文档库 最新最全的文档下载
当前位置:文档库 › 地质雷达操作规程

地质雷达操作规程

地质雷达操作规程
地质雷达操作规程

地质雷达法检测操作规程

1、地质雷达法适用范围

地质雷达法可用于地层划分、岩溶和不均匀体的探测、工程质量的检测,如检测衬砌厚度、衬砌背后的回填密实度和衬砌内部钢架、钢筋等分布,地下管线探查及隧道超前地质预报等。

2、地质雷达主机技术指标:

(1)系统增益不低于150dB;

(2)信噪比不低于60dB;

(3)采样间隔一般不大于0.5ns、A/D模数转换不低于16位;

(4)计时误差小于1ns;

(5)具有点测与连续测量功能,连续测量时,扫描速率大于64次/秒;

(6)具有可选的信号叠加、实时滤波、时窗、增益、点测与连续测量、手动与自动位置标记功能;

(7)具有现场数据处理功能,实时检测与显示功能,具有多种可选方式和现场数据处理能力。

3、地质雷达应符合下列要求:

(1)探测体的厚度大于天线有效波长的1/4,探测体的宽度或相邻被探测体可以分辨的最小间距大于探测天线有效波第一聂菲儿带半径。

(2)测线经过的表面相对平缓、无障碍、易于天线移动。

(3)避开高电导屏蔽层或大范围的金属构件。

4、地质雷达天线可采用不同频率的天线组合,技术指标为:

(1)具有屏蔽功能;

(2)最大探测深度应大于2m;

(3)垂直分辨率应高于2cm。

5、现场检测

(1)测线布置

1、隧道施工过程中质量检测应以纵向布线为主,横向布线为辅。纵向布线的位置应在隧道的拱顶、左右拱腰、左右边墙和隧道底部各布置一条;横向布线可按检测内容和要求布设线距。一般情况线距8~12m;采用点测时每断面不少于6点。检测中发现不合格地段应加密测线或测点。

2、隧道竣工验收时质量检测应纵向布线,必要时可横向布线。纵向布线的位置应在隧道拱顶、左右拱腰和左右边墙各布一条;横向布线线距8~12m;采用点测时每断面不少于5个点。需确定回填空洞规模和范围时,应加密测线和测点。

3、三线隧道应在隧道拱顶部位增加2条测线。

4、测线每5~10m应有一历程标记。

(2)介质参数的标定:

检测前应对衬砌混凝土的介电常数或电磁波速做现场标定,且每座隧道不少于一处,每处实测不少于3次,取平均值为该隧道的介电常数或电磁波速。当隧道长度大于3km、衬砌材料或含水率变化较大时,应适当增加标定点数。

(3)标定方法:

1、在已知厚度部位或材料与隧道相同的其他预制件上测量;

2、在洞口或洞内避车处使用双天线直达波法测量;

3、钻孔实测。

(4)求取参数的条件:

1、标定目标厚度一般不小于15cm,且厚度已知;

2、标定记录中界面反射信号应清晰、准确。

(5)标定结果的计算:

1、介质的相对电导系数(ξ)和电磁波速度(ν)按下式计算:

ξr=(0.3t/2d)2

ν =(2d/t)×109

式中 t :电磁波双程旅行时间(ns)

d:标定目标体的厚度(m)

ν:电磁波的传播速度(m/ns)

2、参数的采取:

篮家岩隧道设计图纸电磁波在各种围岩的波速

常见介质的物理参数

(6)测量时窗的确定:

测量时窗长度Δt和采样率s按下式计算:

Δt=(2dξr1/2/0.3)×α

S=2×Δt×f×k×10-3

式中:α:调整系数,一般取1.5-2.0

f:天线中心频率

k:系数,一般取6-10

(7)地质雷达不同天线的探测深度按下式计算:

?max<30/σ、或?max<35/β

式中:?max:所选天线的最大探测深度(m)

σ:介质的电导率(s/m)

β:介质的吸收系数

(8)扫描点数的确定:

S=2×Δt×f×k×10-3

式中:S:扫描样点数

Δt:时窗长度(ns)

f:天线中心频率(MHz)

K:系数,一般取6-10

(9)纵向布线应采取连续测量方式,扫描速度不得小于64道(线),特殊地段或条件不允许时可采用点测方式,测量点距不得大于20cm。

6、检测步骤:

(1)根据检测任务及实际情况,选取天线型号;

(2)安装电池,接通数据线和电源线;

(3)开机,使仪器处于正常工作状态;

(4)标记检测起始位置及桩号,必要时每10m做一标记,直至所要检测的终点;

(5)设置检测的各种参数,包括起始点桩号、时窗、采样点数等;

(6)开始检测,检测天线应移动平稳、速度均匀、移动速度宜为3-5km/h;

(7)检测时,应根据移动速度及测段上的标记、主机显示的桩号或距离,随时进行标记或对照,以消除检测距离上的误差;

(8)记录包括记录测线号、方向、标记间隔以及天线类型

等;

(9)当需要分段测量时,相邻测量段落接头重复长度不应小于1m,地质超前预报,重复长度不小于5m。

(10)应随时记录可能对测量产生电磁影响的物体(如渗水、电缆、铁架等)及其位置;

(11)应准确标记测量位置及桩号。

7、数据处理及解释:

(1)处理要求

原始数据处理前应回放检验,数据记录完整、信号清晰、里程标记准确。不合格的原始记录不得进行处理和解释。

数据处理和解释软件应使用正式认证的软件或经鉴定合格的软件。

比例:波形显示时所占的像素数,比例一般为间隔的2倍。

间隔:波形中心线之间的像素数。

叠加:几个扫描信息叠加后,显示为1个波形。

抽点:跳过几个点后,显示一个波形。用于剖面较长的情况。

填充标准:正-表示填充正波,负-表示填充负波。通常默认为正波。

填充大小:一般建议设置0.表示波形一起跳就填充。

预览:表示波形显示效果。

(2)数据处理与解释的流程:

(3)数据处理:

确保位置标记准确、无误。

确保信号不失真,有利于提高信噪比。

(4)检测图像解释:

解释应在检测区内物性参数和衬砌结构的基础上,按由已知到未知和定性指导定量的原则进行。

根据现场记录,分析可能存在的干扰位置与雷达记录中异常的关系,准确区分有效异常与干扰异常。

准确读取双程旅行时的数据;

(5)解释结果和成果图件应符合衬砌质量或地质预报检测

要求。

衬砌界面和地质超前预报的异常界面应根据反射信号的强弱、频率变化及延伸情况确定。

(6)衬砌厚度或探测对象的埋深应由下式确定:

