文档库 最新最全的文档下载
当前位置:文档库 › 叶片泵有哪些优缺点

叶片泵有哪些优缺点

叶片泵有哪些优缺点
叶片泵有哪些优缺点

油液的温度和粘度一般不宜超过55℃,粘度要求在17~37mm2/s之间。粘度太大则吸油困难;粘度太小则漏泄严重。

液压机双作用叶片泵的优缺点

发布者:admin 发布时间:2011-9-23 8:36:58

液压机双作用叶片泵的优缺点

双作用叶片泵的优点有以下几方面:

①流量均匀,运转平稳,噪声小。

②转子所受径向液压力彼此平衡.轴承使用寿命长,耐久性好。

③容积效率较高,可达95%以上。

④工作压力较高。目前双作用叶片泵的工作压力为6. 86~ MPa,有

时可达 MPa。

⑤结构紧凑,外形尺寸小且排量大。

双作用叶片泵的缺点有以下几方面:

①叶片易咬死,工作可靠性差,对油液污染敏感,故要求工作环境清洁,

油液要求严格过滤。

②结构较齿轮泵复杂,零件制造精度要求较高。

③要求吸油的可靠转速在8. 3—25 r/s范围内。如果转速低于 rls,

因离心力不够,叶片不能紧贴在定子内表面,不能形成密封良好的封闭容积,

从而吸不上油。如果转速太高,由于吸油速度太快,会产生气穴现象,也吸不

上油,或吸油不连续。

叶片泵的优缺点及其应用

主要优点:

(1)输出流量比齿轮泵均匀,运转平稳,噪声小。

(2)工作压力较高,容积效率也较高。

(3)单作用式叶片泵(Tokimec东京计器叶片泵)易于实现流量调节,双作用式叶

片泵则因转子所受径向液压力平衡,使用寿命长。

(4)结构紧凑,轮廓尺寸小而流量较大。

主要缺点:

(1)自吸性能较齿轮泵差,对吸油条件要求较严,其转速范围必须在

500~ 1500 r/min范围内。

(2)对油液污染较敏感,叶片容易被油液中杂质咬死,工作可靠性较差。

(3)结构较复杂,零件制造精度要求较高,价格较高。

叶片泵一般用在中压MPa)液压系统中,主要用于机床控制,特别是双作用式叶片泵(东京计器SQP叶片泵)因流量脉动很小,因此在精密机床中得到广泛使用。

叶片泵运行注意事项

发布时间:2012-09-03 09:58:30

浏览次数:127

作为泵产品,叶片泵更多地指滑片泵,例如:东京计器SQP叶片泵,油研PV2R叶片泵,丹尼逊T6叶片泵,叶片泵的管理要点除需防干转和过载、防吸入空气和吸入真空度过大外,还应注意:

1、泵转向改变,则其吸排方向也改变,叶片泵都有规定的转向,不允许调反。因为转子叶槽有倾斜,叶片有倒角,叶片底部与排油腔通,配油盘上的节流槽和吸、排口是按既定转向设计,因此可逆转的叶片泵必须专门设计。

2、叶片泵装配配油盘与定子用定位销正确定位,叶片、转子、配油盘都不得装反,定子内表面吸入区部分最易磨损,必要时可将其翻转安装,以使原吸入区变为排出区而继续使用。

3、拆装注意工作表面清洁,工作时油液应很好过滤。

4、叶片在叶槽中的间隙太大会使漏泄增加,太小则叶片不能自由伸缩,会导致工作失常。

5、叶片泵的轴向间隙对ηv影响很大。

a)小型泵~

b)中型泵~

6、油液的温度和粘度一般不宜超过55℃,粘度要求在17~37mm2/s之间。粘度太大则吸油困难;粘度太小则漏泄严重。

来源:滚动(右击停止滚动)

叶片泵的优点是结构紧凑,体积小(单位体积的排量较大)运转平稳,输出流量均匀,噪声小,寿命长,即可做成定向齿轮泵,也可制成变量齿轮泵,定量泵(双作用或多作用)轴向受力平衡,使用寿命较长,变量泵变量方式可以有多种,且结构简单(如压力补偿变量泵)

