文档库 最新最全的文档下载
当前位置:文档库 › 开题报告查尔酮合成

开题报告查尔酮合成

开题报告查尔酮合成
开题报告查尔酮合成

毕业设计(论文)材料之二(2)

本科毕业设计(论文)开题报告题目:KF/MgO催化合成查尔酮的研究

课题类型:实验研究

学生姓名:王成磊

学号:3130405305

专业班级:应化133

学院:生物与化学工程学院

指导教师:朱逸伟

开题时间:2017年2月20日

2017年3月17日

一、本课题的研究意义、研究现状和发展趋势(文献综述)

1催化合成查尔酮的研究意义

查尔酮是黄酮类化合物的一种,其化学结构为1,3-二苯基丙烯酮,是一类重要的天然产物,多分布在菊科,豆科,苦苣苔科植物中,在玄参科,败酱科植物中也有发现。由于查尔酮分子结构具有较大的柔性,可以与许多受体结合,表现出多方面的生物学活性。作为植物内合成黄酮的前体,其本身也有重要的药理作用,人们从天然产物中提取分离以及通过化学、生物等方法合成的查尔酮类化合物中表现出抗肿瘤、抗寄生虫、抗病毒、抗菌、抗炎、抗血小板凝集等多种药理学性质[1]。因此,对查尔酮类化合物的研究与开发成为药物化学的一个研究热点。

近年来, 还有文献报道查尔酮的共轭效应使其电子流动性非常好, 且具有不对称的结构, 所以是优越的有机非线性光学材料, 可以作为光储存、光计算、激光波长转换材料[2,3]。此外, 查尔酮还可用作光化学中的光交联剂、荧光材料和液晶材料等[ 4,5]。除此之外查尔酮还是一种重要的有机合成中间体, 可用于香料和药物[6]等精细化学品的合成。

2查尔酮合成方法的研究现状

查尔酮的经典合成方法是使用强碱或强酸催化苯乙酮及其衍生物和芳香醛的羟醛缩合,收率10%—70%。近年来,各种催化剂的不断发现及对反应条件的大量探索,查尔酮的合成方法已趋向于多样化。

2.1碱性催化剂

董秋静[7]以苯甲醛和苯乙酮衍生物为原料,在氢氧化钠乙醇水溶液中,室温下制备了一系列的查尔酮衍生物,收率在60%—90%。此方法简便易操作,但缺点是该反应体系对设备腐蚀性比较大。

另有作者以未保护羟基的取代邻羟基查尔酮和取代苯甲醛为原料,在NaOH/乙醇溶液中,室温反应,合成了23种2'-羟基查尔酮,收率48%~90%。该法反应条件温和,步骤简捷,为类似化合物的合成提供了依据[8]。其缺点是查尔酮衍生物不易分离,且反应污染比较严重。使用碱性催化剂催化合成查尔酮的方法,是目前实验室中最为常用的,但是产品收率较低(10%~70%),而且副产物多。

2.2酸性催化剂

采用4-羟基苯乙酮与取代苯甲醛为原料, 在乙二醇溶液中,以硼酸为催化剂, 于110—120℃反应6 h,再经柱分离精制可得羟基查尔酮衍生物,反应收率为30%—54%[ 9]。此法较酚羟基保护法反应步骤短,易于分离和精制,为研究多羟基查尔

酮衍生物的生物活性提供了简便的合成方法,但不足之处是产率较低,反应时间长,产物难以精制分离。

很多路易斯酸如AlCl3、TiCl3、FeCl3均可催化芳香醛酮的羟醛缩合。在酸性化条件下,反应的时间一般都较长,且产率不高。

2.3金属有机化合物

钟琦等[10]报道了芳香碲Ylide与醛在碱性条件下的偶联制备查尔酮,收率64%~85%。不仅是THF-K2CO3制备比较困难,且价格昂贵。

有研究发现[11,12],有机碲氧化物双-对甲氧苯基氧化碲(BMPTO)对羟醛缩合有催化作用,得到了很好的结果,收率87%—97%。

吴春等[13]采用芳基锡为试剂,与取代肉桂酞氯在二-(三苯基膦)二氯化镍催化下进行交叉偶联合成了13种查尔酮,收率53%—92%,合成过程是按自由基链锁反应机理进行的。

有机金属合成法一般产率较高,反应速度快,但是产率较低,产物难以精制分离,消耗较大,因此最近几年这种方法较少使用。

2.4金属化合物

陆文兴[14]使用KF-Al2O3作为催化剂,合成了多种查尔酮。其特点是制备简单,提纯方便,且催化剂可反复使用,但反应时间太长,产率不高。

Sebti等[15]报道苯甲醛与苯乙酮在甲醇中,以锻制的硝酸钠或者硝酸锂于室温催化反应16—48h,缩合得到相应的反式查尔酮,收率70%—98%。芳环有推电子基时,反应减慢。

金属盐催化合成法制备简单,提纯方便,且可反复使用,缺点是反应时间太长,产率不高。

2.5微波、超声波

近年来发现超声波能有效地促进有机反应, 因而超声波技术在有机合成中的应用引起了人们的兴趣和重视[16]。许多固体催化过程能在超声辐射下加速进行。超声波的这种促进作用主要源于超声波的空化现象及附加效应,能够改善固体催化剂的表面形态和分散性等[17,18],为催化反应提供了一种特殊的物理化学环境, 同时伴随有强烈的冲击波和微射流,对固体催化剂表面起冲击和清洗作用, 加剧了反应的分子之间碰撞,使固体催化剂的结构、组成及反应活性产生显著的变化。巢芳家等[19] 报道了在超声波作用下,水滑石催化苯乙酮和取代苯甲醛合成查尔酮。反应速度更快,产率有很大提高。微波辐射可在较短时间内提供高能量, 使化学链断裂而迅速发生化学反应。曾碧涛等[20]在微波辐射无溶剂条件下, 用固体KF-Al 2O 3,催化苯乙酮与芳香醛进行羟醛缩合反应,合成了8个查尔酮衍生物, 产率90%—98%

朱凤霞等[21]研究了芳醛与乙酰基二茂铁在氢氧化钠存在下,以乙醇为溶剂, 经微波辐射合成了9个二茂铁基查尔酮衍生物。反应时间0.5—4 min,

操作简便。2.6绿色合成新方法

石秀梅等[22]直接利用间苯二酚作为起始原料,通过酰基化、Fries 重排、醇醛缩合反应,合成了3, 5-二羟基查尔酮, 获得了满意的收率(80%)。该方法具有反应

时间短、操作简便、收率高等优点。

CHO OH -O HO HO

3查尔酮合成的发展趋势

查尔酮类化合物具有多种活性,并且作为黄酮类化合物等多种天然产物的重要中间体,它的合成一直备受关注。传统的查尔酮及其衍生物的合成方法是以取代苯乙酮与取代苯甲醛在碱性醇溶液中缩合得到,但副反应多,影响产率,且大多数有机溶剂通常都比较贵,易燃、易爆、有毒。90年代发现有机碲对此反应具有较好的催化效果,但不足之处是制备较困难,价格昂贵。作为Aldol反应的一种,应用CS反应合成查尔酮化合物是检验碱性催化剂活性的重要方法之一,因此近年来涌现出更多新型的碱性催化剂。通过对CS 反应以及过渡金属催化下的CC偶联反应等方法的改进,目前已发展出了多种查尔酮合成方法,诸如微波、超声波、固相研磨等无溶剂反应。这些新方法在反应时间,操作简便性、反应收率、立体选择性以及环境友好等方面各具优势,为查尔酮的合成和工艺研究等提供了重要方法依据。

二、主要设计(研究)内容

80年代以来,发现微波辐射可使化学键断裂而发生化学反应,大大加快反应

速度,缩短反应时间,提高产品的产率。[23,24]本研究方案以苯乙酮为原料,与4种不同类型的醛在KF/MgO作催化剂,微波辐射下进行合成反应,制备4种查尔酮。在研究反应的多种影响因素后,筛选出较优反应条件,并进行底物拓展。微波辐射法比传统方法具有反应速度快(传统方法合成反应需2—15 h),产率高,无需机械搅拌等优点。

三、研究方案及工作计划(含工作重点与难点及拟采用的途径)

