文档库 最新最全的文档下载
当前位置:文档库 › 高中数学奥林匹克竞赛讲座:21应用题选讲

高中数学奥林匹克竞赛讲座:21应用题选讲

高中数学奥林匹克竞赛讲座:21应用题选讲
高中数学奥林匹克竞赛讲座:21应用题选讲

竞赛讲座21

-应用题选讲

应用题联系实际,生动地反映了现实世界的数量关系,能否从具体问题中归纳出数量关系,反映了一个人分析问题、解决问题的实际能力.

列方程解应用题,一般应有审题、设未知元、列解方程、检验、作结论等几个步骤.下面从几个不同的侧面选讲一部分竞赛题,从中体现解应用题的技能和技巧.

1.合理选择未知元

例1 (1983年青岛市初中数学竞赛题)某人骑自行车从A地先以每小时12千米的速度下坡后,以每小时9千米的速度走平路到B地,共用55分钟.回来时,他以每小

时8千米的速度通过平路后,以每小时4千米的速度上坡,从B地到A地共用小时,求A、B两地相距多少千米?

解法1 (选间接元)设坡路长x千米,则下坡需

依题意列方程:

解之,得x=3.

答:A、B两地相距9千米.

解法2(选直接元辅以间接元)设坡路长为x千米,A、B两地相距y千米,则有如下方程组

解法3(选间接元)设下坡需x小时,上坡需y小时,依题意列方程组:

例2 (1972年美国中学数学竞赛题)若一商人进货价便谊8%,而售价保持不变,那么他的利润(按进货价而定)可由目前的x%增加到(x+10)%,x等于多少?

解本题若用直接元x列方程十分不易,可引入辅助元进货价M,则0.92M是打折扣的价格,x是利润,以百分比表示,那么写出售货价(固定不变)的等式,可得:

M(1+0.01x)=0.92M[1+0.01(x+10)].

约去M,得

1+0.01x=0.92[1+01.1(x+10)].

解之,得 x=15.

例3 在三点和四点之间,时钟上的分针和时针在什么时候重合?

分析选直接元,设两针在3点x分钟时重合,则这时分针旋转了x分格,时针旋转了(x-15)分析,因为分针旋转的速度是每分钟1分格,旋转x分格需要分钟,时针旋转的速度是每分钟分格,旋转(x-15)分格要

例4(1985年江苏东台初中数学竞赛题)从两个重为m千克和n千克,且含铜百分数不同的合金上,切下重量相等的两块,把所切下的每一块和另一种剩余的合金加在一起熔炼后,两者的含铜百分数相等,问切下的重量是多少千克?

解采用直接元并辅以间接元,设切下的重量为x千克,并设m千克的铜合金中含铜百分数为q1,n千克的铜合金中含铜百分数为q2,则切下的两块中分别含铜xq1千克和

xq2千克,混合熔炼后所得的两块合金中分别含铜[xq1+(n-x)q2]千克和[xq2+(m-x)q1]千克,依题意,有:

2.多元方程和多元方程组

例5 (1986年扬州市初一数学竞赛题)A、B、C三人各有豆若干粒,要求互相赠送,先由A给B、C,所给的豆数等于B、C原来各有的豆数,依同法再由B给A、C现有豆数,后由C给A、B现有豆数,互送后每人恰好各有64粒,问原来三人各有豆多少粒?

解设A、B、C三人原来各有x、y、z粒豆,可列出下表:

则有:

解得:x=104,y=56,z=32.

答:原来A有豆104粒,B有56粒,C有32粒.

例6(1985年宁波市初中数学竞赛题)某工厂有九个车间,每个车间原有一样多的成品,每个车间每天能生产一样多的成品,而每个检验员检验的速度也一样快,A组8个检验员在两天之间将两个车间的所有成品(所有成品指原有的和后来生产的成品)

检验完毕后,再去检验另两个车间的所有成品,又用了三天检验完毕,在此五天内,B组的检验员也检验完毕余下的五个车间的所有成品,问B组有几个检验员?

解设每个车间原有成品x个,每天每个车间能生产y个成品;则一个车间生产两天的所有成品为(x+2y)个,一个车间生产5天的所有成品为(x+5y)个,由于A组的8个检验员每天的检验速度相等,可得

解得:x=4y

一个检验员一天的检验速度为:

又因为B组所检验的是5个车间,这5个车间生产5天的所有成品为5(x+5y)个,而这5(x+5y)个成立要B组的人检验5天,所以B组的人一天能检验(x+5y)个.

因为所有检验员的检验速度都相等,所以,(x+5y)个成品所需的检验员为:

(人).

答:B组有12个检验员.

3.关于不等式及不定方程的整数解

例7(1985年武汉市初一数学竞赛题)把若干颗花生分给若干只猴子,如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子得不到5颗,求猴子的只数和花生的颗数.

解:设有x只猴子和y颗花生,则:

y-3x=8, ①

5x-y<5,②

由①得:y=8+3x, ③

③代入②得5x-(8+3x)<5,

∴ x<6.5

因为y与x都是正整数,所以x可能为6,5,4,3,2,1,相应地求出y的值为26,23,20,17,14,11.

经检验知,只有x=5,y=23和x=6,y=26这两组解符合题意.

答:有五只猴子,23颗花生,或者有六只猴子,26颗花生.

例8(1986年上海初中数学竞赛题)在一次射箭比赛中,已知小王与小张三次中靶环数的积都是36,且总环数相等,还已知小王的最高环数比小张的最高环数多(中箭的环数是不超过10的自然数),则小王的三次射箭的环数从小到大排列是多少?

解设小王和小张三次中靶的环数分别是x、y、z和a、b、c,不妨设x≤y≤z,a≤b≤c,

由题意,有:

因为环数为不超过10的自然数,首先有z≠10,否则与①式矛盾.

若设z=9,则由①知:xy=4,

∴x=2,y=2,或x=1,y=4,

∴x+y+z=13或x+y+z=14.

又由②及c<z知,c|36,∴c=6,这时,ab=6.

∴a=2,b=3,或a=1,b=6

∴a+b+c=11或a+b+c=13

又由③知:x+y+z=a+b+c=13

∴取x=2,y=2,z=9.

答:小王的环数分别为2环,2环,9环.

例9(1980年苏联全俄第6届中学生物理数学竞赛题)一队旅客乘坐汽车,要求每辆汽车的乘客人数相等,起初,每辆汽车乘了22人,结果剩下一人未上车;如果有一辆汽车空车开走,那么所有旅客正好能平均分乘到其它各车上,已知每辆汽车最多只能容纳32人,求起初有多少辆汽车?有多少名旅客?