叶片泵的缺点是吸油能力稍差,对油液污染较敏感,叶片受离心力外伸,所以转速不能太低,叶片在转子槽内滑动时受接触应力和摩擦力的影响很限制,其压力和转速难以提高,要提高叶片齿轮泵的使用压力,须采用各种措施,必然增加其结构的复杂程度,另外定量泵的定子曲线面,叶片和转子的加工略有难度,一浅谈定量叶片泵的优点和缺点:

1、由于流体流动的阻力和泄露较大,所以效率较低。如果定量叶片泵处理不当,泄露不仅污染场地,而且还可能引起火灾和爆炸事故。

2、由于工作性能易受到温度变化的影响,因此不宜在很高或很低的温度条件下工作。

3、定量叶片泵元件的制造精度要求较高,因而价格较贵。

4、由于液体介质的泄露及可压缩性影响,不能得到严格的传动比。

5、液压传动出故障时不易找出原因;使用和维修要求有较高的技术水平。

般要求专用设备,且加工精度稍高。

\

\

叶片泵:结构紧凑,外形尺寸小,运转平稳,流量均匀,脉动及噪声较小,寿命较长,效率一般高于齿轮泵,价格低于柱塞泵。中小流量的叶片泵常用在节流调节系统中,大流量的叶片泵,为避免功率损失过大,一般只用在非调节液压系统中。叶片泵多用在机床、油压机、车辆、工程机械和塑料注射机的液压系统中。齿轮泵:结构简单,价格较低,工作可靠,维护方便,对冲击负载适应性好,旋转部分惯性小。轴承负载较大,磨损较快,同叶片泵、柱塞泵比较,效率最低。多用在机床、工程机械、矿山机械、农业机械上。

柱塞泵:结构紧凑,寿命长,噪音低,压力高,流量大,单位质量功率较大,易于实现流量的调节和流向的改变,但结构复杂,价格较高。柱塞泵特别是轴向柱塞泵,被广泛的应用在要求压力高,流量大并需要调节的大功率液压系统中。螺杆泵实质上是一种齿轮泵,其特点是结构简单,重量轻,流量及压力的脉动小,输送均匀,无絮流,无搅动,很少产生气泡;工作可靠,噪声小,运转平稳性比齿轮泵和叶片泵高,容积效率高,吸入扬程高。但加工较难,不能改变流量。适用于机床或精密机械的液压传动系统。一般应用两螺旋杆或三螺旋杆泵,有立式及卧式两种安装方式。

液压泵常见故障及解决方法

液压泵常见故障及解决方法 液压泵是液压系统的动力元件,是靠发动机或电动机驱动,从液压油箱中吸入油液,形成压力油排出,送到执行元件的一种元件。液压泵按结构分为齿轮泵、柱塞泵、叶片泵和螺杆泵。 故障原因:(1)液压油箱油面过低; 排除方法:添加液压油 故障原因:(2)没按季节使用液压油; 排除方法:通常适用46#液压油(或68#)无需要特别更换,冬季的北方特冷时考虑使用32# 故障原因:(3)进油管被脏物严重堵塞; 排除方法:取出管内异物 故障原因:(4)油泵主动齿轮油封损坏,空气进入液压系统; 排除方法:更换老化的或损坏的油封、O形密封圈 故障原因:(5)油泵进、出油口接头或弯接头“O”形密封圈损坏,弯接头紧固螺栓或进、出油管螺母未上紧,空气进入液压系统; 排除方法:更换O形密封圈,上紧接头处螺栓或螺母 故障原因:(6)油泵内漏,密封圈老化; 排除方法:更换密封圈 故障原因:(7)油泵端面或主、从动齿轮轴套端面磨损或刮伤,两轴套端面不平度超差; 排除方法:更换磨损齿轮油泵或油泵轴套,磨损轻微时平板上将端面磨平整。其不平度允许误差 0.03mm;上轴套端面低于泵体,上平面(正常值低于2.5~2.6mm),如超差时应下轴套加0.1~0.2mm铜片来补偿,安装时则应套后轴套上装入 故障原因:(8)油泵内部零件装配错误造成内漏; 排除方法:卸荷片和密封环必须装进油腔,两轴套才能保持平衡。导向钢丝弹力应能同时将上、下轴套朝从动齿轮旋转方向扭转一微小角度,使主、从动齿轮两个轴套加工平面紧密贴合;轴套上卸荷槽必须装低压腔一侧,以消除齿轮啮合时产生有害闭死容积;压入自紧油封前,应其表面涂一层润滑油,还要注意将阻油边缘朝向前盖,不能装反;装泵盖前,须向泵壳内倒入少量液压油,并用手转动啮合齿轮 1、按流量是否可调节可分为:变量泵和定量泵。输出流量可以根据需要来调节的称为变量泵,流量不能调节的称为定量泵。