1 研究方案

本研究方案以苯乙酮为原料,与4种不同类型的醛在KF/MgO作催化剂,微波辐射下进行合成反应,制备出4种查尔酮。在研究反应的多种影响因素后,筛选出较优反应条件,并进行底物拓展。微波辐射法比传统方法具有反应速度快(传统方法合成反应需2—15 h),产率高,无需机械搅拌等优点,所以采取该方法加快反应速度。

2研究计划

2.1前期工作准备

时间安排:2017年1月10日—2017年3月6日

主要内容:做好实验前的一切准备。包括该课题的研究背景、研究意义、发展现状、发展趋势、外文参考的挑选与翻译、研究方法、实验内容、实施计划、可行性论证等前期工作。

2.2 实验部分

时间安排:2017年3月15日—2017年5月20日

实验试剂:苯乙酮、苯甲醛、4-硝基苯甲醛、4-氯苯甲醛、4-甲氧基苯甲醛、KF·2H2O、氯化钙、氧化镁、无水甲醇、95 %乙醇。(分析纯,国药集团化学试剂有限公司)

实验仪器:FC-104型电子天平、Nicolet550FT —IR 仪测定,KBr 压片、PE—240元素分析仪、GalanzWP800型微波炉、SHB-ⅢA型循环水式多用真空泵、101-1型电热恒温鼓风干燥箱、85-1型磁力加热搅拌器、加热套、薄层色谱用硅胶

GF254、B型玻璃仪器气流烘干器、SY-1型旋转蒸发仪、ZF-2型三用紫外仪EQUINOX55型傅立叶变换红外光谱仪、氧化镁干燥器。

合成路线:C O

CH 3+R CH

O

KF/MgO

C O C H C H R

其中R :a.OMe;b.H;c.Cl;d.NO 2。

实验计划:

时间安排:2017年3月15日—2017年3月20日

实验内容:催化剂KF/MgO 的制备

6 g KF·2H 2O 溶于10 mL 水中, 加入10g 中性MgO(100~200目), 在60 ℃水浴中搅拌1 h ,再升温到100 ℃蒸干水分,然后在120 ℃下烘4 h ,保存于氯化钙干燥器中。

时间安排:2017年3月25日—2017年4月25日

实验内容:查尔酮的合成

称取0.5 g KF/MgO , 0.6g(5mmoL)苯乙酮, 0.53 g(5 mmoL)苯甲醛和2 mL 干燥过的甲醇依次加入到25mL 锥型瓶中, 摇匀后放入微波炉中央位置。设定输出功率及反应时间, 反应完毕,(具体根据薄层色谱分析/TLC 来判断原料是否反应完全以及反应的转化率和选择性),取出, 趁热过滤, 并用热的甲醇洗涤, 然后蒸馏, 回收甲醇。静置加冰冷却,再用95%乙醇结晶至有产物析出,将静置液用抽滤瓶抽滤(在抽滤过程中可适当加水冲洗)得到查尔酮产物,收集固体产品烘干。精品可通过柱层析进一步分离和提纯。

2.3实验结果分析与后期工作

时间安排:5月1号—5月20号

主要内容:一方面进行实验结果分析论证,对于实验结果和性能研究结果进行仔细分析。另一方面进行撰稿工作,记录实验结果。

3工作重点与难点

重点:本实验主要需摸索量为:①什么样的原料配比最好、②怎样的催化剂用量最合适、③何种反应温度最佳、④何种反应溶剂反应效果最好。在催化剂种类方面我们选择KF/MgO 作为本实验的催化剂。同时,搅拌速度在本实验中暂不做讨论。

难点:本实验的主要影响因素有:原料配比、催化剂用量、反应溶剂、反应温度、搅拌速度、微波辐射功率、辐射时间等。当然问题远不止于此,操作过程遇到的难题一定不会少,但是我相信老师的指导与自身的努力,一定能按时按量的完成任务。

4拟采用的途径

反应因素确定的研究方法:本实验采用控制变量法。其中变量有:⑴原料配比、⑵催化剂用量、⑶反应溶剂、⑷反应温度。通过控制其中三个变量改变一个变量的方法来平行实验,最终选择最优方案。

5 可行性论证

5.1实验器材

FC-104型电子天平、Nicolet550FT-IR 仪测定,KBr 压片、PE-240元素分析仪、GalanzWP800型微波炉、SHB-ⅢA 型循环水式多用真空泵、101-1型电热恒温鼓风干燥箱、85-1型磁力加热搅拌器、加热套、薄层色谱用硅胶GF254、B 型玻璃仪器气流烘干器、SY-1型旋转蒸发仪、ZF-2型三用紫外仪EQUINOX55型

傅立叶变换红外光谱仪。

5.2可行性论证

目前,针对该课题,我们已经查询外文资料十多篇,中文资料几十篇,并通过网络、图书馆、校园资讯平台等多种途径来了解该课题的相关信息(包括其研究背景、研究意义、国内外目前的发展情况、该课题涉及的学术难题等)。因为是部分重复实验,所以老师的帮助是必不可少的,关于该课题,我的指导老师及其同事已经在《化学世界》、《化学试剂》等多家专业期刊杂志上发表文章,在该领域建树颇丰,有足够的实践经验和理论研究。相信在老师和我们的努力下,最终一定会有所成果。

6预期成果及其表现形式

希望最终课题能够顺利完成,能够制备出合格的产物,能够在研究反应的多种影响因素后,筛选出较优反应条件,并进行底物拓展。最后,关于该课题的结果呈现,我会以论文形式详细解说,并配以研究过程得出的实物辅以说明。有关具体的实验现象及结果分析会以图片形式穿插在答辩的PPT中,进行分析说明。

四:阅读的主要参考文献

[1]ZHENG H W,NIU X W,ZHU J. Progress in research of biological activites of chalcones[J] . Chin J New Drugs(中国新药杂志),2007,16(18) : 1445-1449.[2] KOES R.E.,FRANCESCA Q.JOSEPH N. The flavonoid biosynthetic path way in plants: function and evolution[J].Bioessays.1994, 16: 123-132.

[3] MARTIN C R. Structure, function, and regulation of the chalcone synthease[J]. 1993, 147: 233-284.

[4] 方正,唐伟方,徐芳. 萘丁美酮的合成工艺改进[J].中国药科大学学报, 2004, 35 (1) : 90-91

[5] 楼定忠,朱坡,刘泽贵. 萘丁美酮合成路线图解[J].中国医药工业杂志, 1996, 27

(5):238-239.

[6] 艾亨俭,李文玉. 萘普酮的又一合成法[J] . 中国医药工业杂志,1985, 16 (11) : 509-510

[7] 董秋静.对位取代查尔酮衍生物的合成[J] .医药及中间体, 2007, 37(5):31-35.

[8] 党珊, 刘锦贵, 王国辉.室温下2'-羟基查尔酮的合成[J] .合成化学, 2008, 16(4):460-463.

[9] 关丽萍, 尹秀梅, 全红梅, 等.羟基查尔酮类衍生物的合成[J] .有机化学, 2004, 24(10):1274-1277.

[10] 钟琦, 陆荣健.有机碲氧化物催化合成α, β-不饱和酮和2, 4-二烯酮[J] .应用化学, 1990, 7(3):89-92.

[11]Engman L, Cava M P.Bis(p-methoxypheny1)telluroxide, Anovelor ganotellurium [ J] . Tetrahedron Lett, 1981, 22:5251-5253.

[ 12] 钟琦, 邵建国, 刘长庆.用碲Ylide合成α, β-不饱和酮[ J] .有机化学, 1990, 20(3):459-463.

[ 13] 吴春,刘宝殿, 吴艳华, 等.有机锡试剂在查尔酮合成中的应用[ J] .黑龙江商学院学报, 1994, 10(3):52-57.

[ 14] 陆文兴,颜朝国,顾惠芬.查尔酮KF-Al2O3催化合成[ J] .化学试剂, 1995, 17(4):253-254.

[ 15] Sebti S, Solhy A, Smahi A, etal.Calcined sodium nitrate/natural phosphate an

extremely active catalyst for the easy Synthesis of chalcones in heterogeneous media [J] .Tetrahedron Lett,2001,42(3):7953.