解设起初有汽车k辆,开走一辆空车后,平均每辆车所乘的旅客为n名,显然,k≥2,n≤32,由题意,知:22k+1=n(k-1),

∴k-1=1,或k-1=23,

即k=2,或k=24.

当k=2时,n=45不合题意,

当k=24时,n=23合题意,

这时旅客人数为n(k-1)=529.

答:起初有24辆汽车,有529名旅客

4.应用题中的推理问题

竞赛中常见的应用题不一定是以求解的面目出现,而是一种逻辑推理型.解答这类题目不仅需要具备较强的分析综合能力,还要善于用准确简练的语言来表述自己正确的逻辑思维.

例10(1986年加拿大数学竞赛题)有一种体育竞赛共含M个项目,有运动员A、B、C 参加,在每个项目中,第一、二、三名分别得p1、p2、p3分,其中p1、p2、p3为正整数且p1>p2>p3,最后A得22分,B与C均得9分,B在百米赛中取得第一,求M的值,并问在跳高中谁取得第二名?

分析考虑三个得的总分,有方程:

M(p1+p2+p3)=22+9+9=40, ①

又 p1+p2+p3≥1+2+3=6,②

∴6M≤M(p1+p2+p3)=40,从而M≤6.

由题设知至少有百米和跳高两个项目,从而M≥2,

又M|40,所以M可取2、4、5.

考虑M=2,则只有跳高和百米,而B百米第一,但总分仅9分,故必有:9≥p1+p3,∴≤8,这样A不可能得22分.

若M=4,由B可知:9≥p1+3p3,又p3≥1,所以p1≤6,若p1≤5,那么四项最多得20分,A就不可能得22分,故p1=6.

∵4(p1+p2+p3)=40,∴p2+p3=4.

故有:p2=3,p3=1,A最多得三个第一,一个第二,一共得分3×6+3=21<22,矛盾.

若M=5,这时由5(p1+p2+p3)=40,得:

p1+p2+p3=8.若p3≥2,则:

p1+p2+p3≥4+3+2=9,矛盾,故p3=1.

又p1必须大于或等于5,否则,A五次最高只能得20分,与题设矛盾,所以p1≥5.

若p1≥6,则p2+p3≤2,这也与题设矛盾,∴p1=5,p2+p3=3,即p2=2,p3=1.

A=22=4×5+2.

故A得了四个第一,一个第二;

B=9=5+4×1,

故B得了一个第一,四个第三;

C=9=4×2+1,

故C得了四个第二,一个第三.

练习五

1.选择题

(1)打开A、B、C每一个阀门,水就以各自不变的速度注入水槽.当所有三个阀门都打开时,注满水槽需1小时;只打开A、C两个阀门,需要1.5小时;如果只打开B、C两个阀门,需要2小时,若只打开A、B两个阀门时,注满水槽所需的小时数是().

(A)1.1 (B)1.15(C)1.2 (D)1.25 (E)1.75

(2)两个孩子在圆形跑道上从同一点A出发,按相反方向运动,他们的速度是每秒5英尺和每秒9英尺,如果他们同时出发并当他们在A点第一次再相遇的时候结束,那么他们从出发到结束之间相遇的次数是().

(A)13 (B)25 (C)44 (D)无穷多(E)这些都不是

(3)某超级市场有128箱苹果,每箱至少120只,至多144只,装苹果只数相同的箱子称为一组,问其中最大一组的箱子的个数n,最小是()

(A)4 (B)5 (C)6 (D)24 (E)25

(4)两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是p:1,而在另一个瓶子中是q:1,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是().

(5)汽车A和B行驶同样的距离,汽车A以每小时u千米行驶距离的一半并以每小时υ千米行驶另一半,汽车B以每小时u千米行驶所行时间的一半并以每小时υ千米行驶另一半,汽车A的平均速度是每小时x千米,汽车B的平均速度是每小时y千米,那么我们总有()

(A)x≤y(B)x≥y (C)x=y (D)x<y (E)x>y

2.填空题

(1)已知闹钟每小时慢4分钟,且在3点半时对准,现在正确时间是12点,则过正确时间______分钟,闹钟才指到12点上.

(2)若b个人c天砌f块砖,则c个人用相同的速度砌b块砖需要的天数是____.

(3)某人上下班可乘火车或汽车,若他早晨上班乘火车则下午回家乘汽车;又假若他下午回家乘火车则早晨上班乘汽车,在x天中这个人乘火车9次,早晨乘汽车8次,下午乘汽车15次,则x=_______.

(4)一个年龄在13至19岁之间的孩子把他自己的年龄写在他父亲年龄的后面,从这个新的四位数中减去他们年龄差的绝对值得到4289,他们年龄的和为______.

(5)一个城镇的人口增加了1200人,然后这新的人口又减少了11%,现在镇上的人数比增加1200人以前还少32人,则原有人口为_____人.

3.(1982-1983年福建省初中数学竞赛题)一个四位数是奇数,它的首位数字小于其余各位数字,而第二位数字大于其余各位数字,第三位数字等于首末两位数字之和的二倍,求此四位数.

4.(第2届《祖冲之杯》)甲乙两人合养了几头羊,而每头羊的卖价又恰为n元,两人分钱方法如下:先由甲拿10元,再由乙拿10元,如此轮流,拿到最后,剩下不足十元,轮到乙拿去,为了平均分配,甲应该分给乙多少钱?

5.(1986年湖北省荆州地区初中数学竞赛题)完成同一工作,A独做所需时间为B与C共同工作所需时间的m倍,B独做所需时间为A与C共同工作所需时间的n倍,C独做所需时间为A与B共同工作所需时间的x倍,用m,n表示出x来.

6.(1988年江苏省初中数学竞赛题)今有一个三位数,其各位数字不尽相同,如将此三位数的各位数字重新排列,必可得一个最大数和一个最小数(例如,427,经重新

排列得最大数742,最小数247),如果所得最大数与最小数之差就是原来的那个三位数,试求这个三位数.

7.(1978年四川省数学竞赛题)某煤矿某一年产煤总量中,除每年以一定数量的煤作为民用、出口等非工业用途外,其余留作工业用煤,按照该年度某一工业城市的工业用煤总量为标准计算,可供这样的三个工业城市用六年,四个这样的城市用五年(当然每年都要除去非工业用煤的那一个定量),问如果只供一个城市的工业用煤,可以用多少年?

练习五

1.A.C.E.A.

