文档库 最新最全的文档下载
当前位置:文档库 › 自适应滤波器在噪声消除中的应用与研究

自适应滤波器在噪声消除中的应用与研究

自适应滤波器在噪声消除中的应用与研究
自适应滤波器在噪声消除中的应用与研究

北科大数字图像处理实验报告

北京科技大学计算机与通信工程学院 实验报告 实验名称:《数字图像处理》课程实验 学生姓名:徐松松 专业:计算机科学与技术 班级:计1304 学号:41345053 指导教师:王志明 实验成绩: 实验时间:2016 年12 月15 日

一、实验目的与实验要求 1、实验目的 1. 熟悉图像高斯、脉冲等噪声的特点,以及其对图像的影响; 2. 理解图像去噪算法原理,并能编程实现基本的图像去噪算法,达到改善图像质量的效果,并能对算法性能进行简单的评价。 3. 理解图像分割算法的原理,并能编程实现基本的灰度图像分割算法,并显示图像分割结果。 2、实验要求 1. 对于给定的两幅噪声图像(test1.jpg, test 2.jpg),设计或选择至少两种图像滤波算法对图像进行去噪。 2.利用给出的参考图像(org1.jpg, org2.jpg),对不同算法进行性能分析比较。 3. 对于给定的两幅数字图像(test.jpg,test 4.jpg),将其转换为灰度图像,设计或选择至少两种图像分割算法对图像进行分割,用适当的方式显示分割结果,并对不同算法进行性能分析比较。 二、实验设备(环境)及要求 1. Mac/Windows计算机 2. Matlab编程环境。 三、实验内容与步骤 1、实验1 (1)实验内容 1. 对于给定的两幅噪声图像(test1.jpg, test 2.jpg), 设计或选择至少两种图像滤波算法对图像进行去噪。 2. 利用给出的参考图像(org1.jpg, org2.jpg), 对不同算法进行性能分析比较。(2)主要步骤 1. 打开Matlab编程环境; 2. 利用’imread’函数读入包含噪声的原始图像数据; 3. 利用’imshow’函数显示所读入的图像数据;

毕业论文--自适应噪声对消在语音信号处理中的应用研究

本科生毕业论文 (设计) 中文题目自适应噪声对消在语音信号处理中的应用研究 英文题目

摘要 在实际生活中,任何语音信号都不可避免的受到噪声信号的影响,如何有效的抑制和去除噪声,提高语音的可懂度是近年来的热门研究课题,文中介绍了自适应滤波器的基本原理,结构和应用,应用matlab软件,对自适应算法在噪声对消中的应用进行了仿真研究,并完成了语音信号噪声消除实例。 本文对自适应滤波算法在语音信号去噪方面进行了研究,对自适应对消系统进行了深入的学习与研究,在固定步长的基础上,建立了步长因子u与信噪比及噪声幅度之间的一种非线性函数关系,使步长随误差信号e(n)的变化而变化,从而提高了收敛速度,能够有效的滤除实际生活中语音信号中的高斯白噪声,工频干扰,以及其他讲话者的干扰,大幅度提高输出语音信号的信噪比,有效的提高语音的可懂度。通过实验证明,该算法在收敛速度,消噪性能,信噪比提高方面与常规的自适应算法相比均有一定的提高。 关键词:自适应滤波变步长LMS算法语音降噪

Adaptive noise cancellation in speech signal processing research Abstract: In our daily life ,all speech signal will be influenced by noise, How to effectively eliminate the noise is one of hot subjects for years.The paper begins with the principle of adaptive filter,structure and application. Based on the MATLAB platform, simulation is carried out for the applications of adaptive algorithms in noise cancelling,and completed the instance of voice signal noise reduction. This paper discuss about adaptive filtering algorithm in the speech signal denoising aspects of the research on the adaptive cancellation system in-depth study and research and establishes another step factor u and the error signal e (n) between the non-linear function of a new relationship, the algorithm using variable step size, the step with the magnitude of the noise signal to noise ratio and the change, to improve the convergence rate, can effectively filter out in real life speech signal Gaussian white noise, frequency interference, and interference with other speakers. Can greatly enhance the output speech signal to noise ratio, experiments show that the algorithm convergence rate, noise reduction performance, improving signal to noise ratio with the conventional adaptive algorithms have improved to some extent compared. In this paper, the coefficient of the formula

最新自适应滤波器的设计开题报告

长江大学 毕业设计开题报告 题目名称自适应滤波器的设计与应用学院电信学院 专业班级信工10702班 学生姓名李雪利 指导教师王圆妹老师 辅导教师王圆妹老师 开题报告日期 2010年3月19日

