文档库 最新最全的文档下载
当前位置:文档库 › 一致收敛性及应用初步

一致收敛性及应用初步

一致收敛性及应用初步
一致收敛性及应用初步

龙源期刊网 https://www.wendangku.net/doc/3619139050.html,

一致收敛性及应用初步

作者:缪彩花何天荣

来源:《文理导航》2018年第03期

【摘要】本文对函数项级数一致收敛性的判别法进行介绍和举例,还介绍了一致收敛函数项级数性质的初步应用,有助于加深对一致收敛的理解,体会一致收敛的作用,增强数学的应用意识。

【关键词】级数;一致收敛;判别法

函数项级数具有高度的抽象性,特别是函数项级数的一致收敛性更是教学和学习中的难点,以下我们介绍函数项级数一致收敛性的判别方法及其初步应用。

一、函数项级数一致收敛性的判别法

1.M判别法

M判别法的适用范围虽然较窄,但当它适用時,用起来却很方便。

如对于函数项级数,x∈[-1,1]。由于对任意的x∈[-1,1]有u (x)≤ ,而级数收敛,所以由M判别法知原函数项级数在[-1,1]上一致收敛。该函数项级数也可用“裂项相消法”去求

部分和序列,证明其一致收敛,但和M判别法比较,就可以发现M判别法简单得多。

2.狄利克雷判别法和阿贝尔判别法

狄利克雷判别法和阿贝尔判别法均适用于讨论通项是两个函数相乘的函数项级数,如对于函数项级数,x∈[0,+∞),记u (x)= ,v (x)= , u (x)在[0,+∞)上一致收敛。

∨x∈[0,+∞),函数列{v (x)}是单调减少的,又因为v (x)≤1对一切x∈[0,+∞)和任意n∈N都成立,所以{v (x)}在[0,+∞)一致有界,由阿贝尔判别法知函数项级数 u (x)v (x)在[0,+∞)上一致收敛。

3.柯西准则及其推论

判别函数项级数一致收敛的M判别法,狄利克雷判别法,阿贝尔判别法都是充分性判别法,不能用它们来判别函数项级数不一致收敛。判别函数项级数不一致收敛可应用柯西准则及其推论。对于函数项级数 2 sin(x/3 ),x∈(0,+∞),记u (x)=2 sin(x/3 ),取ε =1,∨N>0, n>N及x =π3 /2∈(0,+∞)有u (x )=2 >1,由此得{u (x)}在(0,+∞)上不一致收敛于零,由柯西准则的推论得:函数项级数 2 sin(x/3 )在(0,+∞)上不一致收敛。

习题反常积分的收敛判别法

习 题 8.2 反常积分的收敛判别法 ⒈ ⑴ 证明比较判别法(定理8.2.2); ⑵ 举例说明,当比较判别法的极限形式中l =0或+∞时,?∞ +a dx x )(?和 ? ∞ +a dx x f )(的敛散性可以产生各种不同的的情况. 解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ?≤≤,其中K 是正常数.则 当?∞ +a dx x )(?收敛时? ∞+a dx x f )(也收敛; 当? ∞ +a dx x f )(发散时?∞ +a dx x )(?也发散. 证 当?∞ +a dx x )(?收敛时,应用反常积分的Cauchy 收敛原理, 0>?ε ,a A ≥?0,0,A A A ≥'?:K dx x A A ε ?< ?' )(. 于是 ≤ ?' A A dx x f )(ε??ε,a A ≥?0,0,A A A ≥'?: εK dx x f A A ≥?' )(. 于是 ≥?'A A dx x )(?0)(1 ε≥?' A A dx x f K , 所以?∞ +a dx x )(?也发散. (2)设在[,)a +∞上有0)(,0)(≥≥x x f ?,且0) ()(lim =+∞→x x f x ?.则当?∞ +a dx x f )(发散 时,?∞ +a dx x )(?也发散;但当?∞ +a dx x f )(收敛时,?∞ +a dx x )(?可能收敛,也可能发散. 例如21)(x x f = ,)20(1 )(<<=p x x p ?,则0)()(lim =+∞→x x f x ?.显然有