[16] LiJT, YangW Z, WangSX, etal.Improved synthesis of chalcone sunder ultrasound irradiation[J] .Ultrasonic Sonochem, 2002, 9(7):237-239.

[17] 冯若, 李化茂.声化学及其应用[M] .合肥:安徽科学技术出版社,1992:198-20 1.

[18] 李廷盛, 尹其光.超声化学[M] .北京:科学出版社,1995:32-34.

[19] 巢芳家, 陆红梅, 马正飞, 等.超声辐射下n(Mg)∶n(Al)水滑石催化合成二硝基查尔酮的研究[J] .工业催化, 2007, 15(12):39-42.

[20] 曾碧涛, 赵志刚, 易奉敏, 等.微波促进无溶剂合成查尔酮衍生物[J] .合成化学, 2007, 15(5):625-627.

[21] 朱凤霞, 周建峰, 肖洪卿, 等.二茂铁基查尔酮衍生物的微波合成[J] .化学试剂, 2007, 29(7):434-443.

[22] 石秀梅, 邓士英, 邹桂华, 等.3, 5-二羟基查尔酮的合成[J] .化学工程师,2008, 13(6):8-9.

[23]Gedye R, Smith F,Westaway K, et al.The use of microwave ovens for rapid organic synthesis[ J] .Tetrahedron Lett , 1986 , 27(3):279

[24]黄志真.微波在有机合成中的应用[J] .化学试剂, 1996, 18(6):349

五、指导教师意见(签名)

2017年3月17日

植物查尔酮合成酶(chalconesynthase)活性比色法定量检

植物查尔酮合成酶(chalcone synthase)活性比色法定量检测试剂盒产品说明书(中文版)主要用途 植物查尔酮合成酶(chalcone synthase)活性比色法定量检测试剂是一种旨在通过香豆酰辅酶A和丙二酰辅酶A缩合反应系统中释放出巯基辅酶A,使用Ellman试剂后,产生黄色5-巯基-2-硝基苯甲酸产物吸光峰值的变化,即采用比色法来测定植物裂解样品中酶活性的权威而经典的技术方法。该技术经过精心研制、成功实验证明的。其适合于各种植物组织,包括种子(seed)、叶片(leaf)、根(root)、胚胎叶(cotyledon)、上胚轴(epicotyl)等查尔酮合成酶的活性检测。产品严格无菌,即到即用,操作简捷,性能稳定。 技术背景 查尔酮合成酶(chalcone synthase;CHS;EC2.3.1.74)是聚酮体合成酶(polyketide synthase;PKS)大家属中的一员,是启动类黄酮(flavonoid)化合物合成通路中第一步关键酶,形成植物系统性获得性抗性(systematic acquired resistance;SAR)的基础。查尔酮合成酶存在于细菌、植物和真菌中。在所有裸子植物(gymnosperm)和被子植物(angiosperm)的各种不同发育阶段中的不同组织中表达。查尔酮合成酶为同源二聚体,分子量为40至4000Kd,由环境压力,包括UV照射、伤口、病原菌袭击等诱导,通过丙二酰辅酶A脱羧基反应(decarboxylation)、与香豆酰辅酶缩合、聚酮体链延展(chain elongation)、中间产物环状化(cyclization)和芳构化(aromatization)产生查尔酮,一种类黄酮化合物前体,作为化学信使,由此生成各种后续继发性代谢化合物,参与抗病原微生物例如异黄酮植物保护素(isoflavonoid phytoalexin)、花青素花色素化、抵御环境压力(UV光保护)、花粉育性(pollen fertility)、抗氧化、共生根系结瘤(symbiotic root nodulation),以及作为抗生素、免疫抑制剂、抗肿瘤和抗真菌的药物作用。还在细菌的囊肿形成和阿米巴细胞分化中产生作用。基于香豆酰辅酶A和丙二酰辅酶A,在敏感性抑制剂木犀草素(Luteolin)存在与否的情况下,受到查尔酮合成酶的作用,缩合产生查尔酮,并释放出巯基辅酶A(CoA-SH),进而与Ellman 试剂5,5-二硫基-双(2-硝基苯甲酸)[5,5,-dithiobis-(2-nitrobenzoic acid);DTNB]反应后,产生黄色的5-巯基-2-硝基苯甲酸(5-thio-2-nitrobenzoic acid;TNB),通过其吸收峰值的变化(412nm波长),来定量分析查尔酮合成酶的活性。查尔酮合成酶反应系统为: 产品内容 清理液(Reagent A)毫升 裂解液(Reagent B)毫升 缓冲液(Reagent C)毫升 反应液(Reagent D)毫升 底物液(Reagent E)毫升 专性液(Reagent F)微升 产品说明书1份 保存方式 保存缓冲液(Reagent C)、反应液(Reagent D)和底物液(Reagent E)在-20℃冰箱里;其余的保存在4℃冰箱里;反应液(Reagent D)和底物液(Reagent E)避免光照;有效保证6月

查尔酮的合成

引言 二苯基丙烯酮,又叫查耳酮,是合成黄酮类化合物的重要中间体,其广泛的存在于自然界中,在许多文献中都有过从天然产物中分离提取查尔酮的报道[1]。 它对植物抵抗疾病、寄生虫等起重要作用。其本身也有重要的药理作用。由于其分子结构具有较大的柔性,能与不同的受体结合,因此具有广泛的生物活性[2,3]。由于其显著的生物药理活性及独特的可塑性结构,近年来引起了化学工作者的研究兴趣。如:Laliberte R.报道了查耳酮的抗蛲虫作用[4];程桂芳,何克勤等在1996年报道了查尔酮的抗过敏性作用[5],表现了多种药理作用。DE VINCENZOR等在2000年发现了类黄酮化合物中的查尔酮,具有化学预防和抗肿瘤活性[6-11]。同时,它还可作为抗生素、抗疟疾的药物成分。因此,查耳酮化合物在医药化学方面有广泛的用途。 具有C=C-C=O结构的查耳酮化合物,和两端的苯环形成一个大的π键。当受到光波的照射后,电子在一定方向上发生移动,产生超极化效应;此时的π电子趋于离域,往往表现出较大的非线性光学效应。因而,这一类的化合物在非线性光学材料方面具有广泛的应用前景。同时,查耳酮化合物还可以作为聚合物的支链,在液晶领域也有广泛的用途[12,13]。除此之外查尔酮还是一种重要的有机合成中间体,可用于香料和药物等精细化学品的合成[14]。 合成查尔酮的方法很多,经典的合成方法是使用强碱如醇钠或者强酸在无水乙醇中催化苯乙酮和苯甲醛的羟醛缩合,合成路线为: O CH3 R CHO H+orOH- O R Scheme 1

该反应体系对设备腐蚀较大,产物不易分离且污染严重,且副反应多,产率较低,产率在10% ~70% [15]。 近年来也有报道采用金属有机化合物 、NaOH 和1.2丁基2.3.2甲基六氟磷酸咪唑盐、KF 2Al 2O 3等作为碱性催化剂在溶液中合成查尔酮, 但催化剂制备较困难,价格比较昂贵,反应时间较长,且产率不高。随着各种催化剂的不断发现及对反应条件的大量探索,查尔酮的合成方法已趋向于多样化。其代表性的合成方法有: 1.溶液合成 2007年董秋静等报道[16]:以苯甲醛和苯乙酮衍生物为原料,在氢氧化钠乙醇水溶液中,室温下制备了一系列的查尔酮衍生物。方法简单,操作容易,后处理方便,收率在60%~90%之间,特别适合于羟基查尔酮的合成。合成路线为: COCH 312CHO NaOH/CH 3CH 2OH R 1R 2O Scheme 2 2.微波合成 自从Gedye 等[17]1986年将微波辐射用于有机合成反应以来,微波技术在有机合成中已得到了广泛的应用[18,19]。 2007年朱凤霞等[20]报道了用NaOH 作催化剂、无水乙醇作溶剂,在微波辐射条件下使乙酰基二茂铁与芳醛发生缩合反应以制备9个二茂铁基查尔酮衍生物。反应时间只需0. 5~4 min,产率61% ~84%之间,操作简便。 2006年徐洲[21]等报道了用2-羟基苯乙酮与取代苯甲醛在20%NaOH 水溶液中,在四丁基溴化铵( TB2AB)存在下,微波辐射3~7min,合成了13种羟基查尔酮及其衍生物,收率良好,在57%~85%之间。反应路线为:

磺胺合成工艺的改进

336. 4Eisner U,Kuthan J.The chemistry of dihydrophyridines.Chem Rev,1972,72B1. 收稿日期:1998-09-21 磺胺合成工艺的改进 李志裕林克江尤启冬李明富1(南京210009中国药科大学;1枣庄277000薛城人民医院) 磺胺是应用广泛的原料药及医药中间体,现生产磺胺的起始原料为乙酰苯胺[1],成本较高。GI Braz[2]等报导了一条采用二苯脲作为起始原料的路线,该路线经氯磺化,氨化,水解三步反应制得,操作繁琐,收率低。我们对其进行了改进,使之更适合于工业生产。原文献中,氨化产物要经过吡啶溶解,脱色,再用热水处理,或用氢氧化钠溶解,盐酸酸化才进行下一步水解反应。本文叙述了氨化产物不经提纯,直接水解,简化了操作,总收率由45%~50%提高到65.7%,同时,对二苯脲的合成工艺进行了改进。原文献[3]中需用大量的醇或苯胺作为溶剂,本文革掉了溶剂,同时加入少量锌粉,采用氮气保护,以防高温下苯胺被氧化,且收率达到94.5%。合成路线如下。 实验部分 1二苯脲的合成 苯胺(50g,0.54mol)与尿素(16.2g,0.27mol)混和,同时加入1g锌粉,氮气保护下缓慢升温,1h后,升至190e,5h后,达240e,继续反应1h,冷却,所得白色固体用0.01M HCl研磨,抽滤,水洗,得二苯脲54.2g(94. 5%),mp229~234e(文献[3]234~236e)。2二苯脲二磺酰氯的合成 氯磺酸(47.3g,0.4mol)冷却至10e,于20e下分次加入二苯脲(10.6g,0.05mo l),全部加完后升温至50e,反应4h,冷却至室温,反应液倾入碎冰中,静置,抽滤,冰水洗,得蜡状固体。 3磺胺的合成 将上步反应制得的产品在10e下分次加到25ml 浓氨水中,搅拌,反应2h,抽滤,得蜡状固体为氨化物。将氨化物加到30ml的50%氢氧化钠溶液中,回流4h 后降温到80e,滴加浓盐酸,调pH5~6,冷却,抽滤得粗品,用水重结晶,得白色磺胺结晶11.3g,mp164~ 165.3e,收率65.7%(以二苯脲计算)。产品的红外光谱与文献[4]一致,并经元素分析及薄层层析鉴定。 参考文献 1李正化主编.有机药物合成原理.北京:人民卫生出版社, 1985B423. 2Braz GI,Lizgunova M U,Ch emerisskaya AA,et al. Sulfanilamide from diph enylurea.J Applied Chem(USSR), 1946,19B379(CA,41:1215f,1947). 3Nagaraj R Ayyangar,Anil R Chowdhary,Uttam R Kalkote,et al.A non-phosgen e route for th e synthesis of sym-N,N c-diethyldiphenylurea.Chemis try and Industry,1988B599. 4中华人民共和国卫生部药典委员会编.药品红外光谱集. 北京:化学工业出版社,1995B560. 收稿日期:1998-05-25 醛糖还原酶抑制剂依帕司特的合成 姜晔张荣久麻凯旋任宇王德才梁淑芳(南京210009江苏省药物研究所)依帕司特(epalrestat,1),化学名5-[(1Z,2E)-2-甲 基-3-苯基-2-丙烯亚基]-4-氧代-2-硫代-3-噻唑烷乙酸,由日本小野药品工业株式会社1992年1月21日日本姜晔,男,32岁。1990年毕业于中国药科大学药物化学专业,硕士学位 # 25 # 中国现代应用药学杂志1999年10月第16卷第5期

查尔酮的合成

引 言 二苯基丙烯酮,又叫查耳酮,是合成黄酮类化合物的重要中间体,其广泛的存在于自然界中,在许多文献中都有过从天然产物中分离提取查尔酮的报道[1]。 它对植物抵抗疾病、寄生虫等起重要作用。其本身也有重要的药理作用。由于其分子结构具有较大的柔性,能与不同的受体结合,因此具有广泛的生物活性[2,3] 。由于其显著的生物药理活性及独特的可塑性结构,近年来引起了化学工作者的研究兴趣。如:Laliberte R.报道了查耳酮的抗蛲虫作用[4] ;程桂芳,何克勤等在1996年报道了查尔酮的抗过敏性作用[5] ,表现了多种药理作用。DE VINCENZOR 等在2000年发现了类黄酮化合物中的查尔酮,具有化学预防和抗肿瘤活性[6-11] 。同时,它还可作为抗生素、抗疟疾的药物成分。因此,查耳酮化合物在医药化学方面有广泛的用途。 具有C=C-C=O 结构的查耳酮化合物,和两端的苯环形成一个大的π键。当受到光波的照射后,电子在一定方向上发生移动,产生超极化效应;此时的π电子趋于离域,往往表现出较大的非线性光学效应。因而,这一类的化合物在非线性光学材料方面具有广泛的应用前景。同时,查耳酮化合物还可以作为聚合物的支链,在液晶领域也有广泛的用途[12,13] 。除此之外查尔酮还是一种重要的有机合成中间体,可用于香料和药物等精细化学品的合成[14] 。 合成查尔酮的方法很多,经典的合成方法是使用强碱如醇钠或者强酸在无水乙醇中催化苯乙酮和苯甲醛的羟醛缩合,合成路线为: O CH 3 R CHO H +orOH -O R Scheme 1 该反应体系对设备腐蚀较大,产物不易分离且污染严重,且副反应多,产率较低,产率在10% ~70% [15] 。 近年来也有报道采用金属有机化合物 、NaOH 和1.2丁基2.3.2甲基六氟磷酸咪唑盐、KF 2Al 2O 3等作为碱性催化剂在溶液中合成查尔酮, 但催化剂制备较困难,价格比较昂贵,反应时间较长,且产率不高。随着各种催化剂的不断发现及对反应条件的大量探索,查尔酮的合成方法已趋向于多样化。其代表性的合成方法有: 1.溶液合成 2007年董秋静等报道[16] :以苯甲醛和苯乙酮衍生物为原料,在氢氧化钠乙醇水溶液中,室温下制备了一系列的查尔酮衍生物。方法简单,操作容易,后处理方便,收率在60%~90%之间,特别适合于羟基查尔酮的合成。合成路线为: COCH 31 2 CHO NaOH/CH 3CH 2OH R 1R 2 O Scheme 2 2.微波合成 自从Gedye 等[17] 1986年将微波辐射用于有机合成反应以来,微波技术在有机合成中已得到了广泛的应用[18,19] 。

实验四 磺胺醋酰钠的合成

实验四 磺胺醋酰钠的合成 一、目的要求 1. 通过磺胺醋酰钠的合成,了解用控制pH 、温度等反应条件纯化产品的方法。 2. 加深对磺胺类药物一般理化性质的认识。 二、实验原理 磺胺醋酰钠用于治疗结膜炎、沙眼及其它眼部感染。磺胺醋酰钠化学名为N-[(4-氨基苯基)-磺酰基]-乙酰胺钠-水合物,化学结构式为: NH 2 2NCOCH 3 H 2O . 磺胺醋酰钠为白色结晶性粉末;无臭味,微苦。易溶于水,微溶于乙醇、丙酮。 合成路线如下: NH 2 2NH 2 (CH 3CO)2O +2NCOCH 3 pH7-8 NH 2 2NHCOCH 3 NH 2 2NCOCH 3 HCl pH4-5 NaOH 三、实验方法 (一)磺胺醋酰的制备 在装有搅拌棒及温度计的三颈瓶中,加入磺胺17.2 g ,22.5%氢氧化钠22 mL ,开动搅拌,于水浴上加热至50℃左右。待磺胺溶解后,分次滴加醋酐13.6 mL ,77% 氢氧化钠12.5 mL (首先,滴加醋酐3.6 mL ,77% 氢氧化钠2.5 mL ;随后,每次间隔5 min ,将剩余的77% 氢氧化钠和醋酐分5次交替加入)。加料期间反应温度维持在50~55℃,反应pH 值为12~13;加料完毕继续保持此温度反应30