双作用叶片泵工作原理介绍

双作用叶片泵工作原理介绍 工作原理 图A所示为双作用叶片泵的工作原理。其工作原理与单作用叶片泵相似,不同之处在于双作用叶片泵的定子内表面似椭圆,由两大半径R圆弧、两小半径r圆弧和四段过渡曲线组成,且定子和转子同心。配油盘上开两个吸油窗口和两个压油窗口。当转子按图示方向转动时,叶片由小半径r处向大半径R处移动时,两叶片间容积增大,通过吸油窗口a吸油;当叶片由大半径R处向小半径r处移动时,两叶片间容积减小,液压油油液压力升高,通过压油窗口b压油。转子每转一周,每一叶片往复运动两次。故这种泵称为双作用叶片泵。双作用叶片泵的排量不可调,是定量泵。 叶片泵 2.排量和流量的计算 由图A可知,叶片泵每转一周,两叶片组成的工作腔由最小到最大变化两次。因此,叶片泵每转一周,两叶片间的油液排出量为大圆弧段R处的容积与小圆弧段r处的容积的差值的两倍。若叶片数为z,当不计叶片本身的体积时,通过计算可得双作用叶片泵的排量为 V=2π(R2-r2)b (1)泵的流量为q=2π(R2-r2)bnηv (2)式中,R为定子的长半径;,r为定子的短半径;b为叶片的宽度;n为转子的转速;ηv为叶片泵的容积效率。 由上述的流量计算公式可知,流量的大小由泵的结构参数所决定,当转速选定后,液压泵的流量也就确定了。因此,双作用叶片泵的流量不能调节,是定量泵。如果不考虑叶片厚度的影响,其瞬时流量应该是均匀的。但实际上叶片具有一定的厚度,长半径圆弧和短半径圆弧也不可能完全同心,泵的瞬时流量仍将出现微小的脉动,但其脉动率较其他形式的泵小得多,只要合理选择定子的过渡曲线及与其相适应的叶片数(为4的倍数,通常为12片或16片),理论上可以做到瞬时流量无脉动。

液压气压传动与控制单作用叶片泵doc

《液压气压传动与控制》课程设计单作用变量叶片泵设计 学院:机械与汽车工程学院 班级:装备122 组员:张月吴传奇宋梓瑜 张大亮张如意 指导教师:苏学满 20 15年 4月

目录 一、前言 (1) 二、课程设计目的 (2) 三、课程设计任务和要求 (2) 四、设计计算说明书 (2) (一)工作原理 (4) (二)主要参数确定 (9) 五、单作用泵的注意事项 (9) 六、叶片泵的常见故障及排除方法 (11) 七、叶片泵的拆装修理 (13) 八、结论 (16) 九、参考文献 (17) 十、我的数据 (19)

前言 液压泵是现代液压设备中的主要动力元件,它决定着整个液压系统的工作能力。在液压系统中,液压泵的功能主要是将电动机及内燃机等原动机的机械能转换成液体的压力能,向系统提供压力油并驱动系统工作。在液压传动与控制中使用最多的液压泵主要有齿轮式、叶片式和柱塞式三大类型。其中叶片泵是在近代液压技术发展史上最早实用的一种液压泵。叶片泵与齿轮式、柱塞式相比,叶片泵具有尺寸小、重量轻、流量均匀、噪声低等突出优点。在各类液压泵中,叶片泵输出单位液压功率所需重量几乎是最轻的,加之结构简单,价格比柱塞泵低,可以和齿轮泵竞争。本设计对定量叶片泵的设计以YB系列的双作用叶片泵为基础,并结合现今的技术特点和最新观点进行设计,在定子过渡曲线和叶片倾角等设计上采用了一些有别于传统的设计方案,在一定程度上提高了泵的工作性能。叶片泵作为液压系统主要部件,对其的设计需要丰富的机械方面的理论知识,以及有关叶片泵的相关专业技术知识,将其作为我的设计方向,是我大学四年专业知识学习的总结和锻炼,在设计过程中也不断促使我重新认识、理解所学专业知识,对所学知识有了一次系统的巩固和提高。最重要的是在这次设计过程中,对所学理论知识与实践的结合,提高了自己的实践动手能力,并在这过程认识到自己的许多不足,我一定会