正项级数敛散性地判别方法

正项级数敛散性的判别方法 摘要:正项级数是级数容中的一种重要级数,它的敛散性是其基本性质。正项级数敛散性的判别方法虽然较多,但是用起来仍有一定的技巧,归纳总结正项级数敛散性判别的一些典型方法,比较这些方法的不同特点,总结出一些典型判别法的特点及其适用的正项级数的特征。根据不同级数的特点分析、判断选择适宜的方法进行判别,才能事半功倍。 关键词:正项级数;收敛;方法;比较;应用 1引言 数项级数是伴随着无穷级数的和而产生的一个问题,最初的问题可以追溯到公元前五世纪,而到了公元前五世纪,而到了公元17、18世纪才有了真正的无穷级数的理论。英国教学家Gregory J (1638—1675)给出了级数收敛和发散两个术语从而引发了数项级数敛散性广泛而深入的研究,得到了一系列数项级数的判别法。因而,判断级数的敛散性问题常常被看作级数的首要问题。我们在书上已经学了很多种正项级数敛散性的判定定理,但书上没有做过多的分析。我们在实际做题目时,常会有这些感觉:有时不知该选用哪种方法比较好;有时用这种或那种方法时,根本做不出来,也就是说,定理它本身存在着一些局限性。因此,我们便会去想,我们常用的这些定理到底有哪些局限呢?定理与定理之间会有些什么联系和区别呢?做题目时如何才能更好得去运用这些定理呢?这就是本文所要讨论的。 2正项级数敛散性判别法 2.1判别敛散性的简单方法 由级数收敛的基本判别定理——柯西收敛准则:级数 1 n n u ∞ =∑收敛 ?0,,,,N N n N p N ε+?>?∈?>?∈有12n n n p u u u ε+++++ +<。取特殊的1p =,可 得推论:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =。 2.2比较判别法 定理一(比较判别法的极限形式): 设 1 n n u ∞=∑和1 n n v ∞ =∑为两个正项级数,且有lim n n n u l v →∞=,于是 (1)若0l <<+∞,则 1 n n u ∞ =∑与 1 n n v ∞ =∑同时收敛或同时发散。 (2)若0l =,则当 1 n n v ∞ =∑收敛时,可得 1 n n u ∞ =∑收敛。

1函数项级数的一致收敛性

函数列与函数项级数 §1. 函数项级数的一致收敛性 1. 讨论下列函数序列在所示区域的一致收敛性: ⑴ ()n f x = ,(,);x ∈-∞+∞ ⑵ ()sin ,n x f x n = i) (,),x l l ∈- ii) (,);x ∈-∞+∞ ⑶ (),1n nx f x nx =+ (0,1);x ∈ ⑷ 1(),1n f x nx = + i) [,),0,x a a ∈+∞> ii) (0,);x ∈+∞ ⑸ 2 233 (),1n n x f x n x = + i) [,),0,x a a ∈+∞> ii) (0,);x ∈+∞ ⑹ (),1n nx f x n x = ++ [0,1];x ∈ ⑺ (),1n n n x f x x = + i) [0,],1,x b b ∈< ii) [0,1];x ∈ iii) [,),1;x a a ∈+∞> ⑻ 2(),n n n f x x x =- [0,1];x ∈ ⑼ 1 (),n n n f x x x +=- [0,1];x ∈ ⑽ ()ln ,n x x f x n n = (0,1);x ∈ ⑾ 1()ln(1),nx n f x e n -= + (,);x ∈-∞+∞

⑿ 2 ()(),x n n f x e --= i) [,],x l l ∈- ii) (,)x ∈-∞+∞ . 2. 设()f x 定义于(,)a b ,令 [()] ()n nf x f x n = (1,2,)n =???. 求证:{()}n f x 在(,)a b 上一致收敛于()f x . 3. 参数α取什么值时, (),nx n f x n xe α -= 1,2,3,n =??? 在闭区间[0,1]收敛?在闭区间[0,1]一致收敛?使10 lim ()n n f x dx ->∞ ? 可在积分号下取极 限? 4. 证明序列2 ()nx n f x nxe -=(1,2,)n =???在闭区间[0,1]上收敛,但 1 100 lim ()lim ().n n n n f x dx f x dx ->∞ ->∞ ≠? ? 5. 设{()}n f x 是[,]a b 上的连续函数列,且{()}n f x 在[,]a b 一致收敛于()f x ;又 [,]n x a b ∈(1,2,)n =???,满足0lim n n x x ->∞ =,求证 0lim ()().n n n f x f x ->∞ = 6. 按定义讨论下列函数项级数的一致收敛性: ⑴ 0 (1), [0,1];n n x x x ∞ =-∈∑ ⑵ 12 2 1 (1) , (,)(1) n n n x x x -∞ =-∈-∞+∞+∑ . 7. 设()n f x (1,2,)n =???在[,]a b 上有界,并且{()}n f x 在[,]a b 上一致收敛,求证: ()n f x 在[,]a b 上一致有界. 8. 设()f x 在(,)a b 内有连续的导数()f x ',且 1()[()()],n f x n f x f x n =+ - 求证:在闭区间[,]αβ()a b αβ<<<上,{()}n f x 一致收敛于()f x '. 9. 设1()f x 在[,]a b 上黎曼可积,定义函数序列