厚度、埋深按下式计算:

d=(0.3/2dξr1/2)

或 d=(νt/2)×109

式中:d:衬砌厚度或埋深(m)

ξr:相对介电常数

ν:电磁波在介质中的传播速度(m/ns)

T :雷达脉冲的往返旅行时间(ns)

8、混凝土、钢架(筋)质量判定

(1)衬砌背后回填密实度的判定:

密实:信号幅度较弱。甚至没有界面反射信号;

不密实:衬砌界面的强反射信号同相轴呈绕射弧形,且不连续,较分散;

空洞:衬砌界面反射信号强,三振相明显,在其下部仍有强反射面信号,两组信号时程差较大。

(2)衬砌内部钢架、钢筋位置分布的判定:

钢架:分散的月牙形强发射信号;

钢筋:连续的小双曲线刑强反射信号。

地质雷达在地下管线探测中的应用研究

地质雷达在地下管线探测中的应用研究 发表时间:2018-09-04T14:12:30.883Z 来源:《建筑学研究前沿》2018年第11期作者:尹凡 [导读] 在城市建设发展速度不断加快的背景下,城市地下空间的利用率也不断提升。 上海京海工程技术有限公司 200131 摘要:在城市建设发展速度不断加快的背景下,城市建设中针对地下空间管线探测的工作量日益增多。更为关键的是,随着地下管线施工工艺的发展以及管道材质的多元化完善,地下管线探测的难度也在日益增加。地质雷达作为一种高频宽度电磁波地下管线探测技术,适用于地下浅层深度的探测作业,具有分辨率高、准确可靠、安全无损、快捷连续等一系列优势,在地下管线探测领域中具有非常确切的应用价值。本文即在分析地质雷达探测原理的基础之上,概述地质雷达技术在地下管线探测中的应用优势,并就其实际应用要点展开分析与探讨,望能够引起业内人士的高度关注与重视。 关键词:地下管线;地质雷达;探测;应用 在城市建设发展速度不断加快的背景下,城市地下空间的利用率也不断提升,地下管线类型众多且在用途、材料性质以及尺寸上均存在非常明显的差异性,因此针对不同类型地下管线需应用的探测技术也会存在一定的差异性。传统意义上所选用的地下管线探测技术无法准确针对损伤程度进行评估,地下管线的铺设质量也难以得到准确的反应,由此可能导致一系列质量安全隐患的产生,对地下管线探测质量产生非常不良的影响。地质雷达作为一种高频宽度电磁波地下管线探测技术,适用于地下浅层深度的探测作业,具有分辨率高、准确可靠、安全无损、快捷连续等一系列优势,在地下管线探测领域中具有非常确切的应用价值,本文即针对地质雷达技术在地下管线探测领域中的应用问题进行分析与探讨。 1 地质雷达探测原理 地质雷达是一种用于评估并分析地下介质分布情况的高频电磁技术。地下雷达探测以地下介质在介电性方面的差异为依据,通过天线发射或接收高频电磁波信号的方式,利用工作软件处理所接收信号并成像,从而帮助工作人员得到相应探测结果。应用地质雷达技术进行地下管线探测的基本原理如下图(见图1)所示。 图1:地质雷达的技术进行地下管线探测的基本原理示意图 在应用地质雷达技术进行地下管线探测作业的过程中,最基础的操作过程是:由放置于地面的天线面向地下待探测区域发射高频电磁脉冲信号,在高频电磁脉冲信号于地下空间内进行传播的过程当中,若遭遇相对介电常数不同(及有不同电性表现)的界面时,高频电磁脉冲信号中一部分透射界面并继续向地下空间其他区域进行传播,而另一部分信号则在该位置直接反射会地面,由地面所安装接收天线进行接收并记录至主机中。在这一操作过程当中,若地下介质波速已知或地下探测空间中介质的相对介质常数已知,则可以根据所测定反射波自发射天线发出至接收天线接受耗时(以下定义为t)的具体结果,计算所地质雷达技术所探测物体的埋深以及具体位置。在这一过程当中,假定T为发射天线,R为地面接收天线,h为地下管线目标体顶部埋设深度,r为电磁波双程走时,则可建议如下所示关系:vt=(4h2+x2)-1 (1) 该式中,定义屏蔽式发射体现为t,接收天线为r,两者距离为x,若两者距离高度相近,即在x无线趋近于0的情况下,可将式(1)转换为: h=1/2vt (2) 根据上式,若电磁波在介质中的传播速度v处于已知状态,并且电磁发射博的走时的t可以加以准确计算,则就能够通过以上方式得到待测定目标物体的深度取值。 2 地质雷达技术在地下管线探测中的应用价值 第一,分辨率高。在地下管线探测过程中,应用地质雷达探测技术具有较高的分辨率,所呈现出的地下管线分布图像清晰度高,能够直接掌握所探测区域地下管线的实际分布情况,并在探测结果的辅助下展开科学有效的设计施工作业,强化地下管线设计质量,并更好的为地下管线正式施工提供服务,保障地下管线铺设的安全性与可靠性。同时,依托于地质雷达技术所提供的高分辨率图像,还能够为整个城市建设探测提供重要指导,支持对城市建设水平的综合评定与分析。 第二,准确可靠。地质雷达探测技术的准确性高,在应用地下管线探测的过程中呈现出了连续性的特点,确保所探测地下管线分布数据状态的完整性与动态性。地质雷达探测技术通过对介质介电性质以及几何形态的分析,以改变电磁场强度以及波形特征,使功能、形态以及性质存在差异的地下管线能够通过地质雷达探测图像所呈现出来,方便工作人员对地下管线进行合理的选取,确保管线铺设质量,并为后续针对地下管线的高精度探测提供指导。 第三,快捷无损。地质雷达探测技术在地下管线探测中的应用在浅层分布探测目标中有良好的适用性,检测过程安全且缺损。整个检测过程中,通过对高频宽谱无损电磁波的发射与接收,来辨别被探测区域中地下介质的分布情况,也可在现代化互联网辅助技术的支持下,转移至地面进行探测,发挥地质雷达技术高速反射的功能优势,方便相关工作人员更为及时与准确的掌握地下管线分布情况,及时对安全隐患进行识别与防控,以促进地下管线探测质量与探测效率的进一步提升与优化。 3 地质雷达技术在地下管线探测中的应用实例 在地下管线探测过程中,工作人员首先需要对探测区域内的地下管网资料进行收集与整理,展开实际调查,安排专人进入地下管线探测区域现场,寻找露头窨井,将其打开进行拍照、丈量深度、填写记录等。然后,针对现场发现的露头金属管或电力管线,应当在爱地下