自适应滤波器的设计与应用 学生:李雪利,长江大学电子信息学院 指导教师:王圆妹,长江大学电子信息学院 一、题目来源 来源于其他 二、研究目的和意义 滤波技术在当今信息处理领域中有着极其重要的应用。滤波是从连续的或离散的输入数据中除去噪音和干扰以提取有用信息的过程,相应的装置就称为滤波器。滤波器实际上是一种选频系统,他对某些频率的信号予以很小的衰减,使该部分信号顺利通过。而对其他不需要的频率信号予以很大的衰减,尽可能阻止这些信号通过。滤波器研究的一个目的就是:如何设计和制造最佳的(或最优的)滤波器。 在数字信号处理中,数字滤波是语音和图像处理、模式识别、频谱分析等应用中的一个基本处理算法。在许多应用场合,由于无法预先知道信号和噪声的特性或者它们是随时间变化的,仅仅用 FIR 和 IIR两种具有固定滤波系数的滤波器无法实现最优滤波。在这种情况下,必须设计自适应滤波器,以跟踪信号和噪声的变化。 自适应滤波器是利用前一时刻已获得的滤波器参数,自动地调节、更新现时刻的滤波器参数,以适应信号和噪声未知的统计特性,从而实现最优滤波。当在未知统计特性的环境下处理观测信号时,利用自适应滤波器可以获得令人满意的效果,其性能远超过通用方法所设计的固定参数滤波器。

三、阅读的主要参考文献及资料名称 1、《数字信号处理》刘益成(第二版)西安电子科技出版社 2、《数字信号处理》张小虹(第二版)机械工业出版社 3、自适应信号处理[M].西安:西安电子科技大学出版社,2001. 4.邹理和,数字信号处理, 国防工业出版社,1985 5.丁玉美等, 数字信号处理,西安电子科技大学出版社,1999 6.程佩青, 数字信号处理,清华大学出版社,2001 7. The MathWorks Inc, Signal Processing Toolbox For Use with MATLAB, Sept. 2000 8. vinay K.Ingle, John G.Proakis,数字信号处理及MATLAB实现,陈怀琛等译,电子工业出版社,1998.9 9、《MATLAB编程参考手册》 10、中国期刊网的相关文献 11、赫金,自适应滤波器原理第四版,西安工业出版社,2010-5-1 四、国内外现状和发展趋势与主攻方向 自适应滤波器的理论与技术是50年代末和60年代初发展起来的。它是现代信号处理技术的重要组成部分,对复杂信号的处理具有独特的功能。自适应滤波器在数字滤波器中试属于随机数字信号处理的范畴。对于随机数字信号的滤波处理,通常有维纳滤波,卡尔曼滤波和自适应滤波,维纳滤波的权系数是固定的,适用于平稳随机信号;卡尔曼滤波器的权系数是可变的,适用于非平稳随机信号中。但是,只有在对信号和噪声的统计特性先验

带通滤波器的噪声分析

如题所述,本文主要针对二阶带通滤波器进行噪声分析。关键词:二阶高通滤波器热噪声低频噪声散粒噪声宽带噪声一、二阶带通有源滤波器电路简介 已知,有源滤波器一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。 利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。 如下图示为一二阶带通滤波器电路图 图1 基本电路原理图如上图所示。放大器选择OPA363。图中R、C组成低通网络,C1、R3组成高通网络。 下图为带通滤波器的幅频特性

图2 二阶压控电源带通滤波器就是将低通与高通电路相串联,而构成的带通滤波电路。条件是低通滤波电路的截止脚频率wH大于高通滤波电路的截止角频率wL。因此,上图并不难理解。 设R2=R,R3=2R,则可得带通滤波器的中心角频率W0=1/(RC)。 电路的优点是改变Rf和R1的比例就可改变频宽而不影响中心频率。二、电路噪声分析电路噪声可分为内部噪声与外部噪声。 内部噪声是由电路内部电路元器件其本身固有物理性质所产生的噪声。造成内部噪声的元器件主要有电阻、运算放大器等。 外部噪声是由外界因素对电路中各部分的影响所造成的。一般来说,主要是外界电磁场、接地线不合理和电源等原因造成的。 (一)内部噪声分析 1.热噪声(主要是电阻造成的噪声):在导体中由于带电粒子热骚动而产生的随机噪声。它存在于所有电子器件和传输介质中。它是温度变化的结果,但不受频率变化的影响。热噪声是在所有频谱中以相同的形态分布,它是不能够消除的。 热噪声是杂乱无章的变化电压。一般来说,热噪声决定了电路的噪声基底。实际电阻器一般被等效为一理想无噪声电阻与噪声电压源相串联的电路,或者一理想无噪声电导和噪声电流源相并联。(见下图)