函数项级数一致收敛的判定开题报告

一、本课题研究现状及可行性分析 目前通用的数学分析教材(如华东师范大学,复旦大学,吉林大学,北京师范大学等)其介绍的主要内容如下:M 判别法,狄利克雷判别法,阿贝尔判别法,柯西收敛准则等,用来判别一些级数的一致收敛性问题,其他一些数学方面的工作者对某些特殊级数的收敛性进行了讨论。当前对级数的收敛性的讨论研究已经到达比较高级阶段,分枝也比较细,发展也相对较完善。但在许多实际解题过程中,往往不是特定的级数,用特殊的方法不能解决。故需对特殊级数情况要总结和发展。 函数项级数的一致收敛性的判定是数学分析中的一个重要知识点,函数项级数既可以被看作是对数项级数的推广,同时数项级数也可以看作是函数项级数的一个特例。它们在研究内容上有许多相似之处,如研究其收敛性及和等问题,并且它们很多问题都是借助数列和函数极限来解决,同时它们敛散性的判别方法也具有相似之处,如Cauchy 判别法,阿贝尔判别法,狄利克雷判别法等。教材中给出了对于()n u x 一致收敛性的判别法,如Cauchy 判别法,阿贝尔判别法,狄利克雷判别法等,但在具体进行一致收敛的判别时,往往会有一定的困难,这就需要我们有效地运用函数项级数一致收敛的判别法。而此课题除了叙述以上判别法外,还对这些判别方法进行了一些推广,从而进一步丰富了判别函数项级数一致收敛的方法。 二、本课题研究的关键问题及解决问题的思路 关键问题:对函数项级数一致收敛性判别法总结和推广。 基本思路:首先从定义出发,让读者了解函数项级数及一致收敛的定义,对函数项级数一致收敛有一个大致的认识,并对其进行一定的说明,且将收敛与一致收敛做一个比较,使读者对其有一个更深刻的认识。随后给出一些常见的一致收敛的判别法,并附上例题加以说明。当熟悉了一般的判别法后,我将其加以推广,得到一些特殊的判别法,如比式判别法,根式判别法,对数判别法等。

正项数收敛判别方法

数学与统计学院应用数学系 综合课程设计成绩评定书设计题目:正项级数收敛的判别方法

摘要: 各项都由正数组成的级数称为正项级数,它是数项级数的特例。本文主要考虑正项级数的收敛问题,通过介绍比较原则、比式判别法、根式判别法以及积分判别法等常用的判别方法,并结合相关实例,判断所给级数的敛散性。 关键字:正项级数 收敛 比较原则 比式判别法 根式判别法 积分判别法 1基本概念 1.1 数项级数及其敛散性 在介绍正项级数之前先引入数项级数的相关概念及收敛级数的基本性质,下面介绍数项级数以及级数敛散的定义。 定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式 12n u u u ++++ (1) 称为数项级数或无穷级数(简称级数),其中n u 称为数项级数的通项。 数项级数(1)的前n 项之和,记为1 n n k k S u == ∑,称为(1)的前n 项部分和。 定义2:若(1)的部分和数列{}n S 收敛于S (即lim n n S S →∞ =),则称数项级数(1)收 敛,并称S 为(1)的和,记为1 n n S u ∞ == ∑,若{}n S 为发散数列,则称数列(1)发散。 根据级数(1)的收敛性,可以得到收敛级数的一些性质: (i) 收敛级数的柯西收敛准则 级数(1)收敛的充要条件是:0ε?>,0N ?>,n N ?>,p Z + ?>,有 12||.n n n p u u u ε++++++< (ii) 级数收敛的必要条件:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =. (iii)去掉、改变或增加级数的有限项并不改变级数的敛散性。 (iv) 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数也满足)。 (v) 运算性质: 若级数 1 n n u ∞ =∑与 1 n n v ∞ =∑都收敛,c d 是常数,则 1 ()n n n cu dv ∞ =+∑收敛,且满足