地表雷达检测技术方案

地表雷达检测技术 方案 贵州道兴建设工程检测有限责任公司 贵阳市轨道交通2号线兴筑西路站-水井坡站区间

地表雷达探测技术方案 方案编制: 技术审核: 方案批准: 贵州道兴建设工程建设工程检测有限责任公司 3月15日 目录 1 工程概况 ........................................................................... 错误!未定义书签。 2 探测项目和方法................................................................ 错误!未定义书签。 3 编制依据 ........................................................................... 错误!未定义书签。 4 雷达探测的基本原理........................................................ 错误!未定义书签。

5 探测流程 ........................................................................... 错误!未定义书签。 6 检测仪器和设备................................................................ 错误!未定义书签。 7 需有关单位配合的事项.................................................... 错误!未定义书签。 7 质量和安全保证措施........................................................ 错误!未定义书签。 8 预期成果 ........................................................................... 错误!未定义书签。 9 本工程项目安排................................................................ 错误!未定义书签。

SIR-3000作业指导书

GSSI公司SIR-3000仪器参数 顺序系统参数Parameters 1500MHz 900MHz 400MHz 270MHz 100MHz 1* 系统调用SYSTEM->SETUP->RECALL 1500GrayCart 1500BlueCart 900met 400mhzTime 400mhz623Cart 400mhz620SW 270_SW 100met 2 显示刻度(竖直方向) SYSTEM->UNITS->VSCALE Time/Depth Time/Depth Time/Depth Time/Depth Time/Depth 天线COLLECT->RADAR->ANTENNA 1500mhz 900mhz 400mhz 270mhz 100mhz 发射率COLLECT->RADAR->T_RA TE 100KHz 100KHz 100KHz 100KHz 50KHz 6 测量模式(水平方向) COLLECT->RADAR->MODE Time/Distance Time/Distance Time/Distance Time/Distance Time/Point GPS COLLECT->RADAR->GPS None None None none None 采样点数COLLECT->SCAN->SAMPLES 512 512 512 512 512/1024 数据位COLLECT->SCAN->FORMA T(bits) 16 16 16 16 16 4* 记录长度(纳秒)COLLECT->SCAN->RANGE(ns) 12 15-20-25-30 40-50-80-100 50-80-100-120 100-200-300 介电常数COLLECT->SCAN->DIEL 6 6 6 6 6 7 扫描速度(扫描/秒) COLLECT->SCAN->RA TE 60-120 60-120 60-120 60-120 16 8 测点(扫描/单位)距离COLLECT->SCAN->SCN/UNIT 20-50-100-200 10-20-50-100 10-20-50 10-20-50 10 5* 增益:类型-点数COLLECT->GAIN->AUTO-POINTS Y-1 Y-2--3-4-5 Y-5 Y-5 Y-5 3-1 信号位置:模式COLLECT->POSTION->MODE MANUAL MANUAL MANUAL MANUAL MANUAL 3-2 信号位置:延时COLLECT->POSTION-> OFFSET 0 0 -14 3-3 信号位置:地面COLLECT->POSTION->SURFACE(%) 0 0 0 0 0 滤波COLLECT->FILTERS 低通-无限响应滤波器-> LP_IIR (mhz) 0 2500 800 700 300 高通-无限响应滤波器-> HP_IIR (mhz) 10 225 100 75 25 低通-有限响应滤波器-> LP_FIR (mhz) 3000 0 0 0 0 高通-有限响应滤波器-> HP_FIR (mhz) 250 0 0 0 0 叠加(扫描) COLLECT->FILTERS ->STACKING 0 0 0 0 3-64 背景去除(扫描) COLLECT->FILTERS->BGR_RMVL 0 0 0 0 0 9-1 颜色表OUTPUT->DISPLAY->C_TABLE 9-2 颜色变换表OUTPUT->DISPLAY->C_XFORM 10 保存参数SYSTEM->SETUP->SA VE SETUP15 SETUP09 SETUP04 Setup03 SETUP01 11* 数据采集RUN/SETUP 12* 数据传输OUTPUT->TRANSFER->FLASH Y Y Y Y Y

地质雷达操作规程

地质雷达法检测操作规程 1、地质雷达法适用范围 地质雷达法可用于地层划分、岩溶和不均匀体的探测、工程质量的检测,如检测衬砌厚度、衬砌背后的回填密实度和衬砌内部钢架、钢筋等分布,地下管线探查及隧道超前地质预报等。 2、地质雷达主机技术指标: (1)系统增益不低于150dB; (2)信噪比不低于60dB; (3)采样间隔一般不大于、A/D模数转换不低于16位; (4)计时误差小于1ns; (5)具有点测与连续测量功能,连续测量时,扫描速率大于64次/秒; (6)具有可选的信号叠加、实时滤波、时窗、增益、点测与连续测量、手动与自动位置标记功能; (7)具有现场数据处理功能,实时检测与显示功能,具有多种可选方式和现场数据处理能力。 3、地质雷达应符合下列要求: (1)探测体的厚度大于天线有效波长的1/4,探测体的宽度或相邻被探测体可以分辨的最小间距大于探测天线有效波第一聂菲儿带半径。 (2)测线经过的表面相对平缓、无障碍、易于天线移动。 (3)避开高电导屏蔽层或大范围的金属构件。

4、地质雷达天线可采用不同频率的天线组合,技术指标为: (1)具有屏蔽功能; (2)最大探测深度应大于2m; (3)垂直分辨率应高于2cm。 5、现场检测 (1)测线布置 1、隧道施工过程中质量检测应以纵向布线为主,横向布线为辅。纵向布线的位置应在隧道的拱顶、左右拱腰、左右边墙和隧道底部各布置一条;横向布线可按检测内容和要求布设线距。一般情况线距8~12m;采用点测时每断面不少于6点。检测中发现不合格地段应加密测线或测点。 2、隧道竣工验收时质量检测应纵向布线,必要时可横向布线。纵向布线的位置应在隧道拱顶、左右拱腰和左右边墙各布一条;横向布线线距8~12m;采用点测时每断面不少于5个点。需确定回填空洞规模和范围时,应加密测线和测点。 3、三线隧道应在隧道拱顶部位增加2条测线。 4、测线每5~10m应有一历程标记。 (2)介质参数的标定: 检测前应对衬砌混凝土的介电常数或电磁波速做现场标定,且每座隧道不少于一处,每处实测不少于3次,取平均值为该隧道的介电常数或电磁波速。当隧道长度大于3km、衬砌材料或含水率变化较大时,应适当增加标定点数。