介绍了噪声抵消的原理和从强噪声背景中自适应滤波提取有用信号的

LMS与RLS自适应滤波算法性能比较 马文民 【摘要】:介绍了自适应滤波器去除噪声的原理和从强噪声背景中采用自适应滤波提取有用信号的方法,并对最小均方(LMS, Least Mean Squares)和递推最小二乘(RLS, Recursive Least Squares)两种基本自适应算法进行了算法原理、算法性能分析。计算机模拟仿真结果表明,这两种算法都能通过有效抑制各种干扰来提高强噪声背景中的信号。检测特性相比之下,RLS 算法具有良好的收敛性能,除收敛速度快于LMS算法和NLMS算法以及稳定性强外,而且具有更高的起始收敛速率、更小的权噪声和更大的抑噪能力。 【关键词】:自适应滤波;原理;算法;仿真 引言: 自适应滤波是近30年以来发展起来的一种最佳滤波方法。它是在维纳滤波,kalman滤波等线性滤波基础上发展起来的一种最佳滤波方法。由于它具有更强的适应性和更优的滤波性能。从而在工程实际中,尤其在信息处理技术中得到广泛的应用。自适应滤波的研究对象是具有不确定的系统或信息过程。"不确定"是指所研究的处理信息过程及其环境的数学模型不是完全确定的。其中包含一些未知因数和随机因数。任何一个实际的信息过程都具有不同程度的不确定性,这些不确定性有时表现在过程内部,有时表现在过程外部。从过程内部来讲,描述研究对象即信息动态过程的数学模型的结构和参数是我们事先不知道的。作为外部环境对信息过程的影响,可以等效地用扰动来表示,这些扰动通常是不可测的,它们可能是确定的,也可能是随机的。此外一些测量噪音也是以不同的途径影响信息过程。这些扰动和噪声的统计特性常常是未知的。面对这些客观存在的各种不确定性,如何综合处理信息过程,并使某一些指定的性能指标达到最优或近似最优,这就是自适应滤波所要解决的问题。 在这几十年里,数字信号处理技术取得了飞速发展,特别是自适应信号处理技术以其计算简单、收敛速度快等许多优点而广泛被使用。它通过使内部参数的最优化来自动改变其特性。自适应滤波算法在统计信号处理的许多应用中都是非常重要的。 在工程实际中,经常会遇到强噪声背景中的微弱信号检测问题。例如在超声波无损检测领域,因传输介质的不均匀等因素导致有用信号与高噪声信号迭加在一起。被埋藏在强背景噪声中的有用信号通常微弱而不稳定,而背景噪声往往又是非平稳的和随时间变化的,此时很难用传统方法来解决噪声背景中的信号提取问题。自适应噪声抵消技术是一种有效降噪的方法,当系统能提供良好的参考信号时,可获得很好的提取效果。与传统的平均迭加方法相比采用自适应平均处理方法还能降低样本数量。 1自适应滤波器的基本原理 所谓的自适应滤波,就是利用前一时刻以获得的滤波器参数的结果,自动的调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。自适应滤波器实质上就是一种能调节其自身传输特性以达到最优的维纳滤波器。自适应滤波器不需要关于输入信号的先验知识,计算量小,特别适用于实时处理。 由于无法预先知道信号和噪声的特性或者它们是随时间变化的,仅仅用FIR和IIR两种具有固定滤波系数的滤波器无法实现最优滤波。在这种情况下,必须设计自适应滤波器,以跟踪信号和噪声的变化。 自适应滤波器的特性变化是由自适应算法通过调整滤波器系数来实现的。一般而言,自适应滤波器由两部分组成,一是滤波器结构,二是调整滤波器系数的自适应算法。 自适应噪声抵消系统的核心是自适应滤波器,自适应算法对其参数进行控制,以实现最佳滤波。不同的自适应滤波器算法,具有不同的收敛速度、稳态失调和算法复杂度。根据自

matlab图像处理实验报告

图像处理实验报告 姓名:陈琼暖 班级:07计科一班 学号:20070810104

目录: 实验一:灰度图像处理 (3) 实验二:灰度图像增强 (5) 实验三:二值图像处理 (8) 实验四:图像变换 (13) 大实验:车牌检测 (15)

实验一:灰度图像处理题目:直方图与灰度均衡 基本要求: (1) BMP灰度图像读取、显示、保存; (2)编程实现得出灰度图像的直方图; (3)实现灰度均衡算法. 实验过程: 1、BMP灰度图像读取、显示、保存; ?图像的读写与显示操作:用imread( )读取图像。 ?图像显示于屏幕:imshow( ) 。 ?

2、编程实现得出灰度图像的直方图; 3、实现灰度均衡算法; ?直方图均衡化可用histeq( )函数实现。 ?imhist(I) 显示直方图。直方图中bin的数目有图像的类型决定。如果I是个灰度图像,imhist将 使用默认值256个bins。如果I是一个二值图像,imhist使用两bins。 实验总结: Matlab 语言是一种简洁,可读性较强的高效率编程软件,通过运用图像处理工具箱中的有关函数,就可以对原图像进行简单的处理。 通过比较灰度原图和经均衡化后的图形可见图像变得清晰,均衡化后的直方图形状比原直方图的形状更理想。

实验二:灰度图像增强 题目:图像平滑与锐化 基本要求: (1)使用邻域平均法实现平滑运算; (2)使用中值滤波实现平滑运算; (3)使用拉普拉斯算子实现锐化运算. 实验过程: 1、 使用邻域平均法实现平滑运算; 步骤:对图像添加噪声,对带噪声的图像数据进行平滑处理; ? 对图像添加噪声 J = imnoise(I,type,parameters)