比较几种判定正项级数收敛性的方法

比较几种判定正项级数收敛性的方法 【摘要】通过对:1:比较判别法;2:根植判别法3:达朗伯耳判别法的应用范围的比较,加以对其分析, 找出若干类型题加以分类,确定哪类适合这两种判定法,归纳其特点,以便以后做题能够快速入手,遇到题目以后具体运用哪种方法更便捷提供了途径. 【关键词】比较判别法 根植判别法 达朗贝尔 例题 一:比较判别法. 1:定义 若从某一项起11n n n n n n a b a kb a b ++≤≤(或者) (k >0),则由1 n n b ∞ =∑的收敛性可推出1 n n a ∞ =∑收敛,若从某一项起n n a kb ≥11()n n n n a b a b ++≥ 或者 (k >0),则由1 n n b ∞ =∑发散可推出1 n n a ∞ =∑发散. 2:比较判别法的极限形势 设lim n n n a b →∞ =λ(+λ∞为有限数或)则: (i ):0λ<<+∞时,n n a b 则和收敛性相同. (ii ):1 1 =0b n n n n a λ∞ ∞ ==∑∑时,由收敛可推出收敛. (iii ):1 1 b n n n n a λ∞ ∞ ===+∞∑∑时,由发散课推出发散. 3:例题 (1):证明:若级数1 n n a ∞ =∑收敛,则把该级数的项通过组合而不改变其先后顺序所得的级 数1 n n A ∞ =∑其中 1 1 n n p n i i p A a -+==∑ (11p =,12p p <<…)也收敛且具有相同的和,反之不真,举 出例子. 证 设级数1 n n A ∞ =∑的部分和序列为1,2l l ,…,n l ,…,则

含参量反常积分一致收敛的判别法

题目含参量反常积分一致收敛的判别法学生姓名 学号 系别数学系 年级2010级 专业数学与应用数学 指导教师 职称 完成日期

摘要 含参变量的反常积分是研究和表达函数的的有力工具。要更好的研究含参量反常积分所表达的函数,关键问题在于判断他的一致收敛性。本文通过研究判断含参量反常积分一致收敛的判别法,以帮助研究含参量反常积分所表达的函数。关键词:含参量反常积分;一致收敛;判别法

Abstract Improper integral with variable is the study and expression tool function. To better function of parameter improper integral expression of the key problem lies in the judgment, the uniform convergence of his. Through the study of judging function discriminant method of parameter improper integral converges uniformly to help the study of parameter improper integral expression. Key words: Improper integral with variable;uniform convergence; discriminant analysis

目录 1引言 (1) 2基本概念 (1) 2.1含参量反常积分 (1) 2.2含参量反常积分一致收敛 (2) 3含参量反常积分一致收敛的判别方法 (2) 3.1定义法 (2) 3.2柯西准则法 (3) 3.3变上限积分的有界性法 (3) 3.4确界法 (4) 3.5微分法 (5) 3.6级数判别法 (6) 3.7维尔斯特拉斯判别法(简称M判别法) (6) 3.8狄里克莱判别法 (8) 3.9阿贝尔判别法 (8) 4结束语 (1) 参考文献 (10) 致谢 (11)

无穷积分的性质与收敛判别法

§2 无穷积分的性质与收敛判别法 教学目的与要求: 掌握条件收敛与绝对收敛的概念,收敛的无穷积分具有的四个性质;掌握收敛的Cauchy 准则、比较判别法及其三个推论、阿贝耳判别法、狄利克雷判别法等。 教学重点,难点: 无穷积分的收敛性比较判别法、柯西判别法、狄利克雷判别法等。 教学内容: 本节介绍了无穷积分的三个性质和四种判别收敛的方法 一 无穷积分的性质 由定义知道,无穷积分 ()dx x f a ? +∞ 收敛与否,取决于函数F (u )=()dx x f u a ?在u →+∞时是否存在 极限。因此由函数极限的柯西准则导出无穷积分收敛的柯西准则。 定理11.1 无穷积分()dx x f a ? +∞ 收敛的充要条件是:任给ε>0,存在G ≥a ,只要u 1、u 2>G ,便 有 ()()()2 1 2 1 u u u a a u f x dx f x dx f x dx ε-= ?≥a ,只要u 1、u 2>G ,便有 ()()()221 1 21|()()|.u u u u a a f x dx f x dx f x dx F u F u ε=-=-