地质雷达

地质雷达在隧道超前地质预报中的应用 摘要:本文简要介绍了地质雷达基本原理及其探测深度、精度,并结合实例阐述了地质雷达的工程应用。 关键词:地质雷达;隧道超前地质预报;掌子面 引言 目前,我国修建大量穿越山岭的特长隧道。由于这些隧道大都处于地下各种复杂的水文地质、工程地质岩体中。为了摸清和预知周围的水文地质和工程地质条件,隧道地质超前预报显示出越来越重要的作用。在隧道开挖掘进过程中,提前发现隧道前方的地质变化,为施工提供较为准确的地质资料,及时调整施工工艺,减少和预防工程事故的发生非常重要。一、地质雷达基本原理及探测深度、精度 地质雷达( Ground Penetrating Radar, 简称GPR, 也称探地雷达) 是利用超高频(106Hz~109Hz)电磁脉冲波的反射探测地下目的体分布形态及特征的一种地球物理勘探方法。发射天线( T) 将信号送入地下,遇到地层界面或目的体反射后回到地面再由接收天线( R) 接收电磁波的反射信号,通过对电磁波反射信号的时域特征和振幅特征进行分析来了解地层或目的体特征(见图1)

图1 地质雷达反射探测原理图 根据波动理论,电磁波的波动方程为: P = │P│e-j(αx-αr)﹒e-βr(1)(1)式中第二个指数-βr是一个与时间无关的项,它表示电磁波在空间各点的场值随着离场源的距离增大而减小,β为吸收系数。式中第一个指数幂中αr表示电磁波传播时的相位项,α为相位系数,与电磁波传播速度V的关系为: V = ω/α(2)当电磁波的频率极高时,上式可简略为: V = c/ε1/2(3)式中c为电磁波在真空中的传播速度;ε为介质的相对介电常

地质雷达的应用

地质雷达的应用领域 探地雷达(Ground Penetrating Radar,简称GPR),又称地质雷达,是近些年发展起来的高效的浅层地球物理探测新技术,它利用主频为数十兆赫至千兆赫兹波段的电磁波,以宽频带短脉冲的形式,由地面通过天线发射器发送至地下,经地下目的体或地层的界面反射后返回地面,为雷达天线接受器所接受,通过对所接受的雷达信号进行处理和图像解译,达到探测前方目的体的目的。与传统的地球物理方法相比,探地雷达最大的优点就是具有快速便捷、探测精度高以及对原物体无破坏作用。因此,探地雷达在道路建设和公路质量检测领域已逐渐被认识到并广泛应用起来。 地质雷达自上世纪70年代开始应用至今将近30年了,其应用领域逐渐扩大,在考古、建筑、铁路、公路、水利、电力、采矿、航空各领域都有重要的应用,解决场地勘查、线路选择、工程质量检测、病害诊断、超前预报、地质构造研究等问题。在工程地球物理领域有多种探测方法,包括反射地震、地震CT、高密度电法、地震面波和地质雷达等,其中地质雷达的分辨率最高,而且图象直观,使用方便,所以很受工程界信赖和欢迎。 1.1 工程场地勘察 地质雷达最早用于工程场地勘查,解决松散层厚度分布,基岩风化层分布,以及节理带断裂带等问题。有时也用于研究地下水分布,普查地下溶洞、人工洞室等。在粘土补发育的地区,探查深度可达20m以上,效果很好。 1.2 埋设物与考古探察 考古是地质雷达应较早的领域,在欧洲有成功的实例,如意大利罗马遗址考古、中国长江三峡库区考古等项目都应用了雷达技术。利用雷达探测古建筑基础、地下洞室、金属物品等。在现今城市改造中,有时也需要了解地下管网,如电力管线、热力管线、上下水管线、输气管线、通信电缆等,这对于地质雷实是很容易的。目前地质雷达为地下管线探测发展了

地质雷达

探地雷达使用提纲 1、适用范围及适用条件 2、设计规范及收费标准 3、不同地质情况的雷达波形特征 1、适用范围及适用条件 1.1适用范围: 探地雷达法适用于基岩深度、水位深度、软土层厚度与深度,断裂构造等地质工程探查,城市路面塌陷、岩溶塌陷、土洞、滑坡面等地质灾害调查,地下水污染带监测,地基加固效果评价,路面、机场跑道、洞室衬砌检测,堤坝隐患,地下泄露,地下管线及其他埋设物探测,考古探查等。 1.2适用条件: (1)探测目的体与周边介质之间应存在明显介电常数差异,电性稳定,电磁波发射信号明显; (2)目的体在探测深度或距离范围内,其尺寸应满足探测分辨率的要求; (3)测线上天线经过的表面应相对平缓,无障碍,且易于天线移动; (4)测区内不应存在大范围金属构件、无线电发射频源等较强的电磁波干扰,或通过处理无法消除的干扰; (5)不应存在极低阻屏蔽层; (6)单孔或跨孔检测时不得有金属套管; 2地质雷达测线测点设计规范及收费标准 2.1测线测点设计规范 2.1.1工程物探应根据任务要求、探测方法、目的物的规模与埋深等因素综合确定工作比例尺,测网布置应与工作比例尺一致,测网密度应能保证异常的连续、完整和便于追踪; 2.1.2布置测线时,测线方向宜避开地形及其它干扰的影响,应垂直于或大角度相交于目的物或已知异常的走向,岩溶、采空区、防空洞等走向多变体的探测宜布设两组相互正交的测线; 2.1.3测线长度应保证异常的完整和具有足够的异常背景; 2.1.4探测范围内有已知点时,测线应通过或靠近该已知点的布设;

2.1.5点测时,测点布设位置、测量应满足资料解释推断的需要; 2.1.6工作比例尺确定后,宜参照表1选择测网密度。 表1 工作比例尺与测网密度 比例尺线距(m)点距(m)点测(点/km2)1∶25000 250 25-50 10-20 1∶10000 100 10-20 80-120 1∶5000 50 10-20 300-400 1∶2000 20 5-10 2000-2500 1∶1000 10 1-5 -- 1∶500 5 0.5-2 -- 2.2收费标准 地质雷达探测收费参见《工程勘察设计收费标准》第7章——工程物探,收费标准见表2 表2 地质雷达收费标准 地质雷达 工作方式工程勘探路面质量点测点20 (元/点)20(元/点) 连续km 13500(元/km)6300(元/km)探淤深度>10m,附加调整系数为1.3;不足4个组日按4个组日计