min。反应完毕,停止搅拌,将反应液倾入250 mL烧杯中,加水20 mL稀释,用浓盐酸调至pH 7,于冷水浴中放置30 min,并不时搅拌析出固体,抽滤除去。滤液用浓盐酸调至pH 4~5,抽滤,得白色粉末。 用3倍量(3 mL / g)10% 盐酸溶解得到的白色粉末,不时搅拌,尽量使单乙酰物成盐酸盐溶解,抽滤除不溶物。滤液加少量活性碳室温脱色10 min,抽滤。滤液用40% 氢氧化钠调至pH 5,析出磺胺醋酰,抽滤,压干。将固体溶于10~15倍水中,加热溶解,趁热抽滤,得磺胺醋酰。 (二)磺胺醋酰钠的制备 将磺胺醋酰置于50 mL烧杯中,于90℃热水浴上滴加计算量的20%氢氧化钠至固体恰好溶解,放冷,析出结晶,抽滤(用丙酮转移),压干,干燥,计算收率。 注释: 1.在反应过程中交替加料很重要,以使反应液始终保持一定的pH值(pH 12~13)。 2.在交替加入氢氧化钠和醋酐时,先加氢氧化钠,再加醋酸,加料采取滴 加方式,并保持持续搅拌。 3.按实验步骤严格控制每步反应的pH值,以利于除去杂质。 4.将磺胺醋酰制成钠盐时,应严格控制20% NaOH溶液的用量,按计算量 滴加。 NH2 2NHCOCH3 NaOH NH2 2 NCOCH3 ++H 2 O 21440 12.5X X=2.3 g X 12.5 40 214:: = 由计算可知需2.3 g NaOH,即滴加20% NaOH 11.5 mL便可。因磺胺醋酰钠水溶性大,由磺胺醋酰制备其钠盐时若20% NaOH的量多于计算量,则损失很大。必要时可加少量丙酮,以使磺胺醋酰钠析出。 5.除杂质流程见图一。

化工专业开题报告范文.doc

化工专业开题报告范文 学了化工的你,知道自己的专业开题报告要怎么写吗?下面是为大家带来的,仅供参考。 1: 25万吨/年二甲醚精馏系统及二甲醚精馏塔设计 一、课题的目的与意义 二甲醚又称甲醚,简称DME,分子式:CH3OCH3 ,结构式: CH3—O—CH3 。二甲醚在常温常压下是一种无色气体或压缩液体,具有轻微醚香味。相对密度(20℃)0.666,熔点-141.5℃,沸点-24.9℃,室温下蒸气压约为0.5MPa,与石油液化气(LPG)相似。溶于水及醇、乙醚、丙酮、氯仿等多种有机溶剂。易燃,在燃烧时火焰略带光亮,燃烧热(气态)为1455kJ/mol。常温下DME具有惰性,不易自动氧化,无腐蚀、无致癌性,但在辐射或加热条件下可分解成甲烷、乙烷、甲醛等。 二甲醚是醚的同系物,但与用作麻醉剂的乙醚不一样,却具有神经毒性;能溶解各种化学物质;由于其具有易压缩、冷凝、气化及与许多极性或非极性溶剂互溶特性,广泛用于气雾制品喷射剂、氟利昂替代制冷剂、溶剂等,另外也可用于化学品合成,用途比较广泛。 二甲醚作为一种基本化工原料,由于其良好的易压缩、冷凝、汽化特性,使得二甲醚在制药、燃料、农药等化学工业中有许多独特的用途。如高纯度的二甲醚可代替氟里昂用作气溶胶喷射剂和致冷剂,减少对大气环境的污染和臭氧层的破坏。由于其良好的水溶性、油溶性,使得其应用范围大

大优于丙烷、丁烷等石油化学品。代替甲醇用作甲醛生产的新原料,可以明显降低甲醛生产成本,在大型甲醛装置中更显示出其优越性。作为民用燃料气其储运、燃烧安全性,预混气热值和理论燃烧温度等性能指标均优于石油液化气,可作为城市管道煤气的调峰气、液化气掺混气。也是柴油发动机的理想燃料,与甲醇燃料汽车相比,不存在汽车冷启动问题。它还是未来制取低碳烯烃的主要原料之一。由于石油资源短缺、煤炭资源丰富及人们环保意识的增强,二甲醚作为从煤转化成的清洁燃料而日益受到重视,成为2010年来国内外竞相开发的性能优越的碳一化工产品。作为 LPG和石油类的替代燃料,二甲醚是具有与LPG的物理性质相类似的化学品,在燃烧时不会产生破坏环境的气体,能便宜而大量地生产。与甲烷一样,被期望成为21世纪的能源之一。 二、研究现状和前景展望 1.研究现状 目前DME的制取工艺有合成气一步法以及甲醇两步法,其中两步法包括甲醇液相法以及气相法。甲醇液相硫酸催化法和甲醇气相法制取二甲醚的生产技术较为成熟,两种方法均有工业装置运转。 甲醇脱水法以精甲醇为原料,脱水反应副产物少,二甲醚纯度高达99%,使用于有较高要求的气雾产品,也可以用作制冷剂或医用气雾剂的抛射剂5,且三废排放少。该工艺比较成熟,可以依托老企业建设新装置,也可单独建厂生产。但该方法要经过甲醇合成、甲醇精馏、甲醇脱水和二甲醚精馏等工艺,流程较长,因而设备投资大,产品成本高,受甲醇市场波动的影响也比较大。

羟醛缩合合成查尔酮

广东石油化工学院《研究型实验》羟醛缩合合成查尔酮 学院(系):化学工程学院 专业:化学工程与工艺

摘要: 查尔酮是一种黄酮类化合物,是合成多种天然化合物重要的有机合成中间体。查尔酮的化学结构为1,3-二苯基丙烯酮,以它为母体的天然化合物存在于甘草、红花等植物中,这些天然查尔酮常含酚羟基。其常见合成方法是以苯甲醛和苯乙酮为原料,加入碱、酸或金属等物质作为催化剂进行羟醛缩合反应,但产率较低,副产物多。本次实验是以苯甲醛和苯乙酮为原料,选择了适当的催化剂,还运用了搅拌装置、重结晶装置、薄层色谱分离装置等,由于其显著的生物药理活性及独特的可塑性结构,近年来引起了化学工作者的研究兴趣。本研究实验的进行是有必要的。 关键词查尔酮羟醛缩合反应搅拌装置重结晶装置薄层色谱分离装置

Aldol condensation combining Chalcone Abstract: Flavonoids is a kind of Chalcone is synthesis of a variety of natural compounds are important organic intermediates.The chemical structure of Chalcone 1 3 - diphenyl ketone of propylene,Maternal natural compounds for it exists in Licorice safflower plants, etc,this naturally flavonoids often phenol hydroxyl.It is the usually way to carry out the condensation reaction of hydroxyl aldehyde with the addition of alkali, acid or metal as catalyst, the benzene formaldehyde and benzene ethyl ketone were used as raw materials.But the yield was lower and the by-products were more.In this experiment, the suitable catalyst was selected as the raw material of benzene formaldehyde and benzene ethyl ketone.Stirring device, recrystallization device, thin layer chromatography separation device, etc. are also used.Because of its significant biological and pharmacological activity and plasticity of the unique structure, in recent years has attracted the interest of chemists.It is necessary to carry out the experiment in this research. Key words Flavonoid Aldol condensation reaction Mixing plant Recrystallization device Thin layer chromatographic separation device