函数项级数一致收敛性的判别法

函数项级数一致收敛性的判别法 摘 要 函数项级数是数学分析中的重点和难点,因此讨论和分析它的性质和判别方法显得尤为重要,本文给出了函数项级数的定义以及函数项级数一致收敛性的判别定理,并用之来解决函数项级数一致收敛性的一些问题比较容易. 关键词 函数项级数;一致收敛性;判别法. 中图分类号 O173.1 Function Seies Convergence Criterion Abstrac t :Function is a mathematical analysis of series of focus and difficult, so the discussion and analysis of its nature and it is particularly important to identify methods.In this paper, the definition of Function series and uniform convergence of Function series of discriminant theorem,and used to solve the series of uniform convergence of Function of some of the problems is easier. Key words :Function series; Uniform convergence of; Discriminance 1 引言及预备知识 如果函数项级数具有一致收敛性,函数项级数的和函数或余和易于求得,判别它的一致收敛性可应用一致收敛定义,如果很难求得它的和函数或余和,就根据函数自身的结构,找到判别一致收敛性的判别法. 定义1.1[1] 设()12(),,u x u x …()n u x ,…是一列定义在D 上的函数,把这些函数的各项用加号连接起来的表达式 ()()12u x u x ++…+()n u x +…或()1n n u x ∞ =∑, (1) 称为函数项级数.a D ?∈ 函数级数在a 对应一个数值级数 1 ()U n a ∞ =∑ =12()()u a u a ++...+()n u a +. (2) 它的敛散性可用数值级数敛散性的判别法判别,若级数(2)收敛,则称a 是函数级数(1)的收敛点;若级数(2)发散,则称a 是函数级数(1)的发散点. 定义 1.2[1] 函数项级数(1)的收敛点的集合,称为函数项级数(1)的收敛域,若收敛域是一个区间,则称此区间是函数项级数的收敛区间. 定义 1.3[1] 设数集E 为函数项级数()1 n n u x ∞ =∑的收敛域,则对每个x E ∈记S(x)= ()1 n n u x ∞=∑称S(x)为函数项级数()1 n n u x ∞ =∑的和函数.

一致收敛性及应用初步

龙源期刊网 https://www.wendangku.net/doc/3619139050.html, 一致收敛性及应用初步 作者:缪彩花何天荣 来源:《文理导航》2018年第03期 【摘要】本文对函数项级数一致收敛性的判别法进行介绍和举例,还介绍了一致收敛函数项级数性质的初步应用,有助于加深对一致收敛的理解,体会一致收敛的作用,增强数学的应用意识。 【关键词】级数;一致收敛;判别法 函数项级数具有高度的抽象性,特别是函数项级数的一致收敛性更是教学和学习中的难点,以下我们介绍函数项级数一致收敛性的判别方法及其初步应用。 一、函数项级数一致收敛性的判别法 1.M判别法 M判别法的适用范围虽然较窄,但当它适用時,用起来却很方便。 如对于函数项级数,x∈[-1,1]。由于对任意的x∈[-1,1]有u (x)≤ ,而级数收敛,所以由M判别法知原函数项级数在[-1,1]上一致收敛。该函数项级数也可用“裂项相消法”去求 部分和序列,证明其一致收敛,但和M判别法比较,就可以发现M判别法简单得多。 2.狄利克雷判别法和阿贝尔判别法 狄利克雷判别法和阿贝尔判别法均适用于讨论通项是两个函数相乘的函数项级数,如对于函数项级数,x∈[0,+∞),记u (x)= ,v (x)= , u (x)在[0,+∞)上一致收敛。 ∨x∈[0,+∞),函数列{v (x)}是单调减少的,又因为v (x)≤1对一切x∈[0,+∞)和任意n∈N都成立,所以{v (x)}在[0,+∞)一致有界,由阿贝尔判别法知函数项级数 u (x)v (x)在[0,+∞)上一致收敛。 3.柯西准则及其推论 判别函数项级数一致收敛的M判别法,狄利克雷判别法,阿贝尔判别法都是充分性判别法,不能用它们来判别函数项级数不一致收敛。判别函数项级数不一致收敛可应用柯西准则及其推论。对于函数项级数 2 sin(x/3 ),x∈(0,+∞),记u (x)=2 sin(x/3 ),取ε =1,∨N>0, n>N及x =π3 /2∈(0,+∞)有u (x )=2 >1,由此得{u (x)}在(0,+∞)上不一致收敛于零,由柯西准则的推论得:函数项级数 2 sin(x/3 )在(0,+∞)上不一致收敛。