2.①②③16④59岁⑤1000

3.设从首位起,各位数字顺次为a,b,c,d,则a<b,a<c,a<d,且c<d,d<b.又c=2(a+d).且2≤c≤8,故2≤2(a+d)≤8.∵d为奇数,a≠0,∵a=1,d=3.这时c=2(a+d)=8,b=9.

4.略.

5.设A、B、C单独完成同一工作所需时间分别为a、b、c,则单位时间他们可分别完成全部工作的、、,依题意

有:

由上面三式,可得:

6.设三位数为,重排后最大数为则最小数为于是

有由于C<A,由上式有10+C-A=z,10+(B-1)-B=y,(A-1)-C=x.可求得y=9,x=4,z=5.

7.设该煤矿该年度产煤总量为x,每年非工业用煤量为y,该工业城市该年工业用煤量为z,并设只供这样一个城市工业用煤可用p年,由题意得方程组:

①②③

由①与②得y=2z.④

从①、③、④三式中消去x、y、z,得

高中数学:应用题练习

高中数学:应用题练习 1.某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图).设计要求彩门的面积为S (单位:m 2),高为h (单位:m)(S ,h 为常数).彩门的下底BC 固定在广场底面上,上底和两腰由不锈钢支架组成,设腰和下底的夹底为α,不锈钢支架的长度之和记为l . (1)请将l 表示成关于α的函数l =f (α); (2)问:当α为何值时l 最小,并求最小值. 解 (1)过D 作DH ⊥BC 于点H ,则∠DCB =α? ? ???0<α<π2,DH =h ,设AD =x . 则DC = h sin α ,CH = h tan α ,BC =x + 2h tan α . 因为S =12? ? ???x +x + 2h tan α·h , 则x =S h -h tan α, 则l =f (α)=2DC +AD =S h +h ? ????2 sin α-1tan α? ????0<α<π2. (2)f ′(α)=h ·? ????-2cos αsin 2 α--1sin 2α=h ·1-2cos αsin 2α, 令f ′(α)=h · 1-2cos αsin 2α=0,得α=π3 . 当α变化时,f ′(α),f (α)的变化情况如下表: α ? ? ???0,π3 π 3 ? ????π3 ,π2

f ′(α) - 0 + f (α) ↘ 极小值 ↗ 所以l min =f ? ???? π3=3h +S h . 答 当α= π3时,l 取最小值3h +S h (m). 2.某宾馆在装修时,为了美观,欲将客户的窗户设计成半径为1 m 的圆形,并用四根木条将圆分成如图所示的9个区域,其中四边形ABCD 为中心在圆心的矩形,现计划将矩形ABCD 区域设计为可推拉的窗口. (1)若窗口ABCD 为正方形,且面积大于14 m 2 (木条宽度忽略不计),求四根木条总长的取值范围; (2)若四根木条总长为6 m,求窗口ABCD 面积的最大值. 解 (1)设一根木条长为x m, 则正方形的边长为2 1-? ?? ?? x 22=4-x 2 m. 因为S 四边形ABCD >14,所以4-x 2>14,即x <15 2. 又因为四根木条将圆分成9个区域,所以x >2, 所以42<4x <215. 答 四根木条总长的取值范围为(42,215). (2)方法一 设AB 所在的木条长为a m,则BC 所在的木条长为(3-a )m. 因为a ∈(0,2),3-a ∈(0,2),所以a ∈(1,2). 窗口ABCD 的面积S =41-a 2 4 · 1-(3-a )24 4-a 2·4-(3-a )2 a 4-6a 3+a 2+24a -20, 设f (a )=a 4-6a 3+a 2+24a -20,

(推荐)高中数学奥赛辅导

数列与递进 知识、方法、技能 数列是中学数学中一个重要的课题,也是数学竞赛中经常出现的问题. 所谓数列就是按一定次序排列的一列数.数列的一般形式是a 1, a 2, …,a n , …通常简记为{a n }.如果数列{a n }的第n 项a n 与n 之间的函数关系可用一个公式来表示,这个公式就叫做这个数列的通项公式. 从函数的角度看,数列可以看做是一个函数,定义域是自然数集或自然数集的一个有限子集,函数表达式就是数列的通项公式. 对于数列{a n },把S n =a 1+a 2+…+a n 叫做数列{a n }的前n 项和,则有 ?? ?≥-==-). 2(),1(11 n S S n S a n n n I .等差数列与等比数列 1.等差数列 (1)定义:.2 )(2 11++++==-n n n n n a a a d a a 或常量 (2)通项公式:a n =a 1+(n -1)d . (3)前n 项和公式:.2 ) 1(2)(11d n n na a a n S n n -+=+= (4)等差中项:.2 21+++= n n n a a a (5)任意两项:a n =a m +(n -m)d. (6)性质: ①公差为非零的等差数列的充要条件是通项公式为n 的一次函数; ②公差为非零的等差数列的充要条件是前n 项和公式为n 的不含常数项的二次函数; ③设{a n }是等差数列,如果m 、n 、p 、q ∈N*,且m+n=p+q ,那么a m +a n =a p +a q ; ④设S n 是等差数列{a n }的前n 项和,则S m , S 2m -S m , S 3m -S 2m , …, S pm -S (p -1)m (m>1,p ≥3,m 、p ∈N*)仍成等差数列; ⑤设S n 是等差数列{a n }的前n 项和,则}{ n S n 是等差数列; ⑥设{a n }是等差数列,则{λa n +b}(λ,b 是常数)是等差数列;

高中数学应用题汇总

高中数学应用题汇总 1.两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B 的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065. (1)将y表示成x的函数; (11)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。 解(1)如图,由题意知AC⊥BC,, 其中当时,y=0.065,所以k=9 所以y表示成x的函数为 (2)令得所以即当时,即所以函数为单调减函数,当时, ,即所以函数为单调增函数.所以当时, 即当C点到城A的距离为时, 函数 有最小值 (注:该题可用基本不等式求最小值。)

2.某化工厂生产某种产品,每件产品的生产成本是3元,根据市场调查,预计每件产品的出厂价为x元(7≤x≤10)时,一年的产量为(11-x)2万件;若该企业所生产的产品全部销售,则称该企业正常生产;但为了保护环境,用于污染治理的费用与产量成正比,比例系数为常数k (1≤k≤3)。 (1)求该企业正常生产一年的利润F(x)与出厂价x的函数关系式;(2)当每件产品的出厂价定为多少元时,企业一年的利润最大,并求最大利润. (1)依题意,F(x)=(x-3)(11-x)2-k(11-x)2=(x-3-k)(11-x)2,x∈[7,10]. (2)因为F′(x)=(11-x)2-2(x-3-k)(11-x)=(11-x)(11-x -2x+6+2k) =(x-11)[3x-(17+2k)]. 由F′(x)=0,得x=11(舍去)或x=.(6分) 因为1≤k≤3,所以≤≤. ①当≤≤7,即1≤k≤2时,F′(x)在[7,10]上恒为负,则F(x)在[7,10]上为减函数,所以[F(x)]max=F(7)=16(4-k).(9分) ②当7<≤,即2

