,求出二面角。 方法三:坐标法(计算结果可能与二面角互补)。 步骤一:计算121212 cos n n n n n n ?= ? 步骤二:判断θ与12n n 的关系,可能相等或者互补。 四.距离问题。 1.点面距。 方法一:几何法。 步骤1:过点P 作PO ⊥α于O ,线段PO 即为所求。 步骤2:计算线段PO 的长度。(直接解三角形;等体积法和等面积法;换点法) 2.线面距、面面距均可转化为点面距。 3.异面直线之间的距离 方法一:转化为线面距离。 如图,m 和n 为两条异面直线,α?n 且α//m , 则异面直线m 和n 之间的距离可转化为直线m 与平面α之间的距离。 方法二:直接计算公垂线段的长度。 方法三:公式法。 如图,AD 是异面直线m 和n 的公垂线段, '//m m ,则异面直线m 和n 之间的距离为: 高考题典例 考点1 点到平面的距离例1如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点.(Ⅰ)求证:1AB ⊥平面1A BD ;(Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离.考点2 异面直线的距离 A B C D O F

职高数学一轮复习立体几何

立体几何 第1讲 空间几何体的三视图和直观图 1.一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图如图K13-1-1,则该几何体的俯视图为( ) 图K13-1-1 2.(2010年广东惠州调研)用若干个体积为1的正方体搭成一个几何体,其正视图、侧视图都是如图K13-1-2所示的图形,则这个几何体的最大体积与最小体积的差是( ) 图K13-1-2 A .6 B .7 C .8 D .9 3.如图K13-1-3的正方形O ′A ′B ′C ′的边长为1 cm ,它是水平放置的一个平面图形的直观图,则原图形的周长为( ) 图K13-1-3 A .6 cm B .8 cm C .(2+4 2) cm D .(2+2 3) cm 4.(2010年广东惠州调研)如图K13-1-4,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为( ) 图K13-1-4 A.3 2 π B .2π C .3π D .4π 5.如图K13-1-5,在正方体ABCD -A 1B 1C 1D 1中,P 为BD 1的中点,则△P AC 在该

正方体各个面上的射影可能是() A.①④B.②③C.②④D.①② 图K13-1-5图K13-1-6 6.如图K13-1-6,正三棱柱ABC-A1B1C1的各棱长都是2,E,F分别是AB,A1C1的中点,则EF的长是() A.2 B. 3 C. 5 D.7 7.(2010年福建)若一个底面是正三角形的三棱柱的正视图如图K13-1-7,则其侧面积等于() A. 3 B.2 C.2 3 D.6 图K13-1-7 图K13-1-8 8.如图K13-1-8,直三棱柱的主视图面积为2a2,则左视图的面积为____________. 9.如图K13-1-9,图(1)是正方体木块,把它截去一块,可能得到的几何体有(2),(3),(4),(5)的木块. 图K13-1-9 (1)我们知道,正方体木块有8个顶点,12条棱,6个面,请你将图(2),(3),(4),(5)的木块的顶点数、棱数、面数填入下表: 图号顶点数棱数面数 (1)812 6 (2) (3) (4) (5) (2)观察你填出的表格,归纳出上述各种木块的顶点数V、棱数E、面数F之间的关系; (3)看图(6)中正方体的切法,请验证你所得的数量关系是否正确?

高中数学立体几何知识点总结(详细)

高中数学立体几何知识点总结 一、空间几何体 (一)空间几何体的类型 1多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二)几种空间几何体的结构特征 1、棱柱的结构特征 1.1棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 棱柱的分类 「斜機柱 ①校*L曲査十底雨>直棱 柱]一IF 皱ft 他械柱… 底面是四边形底面是平行四边形 棱柱四棱柱平行六面体侧棱垂直于底面底面是矩形 直平行六面体'长方体 底面是正方形棱长都相等 正四棱柱正方体 性质: I、侧面都是平行四边形,且各侧棱互相平行且相等; n、两底面是全等多边形且互相平行; 川、平行于底面的截面和底面全等;