地质雷达探测地下管线报告格式

地下管线探测报告 编写: 检测: 审核: 批准: ****有限公司 二〇一九年七月十八日

地下管线探测报告 一、任务概况 1.1作业目的 为满足****工程施工需要,****有限公司于****有限公司年7月07日对该项目地下综合管线进行物探工作。 1.2测区概况 项目位于****市****有限公司区,物探位置参如图1.1所示。 图1.1工程场地地理位置图 二、管线探测 探测范围为以委托方指定的范围为界。 2.1管线的调查 管线的调查主要针对架空管线及明显管线点(包括接线箱、变压箱、变压器、消防栓、人孔井、阀门、窨井、仪表井等附属设施)进行。 ①明显管线点的各种数据均应直接打开井,用检验合格的钢尺量测,精

确到厘米。实际作业时按规程及甲方提供表格所列各类管线调查内容,参考各专业部门提供的资料,到实地调查核实,查清各类被调查管线的类型、管径、材质、埋深、起止、走向以及同类管线的连接关系,以便进行仪器探测。在调查量取时首先认真仔细量读,确保调查成果的准确性。其次,管线调查时应注意量取各类管线的偏距,即管道中心线至井盖中心的水平偏移距。 ②在实地调查中应邀请管线权属单位的管线管理人员、管线的规划、设计、施工人员和当地居民等熟悉管线情况的人员协助。 2.2地下管线探测原理 金属管线探测采用电磁感应原理。地下金属管线在发射机发出的电磁场的激励下产生感应电流,该感应电流又在管线的周围产生二次感应磁场,通过接收机接收该二次磁场来确定地下管线的位置与深度。 发射机现场工作有三种方式:第一种采用偶极电磁感应法,探测时将发射机的发射线圈垂直地放在地表,或水平放置于管线的正上方;第二种是采用直接感应法,探测时用夹钳夹住管线,发射机通过夹钳直接激发管线;第三种是采用充电法,直接将发射机的一极接在管线的一端,另一极接在待测管线的另一端或较远处的大地上,使发射电流直接流过被测管线。直接感应法和充电法应具备管线露头的条件,其中充电法只能用于给水、热力等管线外露且不带电的管线,多用于管线的追踪;偶极电磁感应法适用范围较广,既可应用于已知管线的追踪,也可以进行未知管线的普查。 接收机接收电磁场有两种方式:一种是采用垂直线圈接收,该接收方法在地下管线的正上方信号最大,离开管线信号逐渐减小,极大值点与半极大值点的水平距离x为管线中心线的埋深h,如图3.1所示。另一种是采用水平线圈接收,该接收方法在地下管线的正上方信号最小,在管线两侧各有一个

探地雷达操作规程

探地雷达操作规程 (文件编号:****-010) 共1页第1页版本/版次:D/ 0 生效日期:2016-01-01 1. 目的 为了使检测员更好地熟悉和掌握检测仪器的操作方法,保证检测数据的科学、公正和准确性,特制定本规程。 2. 适用范围 适用于探地雷达仪器 3 操作步骤 3.1测试前的安装准备 检查所有部件是否带齐,包括:电池、雷达主机、数据线、处理器电源线、信号线、工具箱、备件、固定用绑扎带、记录本; 3.2试验/检测的工作程序 (1)测试连接。将地质雷达天线通过支架安装。 (2)在扫描前调试主机并对主机进行参数设置。 (3)打开电源,控制天线移动的人员根据操作主机的人员口令,将天线紧贴待测界面上匀速移动。 (4)测试结束。按下stop结束测试点,保存文件并退出; (5)拆除信号线,拆除天线,支架。 3.3扫描之前的仪器调试和参数设置 (1)菜单系统—>设置—>调用,选择所用的天线。 (2)系统—>单位垂直刻度设为时间,单位为ns (3)测程:900M天线探测混凝土的量程约为15纳秒,为使所有有效信号完全显示,一般设置为20ns (4)采样点数:一般设为512或1024 采样点数越多,扫描曲线越光滑,垂直分辨率越好。但是采样点数增大,使得扫 描速率下降 (5)每秒扫描数:64 (6)增益点数:2 (7)垂向高通滤波器:225MHz

(8)垂向低通滤波器:2500MHz (9)数据位:16位 (10)发射率:100 KHz,发射功率越高,采集速度越快,但若采集过高,易损坏雷达系统 (11)信号位置设为手动 (12)表面设为0 (13)调出完整的直达波(首波),调整延时参数 若检测结构与上次相同,可不再次设置以上参数,系统默认上次检测参数。 (14)增益设置为自动,增益函数手动设置,可以改变增益点数多少、并且可以调整各增益点的函数大小,进而调整信号强度。增益函数调整过大,在探测资料中可能 人为造成假象。设置方法为先设为手动,再设为自动。 编制/日期:批准/日期:

地质超前预报作业指导书

地质超前预报作业指导书 一、目的 为确保隧道施工安全质量,根据设计提供的工程及水文地质资料,结合地质超前预报,进行分析研究,制定完整的施工技术方案。做好技术、物质、机械设备的储备,避免地质灾害的发生。使之达到施工设计及施工规范的要求及工期目标的实现,特制订本作业指导书。 二、使用范围 本指导书适用于隧道黄土Ⅴ级围岩洞身段开挖施工。 三、依据 1、双线客运专线施工技术指南(报批搞); 2、铁路隧道施工规范及验收规范《铁建设【2005】160号》; 3、铁路隧道喷锚构筑法技术规范《TB10108-2002》。 4、甬台温铁路施工图; 5、《铁路隧道施工规范》-TB10204-2002 6、《铁路隧道工程质量检验评定标准》-TB10417-98 四、加强隧道地质预报和围岩监控测量 山后隧道穿越地段工程地质条件复杂主要为粉质粘土、角砾土、粉砂岩及硅质岩层,隧道安全问题为隧道工程施工的重点。为此成立