高一数学竞赛培训讲座之函数的基本性质

函数的基本性质 基础知识: 函数的性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性等等,在解决与函数有关的(如方程、不等式等)问题时,巧妙利用函数及其图象的相关性质,可以使得问题得到简化,从而达到解决问题的目的. 关于函数的有关性质,这里不再赘述,请大家参阅高中数学教材及竞赛教材:陕西师范大学出版社 刘诗雄《高中数学竞赛辅导》、刘诗雄、罗增儒《高中数学竞赛解题指导》. 例题: 1. 已知f(x)=8+2x -x 2,如果g(x)=f(2-x 2 ),那么g(x)( ) A.在区间(-2,0)上单调递增 B.在(0,2)上单调递增 C.在(-1,0)上单调递增 D.在(0,1)上单调递增 提示:可用图像,但是用特殊值较好一些.选C 2. 设f(x)是R 上的奇函数,且f(x +3)=-f(x),当0≤x≤ 23时,f(x)=x ,则f(2003)=( ) A.-1 B.0 C.1 D.2003 解:f(x +6)=f(x +3+3)=-f(x +3)=f(x) ∴ f(x)的周期为6 f(2003)=f(6×335-1)=f(-1)=-f⑴=-1 选A 3. 定义在实数集上的函数f(x),对一切实数x 都有f(x +1)=f(2-x)成立,若f(x)=0仅有 101个不同的实数根,那么所有实数根的和为( ) A.150 B.2303 C.152 D.2 305 提示:由已知,函数f(x)的图象有对称轴x = 23 于是这101个根的分布也关于该对称轴对称.

即有一个根就是23,其余100个根可分为50对,每一对的两根关于x =2 3对称 利用中点坐标公式,这100个根的和等于 23×100=150 所有101个根的和为 23×101=2303.选B 4. 实数x ,y 满足x 2=2xsin(xy)-1,则x 1998+6sin 5 y =______________. 解:如果x 、y 不是某些特殊值,则本题无法(快速)求解 注意到其形式类似于一元二次方程,可以采用配方法 (x -sin(xy))2+cos 2(xy)=0 ∴ x=sin(xy) 且 cos(xy)=0 ∴ x=sin(xy)=±1 ∴ siny=1 xsin(xy)=1 原式=7 5. 已知x =9919+是方程x 4+bx 2+c =0的根,b ,c 为整数,则b +c =__________. 解:(逆向思考:什么样的方程有这样的根?) 由已知变形得x -9919= ∴ x 2-219x +19=99 即 x 2-80=219x 再平方得x 4-160x 2+6400=76x 2 即 x 4-236x 2+6400=0 ∴ b=-236,c =6400 b + c =6164 6. 已知f(x)=ax 2+bx +c(a >0),f(x)=0有实数根,且f(x)=1在(0,1)内有两个实数根, 求证:a >4. 证法一:由已知条件可得 △=b 2-4ac≥0 ① f⑴=a +b +c >1 ②

高中数学应用题

函数、不等式型 1、某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3 a y x x = +--,其中3

高中数学奥林匹克竞赛的解题技巧(上中下三篇)

奥林匹克数学的技巧(上篇) 有固定求解模式的问题不属于奥林匹克数学,通常的情况是,在一般思维规律的指导下,灵活运用数学基础知识去进行探索与尝试、选择与组合。这当中,经常使用一些方法和原理(如探索法,构造法,反证法,数学归纳法,以及抽屉原理,极端原理,容斥原理……),同时,也积累了一批生气勃勃、饶有趣味的奥林匹克技巧。在2-1曾经说过:“竞赛的技巧不是低层次的一招一式或妙手偶得的雕虫小技,它既是使用数学技巧的技巧,又是创造数学技巧的技巧,更确切点说,这是一种数学创造力,一种高思维层次,高智力水平的艺术,一种独立于史诗、音乐、绘画的数学美。” 奥林匹克技巧是竞赛数学中一个生动而又活跃的组成部分。 2-7-1 构造 它的基本形式是:以已知条件为原料、以所求结论为方向,构造出一种新的数学形式,使得问题在这种形式下简捷解决。常见的有构造图形,构造方程,构造恒等式,构造函数,构造反例,构造抽屉,构造算法等。 例2-127 一位棋手参加11周(77天)的集训,每天至少下一盘棋,每周至多下12盘棋,证明这棋手必在连续几天内恰好下了21盘棋。 证明:用n a 表示这位棋手在第1天至第n 天(包括第n 天在内)所下的总盘数(1,2,77n =…),依题意 127711211132a a a ≤<<≤?=… 考虑154个数: 12771277,,,21,21,21a a a a a a +++…,? 又由772113221153154a +≤+=<,即154个数中,每一个取值是从1到153的自然数,因而必有两个数取值相等,由于i j ≠时,i i a a ≠ 2121i j a a +≠+ 故只能是,21(771)i j a a i j +≥>≥满足 21i j a a =+ 这表明,从1i +天到j 天共下了21盘棋。 这个题目构造了一个抽屉原理的解题程序,并具体构造了154个“苹果”与153个“抽屉”,其困难、同时也是精妙之处就在于想到用抽屉原理。 例 2-128 已知,,x y z 为正数且()1xyz x y z ++=求表达式()()x y y z ++的最最小值。 解:构造一个△ABC ,其中三边长分别为a x y b y z c z x =+??=+??=+? ,则其面积为 1?== 另方面2()()2sin x y y z ab C ?++==≥ 故知,当且仅当∠C=90°时,取值得最小值2,亦即222()()()x y y z x z +++=+