2 1.3棱柱的面积和体积公式 S 直棱柱侧ch ( c 是底周长,h 是咼) S 直棱柱表面=c ? h+ 2S 底 V 棱柱=S 底? h 2、棱锥的结构特征 2.1棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共 顶点的三角形,由这些面所围成的几何体叫做棱锥。 (2) 正棱锥:如果有一个棱锥的底面是正多边形, 并且顶 点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2正棱锥的结构特征 I 、平行于底面的截面是与底面相似的正多边形, 相似比 等于顶点到截面的距离与顶点到底面的距离之比;它们面积 的比等于截得的棱锥的高与原棱锥的高的平方比; 截得的棱 锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱 锥的高的立方 比; n >正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积: 1 S 正棱椎 (c 为底周长,h'为斜高) 2 1 体积:V 棱椎-Sh ( S 为底面积,h 为高) 3 正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为 2 -a 的正方体问题。 P O H C

高中数学立体几何知识点整理

三、立体几何初步 1、柱、锥、台、球的结构特征 (1)棱柱: 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到 截面距离与高的比的平方。 (3)棱台: 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图 是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下) 注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。 3、空间几何体的直观图——斜二测画法 斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变; ②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。 4、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c 为底面周长,h 为高,' h 为斜高,l 为母线) ch S =直棱柱侧面积rh S π2=圆柱侧'2 1ch S =正棱锥侧面积rl S π=圆锥侧面积 ')(2 121h c c S +=正棱台侧面积l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表()l r r S +=π圆锥表()22R Rl rl r S +++=π圆台表 (3)柱体、锥体、台体的体积公式 V Sh =柱2V Sh r h π==圆柱13V Sh =锥h r V 231π=圆锥 '1()3 V S S h =台'2211()()33V S S h r rR R h π==++圆台 (4)球体的表面积和体积公式:V 球=343 R π ; S 球面=24R π 4、空间点、直线、平面的位置关系 公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。 应用: 判断直线是否在平面内 用符号语言表示公理1:,,,A l B l A B l ααα∈∈∈∈?? 公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

高中文科数学立体几何知识点总结

γm βα l l α β立体几何知识点整理(文科) 一. 直线和平面的三种位置关 系: 1. 线面平行 α l 符号表示: 2. 线面相交 α A l 符号表示: 3. 线在面内 α l 符号表示: 二. 平行关系: 1. 线线平行: 方法一:用线面平行实 现。 m l m l l ////??? ? ??=??βαβ α 方法二:用面面平行实现。 m l m l ////??? ? ?? =?=?βγαγβα 方法三:用线面垂直实现。 若αα⊥⊥m l ,,则m l //。 方法四:用向量方法: 若向量l 和向量m 共线且l 、m 不重合,则 m l //。 2. 线面平行: 方法一:用线线平行实现。 ααα////l l m m l ??? ? ?? ?? 方 法二:用面面平行实现。 αββα////l l ?? ?? ? 方法三:用平面法向量实现。 若n 为平面α的一个法向量, l n ⊥且α?l ,则α//l 。 3. 面面平行: 方法一:用线线平行实现。 β ααβ//',',' //'//????? ??? ??且相交且相交m l m l m m l l 方法二:用线面平行实现。 βαβαα //,////??? ? ?? ?且相交m l m l m l α n α l m'l'l α βm m β α l l m β α

三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 αα⊥???? ? ??? ?=?⊥⊥l AB AC A AB AC AB l AC l , 方法二:用面面垂直实现。 αββαβα⊥??? ? ?? ?⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 βαβα⊥?? ?? ?⊥l l 方法二:计算所成二面角为直角。 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥???? 方法三:用向量方法: 若向量l 和向量m 的数量积为0,则m l ⊥。 三. 夹角问题。 (一) 异面直线所成的角: (1) 范围:]90,0(?? (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: ab c b a 2cos 2 22-+=θ (计算结果可能是其补角) 方法二:向量法。转化为向量的夹角 (计算结果可能是其补角): AC AB AC AB ??= θcos (二) 线面角 (1)定义:直线l 上任取一点P (交点除外),作PO ⊥α于O,连结AO ,则AO 为斜线PA 在面α内的射影,PAO ∠(图中θ)为直线l 与面α所成的角。 A B C αl l β α m l β α m α l θ c b a A B C θn A O θ P αl A O P α