专门的地质预报小组,工程施工中采用超前TSP-203型地质预报仪及BK2000型地质雷达进行探测预报不良地质,严格按新奥法原则进行施工,采用CRD、CD、台阶法进行施工,并建立完善的安全控制体系,确保施工安全。 五、超前地质预报 山后隧道根据地质特点,本着以“早预报、早预防”的原则组织施工,本隧道采用地质调查、TSP-203超前地质预报、钻孔超前探测、开挖面及其附近的地质观测素描和地质作用等综合手段,预测不良地质的位置、性质、规模和对施工的影响程度。 针对本隧有断层破碎带、岩溶等不良地质和设计阶段地质勘测异常区,采用超前地质预测方法主要有: 地质素描法进行预报;TSP203超前地质预报仪进行距离100m~200m的超前预报;采用地质雷达、红外探水仪、HSP水平声波反射法和超前地质钻孔进行距离在30m~50m的预报。 超前地质预报工作内容及方法分别见图5-1“主要地质预报工作范围图”和表5-2“各不良地质段采取的地质预报方法”。 图5-1 主要地质预报工作范围图

地质雷达二衬检测施工细则

雷达检测施工细则 为保证本项目部在本次雷达检测过程中能够及时准确地完成任务,我检测组特针对雷达检测施工工作做出以下细则,本细则自即日期开始实施,要求全部检测人员认真、严格执行。 一、前期准备工作 (一)雷达检测组技术负责人制定雷达检测工作进度表,下发全体技术人员,要求技术人员按此进度表制定详细工作计划,以便于雷达检测组能及时地向施工方提前发出雷达检测通知,便于施工单位提前做好雷达检测的必要准备工作,以保证施工单位调整施工进度,且利于我方及时、高效地完成雷达检测工作。(二)雷达检测组技术负责人要根据检测目的计算好仪器的参数设置,以保证能在现场采集到全面、高效的数据记录;布线方式可根据掌子面地质情况及施工条件,现场设计合理的采集测线。 (三)雷达检测组技术负责人在出发前进行仪器的全面检查,避免由人为因素造成工地采集过程中出现采集中断。 二、现场采集工作 (一)雷达采集过程中要求有至少两名专业技术人员在场,以保证仪器操作、天线布设及仪器采集过程中的维护工作,同时在采集过程中要做好仪器的保护工作,防止人为或落石等造成仪器的损坏情况发生。 (二)雷达检测数据采集现场保证至少一人为专业地质描述人员,按要求做好掌子面及周边围岩的描述。 三、雷达检测组描述人员管理 (一)雷达检测组描述人员做好现场记录,为能准确记录现场地质情况,要求描述人员带必要的工具(地质锤、罗盘、放大镜、皮尺、花杆)。 (二)描述人员要对周边围岩进行详细的描述,对于大于25cm的裂隙或节理一定要进行详细描述(包括长度、走向、宽度、数量),对其可能的延伸方向要进行三维推断描述。要求描述信息准确,有效,并在野外做出描述草图,以备后期的资料整理与存档。 (三)雷达检测描述人员要对记录进行全面记载,包括: 1、断面号,要求为简单易记,能反映断面所处隧道的准确位置。 2、里程号,要求精确到0.1m (如XX检测的位置为K66+000.3)。 3、面积,要求有整体的把握,并对其做出准备合理的描述,包括影响深度、范围、影响消失边界。 (四)雷达检测描述人员也要准确记录已支护拱顶及周边变形及渗水情况,做好野外描述,要求描述语言要严格按规范中语言对地质情况进行客观描述,对有疑义处必须进行必要的咨询,对确难定义处要求争取多人意见,最终得出结论,并做好记录。 (五)雷达检测采集人员在现场采集过程中要及时做好雷达记录与现场地质情况的对比,以便于为后期的资料处理过程中提供参考。 (六)雷达检测采集人员要做好现场的班报记录(包括检测位置、文件名、仪器

隧道超前地质预报作业指导书

×××标段隧道工程 隧道超前地质预报作业指导书 1、适用范围 本作业指导书适用于×××标段×××段范围内隧道及×××隧道洞口地段超前地质预报工作。具体内容包括:预报内容、预报分级、预报流程及要点。 2、作业准备 2.1内业技术准备 作业指导书编制后,在开工前组织技术人员认真学习实施性施工组织设计,阅读、审核施工图纸,掌握有关技术问题,熟悉规范和技术标准。制定施工安全保证措施,提出应急预案。对施工人员进行技术交底,对参加施工人员进行上岗前的技术培训,考试合格后持证上岗。 2.2外业技术准备 施工作业层中所涉及的各种外部技术数据收集。 修建生活房屋,配齐生活、办公设施,满足主要管理、技术人员进场生活、办公需要。 所有仪器已经到位,经过校验并在使用有效期限内。 3、技术要求 明确隧道超前地质预报作业工艺流程、操作要点和重要性,指导、规范隧道超前地质预报,保障隧道安全掘进。施工过程中必须将超前地质预报纳入施工工序管理,做到先探测、后施工,不探测不施工。 所使用的仪器具有合格的出厂证明及使用期限,并按相关要求进行质

量验收,有验收记录,并在有效使用期内。 4、施工程序与工艺流程 4.1 预报内容 (1)地层岩性,特别是对软弱夹层、破碎地层、煤层及特殊土的预测预报。 (2)地质构造,特别是对断层、节理密集带、褶皱轴等影响山体完整性的构造发育情况的预测预报。 (3)不良地质,特别是溶洞、暗河、人为坑洞、放射性、有气体及高地应力等发育情况的预测预报。 (4)地下水,特别是对岩溶管道水、富水断层、富水褶皱轴、富水地层等的预测预报。 4.2 预报方法 (1)超前地质预报方法按预报原理可分为地质分析法、钻探法、物探法和超前导坑法。 ①地质分析法,包括地层分界线、构造线,地下和地表相关全分析、地质作图等。 ②钻探法,包括深水水平钻探、5~8m加深炮孔探测及孔内摄影。 ③物探法,包括地震波反射法、声波反射法、电磁波反射法、红外探测法等。 ④超前导坑法,包括平行超前导坑法、正洞超前导坑法。 (2)超前地质预报按长度可分为长距离预报(大于200m)、中长距离预报(30~200m)和短距离预报(小于30m)。