学高中数学竞赛辅导计划

学高中数学竞赛辅导计 划 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

2016年高中数学竞赛辅导计划 为搞好2016年全国数学联赛备考工作,并以此为契机,培养我校学生数学学习的积极性,进一步提高我校的办学品位,特举办本届高中数学联赛辅导班。 一、指导思想: 以科学发展观、新课程理论为指导;以提高学生学习数学、应用数学的兴趣,提高学生的数学素养为宗旨;坚持以生为本、有利于学生的终生发展的原则,立足实际、因材施教,开展数学竞赛辅导班工作。 二、目标要求 1、适当拓宽学生数学知识视野,注重渗透一些常用的数学思想方法、加深对数学本质的认识。 2、注重培养学生良好的思维品质,提高学生的探究知识及运用数学知识和数学思想方法分析、解决问题的能力。 3、注意培养学生的应用意识、创新意识、协作意识,培养学生良好的科学态度。 4、使学生在探究知识,解决问题的过程中,感受数学文化的博大精深和数学方法的巨大创造力,感受数学的魅力,增强对数学的向往感;从而激发学生学习数学的热情。培养学生不畏困难、敢于攀登科学高峰的勇气。 5、力争在2016年高中数学联赛中至少有两人次取得省级三等以上的奖项,在本市同层次学校中名列前茅,为学校争光。 三、管理措施: 1、依据全国数学联赛考试大纲,结合近几年数学联赛试题特点,根据教学进度和学生认知结构特点,精心选择、合理安排教学内容,循序渐进,逐步提高。 2、精心准备,讲究实效。认真编写讲义(或教案),上课前一周将讲义制好并分发给学生。认真上好每一节辅导课,使学生真正学有所得。 3、以集体讲解与学生自主学习和小组合作学习相结合的学习形式组织学习,充分调动学生学习的积极性,保障学生的主体地位。 4、精编课后巩固练习与强化,及时检查、及时批改、及时反馈,确保质量。 5、制定辅导班班规,严格考勤制度。 6、争取学校有关领导、班主任及数学教师的支持,确保后勤保障。 五、学生选拔:先由学生本人自愿报名,经家长同意后,由有关班主任、任课教师协商并推荐人选,通过选拔考试择优录取50名。 六、辅导教师: 七、活动时间: 八、活动地点: 注: 1、若有特殊情况须作临时调整,则另行通知。 2、本计划有不周之处或未尽事宜,将在执行过程中进行不断完善。 年月日2016年高中数学联赛辅导课安排表

高中数学奥赛辅导讲课稿

数列与递进 知识、方法、技能 数列是中学数学中一个重要的课题,也是数学竞赛中经常出现的问题. 所谓数列就是按一定次序排列的一列数.数列的一般形式是a 1, a 2, …,a n , …通常简记为{a n }.如果数列{a n }的第n 项a n 与n 之间的函数关系可用一个公式来表示,这个公式就叫做这个数列的通项公式. 从函数的角度看,数列可以看做是一个函数,定义域是自然数集或自然数集的一个有限子集,函数表达式就是数列的通项公式. 对于数列{a n },把S n =a 1+a 2+…+a n 叫做数列{a n }的前n 项和,则有 ???≥-==-).2(),1(11n S S n S a n n n I .等差数列与等比数列 1.等差数列 (1)定义:.2)(211++++= =-n n n n n a a a d a a 或常量 (2)通项公式:a n =a 1+(n -1)d . (3)前n 项和公式:.2 )1(2)(11d n n na a a n S n n -+=+= (4)等差中项:.2 21+++=n n n a a a (5)任意两项:a n =a m +(n -m)d. (6)性质: ①公差为非零的等差数列的充要条件是通项公式为n 的一次函数; ②公差为非零的等差数列的充要条件是前n 项和公式为n 的不含常数项的二次函数; ③设{a n }是等差数列,如果m 、n 、p 、q ∈N*,且m+n=p+q ,那么a m +a n =a p +a q ; ④设S n 是等差数列{a n }的前n 项和,则S m , S 2m -S m , S 3m -S 2m , …, S pm -S (p -1)m (m>1,p ≥3,m 、p ∈N*)仍成等差数列; ⑤设S n 是等差数列{a n }的前n 项和,则}{n S n 是等差数列; ⑥设{a n }是等差数列,则{λa n +b}(λ,b 是常数)是等差数列;

【高中教育】最新高中数学奥林匹克竞赛训练题(206)

——教学资料参考参考范本——【高中教育】最新高中数学奥林匹克竞赛训练题(206) ______年______月______日 ____________________部门

第一试 一、填空题(每小题8分,共64分) 1。已知正整数组成等比数列,且则的最大值为 。 ()a b c a b c <<、、201620162016log log log 3,a b c ++=a b c ++ 2。关于实数的方程的解集为 。x 2 12sin 2222log (1sin )x x -=+- 3。曲线围成的封闭图形的面积为 。 2224x y y +≤ 4。对于所有满足的复数均有,对所有正整数,有,若 。 z i ≠z ()z i F z z i -= +n 1()n n z F z -=020162016,z i z =+=则 5。已知P 为正方体棱AB 上的一点,满足直线A1B 与平面B1CP 所成角 为,则二面角的正切值为 。1111ABCD A B C D -0 6011A B P C -- 6。已知函数,集合则A= 。 22 ()224,()2f x x x g x x x =+-=-+()()f x A x Z g x +?? =∈?? ?? 7。在平面直角坐标系中,P 为椭圆在第三象限内的动点,过点P 引圆的两条切线PA 、PB ,切点分别为A 、B ,直线AB 与轴、轴分别交于点M 、 N ,则面积的最小值为 。 xOy 22 12516x y +=22 9x y +=x y OMN ? 8。有一枚质地均匀的硬币,现进行连续抛硬币游戏,规则如下:在抛掷的过程中,无论何时,连续出现奇数次正面后出现一次反面,则游戏停止;否则游戏继续进行,最多抛掷10次,则该游戏抛掷次数的数学期望为 。 二、解答题(共56分)

高中数学 抛物线知识点归纳总结与经典习题

抛物线经典结论和例题

方程 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+,

2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+-所以 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--,即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点 ),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零) 一、抛物线的定义及其应用

江苏省金湖县实验中学高中数学 奥赛辅导 构造一次方程组的技巧

- 1 - 一、利用同类项的定义构造: 例1:已知m n m n b a --31999 1和1079999+-m n a b 是同类项,则.________22=+n m 二、利用二元一次方程的定义构造: 例2:若243724953=+--++n m n m y x 是二元一次方程,则n m 的值等于________. 三、利用方程组的解的定义构造: 例3:若???==12y x 是方程组???=+=-5 213by ax y ax 的解,求b a 、的值. 四、利用相反数的性质构造: 例4:已知a 的相反数是12+b ,b 的相反数是13+a ,则.________22=+b a 五、利用非负数性质构造: 例5:如果实数y x ,满足()022=++-y x x ,那么.________=y x 六、利用多项式恒等性质构造: 例6:已知多项式682322 2-+--+y x y xy x 可以分解为()()n y x m y x +-++22的形式,那么.________1 123=++n m 七、利用一次方程的解的特征构造: 例7:已知关于x 的方程()()()15133+=++-x x b x a 有无穷多个解,那么.________________,==b a 八、取特殊值构造: 例8:设b ax x x ++-2 32除以()()12+-x x 所得的余式为12+x ,那么.________________,==b a 九、弱化某些未知数构造: 例9:若,073, 0452=-+=++z y x z y x 则.________=-+z y x 十、利用新运算的定义构造: 例10:对于实数y x ,定义一种新运算*:,c by ax y x ++=*其中c b a 、、为常数,等式右边是通常的加法与乘法运算. 已知:,2874, 1553=*=*那么.________11=*