单作用叶片泵的结构特点

分析仪器 https://www.wendangku.net/doc/366382258.html, 单作用叶片泵的结构特点如下: 1.定子和转子相互偏置改变定子和转子之间的偏心距,可以调节泵的流量。 2.径向液压力不平衡 由于单作用叶片泵的这一特点,使泵的工作压力受到限制,所以这种泵不适于高压。 3.叶片后倾 一般在单作用叶片泵中,为了使叶片顶部可靠地与定子内表面相接触,叶片底部油槽在压油区是与压油腔相通,在吸油区与吸油腔相通的,即叶片的底部和顶部受到的压力是平衡的。这样,叶片仅靠随转子旋转时所受到的离心惯性力向外运动,顶住定子的内表面。根据力学原理,叶片后倾一个角度有利于叶片在惯性力的作用下向外甩出。通常,后倾角为24°。

我们为大家介绍了电磁流量计应该如何去了解它的制作工艺和性能有点,才能在工业生产中取得更好的应用,今天我公司技术人员来教您该产品是具有怎样的测量原理,还有如何挑选电磁流量计的技能参数,如何正确选型,包括防护等级、如何选择附加功能、如何选择安装、安装的位置需要注意哪些等选择条件,金湖捷特仪表有限公司是您可以值得信赖的专业生产流量仪表的公司。 电磁流量计具有怎样的测量原理,首先该产品是运用法拉第电磁感应定律,导电液体在磁场中作为切割磁力线运动时,导体中会产生感应电势,感应电势分别为K、B、V、D,其中K为仪表常数,B为磁感应强度,V为测量管道内的平均流速,D为测量管道内截面的内径。电磁流量计在工作测量流量时,导电液体以速度V流过垂直于流动方向的磁场,导电性液体的流动感应出一个与平均流速成正比的电压,其感应,它的感应电压信号通过二个或者以上与液体直接接触的电极检出,然后通过电缆传送至转换器再通过智能化处理,在液晶显示显示出标准信号。 电磁流量计应该如何正确的选型,该流量计的选型是工业应用中非常重要的工作,根据各个客户反馈的资料显示出,在实际的应用中有一大半的故障是由于选型错误和安装错误造成的,这要值得大家注意。

油泵的常见故障

液压油泵的常见故障 液压系漏油会造成液压量减少且不能建立正常油压,从而导致系统不能正常工作。液压系漏油有外漏和漏2种情况。本文将详细介绍液压系漏故障的排除方法。 液压系漏油会造成液压量减少且不能建立正常油压,从而导致系统不能正常工作。液压系漏油有外漏和漏2种情况。外漏主要是油管破裂、接头松动、紧固不严密等情况等造成的;漏主要是液压系部的油泵、油缸、分配器等产生泄漏造成的。漏的故障不易被发现,有时还需借助仪器进行检测和调整,才能排除。 1、齿轮油泵相关部位严重磨损或装配错误 (1)油泵齿轮与泵壳的配合间隙超过规定极限。处理方法是:更换泵壳或采用镶套法修复,保证油泵齿轮齿顶与壳体配合间隙在规定围之。 (2)齿轮轴套与齿轮端面过度磨损,使卸压密封圈预压缩量不足而失去密封作用,导致油泵高压油腔与低压油腔串通,漏严重。处理方法是:在后轴套下面加补偿垫片(补偿垫片厚度一般不宜超过2mm),保证密封圈安放的压缩量。 (3)拆装油泵时,在2个轴套(螺旋油沟的轴套)结合面处,将导向钢丝装错方向。处理方法是:保证导向钢丝能同时将2个轴套按被动齿轮旋转方向偏转一个角度,使2个轴套平面贴合紧密。 (4)在拆装油泵时,隔压密封圈老化损坏,卸压片密封胶圈被装错。处理方法是:若隔压密封圈老化,应更换新件:卸压片密封胶