磺胺的制备及工艺条件考察

磺胺的制备及工艺条件考察 二实验目的:通过实验选择一条较为合理的制备磺胺的合成方法, 三实验原理: 1.由二苯脲制的磺胺: 2.由乙酰苯胺制的磺胺: 三药物概述: 四完成合成与制剂过程试验操作方法、工艺要点、注意事项: 由二苯脲制的: (1)加6.36g二苯脲于三口烧瓶中,搅拌情况下加入16ml氯磺酸混合均匀,水浴加热11:02时60℃保温搅拌4小时,降温加水进行酸分解,加水后继续搅拌片刻。 (2)将50ml氨水和150ml乙醇搅拌下投入混合苯脲磺酰氯,控制温度78℃回流1.5小时。 (3)加入NaOH10g再继续回流3小时,将反应液移入烧杯中加HCl调PH5到6,得结晶静置,第二天抽滤,得成品。滤液继续静置第三天进行抽滤。 2.由乙酰苯胺制的: [1]乙酰苯胺:氯磺酸:氯化钠=1:4.6:0.4 温度:55℃ 时间:2.5h 乙酰苯胺氯磺化 (1)按图装好反应装置,称取5.0g干燥的乙酰苯胺置于干燥的250mL三颈瓶中,再在分液漏斗中加入20mL氯磺酸。由于所加氯磺酸量少,乙酰苯胺不易溶解,加入环己烷作为溶剂溶解。(2)开启水泵,减压抽气,再搅拌的条件下,在冷水浴下慢慢将20mL氯磺酸滴入三颈瓶中,待滴加完毕,继续搅拌至乙酰苯胺溶解消失。 (3)水浴加热(80℃左右)15~20min。快到反应时间时取来冰水。 (4)打开安全阀,连通大气,然后用冰水冷却三颈瓶。 (5)将冷却的反应液转移到原滴液漏斗中,然后在三颈瓶中加入约100g碎冰块,再按装置图安装好,三颈瓶外部用冰冷却,开启水泵,将反应液滴入三颈瓶中,可见有大量的沉淀生成。同时环己烷不溶于水而与所得目标物分开。 (6)准备布什漏斗进行抽滤,得对-乙酰氨基苯磺酰氯固体。 对-乙酰氨基磺酰氯的氨解 将上述抽干的固体转移至100mL小烧杯中,在搅拌下加入15mL浓氨水,由于操作不当有冷却而无产品生成。 [2]乙酰苯胺:氯磺酸:氯化钠=1:5.0:0.6 温度:50℃ 时间:2.5h 乙酰苯胺氯磺化 (1)按图装好反应装置,称取5.0g干燥的乙酰苯胺置于干燥的250mL三颈瓶中,再在分液漏斗中加入20mL氯磺酸。并且准备冰水。 (2)开启水泵,减压抽气,再搅拌的条件下,在冷水浴下慢慢将20mL氯磺酸滴入三颈瓶中,待滴加完毕,继续搅拌至乙酰苯胺溶解消失,水浴加热(80℃左右)15~20min。打开安全阀,连通大气,然后用冰水冷却三颈瓶。 (3)将冷却的反应液转移到原滴液漏斗中,然后在三颈瓶中加入约100g碎冰块,再按装置图安装好,三颈瓶外部用冰冷却,开启水泵,将反应液滴入三颈瓶中,有大量的沉淀生成。 (4)抽滤,得对-乙酰氨基苯磺酰氯固体。 对-乙酰氨基磺酰氯的氨解 将上述抽干的固体转移至100mL小烧杯中,在搅拌下加入15mL浓氨水,当固体溶解又重新生成后,继续搅拌10 min。 对-乙酰氨基苯磺酰胺的水解

己二酸制备

实验报告 尼龙66前体的制备 一、实验目的 1、学习由环己醇氧化制备环几酮和由环几酮氧化制备己二酸的基本原理。 2、掌握由环己醇氧化制备环己酮和由环己酮氧化制备己二酸的实验操作。 3、进一步了解盐析效应及萃取在分离有机化合物中的应用。 4、综合训练并掌握控温、减压抽滤、蒸馏、重结晶等操作技能。 二、实验原理 实验室制备脂肪和脂环醛、酮最常用的方法是将伯醇和仲醇用铬酸氧化。铬酸是重铬酸盐与40-50%硫酸的混合液。制备相对分子量低的醛,可以将铬酸滴加到热的酸性醇溶液中,以防止反应混合物中有过量的氧化剂存在,同时将较低沸点的醛不断蒸出,可以达到中等产率。尽管如此,仍有部分醛被进一步氧化成羧酸,并生成少量的酯。用此法制备酮,酮对氧化剂比较稳定,不易进一步被氧化。铬酸氧化醇是放热反应,必须严格控制反应温度以免反应过于剧烈。 本实验反应方程式为: 羧酸常用烯烃、醇、醛、酮等经硝酸、重铬酸钾的硫酸溶液或高锰酸钾等氧化来制备。本实验以环己酮为原料,在碱性条件下以高锰酸钾为氧化剂来制备己二酸,反应方程式: C 6H 10 O+MnO 4 -+2OH-→HOOC(CH 2 ) 4 COOH+MnO 2 +H 2 O 三、实验试剂和仪器装置: 1、仪器: 圆底烧瓶(250ml,100ml),烧杯(250ml,100ml) ,量筒(100ml ,10ml),,直型冷凝管,尾接管,蒸馏头,温度计,电热套,抽滤瓶,布氏漏斗,真空泵,蒸发皿,表面皿,分液漏斗,玻璃棒,石棉网,铁架台,酒精灯。 2、主要试剂: 浓H 2SO 4 ,Na 2 Cr 2 O 7 ,H 2 C 2 O 4 ,NaCl,无水MgSO 4 ,KMnO 4 ,NaOH10%,Na 2 SO 3

何首乌苯甲酮合成酶基因的克隆及序列分析

何首乌苯甲酮合成酶基因的克隆及序列分 析 (作者:__________ 单位:___________ 邮编:___________ ) 【摘要】目的克隆何首乌苯甲酮合成酶基因并作序列分析。 方法以何首乌Polygo num multiflorum Thu nb.为材料,根据其它植物苯甲酮合成酶(Benzalacetone synthase ,BAS)基因cDNA序列的保守区域设计引物,利用RT PCR和3〔RACE,克隆其基因。结果从何首乌叶cDNA中克隆出了长度为1 049 bp的基因片段。序列分析表明该片段具有典型的CHS基因家族的结构域,为何首乌的BAS基因片段,命名为PmBAS。将得到的序列提交Gen Ba nk,序列号为FJ601686。对获得的PmBAS的氨基酸序列进行比较分析,发现PmBAS不含有 Phe215,这种差异可能是CHS与BAS催化不同反应的重要原因之一。何首乌BAS与其它植物CHS的氨基酸序列的进化分析表明,其与同为蓼科的虎杖和掌叶大黄的同源性较近。结论对利用基因工程技术促进何首乌蒽醌合成具有重要意义。 【关键词】何首乌;苯甲酮合成酶;基因克隆;序列比较蒽醌(Anthraquinone)是一类重要的中草药活性成分,常见于何首乌、决

明、大黄、虎杖、芦荟和茜草等植物中,具有抗菌、泻下、利尿、抗氧化和过氧化作用、抗诱变和保肝等多种功效[1, 2]。Dewick 等]3]与VELl[EK等[4]认为,蒽醌的合成大致分为3个阶段: ①以乙酰辅酶A为起始单元,连续与8个丙二酸单酰辅酶A发生缩合,引入8个二碳单位,最后生成蒽醌的基本骨架——八酮化合物; ②八酮化合物经过还原、脱羧及氧化等步骤,形成大黄酚、芦荟大黄 素与大黄酸等蒽醌类化合物;③八酮化合物经过水解、脱羧、脱水与甲基化等步骤,形成大黄素与大黄素甲醚等蒽醌类化合物(见图 1 )。在第1阶段中,催化乙酰辅酶A与丙二酸单酰辅酶A缩合的反应是由植物查尔酮合成酶系催化完成的。查尔酮合成酶系属于植物皿型聚 酮合成酶的一个家族,包括了查尔酮合成酶(Chalcone synthase, CHS )、芪合成酶(Stilbene synthase ,STS )、吡喃酮合成酶 (2[pyrone synthase,2PS)、苯甲酮合成酶(BAS)、吖啶酮合成酶(Acrido ne syn thase ,ACS )和芦荟松合成酶(Aloes one synthase,ALS)等成员,它们的氨基酸序列相似性达60%?70% :5,6]。近几年来,一系列功能不同的查尔酮合成酶系不断从蓼科植物中被克隆和鉴定。如Abe等]5]从蓼科植物掌叶大黄Rheum palmatum Linn.中克隆得到CHS与BAS °CHS能催化3分子的丙二酸单酰辅酶A和1分子对香豆酰[辅酶A结合形成查尔酮。BAS能催化1分子pcoumaroyl _辅酶A与1分子的丙二酸单酰辅酶A,缩合生成具有抗炎作用的苯乙烯基丙酮。Junghanns等]7]也从掌叶大黄中克隆得到ALS,能够催化6分子的乙酰辅酶A,形成芦荟松。