2019年度高一数学奥林匹克竞赛决赛试题及答案解析

2019年**一中高一数学竞赛奥赛班试题(决赛) 及答案 (时间:5月16日18:40~20:40) 满分:120分 一、 选择题(本大题共6小题,每小题5分,满分30分) 1.已知 M =},13|{},,13|{},,3|{Z n n x x P Z n n x x N Z n n x x ∈-==∈+==∈=,且 P c N b M a ∈∈∈,,,设c b a d +-=,则∈d ( ) A. M B. N C. P D.P M 2.函数()1 42-+ =x x x x f 是( ) A 是偶函数但不是奇函数 B 是奇函数但不是偶函数 C 既是奇函数又是偶函数 C 既不是奇函数也不是偶函数 3.已知不等式m 2 +(cos 2 θ-5)m +4sin 2 θ≥0恒成立,则实数m 的取值范围是( ) A . 0≤m ≤4 B . 1≤m ≤4 C . m ≥4或x ≤0 D . m ≥1或m ≤0 4.在△ABC 中,c b a ,,分别是角C B A ,,所对边的边长,若 0sin cos 2sin cos =+- +B B A A ,则 c b a +的值是( ) A.1 B.2 C.3 C.2 5. 设 0a b >>, 那么 2 1 () a b a b + - 的最小值是 A. 2 B. 3 C. 4 D. 5 6.设ABC ?的内角A B C ,,所对的边,,a b c 成等比数列,则B C B A C A cos tan sin cos tan sin ++的取值范围是 ( ) A. (0,)+∞ B. C. D. )+∞. 二、填空题(本大题共10小题,每小题5分,满分50分) 7.母线长为3的圆锥中,体积最大的那一个的底面圆的半径为 8.函数| cos sin |2sin )(x x e x x f ++=的最大值与最小值之差等于 。

高中数学奥林匹克竞赛中的不变量技巧

数学奥林匹克竞赛中的不变量技巧 在一个变化的数学过程中常常有个别的不变元素或特殊的不变状态,表现出相对稳定的较好性质,选择这些不变性作为解题的突破口是一个好主意。 例1.从数集{}3,4,12开始,每一次从其中任选两个数,a b ,用345 5 a b -和435 5 a b +代替它们,能否通过有限多次代替得到数集{}4,6,12。 解:对于数集{},,a b c ,经过一次替代后,得出3 443,,5 5 5 5a b a b c ??-+???? , 有2222223443()()5555 a b a b c a b c -+++=++ 即每一次替代后,保持3个元素的平方和不变(不变量)。 由22222234124612++≠++知,不能由{}3,4,12替换为{}4,6,12。 例2.设21n +个整数1221,,,n a a a +…具有性质p ;从其中任意去掉一个,剩下的2n 个数可以分成个数相等的两组,其和相等。证明这2n+1个整数全相等。 证明:分三步进行,每一步都有“不变量”的想法: 第一步 先证明这2n+1个数的奇偶性是相同的 因为任意去掉一个数后,剩下的数可分成两组,其和相等,故剩下的2n 个数的和都是偶数,因此,任一个数都与这2n+1个数的总和具有相同的奇偶性; 第二步 如果1221,,,n a a a +…具有性质P ,则每个数都减去整数c 之后,仍具有性质P ,特别地取1c a =,得21312110,,,,n a a a a a a +---… 也具有性质P ,由第一步的结论知,2131211,,,n a a a a a a +---…都是偶数; 第三步 由21312110,,,,n a a a a a a +---…为偶数且具有性质P ,可得 31 211210, ,,,222 n a a a a a a +---… 都是整数,且仍具有性质P ,再由第一步知,这21n +个数的奇偶性相同,为偶数,所以都除以2后,仍是整数且具有性质P ,余此类推,对任意的正整数k ,均有 31 211210, ,,,222n k k k a a a a a a +---…为整数,且具有性质P ,因k 可以任意大,这就推得 21312110n a a a a a a +-=-==-=…即 1221n a a a +===…。

金湖县实验中学高中数学奥赛辅导整式的恒等变形

内容:(1)运用运算性质法则。(2)灵活运用乘公式。(3)配方法。 (4)应用因式分解。(5)代换法。 一.(运用性质和法则) 1. 设x , y , z 都是整数,且11整除7x+2y-5z , 求证:11整除3x-7y+12z . 2. 已知d cx x ax y +++=356,当x = 0 时,y = - 3 ;当x = -5 时,y = 9 , 求当x = 5时 y 的值。 二.(灵活运用乘法公式) 3. 计算:()()()()1121212123242+++++ 4. 设a , b , c 为有理数,且0,0333=++=++c b a c b a . 求证:对于任何正奇数n ,都有0=++n n n c b a 5. 当1,0222=++=++c b a c b a 时,试求下列各式的值: (1)ab ca bc ++ ;(2)444c b a ++ 6. 试求x x x x x x +++++392781243被1-x 除的余数。 三.(配方法) 7. 证明:当a , b 取任意有理数时,多项式116222++-+b a b a 的值总是正数。 8. 若() ()22223214c b a c b a ++=++,求a : b : c . 9. 已知a , b , c , d 为正数,且abcd d c b a 44444=+++, 求证: a = b = c = d . 11. 解方程:0441212322222=+-++-y y y x y x x 12.若a , b , c , d 是整数,且2222,d c n b a m +=+=, 求证:mn 可表示成两个整数的平方和。 13.已知2,122=+=+b a b a ,求77b a +的值。 四.(应用因式分解) 14.在三角形ABC 中,22216c b a -- 0106=++bc ab (a , b , c 是三角形的三边), 求证:b c a 2=+ 15.已知c a bc a b c b ac b a 222222++=++,试求()()()a c c b b a ---的值。 五.(代换法) 16.已知a , b , c 适合,d c b a +=+ 3333d c b a +=+。