函数项级数一致收敛的几个判别法及其应用

函数项级数一致收敛性判别法及其应用 栾娈 20111101894 数学科学学院 数学与应用数学11级汉班 指导老师:吴嘎日迪 摘要:本文证明了常用的函数项级数一致收敛性的判别法,并通过例题给出了它的应用.另外,仿照极限的夹逼原理,得到函数项级数一致收敛的夹逼判别法. 关键词:一致收敛,函数项级数,和函数 1.函数列与一致收敛性 (1)函数项级数一致收敛性的定义:设有函数列{S n (x )}(或函数项级数∑∞ =1 )(n n x u 的 部分和序列)。若对任给的0>ε,存在只依赖于ε的正整数N (ε),使n > N (ε)时,不等式 ε<-)()(x S x S n 对X 上一切x 都成立,则称{S n (x )}(∑∞ =1 )(n n x u )在X 上一致收敛于S (x ). 一致收敛的定义还可以用下面的方式来表达: 设 =-S S n X x ∈s u p )()(x S x S n -, 如果 0lim =-∞ →S S n n 就称S n (x )在X 上一致收敛于S(x ). 例1 讨论 = +=X x n nx x S n 在2 2 1)([0,1]的一致收敛性 由于S (x )=0, 故 2 11)(m a x 1 = ?? ? ??==-≤≤n S x S S S n n x o n , 不收敛于零,故在[0,1]上非一致收敛 (2)函数项级数一致收敛的几何意义:函数列{f n }一致收敛于的f 几何意义:对任 给的正数ε ,存 N ,对一切序号大于N 的曲线y=f n (x )都落在以曲 线y= f (x )+ε与y=f (x )-ε为上,下边界的带形区域内. 2.函数列一致收敛的判别准则(充要条件)

含参量反常积分一致收敛性的判别法资料

含参量反常积分一致收敛的判别法 王 明 星 (德州学院数学科学学院,山东德州 253023) 摘 要: 含参量反常积分是研究和表达函数特别是非初等函数的有力工具.本文通过对含参量反常积分一致收敛性的分析和研究,总结出了判别含参量反常积分一致收敛的几种简单而有效的方法和定理(柯西准则,M 判别法,确界法,狄利克雷判别法等),从而方便了含参量反常积分一致收敛性的学习和掌握. 关键词: 含参量反常积分; 一致收敛; 判别法 含参量反常积分包括含参量无穷限反常积分和含参量无界函数反常积分,两种反常积分一致收敛性的判别法是相似的,所以我们下面仅仅讨论含参量无穷限反常积分一致收敛性的判别法. 1 含参量无穷限反常积分一致收敛的概念 1.1 含参量无穷限反常积分 设函数(,)f x y 定义在无界区域(){},,R x y a x b c y =|≤≤≤<+∞上,若对每一个固定的[],x a b ∈,反常积分 (,)c f x y dy +∞ ? 都收敛,则它的值是x 在[],a b 上取值的函数,当记这个函数为()I x 时,则有 ()(,)c I x f x y dy +∞=?,[],x a b ∈ 称(,)c f x y dy +∞? 为定义在[],a b 上的含参量无穷限反常积分. 1.2 含参量无穷限反常积分收敛 若含参量无穷限反常积分(,)c f x y dy +∞? 与函数()I x 对每一个固定的 [],x a b ∈,任给的正数ε,总存在某一实数N c >,使得M N >时,都有 (,)()M c f x y dy I x ε-

广义积分的收敛判别法

第二节 广义积分的收敛判别法 上一节我们讨论了广义积分的计算, 在实际应用中,我们将发现大量的积分是不能直接计算的,有的积分虽然可以直接计算,但因为过程太复杂,也不为计算工作者采用,对这类问题计算工作者常采用数值计算方法或Monte-Carlo 方法求其近似值. 对广义积分而言,求其近似值有一个先决条件 — 积分收敛,否则其结果毫无意义。 因此,判断一个广义积分收敛与发散是非常重要的. 定理9.1(Cauchy 收敛原理)f (x )在[a , +∞ )上的广义积分? +∞a dx x f )(收敛的充分必要条件是:0>?ε, 存在A>0, 使得b , b '>A 时,恒有 ε?ε , 0>?δ, 只要0<δηη<