高考数学第一轮复习立体几何专题题库

101. C B A '''?是△ABC 在平面α上的射影,那么C B A '''∠和∠ABC 的大小关系是 ( ) (A) C B A '''∠<∠ABC (B) C B A '''∠>∠ABC (C) C B A '''∠≥∠ABC (D) 不能确定 解析:D 一个直角,当有一条直角边平行于平面时,则射影角可以等于原角大小,但一般情况不等. 102. 已知: 如图, △ABC 中, ∠ACB = 90?, CD ⊥平面α, AD , BD 和平面α所成的角分别为30?和45?, CD = h , 求: D 点到直线AB 的距离。 解析:1、先找出点D 到直线AB 的距离, 即过D 点作 DE ⊥AB , 从图形以及条件可知, 若把DE 放在△ABD 中不易求解。 2、由于CD ⊥平面α, 把DE 转化到直角三角形中求解, 从而转化为先求DE 在平面α内的射影长。 解: 连AC , BC , 过D 作DE ⊥AB , 连CE , 则DE 为D 到直线AB 的距离。 ∵CD ⊥α ∴AC , BC 分别是AD , BD 在α内的射影。 ∴∠DAC , ∠DBC 分别是AD 和BD 与平面α所成的角 ∴∠DAC = 30?, ∠DBC = 45? 在Rt △ACD 中, ∵CD = h , ∠DAC = 30? ∴AC = 3h 在Rt △BCD 中 ∵CD = h , ∠DBC = 45?

∴BC = h ∵CD ⊥α, DE ⊥AB ∴CE ⊥AB 在Rt △ACB 中 AB AC BC h =+=222 S AC BC AB CE =?=1212 · ∴CE AC BC AB h h h h =?==3232· ∴在Rt △DCE 中, DE DC CE h h h =+=+=22223272 () ∴点D 到直线AB 的距离为72 h 。 103. 已知a 、b 、c 是平面α内相交于一点O 的三条直线,而直线l 和α相交,并且和a 、b 、c 三条直线成等角. 求证:l ⊥α 证法一:分别在a 、b 、c 上取点A 、B 、C 并使AO = BO = CO .设l 经过O ,在l 上取一点P ,在△POA 、△POB 、△POC 中, ∵ PO 公用,AO = BO = CO ,∠POA =∠POB =∠POC , ∴ △POA ≌△POB ≌△POC ∴ PA = PB = PC .取AB 中点D .连结OD 、PD ,则OD ⊥AB ,PD ⊥AB , ∵ D OD PD =I ∴ AB ⊥平面POD

高中数学立体几何三视图练习题

立体几何-三视图练习题 1.下列四个几何体中,每个几何体的三视图中有且仅有两个视图相同的是( ). A .①② B .①③ C .③④ D .②④ 2.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( ). 3.一个几何体的三视图如图所示,则该几何体的直观图可以是 ( ) 4.在一个几何体的三视图中,正(主)视图和俯视图如图所示,则相应的侧(左)视图可以为( ). 5.如图,直观图所示的原平面图形是( ) A.任意四边形 B.直角梯形 C.任意梯形 D.等腰梯形 6.将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )

7. 一个多面体的三视图分别为正方形、等腰三角形和矩形,如图所示,则该多面体的体积为( ) A .24 cm 3 B .48 cm 3 C .32 cm 3 D .28 cm 3 第7题 第8题 8.若正四棱锥的正(主) 视图和俯视图如图所示,则该几何体的表面积是( ). A .4 B .4+410 C .8 D .4+411 9.如下图是某几何体的三视图,其中正(主)视图是腰长为2的等腰三角形,侧(左)视图是半径为1的半圆,则该几何体的体积是( ). A .π B ..π 3 C .3π D .3π3 第9题 第10题 10.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( ) A. 34000cm 3 B.3 8000cm 3 C.32000cm D.34000cm 11.3 ,且一个内角为60o 的菱形,俯视图为正方形,那么这个几何体的表面积为( ) A .23 B .43 C . 4 D . 8 E F D I A H G B C E F D A B C 侧视 图1 图2 B E A . B E B . B E C . B E D .