高中数学奥林匹克竞赛全真试题

1 2003年全国高中数学联合竞赛试题 一、选择题(本题满分36分,每小题6分) 1、删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个新数列的第2003项是( ) A .2046 B .2047 C .2048 D .2049 2、设a ,b ∈R ,ab ≠0,那么,直线ax -y +b =0和曲线bx 2+ay 2=ab 的图形是( ) 3、过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线.若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于P 点,则线段PF 的长等于( ) A . 163 B .8 3 C D . 4、若5[,]123 x ππ ∈--,则2tan()tan()cos()366y x x x πππ=+-+++的最大值是( ). A B C D 5、已知x 、y 都在区间(-2,2)内,且xy =-1,则函数2 2 4949u x y = + --的最小值是( ) A . 85 B .2411 C .127 D .125 6、在四面体ABCD 中,设AB =1,CD AB 与CD 的距离为2,夹角为3 π ,则四 面体ABCD 的体积等于( ) A B .12 C .1 3 D 二、填空题(本题满分54分,每小题9分) 7、不等式|x |3-2x 2-4|x |+3<0的解集是__________. 8、设F 1,F 2是椭圆22 194 x y +=的两个焦点,P 是椭圆上的点,且|PF 1|:|PF 2|=2:1,则△PF 1F 2的面积等于__________. 9、已知A ={x |x 2-4x +3<0,x ∈R },B ={ x |21- x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R }.若A B ?,则实数a 的取值范围是__________. 10、已知a ,b ,c ,d 均为正整数,且35 log ,log 24 a c b d ==,若a - c =9,b - d =__________. 11、将八个半径都为1的球分两层放置在一个圆柱内,并使得每个球和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于__________. 12、设M n ={(十进制)n 位纯小数0.12 |n i a a a a 只取0或1(i =1,2,…,n -1) ,a n =1},

高中数学应用题解题思路

高中数学应用题解题思路 一、高中数学应用题教学的方法 高中数学应用题的教学方法有很多种,在实际应用中,教师要根据学生的接受能力以及数学课程的内容进行优化选择。 1.导学案教学方法。导学案是教师为了在课堂当中能够指导学生实现自主学习而设计的一套材料体系,通常都包括“学习目标、预习导学、自主探究、自学检验、小结与反思、当堂反馈、拓展延伸、总结反思”等不同的部分。导学案教学方法在高中数学应用题教学中的广泛应用,能够帮助教师更好地发挥自身的指导作用,教师指导学生自主完成学案中的不同环节,学生在这一合作探究的过程中就能够实现对知识的“来龙去脉”的清晰掌握。应用题中所涉及到的知识点通常比较多,通过导学案教学可以让学生思路清晰地去解决探究中遇到的每一个问题,同时还能够起到复习旧知识点的作用。 2.生活化教学方法。生活化教学方法就是指教师在课堂教学中要积极引导学生的思路走向实际生活,强化所学到的知识与实际生活的联系。在高中数学应用题教学中,生活化的教学方式是最有利于提高学生应用能力的方法。教师在讲授应用题的解决方法中,常常会列举很多生活中常见的数学问题,让学生用根据自己的生活经验以及知识基础,通过合作探究,去解决这些问题。 3.自主学习教学方法。自主学习教学方法旨在培养学生的自主学习能力,自主学习是要以学生的主动学习、独立学习为主要特征的。在高中数学课堂中自主学习的实现在于教师教学情境的创设,如果教学情境创设得当,能够调动学生学习的兴趣,那么就能够充分发挥自主学习教学方法的优势。自主学习教学方法可以分为几个阶段进行,第一个阶段,就是创设一个新颖且结合当堂数学知识的情境。第二个阶段,在情境中分层设置探索的问题,让学生在问题的解决中获得成就感,从而自主探究问题。第三阶段,总结学生在探究过程中遇到的问题,给予指导,让学生根据老师的指导进行探究活动反思。 二、高中数学应用题教学中解题思路培养的几点建议 根据新课程标准的要求,教师在课堂教学中,不但要教授学生掌握知识,还要重视学生能力的培养,这无疑给教师的课堂教学带来了难题,针对高中数学应用题教学中学生解题思路的培养,提出了几点建议。1.给学生更多动手操作的机会。在新课标中,对学生实践能力的培养也是教师教学中的一个任务。为了培养学生数学应用题的解题思路,教师在实际教学中要给学生创造更多动手操作的机会。 2.培养学生发散性思维。学生发散思维的培养可以从多个方面进行,首先,改编多解题。教师可以通过改编习题的方式来训练学生的发散思维,让学生养成一种多元思维的习惯。教师通过一题多解多变的方式对学生进行反复训练,可以克服学生思维中固有的狭隘性。其次,创设教学情境,调动学生思考的积极性。学生思维的惰性是影响学生发散思维形成的原因之一,所以,要通过调动学生思维的积极性来克服惰性,在高中数学教学中,教师要调动学生对知识的渴望,让学生情绪饱满地进行探究思考。再次,联想思维的培养。联想思维是一种富有想象力的思考方式,是发散思维的一种标志。在应用题的教学中可以引导学生转化思考问题的思路,比如,有些应用题的叙述并不是工程类的问题,但是特点与其相似,教师就可以引导学生用工程类问题的解题思路去思考这一问题,这种转化的方式能够有效地锻炼学生思维的发散性。 3.激发学生创新力。创新能力源于创新意识,而创新意识又是一种发现问题并积极探索的心理取向,教师要想培养学生的创新能力,首先要创设一个轻松愉快的学习环境,这种学习环境要以师生关系的平等为前提条件。学生只有在轻松的心理氛围之内,才能够对数学知识产生求知欲,进而才能谈到创新。其次,鼓励学生提出问题。创新就是新问题的提出和解决的过程,教师要接纳学生所有的观点,正确的观点鼓励他们发扬,错误的观点引导他们继续探究,同时要引导学生发现问题、提出问题。除此之外,创新能力的激发还可以通过学生观察力、想象力等的培养来实现。

高中数学应用题解法技巧总结

高中数学应用题解法技巧总结 数学应用题是指将所学数学知识应用到实际生活实践的题目。其综合度较高,信息量丰富,是综合锻炼我们思维能力与解题技巧的一类题型。是高中数学学科中非常重要的一部分,努力提高应用题解题能力对于学好数学学科有着举足轻重的作用。所以,要把数学应用题学好,提升数学学科的水平,学习的方法技巧很重要。 一、提取信息源助力解题 数学应用题一般情况下给出的题设很详细,在解答时要仔细分析这些内容,从中提取核心信息,以帮助解决问题,提高效率。 如图例:通过分析,得出了这道题的C点应该是BC在圆O上的切点,这个就是解这道应用题的关键,只要把这一要素提出来,这个问题就变得非常直观了,然后利用相关的概念定义、公式和定律等很容易就答出AB的长度。由此可以看出,提取应用题中的信息源非常重要,只要抓住核心信息,其他问题就会迎刃而解。 二、联想法助力解题