自适应滤波器毕业设计论文

大学 数字信号处理课程要求论文 基于LMS的自适应滤波器设计及应用 学院名称: 专业班级: 学生姓名: 学号: 2013年6月

摘要自适应滤波在统计信号处理领域占有重要地位,自适应滤波算法直接决定着滤波器性能的优劣。目前针对它的研究是自适应信号处理领域中最为活跃的研究课题之一。收敛速度快、计算复杂性低、稳健的自适应滤波算法是研究人员不断努力追求的目标。 自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数。研究自适应滤波器可以去除输出信号中噪声和无用信息,得到失真较小或者完全不失真的输出信号。本文介绍了自适应滤波器的理论基础,重点讲述了自适应滤波器的实现结构,然后重点介绍了一种自适应滤波算法最小均方误差(LMS)算法,并对LMS算法性能进行了详细的分析。最后本文对基于LMS算法自适应滤波器进行MATLAB仿真应用,实验表明:在自适应信号处理中,自适应滤波信号占有很重要的地位,自适应滤波器应用领域广泛;另外LMS算法有优也有缺点,LMS算法因其鲁棒性强特点而应用于自回归预测器。 关键词:自适应滤波器,LMS算法,Matlab,仿真

1.引言 滤波技术在当今信息处理领域中有着极其重要的应用。滤波是从连续的或离散的输入数据中除去噪音和干扰以提取有用信息的过程,相应的装置就称为滤波器。滤波器实际上是一种选频系统,他对某些频率的信号予以很小的衰减,使该部分信号顺利通过;而对其他不需要的频率信号予以很大的衰减,尽可能阻止这些信号通过。滤波器研究的一个目的就是:如何设计和制造最佳的(或最优的)滤波器。Wiener于20世纪40年代提出了最佳滤波器的概念,即假定线性滤波器的输入为有用信号和噪音之和,两者均为广义平稳过程且己知他们的二阶统计过程,则根据最小均方误差准则(滤波器的输出信号与期望信号之差的均方值最小)求出最佳线性滤波器的参数,称之为Wiener滤波器。同时还发现,在一定条件下,这些最佳滤波器与Wiener滤波器是等价的。然而,由于输入过程取决于外界的信号、干扰环境,这种环境的统计特性常常是未知的、变化的,因而不能满足上述两个要求,设计不出最佳滤波器。这就促使人们开始研究自适应滤波器。自适应滤波器由可编程滤波器(滤波部分)和自适应算法两部分组成。可编程滤波器是参数可变的滤波器,自适应算法对其参数进行控制以实现最佳工作。自适应滤波器的参数随着输入信号的变化而变化,因而是非线性和时变的。 2. 自适应滤波器的基础理论 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。所谓“最优”是以一定的准则来衡量的,最常用的两种准则是最小均方误差准则和最小二乘准则。最小均方误差准则是使误差的均方值最小,它包含了输入数据的统计特性,准则将在下面章节中讨论;最小二乘准则是使误差的平方和最小。 自适应滤波器由数字结构、自适应处理器和自适应算法三部分组成。数字结构是指自适应滤波器中各组成部分之间的联系。自适应处理器是前面介绍的数字滤波器(FIR或IIR),所不同的是,这里的数字滤波器是参数可变的。自适应算法则用来控制数字滤波器参数的变化。 自适应滤波器可以从不同的角度进行分类,按其自适应算法可以分为LMS自适应滤波

噪声滤波器

电源噪声滤波器的基本原理与应用方法 随着现代科学技术的飞速发展,电子、电力电子、电气设备应用越来越广泛,它们在运行中产生的高密度、宽频谱的电磁信号充满整个空间,形成复杂的电磁环境。复杂的电磁环境要求电子设备及电源具有更高的电磁兼容性。于是抑制电磁干扰的技术也越来越受到重视。接地、屏蔽和滤波是抑制电磁干扰的三大措施,下面主要介绍在电源中使用的EMI滤波器及其基本原理和正确应用方法。 2电源设备中噪声滤波器的作用 电子设备的供电电源,如220V/50Hz交流电网或115V/400Hz交流发电机,都存在各式各样的EMI噪声,其中人为的EMI干扰源,如各种雷达、导航、通信等设备的无线电发射信号,会在电源线上和电子设备的连接电缆上感应出电磁干扰信号,电动旋转机械和点火系统,会在感性负载电路内产生瞬态过程和辐射噪声干扰;还有自然干扰源,比如雷电放电现象和宇宙中天电干扰噪声,前者的持续时间短但能量很大,后者的频率范围很宽。另外电子电路元器件本身工作时也会产生热噪声等。 这些电磁干扰噪声,通过辐射和传导耦合的方式,会影响在此环境中运行的各种电子设备的正常工作。另一方面,电子设备在工作时也会产生各种各样的电磁干扰噪声。比如数字电路是采用脉冲信号(方波)来表示逻辑关系的,对其脉冲波形进行付里叶分析可知,其谐波频谱范围很宽。另外在数字电路中还有多种重复频率的脉冲串,这些脉冲串包含的谐波更丰富,频谱更宽,产生的电磁干扰噪声也更复杂。 各类稳压电源本身也是一种电磁干扰源。在线性稳压电源中,因整流而形成的单向脉动电流也会引起电磁干扰;开关电源具有体积小,效率高的优点,在现代电子设备中应用越来越广泛,但是因为它在功率变换时处于开关状态,本身就是很强的EMI噪声源,其产生的EMI噪声既有很宽的频率范围,又有很高的强度。这些电磁干扰噪声也同样通过辐射和传导的方式污染电磁环境,从而影响其它电子设备的正常工作。 对电子设备来说,当EMI噪声影响到模拟电路时,会使信号传输的信噪比变坏,严重时会使要传输的信号被EMI噪声所淹没,而无法进行处理。当EMI噪声影响到数字电路时,会引起逻辑关系出错,导致错误的结果。 对于电源设备来说,其内部除了功率变换电路以外,还有驱动电路、控制电路、保护电路、输入输出电平检测电路等,电路相当复杂。这些电路主要由通用或专用集成电路构成,当受电磁干扰