正项级数收敛及其应用公式版

公式为正常公式,不是图片版 正项级数收敛性判别法的比较及其应用 一、引言 数学分析作为数学专业的重要基础课程。级数理论是数学分析的重要组成部分,在实际生活中的运用也较为广泛,如经济问题等。而正项级数又是级数理论中重要的组成部分,级数的收敛性更是级数理论的核心问题,要想解决正项级数的求和问题必须先解决正项级数收敛性判断。正项级数收敛性判断的方法虽然较多,但使用起来仍有一定的技巧,根据不同的题目特点分析、判断选择适宜的方法进行判断,能够最大限度的节约时间,提高效率,特别是一些典型问题,运用典型方法,才能事半功倍。 二、预备知识 1、正项级数收敛的充要条件 部分和数列{}n S有界,即存在某正数M,对0>n?,有n SN都有 n n v u≤, 那么 (1)若级数∑∞ =1 n n v收敛,则级数∑∞ =1 n n u也收敛; (2)若级数∑∞ =1 n n u发散,则级数∑∞ =1 n n v也发散; 即∑∞ =1 n n u和∑∞ =1 n n v同时收敛或同时发散。 比较判别法的极限形式: 设∑∞ =1 n n u和∑∞ =1 n n v是两个正项级数。若l v u n n n = +∞ → lim,则 (1)当时,∑∞ =1 n n u与∑∞ =1 n n v同时收敛或同时发散;

(2)当0=l 且级数∑∞ =1 n n v 收敛时,∑∞ =1 n n u 也收敛; (3)当∞→l 且∑∞=1 n n v 发散时,∑∞ =1 n n u 也发散。 2.2 比值判别法 设∑∞ =1n n u 为正项级数,若从某一项起成立着 11 ,成立不等式q u u n n ≤+1 ,则级数∑∞ =1i n u 收敛; (2)若对一切0N n >,成立不等式11 ≥+n n u u ,则级数∑∞=1 i n u 发散。 比值判别法的极限形式: 若∑∞ =1 n n u 为正项级数,则 (1) 当1lim ,成立不等式1,成立不等式1≥n n u ,则级数∑∞ =1 i n u 收敛 根式判别法的极限形式: 设∑∞ =1 n n u 是正项级数,且l u n n n =+∞ →lim ,则 (1)当1l 时,级数∑∞ =1 n n u 发散; (3)当1=l 时,级数的敛散性进一步判断。

漫谈正项级数的收敛性及收敛速度

漫谈正项级数的收敛性及收敛速度 ++++=∑∞ =n n n a a a a 211 称为无穷级数。当0≥n a 时,此级数称为正项级数。记 n n a a a S +++= 21, ,2,1=n ,则}{n S 为部分和数列。级数∑∞ =1 n n a 的敛散性是通过数列}{n S 的敛 散性来定义。显然,级数∑∞=1 n n a 时,有0lim =∞ →n n a 。因此,0lim ≠→∞ n n a 时,必有级数∑∞ =1 n n a 发散。但是 0lim =∞ →n n a 未必有∑∞=1n n a 收敛。只有当无穷小n a 的阶高到一定的程度时,∑∞ =1 n n a 才收敛。可以证明: 几何级数∑∞ =1 n n q ,当1||p 时收敛;当1≤p 时发散。 由p -级数∑ ∞ =1 1 n p n 的敛散性及比较判别法,可以看出,当n a 趋于0的速度快于n 1时,级数∑∞ =1n n a 收敛;而当n a 趋于0的速度不快于n 1时,级数∑∞=1n n a 发散。因而,无穷小n 1 是衡量级数∑∞ =1 n n a 敛散性的一把“尺子”。可是,这把“尺子”有点粗糙了。事实上,尽管无穷小 n n ln 1 趋于0的速度远远快于n 1,但是级数∑∞=1ln 1n n n 仍然发散。可以证明,级数∑∞ =1ln 1 n p n n ,当1>p 时收敛;当1≤p 时发散。于是,无穷小 n n ln 1 是衡量级数敛散性的一把精度较高的一把新“尺子”:当n a 趋于0的速度快于n n ln 1时,级数∑∞=1n n a 收敛;而当n a 趋于0的速度不快于n n ln 1 时,级数∑∞ =1n n a 发散。可是,马 上又面临新问题:无穷小n n n ln ln ln 1趋于0的速度远远快于n n ln 1,但是∑∞ =1ln ln ln 1 n n n n 仍然发散级 数。于是需要更为精细的判断级数敛散的“尺子”。这样,我们会得到一系列判断级数敛散的“尺 子”:n 1 ,n n ln 1, n n n ln ln ln 1。这些 “尺子”可以无限的精细,一直进行下去。实际上,按这种方式,只能够找到越来越精细的“尺子”,但是永远找不到最为精细的“尺子”——“没有最好,只有更好”。 由几何级数的∑∞ =-11n n q 的敛散性,可以看出,粗略的讲,当n 充分大时,正项级数的后一 项小于前一项时,该级数就收敛,否则就发散。在此基础上,有了判断正项级数敛散性的比值(达