地质雷达使用与操作2

地质雷达仪的操作与保养 0.0前言:作为近十余年来发展起来的地球物理高新技术方法,地质雷达以其分辨率高、定位准确、快速经济、灵活方便、剖面直观、实时图象显示等优点,备受广大工程技术人员的青睐。现已成功地应用于岩土工程勘察、工程质量无损检测、水文地质调查、矿产资源研究、生态环境检测、城市地下管网普查、文物及考古探测等众多领域,取得了显著的探测效果和社会经济效益,并在工程实践中不断完善和提高,在工程探测领域应用不断被拓宽。 就目前市场上而言,地质雷达厂家主要有加拿大ERROR,美国SIR系列,瑞典MALA,国产青岛中科院光电所等等,其设备主要部件都是操作平台,仪器主机,以及配套雷达三大块。目前国内各种地质雷达使用研发已相当成熟,不同厂家的仪器性能不断改善和优化。相信在以后工程实践中,地质雷达会应用越来越光,且越来越适应各类不同的现场条件。 我公司引进的是瑞典MALA公司生产的RAMAC/GPR地质雷达,现主要介绍该仪器的使用及其小知识。 首先仪器硬件部分,仪器操作平台为IBM笔记本电脑,分采集软件GROUND VISION和分析处理软件REFLAXW软件;雷达主机为同步采集系统和高频模块;雷达的发射和采集天线为集成天线,目前购置了1.2GHZ 屏蔽天线,500MHZ屏蔽天线,100MHZ屏蔽天线,50MHZ非屏蔽天线共四种。通过在不同的工作领域合理调配不同的天线,再辅以不同的辅助设备,(比如隧道中的脚架,提升车,公路上的拖车,水上物探上的木船,或者防水密闭管等等),使工作更便捷,应用效果更准确。 雷达的基本操作应当说比较傻瓜型,使用起来应该说比较容易上手,在实践中应当遵循《城市工程地球物理规范》等国家,行业标准,以及仪器本身操作指南,使测试工作安排,测线布置,采样方式,测试精度,测试效果,以及测试成果等等满足工程技术要求。 1.0 基础篇 一、软件安装 1、计算机开机时,首先进入 BIOS 设置(如IBM 按F1 进入,其它参阅计算机使用手册) 将并口设置为 ECP 方式,端口地址设为0378。 2、如果是 Windows XP 或2000 操作系统,应在控制面板中进入设备管理器,在并口属性中 的端口设置栏:筛选源方案选择“使用指派给此端口的任何中断”,并选择“使用即插 即拔设备”;在资源栏:输入/输出范围选“0378-037F” 3、使用软件安装光盘,点击“setup”进行安装,按照安装提示进行安装即可。 二、雷达操作使用

公路水运继续教育---地质雷达探测技术在路基病害检测中的应用

第1题 由于松散体内部充填不同性状的土体排列无规律,因此松散体内部在雷达图像上表现为杂乱的,随深度的增加,电磁波逐渐 A.强反射波,增大 B.强反射波,衰减 C.弱反射波,增大 D.弱反射波,衰减 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第2题 空洞内部会形成明显的多次反射波组,形态大致为一倒悬() A.双曲线 B.抛物线 C.折线 D.圆曲线 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第3题 数据处理的一般流程为: 原始数据的编辑- > 滤波- >设定时间零点- >频谱分析- >()- >属性分析、剖面叠加等- >增益- >速度求取- >高程修正- >剖面输出 A.增益 B.滤波 C.去噪 D.时窗选取 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第4题 反射系数的大小主要取决于反射界面两侧介质介电常数的差异, 差

异越大反射信号(), 反之反射信号() A.越强,越差 B.越强,越好 C.越弱,越差 D.越弱,越好 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第5题 地质雷达法是一种采用()电磁波信号检测地下介质分布的方法 A.宽脉冲宽带高频 B.窄脉冲宽带高频 C.宽脉冲宽带低频 D.窄脉冲宽带低频 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第6题 遇到不同的介质或介质中裂隙或孔隙发育程度不同时, 电磁波的反射系数、衰减系数、以及()是不一样的 A.传播速度 B.旅行时间 C.反射波频率 D.反射波振幅 答案:C 您的答案:C 题目分数:5 此题得分:5.0 批注: 第7题 现阶段,地质雷达探测技术可以检测道路路面以下()米范围内的空洞、疏松等路基缺陷,确定道路缺陷的位置、大小及埋深 A.4 B.5

地质雷达合同新doc

密级: 合同编号:科研(2005-7)号中铁二十四局福建铁路建设有限公司科研 项目合同 项目名称:应用地质雷达法检测混凝土结构物强度及缺陷位置 的试验研究 负责单位:福州铁建工程质量检测有限公司 课题负责人:王兴照 起止年限:2005年1月至2005年12月 中铁二十四局集团福建铁路建设有限公司 2005年9月10日

一、项目简要说明: 通过本项目研究,找出相对介电常数(ε)和电磁波的传播时间(ΔT)与混凝土强度(R)的相关关系,利用不同介质的物性差异所引起波的反射来判定被测目标情况,进行混凝土强度及缺陷位置的判定。 二、主要研究内容及技术关键: 1、找出相对介电常数(ε)和电磁波的传播时间(ΔT)与混凝土强度(R)的相关关系; 2、找出相对介电常数(ε)和电磁波的传播时间(ΔT)与混凝土缺陷位置(H)之间的相关关系,即H=f(ε,ΔT); 3、混凝土结构物缺陷的定性判识。 三、达到的目标、技术经济指标和成果形成: 1、通过本项目研究,研究在一般测试环境中,地质雷达法测评混凝土强度等级范围的方法。 2、通过本项目研究,研究在不同条件下,寻找相对介电常数ε和电磁波的传播时间ΔT 及缺陷厚度H之间的关系规律。 3、通过模拟试验,研究不同预埋物及缺陷在地质雷达图像中判识。 4、形成《地质雷达检测混凝土结构物作业指导书》一份(用于指导操作人员),编制《地质雷达检测混凝土结构物方法介绍》一份(用于科普介绍和技术交流)。 成立QC小组,组织技术攻关,形成地质雷达检测混凝土结构物的攻关QC成果一份,参加公司QC成果发布。总结形成科技论文一篇。 四、采用的研究和试验方法:

地质雷达探测技术说明C.doc

减免税进口仪器、设备说明 今有中国地质大学(北京)地球物理与信息技术学院进口Scintrex公司CG-5型重力仪一套。 一、仪器主要部分 1.灵敏系统:主要部件由一个矩形石英框架支撑着,用一个支杆固定在密封器顶盖上。灵敏系统的位移方式属角位移。 2.测量系统:由测读装置、测程调节装置及纵、横水准器等组成,测量出弹簧长度变化后经过电子系统转化成电流的大小,从而数字化将测量值显示到主机显示屏上。 二、仪器性能 相比较其他传统金属弹簧重力仪而言Scintrex公司生产的CG-5型重力仪不容易产生掉格现象从而保证了更高的测量精度和稳定性: (一)石英材料的滞后作用比金属材料小。对于悬挂承重的石英弹簧来说,一旦去掉承重,弹簧就会精确地恢复原状,而一个金属弹簧则会保持一定的记忆。Scintrex所制造的石英传感器是整体铸造,包括石英弹簧及其悬挂连接点是一个整体结构,它的滞后作用比类似的金属部件要小许多。