数字图像处理实验报告:灰度变换与空间滤波(附带程序,不看后悔)

1.灰度变换与空间滤波 一种成熟的医学技术被用于检测电子显微镜生成的某类图像。为简化检测任务,技术决定采用数字图像处理技术。发现了如下问题:(1)明亮且孤立的点是不感兴趣的点;(2)清晰度不够,特别是边缘区域不明显;(3)一些图像的对比度不够;(4)技术人员发现某些关键的信息只在灰度值为I1-I2 的范围,因此,技术人员想保留I1-I2 区间范围的图像,将其余灰度值显示为黑色。(5)将处理后的I1-I2 范围内的图像,线性扩展到0-255 灰度,以适应于液晶显示器的显示。请结合本章的数字图像处理处理,帮助技术人员解决这些问题。 1.1 问题分析及多种方法提出 (1)明亮且孤立的点是不够感兴趣的点 对于明亮且孤立的点,其应为脉冲且灰度值为255(uint8)噪声,即盐噪声,为此,首先对下载的细胞图像增加盐噪声,再选择不同滤波方式进行滤除。 均值滤波:均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8 个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。 优点:速度快,实现简单; 缺点:均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。 其公式如下: 使用矩阵表示该滤波器则为: 中值滤波:

滤除盐噪声首选的方法应为中值滤波,中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。 其过程为: a、存储像素1,像素2 ....... 像素9 的值; b、对像素值进行排序操作; c、像素5 的值即为数组排序后的中值。优点:由于中值滤波本身为一种利用统计排序方法进行的非线性滤波方法,故可以滤除在排列矩阵两边分布的脉冲噪声,并较好的保留图像的细节信息。 缺点:当噪声密度较大时,使用中值滤波后,仍然会有较多的噪声点出现。自适应中值滤波: 自适应的中值滤波器也需要一个矩形的窗口S xy ,和常规中值滤波器不同的是这个窗口的大小会在滤波处理的过程中进行改变(增大)。需要注意的是,滤波器的输出是一个像素值,该值用来替换点(x, y)处的像素值,点(x, y)是滤波窗口的中心位置。 其涉及到以下几个参数: 其计算过程如下:

DSP实现噪声消除

Adaptive noise cancellation is used to remove background noise from useful signals.This is an extremely useful technique where a signal is submerged in a very noisy environment.DSP is a kind of high speed and performance professional digital signal https://www.wendangku.net/doc/317209864.html,ing DSP in ad aptive noise cancellation system,real-time control and high precision ca n be achieved.In this paper,an adaptive noise cancellation system base d on DSP is designed,and noise in the signals is decreased efficiently. Keyword:adaptive;noise cancellation;DSP;LMS;RLS 摘要:自适应噪声消除技术在信号处于噪声很强的环境中时,可以非常有效地将噪声去除掉。而DSP是一种高速、高性能的专业数字信号处理器,用DSP实现自适应噪声消除,其具有很好的实时性和处理精度。在此完成了基于DSP的自适应噪声消除系统,有效地消除了信号中的噪声。 关键词:自适应;噪声消除;DSP;LMS;RLS DSP(Digital Signal Processor,数字信号处理器)是在模拟信号变换成数字信号以后进行高速实时处理的专用处理器件,DSP具有接口简单、方便;精度高、运算速度快、稳定性好;编程方便,容易实现复杂的算法;集成方便等优点,已经被广泛的应用于通信、雷达、语音、图像、消费类电子产品等领域。DSP技术的发展和应用,使得自适应信号处理技术得以实现。自适应噪声消除是消除强背景噪声的一种有效的技术,在通常情况下,背景噪声不是稳定不变的,而是随着时间的变化而变化。因此,噪声消除应该是一个自适应噪声处理过程:既可以在时变的噪声环境下工作,还可以根据环境的改变而调整自身的工作参数。在本文中,利用DSP的优越性能,在TI公司TMS320VC5416芯片

自适应滤波器的原理与设计

实验二 自适应滤波信号 一、实验目的: 1.利用自适应LMS 算法实现FIR 最佳维纳滤波器。 2.观察影响自适应LMS算法收敛性,收敛速度以及失调量的各种因素,领会自适应信号处理方法的优缺点。 3.通过实现AR 模型参数的自适应估计,了解自适应信号处理方法的应用。 二、实验原理及方法 自适应滤波是一种自适应最小均方误差算法(LMS ),这种算法不像维纳滤波器需要事先知道输入和输出信号的自相关和互相关矩阵,它所得到的观察值 ,滤波器等价于自动“学习”所需要的相关函数,从而调整FIR 滤波器的权系数,并最终使之收敛于最佳值,即维纳解。 )(n y 下面是自适应FIR 维纳滤波器的LMS 算法公式: (2-1) )()()(0 ^ ^ m n y n h n x M m m -=∑= (2-2) ^ )()()(n x n x n e -=M m m n y n e n h n h m m ?=-?+=+,1) ()(2)()1(^ ^ μ (2-3) 其中FIR 滤波器共有M+1个权系数,表示FIR 滤波器第m 个权系数在第n 步的估计值。 ),0)((^ M m n h m ?=因此,给定初始值)M ,0(),0(?=m h m ,每得到一个样本,可以递归得到一组新的滤波器权系数,只要步长)(n y μ满足 max 1 0λμ< < (2-4) 其中max λ为矩阵R 的最大特征值,当∞→n 时,)M ,0(),0(?=m h m 收敛于维纳解。