一致收敛判别法总结

学年论文 题目:一致收敛判别法总结 学院:数学与统计学院 专业:数学与应用数学 学生姓名:张学玉 学号:201071010374 指导教师:陶菊春

一致收敛判别法总结 学生姓名:张学玉 指导教师:陶菊春 摘要: 函数项级数一致收敛性的证明是数学分析中的难点,为了开阔思路,更好的理解和掌握函数项级数一致收敛的方法,本文对函数项级数一致收敛的几种判别法进行了分析、归纳、总结。首先对用定义判断函数项级数一致收敛的方法进行了研究,介绍了函数项级数一致收敛的充要条件,近而提供了证明函数项级数一致收敛的一般方法。同时介绍了几个较为方便适用的关于函数序列一致收敛的判别法法。并通过例题的讨论说明这些判别法的可行性及特点。 Abstract :Function Series Uniform Convergence prove mathematical analysis of the difficulties, in order to broaden their thinking, to better understand and master the functions Seies Convergence approach, this paper uniformly convergent series of functions of several discriminant method were analyzed, summarized, summary. First, determine the definition of series of functions with uniform convergence methods were studied, introduced uniformly convergent series of functions necessary and sufficient conditions, while providing nearly proved uniformly convergent series of functions of the general method. Also introduced several relatively easy to apply uniform convergence on the discriminant function sequence Law Act. And through discussion of examples illustrate the feasibility of these discriminant method and characteristics. 关键词: 函数项级数;函数序列;一致收敛;判别法 Keywords: series of functions; function sequence; uniform convergence; Criterion 引言: 函数项级数一致收敛性的证明是初学者的一个难点,教材中给出了用定义法、定理及判别法来证明函数项级数的一致收敛性。初学者需用灵活的思维以便在使用时选出正确又快捷的证明方法和技巧。为了更好的培养我们这方面的能力,总结出了函数项级数一致收敛性的若干证明方法。 一、定义 设(){}x S n 是函数项级数()x u n ∑的部分和函数列.若(){}x S n 在数集D 上一致收敛于函数()x S ,则称函数项级数()x u n ∑在D 上一致收敛于函数()x S ,或称函数项级数 ()x u n ∑在D 上一致收敛. 定理:若对?n ,?n a >0使得()()n n a x S x S ≤-()D x ∈?,并且当∞→n 时有 0→n a .则当∞→n 时()x S n 一致收敛于()x S . 例1:若()x f n 在[]b a ,上可积, ,2,1=n ,且()x f 与()x g 在[]b a ,上都可积

无穷积分的性质与收敛判别法

§2 无穷积分的性质与收敛判别法 教学目的与要求: 掌握条件收敛与绝对收敛的概念,收敛的无穷积分具有的四个性质;掌握收敛的Cauchy 准则、比较判别法及其三个推论、阿贝耳判别法、狄利克雷判别法等。 教学重点,难点: 无穷积分的收敛性比较判别法、柯西判别法、狄利克雷判别法等。 教学内容: 本节介绍了无穷积分的三个性质和四种判别收敛的方法 一 无穷积分的性质 由定义知道,无穷积分 ()dx x f a ? +∞ 收敛与否,取决于函数F (u )=()dx x f u a ?在u →+∞时是否存在 极限。因此由函数极限的柯西准则导出无穷积分收敛的柯西准则。 & 定理 无穷积分 ()dx x f a ? +∞ 收敛的充要条件是:任给ε>0,存在G ≥a ,只要u 1、u 2>G ,便有 ()()()2 1 2 1 u u u a a u f x dx f x dx f x dx ε-= ?≥a ,只要u 1、u 2>G ,便有 ()()()2 2 1 1 21|()()|.u u u u a a f x dx f x dx f x dx F u F u ε=-=-

数列收敛判别法

学士学位毕业论文设计 数列收敛的判别法 所在系别:数学与应用数学系 专业:数学与应用数学

目录 中文摘要--------------------------------------------------------------------I 英文摘要-------------------------------------------------------------------II 前言------------------------------------------------------------------III 第一章数列极限的概念--------------------------------------------------------1 1.1 数列极限的定义-------------------------------------------------------1 1.2 收敛数列的定义-------------------------------------------------------2第二章判别数列收敛的方法----------------------------------------------------3 2.1 定义法---------------------------------------------------------------3 2.2 单调有界定理---------------------------------------------------------6 2.3 迫敛性定理-----------------------------------------------------------8 2.4 柯西收敛准则---------------------------------------------------------9 2.5 关于子列的重要定理--------------------------------------------------12参考文献-------------------------------------------------------------------14致谢-----------------------------------------------------------------------15

相关文档