2020高考立体几何知识点总结(详细)+高二数学期末复习知识点总结

2020高考立体几何 知识点总结(详细)+高二数学期末复习知识点总结 高考立体几何知识点总结 一、空间几何体 (一)空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二)几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边 形,并且每相邻两个四边形的公共边都互相平行,由这些 面所围成的几何体叫做棱柱。 1.2 棱柱的分类 棱柱四棱柱平行六面体直平行 六面体长方体正四棱柱正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 1.3棱柱的面积和体积公式 ch S 直棱柱侧 (c是底周长,h是高) S直棱柱表面= c·h+ 2S底 V棱柱= S底·h 2 、棱锥的结构特征 底面是矩形 底面是四边形底面是平行四边形侧棱垂直于底面 底面是正方形棱长都相等 图1-1 棱柱

2.1 棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积:1 '2 S ch = 正棱椎(c 为底周长,'h 为斜高) 体积:1 3 V Sh = 棱椎(S 为底面积,h 为高) 正四面体: 对于棱长为 a 正四面体的问题可将它补成一个边长为 a 2 2 的正方体问题。 对棱间的距离为 a 2 (正方体的边长) 正四面体的高 a 6(正方体体对角线l 3 2 =) 正四面体的体积为 32a (正方体小三棱锥正方体V V V 3 1 4=-) 正四面体的中心到底面与顶点的距离之比为(正方体体对角线正方体体对角线:l l 2 1 61= ) 3 、棱台的结构特征 3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。 3.2 正棱台的结构特征 (1)各侧棱相等,各侧面都是全等的等腰梯形; (2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; A B C D P O H

2019届高考数学一轮复习第七章立体几何第一节空间几何体的结构特征及三视图与直观图课时作业20180

第一节空间几何体的结构特征及三视图与直观图 课时作业 A组——基础对点练 1.如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体 是虚拟图形,起辅助作用),则四面体ABCD的正视图、侧视图、俯 视图是(用①②③④⑤⑥代表图形)( ) A.①②⑥B.①②③ C.④⑤⑥D.③④⑤ 解析:正视图应为边长为3和4的长方形,且正视图中右上到左下的对角线应为实线,故正视图为①;侧视图应为边长为4和5的长方形,且侧视图中左上到右下的对角线应为实线,故侧视图为②;俯视图应为边长为3和5的长方形,且俯视图中左上到右下的对角线应为实线,故俯视图为③,故选B. 答案:B 2.一个几何体的三视图如图所示,其中俯视图为正三角形,则侧视图的面积为( ) A.8 B.4 3 C.4 2 D.4 解析:由三视图可知,该几何体是一个正三棱柱,高为4,底面是一个边长为2的正三角形.因此,侧视图是一个长为4,宽为3的矩形,其面积S=3×4=4 3. 答案:B 3.某几何体的三视图如图所示,则该几何体中最长的棱长为( )

A .3 3 B .2 6 C.21 D .2 5 解析:由三视图得,该几何体是四棱锥P -ABCD ,如图所示,ABCD 为矩形,AB =2,BC =3,平面PAD ⊥平面ABCD ,过点P 作PE ⊥AD ,则PE =4,DE =2,所以CE =22,所以最长的棱 PC =PE 2+CE 2=26,故选B. 答案:B 4.某空间几何体的三视图如图所示,则该几何体的表面积为( ) A .12+4 2 B .18+8 2 C .28 D .20+8 2 解析:由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×1 2 ×2×2+4×2×2+22×4=20+82,故选D. 答案:D 5.已知某几何体的三视图如图所示,则该几何体的表面积是( )