现在我们首先考察只有一个权系数h 的滤波器,如图2.1所示。假如信号由下式确定: )(n y )()()(y n w n s n += (2-5) )()(n hx n s = (2-6) 其中h 为标量常数,与互不相关,我们希望利用和得到 )(n x )(n w )(n y )(n x )(n s 图1 利用公式(2-1),(2-2),(2-3),我们可以得到下面的自适应估计算法: (2-7) )()()(^ ^n x n h n s = (2-8) )())()()((2)()1(^ ^ ^ n x n x n h n y n h n h -+=+μ其框图如图所示。 图2 选择的初始值为,对式2-8取数学期望可得 ^)(n h ^ )0(h (2-9) ))0(()21(])([^ ^ h h R h n h E n --+=μ其中

EMI滤波器原理

EMI 滤波器原理 插入损耗,共模干扰,差模干扰 在测试传导干扰时候,应用的频段为 150KHz~ 30MHz ,当电子设备干扰 噪声频率小于30MHz 时,主要干扰音频频段,电子设备的电源线对于这类波长的 电磁波来说,一般还不足一个波的波长(30MHz 波长为10米),向空中辐射效率 很低。噪声主要是通过导线传播,若能测得电源线上感应的噪声电压,就能衡量 这一频段的电磁噪声干扰程度,这类噪声也就是传导噪声,在测试传导干扰时候, 应用的频段为150KHz~ 30MHz 。 传导噪声由差模噪声和共模噪声构成。 差模噪声存在于相线 L 和中线N 之 间(也可视为存在于L 与地线(PE ), N 与地线(PE )之间,大小相等,相位差 180° );共模干扰噪声存在于L 与PE ,N 与PE 之间,大小相等,相位相同。 1插入损耗 为了更好的设计滤波器,我们应用插入损耗这个概念,其定义为在未加入和 加入滤波器干扰源对负载的电压的比,然后取对数,定义如下图: 信号

由上图可以看出,随着滤波器阶数的上升,其插入损耗也跟着增加,实际上, 每增加一阶,插入损耗相应会增加 6 dB/倍频 2、共模噪声( common mode interference) A、电路等效:功率噪声是电源中影响最大的一种噪声,其等效图如下: 图加共模干扰等救电路討 其等效电路为一个有并联电容C P和并联电阻R P的电流源,呈高阻抗容性。在反激电源中,如图4,当开关管V i由导通变为截止时,其集电极电压升高,向开关管与散热器的分布电容(可达几千pF)C P1充电,形成共模电流(I cml+|cm2),在LISN中被检测出来。等效电路中的C P包括C PI及C P2,C P2与变压器的绕制工艺及结构有关,C PI 与开关管体积大小,及散热器的绝缘厚度有关,一般C P在几百至几千P F之间。 B、抑制原理:下面以下图中的电源滤波器为例进行说明 — Cxi OUTPUT Cy PE

LMS算法在噪声抵消中的应用

LMS算法在噪声抵消中的应用 冯振勇,王玉良 北京邮电大学信息工程学院,北京(100876) E-mail:fengzhenyong1984@https://www.wendangku.net/doc/317209864.html, 摘要:自适应噪声干扰抵消器是基于自适应滤波器原理的一种扩展。本文首先根据自适应LMS滤波器的设计理念介绍了噪声抵消器的原理,得出自适应抵消器只有参考输入噪声与原始输入噪声存在相关性,才能有效的抵消噪声的结论;在此基础上进行了稳定噪声抵消的求解,以单输入单输出维纳滤波器系统为例,通过滤波器的误差公式和转移函数求得维纳滤波器问题的无约束非因果解;随后利用LMS算法设计了自适应单信道噪声抵消器,根据前两步的分析,将自适应抵消器的参考输入信号谱函数分解,求得维纳解的最佳转移函数;最后通过MATLAB仿真实验证明了LMS算法在自适应滤波去噪中的优势,并对结果进行了分析。 关键词:LMS算法;自适应单信道噪声抵消器;自适应滤波 中图分类号:TN713 1. 引言 自适应噪声抵消器是利用自适应噪声抵消技术,从背景噪声中提取语音信号,以提高语音的清晰度。其目的是把信号中的噪声和语音信号进行有效地分离,降低环境噪声的影响。 自适应干扰对消是通过自适应过程加以控制的,它可以在信号很微弱或信号用常规的方法无法检测的噪声干扰场中,将从一个或多个传感器所取得的参考输入加以过滤,并从包含信号和噪声的原始输入中减去,最后结果是原始信号中的噪声或干扰被衰减或消除,而保留了有用信号[1]。噪声干扰对消可完成时间域(频域)的滤波,也可实现空间域的滤波,因此自适应干扰对消具有广泛的应用范围。例如消除心电图中的电源干扰、检测胎儿心音时滤除母亲的心音及背景干扰、在有多人讲话的场合下提取某人的讲话、作为天线阵列的自适应旁瓣对消器。 2. 自适应噪声抵消器的设计 理论上讲,自适应噪声干扰抵消器是基于自适应滤波器原理的一种扩展。简单的说,把 d n改为信号加噪声干扰的原始输入端,而它的输入端改自适应滤波器的期望信号输入端() 为噪声干扰端,有横向滤波器的参数调节输出以将原始输入端的噪声抵消掉,这时误差输出就是有用信号了。下面从噪声抵消器的原理介绍,求解过程和设计三方面进行说明。 2.1 噪声抵消器的原理 图1 噪声低消器的原理图