开题报告查尔酮合成

毕业设计(论文)材料之二(2) 本科毕业设计(论文)开题报告题目:KF/MgO催化合成查尔酮的研究 课题类型:实验研究 学生姓名:王成磊 学号:3130405305 专业班级:应化133 学院:生物与化学工程学院 指导教师:朱逸伟 开题时间:2017年2月20日 2017年3月17日

一、本课题的研究意义、研究现状和发展趋势(文献综述) 1催化合成查尔酮的研究意义 查尔酮是黄酮类化合物的一种,其化学结构为1,3-二苯基丙烯酮,是一类重要的天然产物,多分布在菊科,豆科,苦苣苔科植物中,在玄参科,败酱科植物中也有发现。由于查尔酮分子结构具有较大的柔性,可以与许多受体结合,表现出多方面的生物学活性。作为植物内合成黄酮的前体,其本身也有重要的药理作用,人们从天然产物中提取分离以及通过化学、生物等方法合成的查尔酮类化合物中表现出抗肿瘤、抗寄生虫、抗病毒、抗菌、抗炎、抗血小板凝集等多种药理学性质[1]。因此,对查尔酮类化合物的研究与开发成为药物化学的一个研究热点。 近年来, 还有文献报道查尔酮的共轭效应使其电子流动性非常好, 且具有不对称的结构, 所以是优越的有机非线性光学材料, 可以作为光储存、光计算、激光波长转换材料[2,3]。此外, 查尔酮还可用作光化学中的光交联剂、荧光材料和液晶材料等[ 4,5]。除此之外查尔酮还是一种重要的有机合成中间体, 可用于香料和药物[6]等精细化学品的合成。 2查尔酮合成方法的研究现状 查尔酮的经典合成方法是使用强碱或强酸催化苯乙酮及其衍生物和芳香醛的羟醛缩合,收率10%—70%。近年来,各种催化剂的不断发现及对反应条件的大量探索,查尔酮的合成方法已趋向于多样化。 2.1碱性催化剂 董秋静[7]以苯甲醛和苯乙酮衍生物为原料,在氢氧化钠乙醇水溶液中,室温下制备了一系列的查尔酮衍生物,收率在60%—90%。此方法简便易操作,但缺点是该反应体系对设备腐蚀性比较大。 另有作者以未保护羟基的取代邻羟基查尔酮和取代苯甲醛为原料,在NaOH/乙醇溶液中,室温反应,合成了23种2'-羟基查尔酮,收率48%~90%。该法反应条件温和,步骤简捷,为类似化合物的合成提供了依据[8]。其缺点是查尔酮衍生物不易分离,且反应污染比较严重。使用碱性催化剂催化合成查尔酮的方法,是目前实验室中最为常用的,但是产品收率较低(10%~70%),而且副产物多。 2.2酸性催化剂 采用4-羟基苯乙酮与取代苯甲醛为原料, 在乙二醇溶液中,以硼酸为催化剂, 于110—120℃反应6 h,再经柱分离精制可得羟基查尔酮衍生物,反应收率为30%—54%[ 9]。此法较酚羟基保护法反应步骤短,易于分离和精制,为研究多羟基查尔

磺胺的合成-多步骤合成对氨基苯磺酰胺

广州大学化学化工学院 本科学生综合性、设计性实验报 告 实验课程有机化学基础实验 实验项目磺胺的合成-多步骤合成对氨基苯磺酰胺 专业班级 学号姓名 指导教师 开课学期至学年学期 时间年月日

磺胺的合成 —多步骤合成对氨基苯磺酰胺 姓名: 摘要:对氨基苯磺酰胺作为一种简单的磺胺药,投入大量生产。能抑制多种细菌和少数病毒的生长和繁殖,用于防治多种病菌感染。本实验以苯为原料经过硝化、还原、酰胺化、氯磺化、氨置换、水解及中和等一系列反应,得到磺胺。最后通过测定熔点和红外光谱图鉴定磺胺的结构。 关键词:对氨基苯磺酰胺、磺胺药物,红外光谱 Abstract:As a simple sulfa drugs, Sulfanilamide put into mass production. Sulfa drugs can inhibit the growth and multiplicationof certainkinds of bacteria and a few virusfor the preventingbacteriainfections. In this experiment, benzene was treated by nitration, reduction, acylation, chlorine, ammonia substitution, hydrolysis and a series of reactions to get sulfanilamide. The structure of sulfanilamidewas characterized by melt point and IRspectra analysis. Key words:Ammonium p-aminobenzene sulfonic acid, sulfa drugs,IR 前言:磺胺药物是含磺胺基团合成抗菌药的总称,能抑制多种细菌和少数病毒的生长和繁殖,用于防治多种病菌感染。具有抗菌谱广、较为稳定、不易变质等特点。可以口服,吸收较迅速,但是不同于抗生素,属于化学药品。其不足之处是,绝大多数磺胺药的抗菌力较弱,对细菌只能抑制不能将其杀死;而且口服容易引起恶心,呕吐等胃肠道反应。 磺胺药曾在保障人类生命健康方面发挥过重要作用,在抗菌素问世后,虽然失去了先前作为普遍使用的抗菌剂的重要性,但在某些治疗中仍然应用。因此,学习和掌握磺胺类药物的合成有重要的意义。 实验目的 A掌握硝基苯的还原反应,苯胺的酰化反应,苯环上的磺化反应。

由环己醇制备己二酸二酯

有机化学实验八由环己醇制备己二酸二酯 实验项目性质:综合性实验 实验所涉及课程:无机化学、分析化学、无机及分析化学 实验计划学时:4学时 一、实验目的 1、综合训练有机化合物的制备、分离和提纯的操作技能。 2、通过本实验过程,使学生进一步了解消去反应、氧化反应和酯化反应的原理和特点。 3、通过实验,使学生了解科学研究的初步知识,训练学生按科技论文进行写实验报告,为毕业设计和就业奠定一定的科研基础。 二、预习与参考 1、实验前查阅资料,了解消去反应、氧化反应和酯化反应的特点; 2、充分预习实验内容,安排好实验次序,设计好实验原始数据的记录表; 3、实验结束后按要求完成实验报告。 4、参考资料: [1] 高占先主编,《有机化学实验》,高等教育出版社,2004年6月第四版。 [2] 李兆陇阴金香等编写,《有机化学实验》,清华大学出版社,2000年。 [3] 谷亨杰编写,《有机化学实验》,高等教育出版社,2002年。 [4] 文瑞明等,硫酸氢钠催化合成己二酸二乙酯,应用化工,2001,30(4),21-22 三、设计指标 1、确定实验方法、实验过程,设计实验数据采集表格; 2、设计产率的计算公式,以质量分数表示。 四、实验要求 在掌握制备原理的基础上,做好以下工作: 1、配平有关的反应方程式; 2、按使用20g 环己醇为起始物进行设计; 3、查阅有关反应物和产物及使用的其他物质的物理常数; 4、分析资料,提出设计方案; 5、列出使用的仪器设备,并画出仪器装置图; 6、提出各步反应的后处理方案; 7、提出产物的分析测试方法和打算使用的仪器。 实验部分: 1、指导教师审查学生的设计方案; 2、学生独立完成实验操作,如果失败,必须进行重做; 3、鼓励学生按自己的合成思路,对不同的实验条件进行反复探索,总结经验。

化学论文开题报告

2013 届毕业论文开题报告 题目水热法合成钨酸盐纳米材料 学院化学与环境工程学院 专业应用化学_ 姓名班级09应化2Z 指导教师 实验地点资源循环楼 起止日期2012年9月至2013年6月 年月日