[高中数学]立体几何.球专题讲义,附练习题、

E B C D A 立体几何-球-专题学案 ? 双基练习 1.下列四个命题中错误.. 的个数是 ( ) ①经过球面上任意两点,可以作且只可以作一个球的大圆 ②球面积是它大圆面积的四倍 ③球面上两点的球面距离,是这两点所在截面圆上以这两点为端点的劣弧的长 A.0 B.1 C.2 D.3 2.一平面截一球得到直径为6 cm 的圆面,球心到这个平面的距离是4 cm ,则该球的体积是 A.3π100 cm 3 B.3π208 cm 3 C.3π500 cm 3 D.3 π34161 cm 3 3.某地球仪上北纬30°纬线的长度为12π cm ,该地球仪的半径是_____________cm ,表面积是_____________cm 2. ? 知识预备 1. 球心到截面的距离d 与球半径R 及截面的半径r 有以下关系: . 2. 球面被经过球心的平面截得的圆叫 .被不经过球心的平面截得的圆叫 . 3. 在球面上两点之间的最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧长,这个弧长 叫 . 4. 球的表面积表面积S = ;球的体积V = . 5. 球面距离计算公式:__________ ? 典例剖析 (1)球面距离,截面圆问题 例1.球面上有3个点,其中任意两点的球面距离都等于大圆周长的 61,经过这3个点的小圆的周长为4π,那么这个球的半径为 A.43 B.23 C.2 D. 3 练习: 球面上有三点A 、B 、C ,A 和B 及A 和C 之间的球面距离是大圆周长的41,B 和C 之间的球面距离是大圆周长的61,且球心到截面ABC 的距离是7 21,求球的体积. 例2. 如图,四棱锥A -BCDE 中,BCDE AD 底面⊥,且AC ⊥BC ,AE ⊥BE . (1) 求证:A 、B 、C 、D 、E 五点都在以AB 为直径的同一球面上; (2) 若,1,3,90===∠AD CE CBE 求B 、D 两点间的球面距离.

高中数学立体几何知识点及练习题

点、直线、平面之间的关系 ㈠平面的基本性质 公理一:如果一条直线上有两点在一个平面内,那么直线在平面内。 公理二:不共线的三点确定一个平面。 推论一:直线与直线外一点确定一个平面。 推论二:两条相交直线确定一个平面。 推论三:两条平行直线确定一个平面。 公理三:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(两个平面的交线)。 ㈡空间图形的位置关系 1 直线与直线的位置关系(相交、平行、异面) 1.1 平行线的传递公理:平行于同一直线的两条直线相互平行。 即:a∥b,b∥c a∥c 1.2 异面直线 定义:不在任何一个平面内的两条直线称为异面直线。 1.3 异面直线所成的角 ⑴异面直线成角的范围:(0°,90°]. ⑵作异面直线成角的方法:平移法。 注意:找异面直线所成角时,经常把一条异面直线平移到另一条异面直线的特殊点(如中点、端点等),形成异面直线所成的角。 2 直线与平面的位置关系(直线在平面内、相交、平行) 3 平面与平面的位置关系(平行、斜交、垂直) ㈢平行关系(包括线面平行和面面平行) 1 线面平行 1.1 线面平行的定义:平面外的直线与平面无公共点,则称为直线和平面平行。 1.2 判定定理: 1.3 性质定理:

2 线面角: 2.1 直线与平面所成的角(简称线面角):若直线与平面斜 交,则平面的斜线与该斜线在平面内射影的夹角θ。 2.2 线面角的范围:θ∈[0°,90°] 3 面面平行 3.1 面面平行的定义:空间两个平面没有公共点,则称为两平面平行。 3.2 面面平行的判定定理: ⑴ 判定定理1:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面相互平行。 即: 推论:一个平面内的两条相交直线分别平行于另一个 平面的两条线段,那么这两个平面平行。即: ⑵ 判定定理2:垂直于同一条直线的两平面互相平 行。即: 3.3 面面平行的性质定理 ⑴ (面面平行 线面平行) ⑵ ⑶ 夹在两个平行平面间的平行线段相等。 ㈣ 垂直关系(包括线面垂直和面面垂直) 1 线面垂直 1.1 线面垂直的定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。 1.2 线面垂直的判定定理: 图2-3 线面角 图2-5 判定1推论 图2-6 判定2

相关文档
相关文档 最新文档