大学doc-实验二RLS的实验报告

20XX年复习资料 大 学 复 习 资 料 专业: 班级: 科目老师: 日期:

基于RLS的语音去噪算法研究 课程名称现在数字信号处理及其应用 实验名称基于RLS的语音去噪算法研究 学院电子信息学院 专业电路与系统 班级电子2班 学号 20XXXX20XXXX0XX020XXXX7 学生姓名刘秀 指导老师何志伟

摘要:截取一段音频信号(初始信号),然后人为加入一个白噪声,然后将初始信号与白噪声混叠以后,再用RLS算法将这个白噪声信号滤除。RLS (递推最小二乘)算法是另一种基于最小二乘准则的精确方法,它具有快速收敛和稳定的滤波器特性,因而被广泛地应用于实时系统识别和快速启动的信道均衡等领域。 关键词:初始信号、白噪音、RLS算法。 Abstract:Intercept an audio signal (original signal) and add a white noise artificially, then after aliasing the initial signal and white noise , and using RLS algorithm to the white noise signal filtering.RLS (recursive least squares) algorithm is a kind of accurate method based on least squares criterion, it has a fast convergence and stability of the filter characteristics, and therefore is widely applied in the real-time system identification and fast start of equalization. Key words: Initial signal, white noise, RLS algorithm.

自适应噪声抵消器的MATLAB设计与实现概要

福建电脑 2010年第 9期 自适应噪声抵消器的 MATLAB 设计与实现 成利香 1,2, 张桂新 1 (1. 中南大学信息科学与工程学院湖南长沙 4100002. 湖南工学院湖南衡阳421002 【摘要】:本文简述了自适应滤波的基本原理 , 并给出了自适应滤波噪声抵消的一般系统模型 , 重点研究了 LMS 自适应算法。完成了在 MATALB 下的仿真 , 并通过设置不同参数 , 对其性能做了分析。【关键词】:自适应滤波 ; 噪声抵消 ; LMS 算法 ; MATLAB 0、引言 自适应滤波自适应滤波器不需要输入信号的先验知识 , 它是利用前一时刻已经获得的输入信号获参量 , 调节现时刻的滤波参数 , 以适应信号和噪声未知的或随时间变化的统计特性 , 从而实现最优维纳滤波。自适应滤波自 Widrow 等提出以来 , 因其计算量小 , 易于实现等特点 , 得到了各领域的广泛应用。 1、自适应滤波器噪声抵消的原理 1. 1自适应滤波器噪声抵消的基本原理 一个自适应滤波器包括两个不同的部分 :一个是具有可调系数的数字滤波器 , 一个是用于调整或改变滤波系数的自适应算法。图 1给出了自适应滤波器作为噪声对消的原理框图。 图 1自适应滤波器作为噪声对消的原理框图 噪声消除的主要目的是对被污染信号中的噪声的最优估计 , 以获得信号的最优估计。其中 x(n表示输入信号 ; y(n表示被污染的信号 , 包括所希望的信号和噪声

信号 ; r(n表示被污染信号的某种测量 , 与叠加的噪声信号相关 ; d (n:表示叠加噪声信号的估计值 ; e(n; 表示作为输出的信号 , 一是作为希望信号 x(n的估计输出值 , 二是用于调整自适应滤波器的参数。利用此输出值通过某种自适应算法对滤波器参数进行调整 , 最终获得噪声最优估计值 , 当输入信号的统计特性发生变化 , 自适应数字滤波器能够跟踪这种变化 , 自动调整参数 , 使滤波器性能重新达到最佳。 1.2自适应算法的研究 根据自适应算法优化准则的不同 , 其算法大致分为两大类 , 一是最小均方算法 (LMS , least -mean -square , 二是递归最小二乘法 (RLS 。 LMS 算法是基于最小均方误差准则的维纳滤波器和最陡下降法提出的 , 是对梯度下降算法的近似简化。算法的基本思想是 :调整滤波器自身的参数 , 使滤波器的输出信号与期望输 出信号之间的均方误差最小 , 系统输出为有用信号的最佳估计。其算法推导如下 : 其中μ为固定步长因子 , 是一常数。 显然上面的算法不需要事先知道信号的统计量 (即相关量 R 和 P , 而使用他们的瞬时估计代替算法获得的权重只是一个估计值 , 但随着调节权重 , 这些估计值逐渐提高 , 滤波器也越来越适应信号特性 , 最终权值收敛 , 收敛的条件为 其中λmax 是输入数据方差矩阵的最大特征值。下面给出基本 LMS 算法实 现的步骤 : 1 初始化 , 令所有权重为任一固定值 , 或为 0; 2 计算滤波输出 3 计算估计误差 4 更新下一时刻的滤波器的权重 3、自适应噪声抵消器的 MATLAB 的设计与实现 max