对于一些比较抽象的问题,理解起来难度很大,怎么办?遇到这样的问题要学会转化,把比较抽象的知识转化成比较形象的内容,采取“情景再现”法效果很好。把抽象的知识点利用具体的情境来呈现出相应的知识点,这样,很难的问题立马变得形象直观了,这样,对于理解题意就容易很多,解答起来也轻松愉快了。 例:在学习等比例求和公式时,为了帮助理解记忆,可以设置这样一个例子:一棵月季花第一次开了一朵,第二次开了两朵,那么第三次、第四次、第五次……开多少朵,运用等比例求和公式来推算,就很容易了。 所以,将一些实际问题用联想法进入情境,使情景再现,对于解决相关的应用题帮助非常大,可以使思维过程找到依托,能够更轻松地分析问题、解决问题,从而加快解题速度。 三、图形法助力解题 在学习体积问题、设计问题、追击问题等相关应用题时,尝试使用图形,将文字叙述转变成图形,使题目形象直观,应用题中的相关变量可以由抽象到“直视”,很容易“入脑”,解起题来信手拈来。

金湖县实验中学高中数学奥赛辅导数论初步—数的整除性

整数的整除性 定义:设a ,b 为二整数,且b ≠0,如果有一整数c ,使a =bc ,则称b 是a 的约数,a 是b 的倍数,又称b 整除a ,记作b|a. 显然,1能整除任意整数,任意整数都能整除0. 性质:设a ,b ,c 均为非零整数,则 ①.若c|b ,b|a ,则c|a. ②.若b|a ,则bc|ac ③.若c|a ,c|b ,则对任意整数m 、n ,有c|ma +nb ④.若b|ac ,且(a ,b)=1,则b|c 证明:因为(a ,b)=1 则存在两个整数s ,t ,使得 as +bt =1 ∴ asc +btc =c ∵ b|ac ? b|asc ∴ b|(asc +btc) ? b|c ⑤.若(a ,b)=1,且a|c ,b|c ,则ab|c 证明:a|c ,则c =as(s ∈Z) 又b|c ,则c =bt(t ∈Z) 又(a ,b)=1 ∴ s =bt'(t'∈Z) 于是c =abt' 即ab|c ⑥.若b|ac ,而b 为质数,则b|a ,或b|c ⑦.(a -b)| (a n -b n )(n ∈N),(a +b)|(a n +b n )(n 为奇数) 整除的判别法:设整数N =121n 1a a a a - ①.2|a 1?2|N , 5|a 1? 5|N ②.3|a 1+a 2+…+a n ?3|N 9|a 1+a 2+…+a n ?9|N ③.4|a a ? 4|N 25|a a ? 25|N ④.8|a a a ?8|N 125|a a a ?125|N ⑤.7||41n n a a a --a a a |?7|N ⑥.11||41n n a a a --a a a |?11|N ⑦.11|[(a 2n +1+a 2n -1+…+a 1)-(a 2n +a 2n -2+…+a 2)] ?11|N

数学竞赛的背景、意义和辅导

数学竞赛的背景、意义和辅导 上海市育才初级中学但水平1数学竞赛的历史背景最先举办数学竞赛的国家是匈牙利。 早在1894年(我国清朝光绪年间),匈牙利数学物理学会就已通过了一项决议: 每年为中学生举办数学竞赛,从此之后,除了因世界大战和“匈牙利事件”中断了7年之外,这项竞赛每年10月都要举行。 1934年和1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并最先冠以“数学奥林匹克”的名称。 从此这一名称正式出现了。 1959年,罗马尼亚首都数学物理学会向7个国家发出邀请,在罗马尼亚首都布加勒斯特举办第一届“国际数学奥林匹克,从而产生了每年举办一次的国际数学奥林匹克(简称IMO),至2004年已举办45届。 (1980年东道主蒙古因经费困难停办过一届)我国第一次参加了1985年在芬兰举行的第26届国际数学奥林匹克,由于仓促上阵,准备不足和缺乏经验,这次成绩不理想,仅吴思皓同学获得铜牌。 1986年,中国数学奥林匹克代表队一行6人参加了在波兰华沙举办的第27届国际数学奥林匹克竞赛,有3人获得金牌,1人获得银牌,1人获得铜牌,团体总分名列 第4。 我国中学生第二次参加比赛就表现出这样高的水平,取得了这样好的成绩,确实举世瞩目。 第一次向世界显示: 中国中学生数学奥林匹克队已跌入世界强队之列。

此后,我国中学生参加国际数学奥林匹克的成绩不断提高,1992年第33届国际数学奥林匹克获得6枚金牌和团体总分第一,更是来之不易。 1956年,在北京、上海、天津、武汉四大城市举办了我国第一届数学竞赛,并一直延续到现在。 2数学竞赛的意义许多国家对中学生数学竞赛如此热衷,花了很大的精力和代价操办这一事情,究竟有没有意义?这里我们引述美国航天之父冯·卡门在《航空航天时代的科学奇才》一书中的一段话: “跟据我所知,目前在国外的匈牙利著名科学家当中,有一半以上都是数学惊赛的优胜者,在美国的匈牙利科学家,如爱德华、泰勒、列夫·西拉得、乔治·波利亚、冯·牛曼等几乎都是数学竞赛的优生者。 我衷心希望美国和其他国家都能大力倡导这种数学竞赛。 ”数学竞赛确实是一项传统的智力竞赛问题,它对于激发青少年学习数学的兴趣,扩展知识视野,培养数学思维能力,选拔数学人才都有重要的意义。 它的积极影响主要表现在以下几个方面。 2.1早期发现人才,长期培养在数学竞赛中我们可以发现一批思维敏捷、智力超群的学生,这可引起我们教师的注意并加以重点培养。 第31届IMO中黄康中学的黄崧同学获得了金牌,当然是他的智力好,思维敏捷,但老师对他的早期培养是主要的。 黄干中学的老师说得好: “要使天才不致荒废,必须早期发现,长期培养。 ” 2.2举办数学竞赛符合因材施教的原则我们应该承认学生智力上的差异。 教科书上的数学是“大众数学”,是今后作为社会公民必须要掌握的。

相关文档
相关文档 最新文档