毕业设计(论文)开题报告 一、课题的意义和目的 钨酸盐半导体材料, 因其特有的结构和物理化学性质, 日益受到人们的重视,研究十分活跃。系统地研究钨酸盐等半导体材料体系的发光特性与晶体结构的关系、形貌与光催化间的关系,可为新型发光材料和光催化材料的设计开发提供理论依据,如今在物理学、化学、材料学、生物学、医学、电子学等学科高度交叉,成为一门综合的科学技术。本文主要研究的是利用水热法合成钨酸盐纳米材料,设计和制定新的反应体系和工艺过程,寻求一种新的和简单的方法来寻求简单的方法合成一些无机功能纳米材料。 二、主要研究内容 1.通过查阅文献,了解Nd2(WO4)3、PbWO4纳米材料的合成方法; 2.根据文献内容及所学知识,设计实验方案; 3.做好每次试验纪录并能对实验结果进行分析,以正确的格式书写论文。 三、主要设计方案为 将n( Na2WO4·2H2O ): n(A2(NO3)3 )=1.5: 1 混合在烧杯中,再加入0.32 g的CTAB,10 mL的蒸馏水,室温下磁力搅拌至形成均一粘稠溶液,调节溶液的pH值。将所得混合溶液分别装入内衬聚四氟乙烯的不锈钢反应釜内(20 mL的容积)。将反应釜密封后置入预先加热的180℃烘箱内,恒温静置4~6小时。反应完毕将反应釜自然冷却至室温。然后,室温下磁力搅拌至形成均一粘稠溶液。分别测取溶液pH值,将溶液用二次蒸馏水洗涤后用离心机离心分离三次,然后将固体在80℃干燥箱中干燥。 四、预期结果 得到Nd2(WO4)3、PbWO4纳米材料。 五、进度安排 2012-9-5~2012-10-15查资料、收集文献、写开题报告 2012-10-16~2012-11-14设计详细实验方案、准备原料及实验仪器 2012-11-15~2013-04-28做实验 2013-04-29~2013-05-27撰写论文 2013-05-28~2013-06-03准备答辩事宜

乙酰磺胺的合成

实验报告 课程名称: 药物化学实验 指导老师: 章国林 成绩:__________________ 实验名称: 乙酰磺胺的合成 实验类型:_验证型 同组学生姓名: 林鑫 【实验目的】 1、 通过乙酰磺胺的合成,了解用控制pH 、温度等反应条件,纯化产品的方法; 2、 学习通过根据理化性质提纯产物。 【实验原理】 合成路线: 反应机理: 副反应:

【实验材料】实验试剂: 1、磺胺8.6g(0.05mol) 2、乙酸酐 6.8ml(0.071mol) 3、22.5% NaOH 11.5ml 4、70% NaOH 5ml 5、40% NaOH 11.5ml 6、6 mol/L HCl 适量 实验仪器: 1、100ml 三颈烧瓶 2、冷凝管 3、胶头滴管 4、25ml、10ml量筒 5、布氏漏斗 6、抽滤瓶 7、搅拌子 8、温度计 9、50ml烧杯等 【实验步骤】 1、在三颈烧瓶里依次放入8.6g磺胺、11.5ml 22.5%NaOH; 2、三颈烧瓶上装备1个搅拌子、1个温度计、1根冷凝管、1个玻璃塞; 3、油浴下搅拌加热至50-60℃左右,在磺胺溶解,溶液变透明,每5min加1/4体积77% NaOH、醋酸 酐,交替加料,共加入77% NaOH 5 mL、醋酸酐6.8 mL; 4、保持搅拌且体系温度在50-60℃左右,持续30m;

5、反应完全,将混合液倒入50ml烧杯中,加入10ml水,用6M HCl调节PH至中性; 6、冰水浴中冷却约30min,析出白色固体; 7、抽滤去滤渣(主含磺胺)取滤液(淡黄色,约25ml),用6M HCl调节滤液PH为5-4; 8、冰水浴冷却15min,抽滤收集滤渣(7.24g白色固体,含产物和副产物),除去水溶性杂质; 9、加3倍量(22ml左右)10% 盐酸,玻璃棒搅拌溶解,静置约10min; 10、抽滤除去滤渣(副产物),滤液内加入3勺活性炭,室温下静置5min; 11、抽滤,40%NaOH调节PH至5,产物结晶沉淀; 12、抽滤,得到产物,湿重2.52g,一周风干后称干重,计算产率; 【实验结果】 % 1、得到乙酰磺胺干重g,产率 0.02*238.24 【实验讨论】 1、What properties have the sulfanilamides? 乙酰磺胺: 分子式C8H10N2O3S 分子量:214.250 物理性质:白色结晶粉末,熔点179-184℃。溶于乙醇,微溶于水或乙醚,几乎不溶于氯仿或苯,溶于稀矿酸或氢氧化碱溶液。无臭,有特殊酸味。 化学性质:

己二酸的制备实验报告1

实验八己二酸的制备 一、实验目的 1、学习环己醇氧化制备己二酸的原理和方法; 2、掌握浓缩、过滤及重结晶等操作技能 二、实验原理 叔醇一般不易被氧化,仲醇氧化得到酮,酮遇到强氧化剂KMnO4、HNO3等时可以被氧化,碳链断裂生成多种碳原子数较少的羧酸混合物。环己酮是环状结构,控制好反应温度,氧化断裂后得到单一产物——己二酸。 三、实验药品及其物理常数 环己醇:2g 2.1ml (0.02mol);高锰酸钾6g (0.038mol);0.3N氢氧化钠溶液 50ml;亚硫酸氢钠;浓盐酸 四、主要仪器和材料 水浴锅三口烧瓶(100 mL、19#×3) 恒压滴液漏斗空心塞(14#) 球形冷凝管(19#) 螺帽接头(19#,2只) 温度计(100℃) 布氏漏斗吸滤瓶烧杯冰滤纸水泵等. 氧化剂可用浓硝酸、碱性高锰酸钾或酸性高锰酸钾。本实验采用碱性高锰酸钾作氧化剂 五、实验装置 六、操作步骤

(1)向250ml烧杯内加入50ml 0.3N氢氧化钠溶液,置于磁力搅拌上; (2)边搅拌边将6g 高锰酸钾溶解到氢氧化钠溶液中; (3)用滴管滴加2.1ml 环己醇到上述溶液中,维持反应物温度为43~47 ℃。 (4)当醇滴加完毕且反应混合物温度降低至43 ℃左右时,沸水浴将混合物加热,使二氧化锰凝聚。 (5)在一张平整的滤纸上点一小滴混合物以试验反应是否完成,如果观察到试液的紫色存在,那么可以用少量固体亚硫酸氢钠来除掉过量的高锰酸钾。 (6)趁热抽滤,滤渣二氧化锰用少量热水洗涤3次(每次2 mL),每次尽量挤压掉滤渣中的水分; (7)合并滤液和洗涤液,用4ml浓盐酸酸化至pH2.0; (8)小心地加热蒸发使溶液的体积减少到10ml左右,冷却,分离析出的己二酸。 (9)抽滤、洗涤、烘干、称重、计算产率。 (10)测量产品的熔点和红外光谱,并与标准光谱比较。 【操作要点及注意事项】 1.KMnO4要研细,以利于KMnO4充分反应。 2.本实验为强烈放热反应,所以滴加环己醇的速度不宜过快(1-2滴/秒),否则,因反应强烈放热,使温度急剧升高而引起爆炸。 3.严格控制反应温度,稳定在43~47℃之间。 4.反应终点的判断: (1)反应温度降至43℃以下。 (2)用玻璃棒蘸一滴混合物点在平铺的滤纸上,若无紫色存在表明已没有KMnO4。 5.用热水洗涤MnO2滤饼时,每次加水量约5~10 ml,不可太多。 6.用浓盐酸酸化时,要慢慢滴加,酸化至pH=1~3。 7.浓缩蒸发时,加热不要过猛,以防液体外溅。浓缩至10 ml左右后停止加热,让其自然冷却、结晶。 8. 环己醇常温下为粘稠液体,可加入适量水搅拌,便于用滴管滴加; 9. 此反应是放热反应,反应开始后会使混合物超过45℃,假如在室温下反应开始5min后,混合物温度还不能上升至45℃,则可小心温热至40℃,使反应开始; 10. 为了提高收得率,最好用冰水冷却溶液以降低己二酸在水中的溶解度。 七、实验结果 1、产品性状:; 2、理论产量:2.08g;

相关文档