中值滤波器设计及椒盐噪声滤除

题目四:中值滤波器设计及椒盐噪声滤除 一、实验背景 在数字图像的生成与采集过程中,由于受工作环境,器件等性能的影响,使得一幅未经处理的原始图像,都存在着一定的噪声干扰。这种噪声具有以下性质: 1、图像上的噪声出现处呈现不规则分布; 2、噪声的大小也是不规则的。 这些噪声恶化了图像质量,使图像模糊甚至淹没目标特征,给后续的处理分析带来了困难。因此需要对图像应该进行滤除噪声处理。 二、 实验目的 1. 通过利用c 程序实现数字信号处理的相关功能,巩固对信号处理原理知识的理解,培养快速解决实际问题的能力提高实际编程和处理数据的综合能力,初步培养在解决信号处理实际应用问题中所应具备的基本素质和要求。 2. 培养独立思考的能力与研发能力,通过设计实现不同的信号处理问题,初步掌握在给定条件和功能的情况下,实现合理设计算法结构的能力。 3. 提高资料查询和整理的能力。能够在短时间内找到适合自己的方法。并在文献整理的过程中学会科技文献的写作,提高语言表达能力。 三、 实验内容 1. 理解什么是椒盐噪声,中值滤波的原理及其特性。 2. 设计一种中值滤波,对椒噪声滤波有效,并分析滤波器的适用范围。 3、(扩展训练)对设计的滤波器针对椒、盐噪声滤除分别进行测试,并进行性能比较分析,并讨论椒、盐噪声频度(噪声数目占图像实际像素的百分比)对滤波器实际效果的影响。 四、实验原理 1.椒盐噪声 椒盐噪声又称脉冲噪声,是由图像传感器,传输信道,解码处理等产生的黑白相间的亮暗点噪声。椒盐噪声往往由图像切割引起。 椒盐噪声的PDF 是: 如果b>a ,灰度值b 在图像中将显示为一个亮点,a 的值将显示为一个暗点。若 或 为零,则脉冲噪声称为单级脉冲。如果 和 均不为零,尤其是他们近似相等时,脉冲噪声值将类似于随机分布在图像上的胡椒和盐粉微粒。 ()?? ? ??===其他0b z P a z P z p b a a P b P a P b P

微波遥感实验报告

实验一:SAR图像下载与认识 一:实验目的 1掌握SAR图像的下载方法; 2了解不同地物在图像上的特性; 二、实验要求 1掌握雷达图像的成像原理与地物特性 2数据说明 3本实验采用Sentinel-1卫星拍摄于2014年12月5日的天山山脉的遥感影像三、实验步骤 打开地理空间数据云网站; 图1 找到Sentinel-1卫星下载有效数据; 图2

在ERDAS中打开影像; 图3 分析地物在影像上的特性; 1雷达图像的成像机理 雷达图像的获取系统不同于光学影像获取系统,它是采用有源主动式工作方法,其本质是一个距离测量系统雷达图像.上的信息是地物目标对雷达波束的反应,而且主要是目标后向散射形成的图像信息,以及朝向雷达天线那部分被散射的电磁波所形成的图像信息由于地物目标所处的位置地物结构表面形态和介电性能等不同,对雷达波束的反应是不一样的同时不同雷达波段极化方式入射角也会使地物产生不同的反应,使其图像具有近距离压缩透视收缩叠掩阴影和地面起伏引起的影像移位等现象,因此,在图像.上形成不同的色调纹理和图案,与中心投影的光学影像有很大的差别。 2雷达图像的信息特点 地物目标对雷达波束的反应是散射(或反射)穿透和吸收r种情况并存,波长不同,对地物的穿透性是不一样的;地物目标的类型本身的结构表面的粗糙度和介电性能不同,则会对电磁波的穿透反射(或散射)和吸收带来不同程度的效应同时,入射雷达波束和地物的相对方向也有关系,在一定方向的条件下,地物目标可以产生强回波,在另一方向,回波则可能很弱或无回波例如平行于飞行方向的铁丝网(电力线),会产生强回波,垂直于飞行方向回波则很弱或消失因此,在雷达图像解译时,尽可能采用多侧视方向的图像 3目视解译 就本实验的雷达图像而言,主要有以下几种地物; 雷达波束的穿透性对冰雪覆盖区地物的判读有着独特的优势例如雪上被覆盖区域,在光学影像上很难辨清究竟是雪,还是湖泊,在雷达图像上则表现极为清晰对于雪山区域冰斗湖碛尾湖的判断,应采用多侧视方向,避免将阴影误判为湖泊。

相关文档