(二)传感器的所有联结点,象悬挂弹簧的支点和石英弹簧本身焊成一个整体。相反,金属弹簧重力仪的各种功能部件都是通过机械连接装配在一起的。所以整体熔凝的石英传感器不会出现部件之间的滑移或内部变形。这是使石英传感器不易产生掉格的又一个重要原因,也使它很少出现测试数据混乱的现象。 (三)石英弹簧比金属弹簧具有比较大的温度系数,并且石英弹簧传感器是垂直悬挂式弹簧,对于相同的重力值,它的弹簧伸长比金属弹簧重力仪中的金属弹簧小。三、仪器工作原理 Scintrex公司CG-5型重力仪采用无静电熔凝石英材料做为传感器,是基于一种垂直悬挂式石英弹簧,弹簧末端的重锤上悬挂一根测量弹簧。当作用在重锤上的重力发生变化时,可以伸缩测量弹簧,使摆杆改变原来的静平衡位置。这样通过测量弹簧的伸缩量来测定重力的变化。重力变化同弹簧的伸缩量成线性关系,从而勘探地表重力场变化的先进仪器。 通过测定地表各点上的重力加速度的值,对地下介质和地质体的分布做出推断。 四、仪器技术参数 传感器类型:无静电熔凝石英 测量范围:8000mGal,不用重置 自动修正:潮汐、仪器倾斜、温度、噪声、地震噪声 尺寸:30cmX21cmX22cm 重量(含电池):8kg 电池容量:2X6Ah(10.78V) 袖珍锂电池 功耗:25°C时4.5W 工作温度:-40~+45°C 环境温度修正:通常0.2microGal/°C 大气压力修正:通常0.15microGal/kPa 磁场修正:通常1microGal/Gauss(微伽/高斯) 五、仪器在教学中的应用 该仪器是我院“地球物理学”专业和“地球探测与信息技术”专业勘探地质构造、

隧道衬砌地质雷达无损检测技术

. . . . 隧道衬砌质量地质雷达无损检测技术 1 前言 1.1工艺概况 铁路隧道衬砌是隐蔽工程,用传统的目测或钻孔对其质量进行检测有较大的局限性;应用物理勘探的方法对隧道衬砌混凝土进行无损检测,可取得快速、安全、可靠的效果。 1.2工艺原理 电磁反射波法(地质雷达)由主机、天线和配套软件等几部分组成。根据电磁波在有耗介质中的传播特性,当发射天线向被测介质发射高频脉冲电磁波时,电磁波遇到不均匀体(接口)时会反射一部分电磁波,其反射系数主要取决于被测介质的介电常数,雷达主机通过对此部分的反射波进行适时接收和处理,达到探测识别目标物体的目的(图1)。 图1 地质雷达基本原理示意图 电磁波在特定介质中的传播速度是不变的,因此根据地质雷达记录的电磁波传播时间ΔT,即可据下式算出异常介质的埋藏深度H: H V T =??2(1)

式中,V 是电磁波在介质中的传播速度,其大小由下式表示: V C =ε (2) 式中,C 是电磁波在大气中的传播速度,约为3.0×108m/s ; ε为相对介电常数,不同的介质其介电常数亦不同。 雷达波反射信号的振幅与反射系统成正比,在以位移电流为主的低损耗介质中,反射系数可表示为: 212 1εεεε+-=r (3) 反射信号的强度主要取决于上、下层介质的电性差异,电性差越大,反射信号越强。 雷达波的穿透深度主要取决于地下介质的电性和波的频率。电导率越高,穿透深度越小;频率越高,穿透深度越小。 2 工艺特点 电磁反射波法(地质雷达)能够预测隧道施工中衬砌的各种质量问题,分辨率高,精度高,探测深度一般在0.5m ~2.0m 左右。利用高频电磁脉冲波的反射,中心工作频率400MHz/900 MHz/1500 MHz ; 采用宽带短脉冲和高采样率,分辨率较高; 采用可调程序高次迭加和多波处理等信号恢复技术,大大改善了信噪比和图像显示性能。 (1)操作简单,对工作环境要求不高; (2)对衬砌隐蔽工程质量问题性质判断一般精度较高,分辨率可达到2~5cm ,检测的深度、结构尺寸以及里程偏差或误差小于10%,缺陷类型识别准确度达95%以上; (3)通过专业的RADAN 6.0分析软件,专业的技术人员可以迅速的完成数据处理等。 3 适用范围 地质雷达有其适用范围和适用条件,目标体与周围介质是否存在足够的电性

地质雷达探测报告

地质雷达探测报告项目名称: 委托单位: 检测类别:一般委托 二O一四年五月十五日

目录 1. 概述 (1) 2. 探测仪器及主要参数 (1) 3. 探测依据 (1) 4. 测试成果 (1) 附件:雷达探测成果图 (2)

长沙地铁一号线七标黄土岭站~涂家冲站 区间隧道上覆地层(涂家冲加油站附近)病害探测报告 1. 概述 受****************的委托,我单位会同委托单位相关技术人员,于2014年5月15日对委托单位承担的*****地铁一号线*******区间隧道上覆地层(******附近)病害情况进行了雷达探测。 2. 探测仪器及主要参数 仪器:瑞典RAMAC/GPR探地雷达 50MHz天线一对 主要参数: 采样频率:500MHz 样点数:456 迭加次数:自动迭加 时间窗口:800ns 采集方式:剖面法,收发距1米,点触发 采集点距:0.1米 探测范围:DK23+105.2~DK23+075.2 3. 探测依据 略。 4. 测试成果 根据雷达的现场测试数据,采用REFLEXW软件分析得出拟改隧道外侧壁点阵灰度雷达图(附件)。

(1)整个测线范围未见大的空洞病害; (2)左线: DK23+100~DK23+075路面下10m、(靠辅道侧) DK23+080~DK23+105路面下5m深度范围内,地层松散,北侧含水量较大; (3)右线:DK23+100~DK23+080路基层下,有明显的反射界面,可能存在脱空缺陷。 注:实际探测过程中,受过往车辆和护栏干扰较大,结果仅作参考。 以下无正文内容! 二O一四年五月十五日附件:雷达探测成果图

相关文档
相关文档 最新文档