圈应装在吸油腔(口)一侧(低压腔),并保证有一定的预紧压力。如装在压油腔一侧,密封胶圈会很快损坏,造成高压腔与低压腔相通,使油泵丧失工作能力。 2、油缸密封圈老化和损坏活塞杆锁紧螺母松动 (1)油缸活塞上的密封圈、活塞杆与活塞接合处的密封挡圈、定位阀密封圈损坏。处理方法是:更换密封圈和密封挡圈。但要注意,选用的密封圈表面应光滑;无皱纹、无裂缝、无气孔、无擦伤等。 (2)活塞杆锁紧螺母松动。处理方法是:拧紧活塞杆锁紧螺母。 (3)缸筒失圆严重时,可能导致油缸上下腔的液压油相通。处理方法:若失圆不太严重,可采取更换加大活塞密封圈的办法来恢复其密封性;若圆度、圆柱度误差超过0.05mm时,则应对缸筒进行珩磨加工,更换加大活塞,来恢复正常配合间隙。 3、分配器上的安全阀和回油阀关闭不严 (1)安全阀磨损或液压油过脏;球阀锈蚀,调节弹簧弹力不足或折断;液压油不合规格;液压油过稀或油温过高(液压油的正常温度应是30℃~60℃),都会使安全阀关闭不严。处理方法是:更换清洁的符合标准的液压油;更换规定长度和弹力的弹簧;更换球阀中的球,装入阀座后可敲击,使之与阀座贴合,并进行研磨。 (2)回油阀磨损严重或因液压油过脏而导致回油阀关闭不严。处理方法是:研磨锥面及互研阀座。若圆柱面严重磨损,可采取镀铬磨削的方法修复;若小圆柱面与导管磨损,造成隙过大,可在导管镶铜套,恢复配合间隙。清洗油缸,更换清洁的液压油。

液压泵常见故障与排除方法

齿轮泵常见故障与排除方法 齿轮泵的安装使用注意事项 a.齿轮泵不能承受轴向力。安装时传动轴与电机轴的联轴器要有1~2毫米的间隙。 b.齿轮泵(包括其它泵)的吸油管路不得漏气并设置滤油器。 c.齿轮泵(包括其它泵)的安装位置要尽量靠近油箱。吸油高度不大于500毫米。 d.CB型齿轮泵的吸、压油口直径不等,安装时应注意泵的转向与油口的相应关系, 不能装反。

叶片泵装配使用注意事项 a.防止承受轴向力,否则会导致配流盘早期磨损。 b.叶片泵转速一般为600~1500/分。 c.配流盘上的三角沟槽位置一定要装在长半径圆弧末端向压油区过渡的位置。d.装配时注意叶片倾斜角度与转子旋转方向的关系,不可装反。 e.叶片在槽中是动配合,间隙为0.01~0.02毫米。在装配叶片时应逐个单片选配。

柱塞泵安装使用注意事项 a.轴向柱塞泵有两个泄油口,安装时将高处的泄油口接上通往油箱的油管,使其无压漏油,而将低处的泄油口堵死。 b.经拆洗重新安装的泵,在使用前要检查轴的回转方向与排油管的联接是否正确可靠。并从高处的泄油口往泵内注满工作油,先用手盘转3~4周再启动,以免把泵烧坏。 c.泵启动前应将排油管路上的溢流阀调至最低压力,待泵运转正常后再逐渐调高到所需压力。调整变量机构要先将排量调到最小值,再逐渐调到所需流量。 d.若系统中装有辅助液压泵,应先启动辅助液压泵,调整控制辅助泵的溢流阀,使其达到规定的供油压力,再启动主泵。若发现异常现象,应先停主泵,待主泵停稳后再停辅助泵。 e.当检修液压系统时,一般不要拆洗泵。当确认泵有问题必须拆开时,务必注意保持清洁,严防碰撞起毛、划伤和将细小杂物留在泵内。 f.装配花键轴时,不应用力过猛,七个缸孔配合要用柱塞逐个试装,不能用力打入。

单作用叶片泵

单作用叶片泵 工作原理:单作用叶片泵也是由转子、定子、叶片和配油盘等零件组成。与双作用叶片泵明显不同之处是,定子的内表面是圆形的,转子与定子之间有一偏心量e,配油盘只开一个吸油窗口和一个压油窗口。单作用叶片泵的转子回转时,由于离心力的作用,使叶片紧靠在定子内壁,这样在定子、转子、叶片和两侧配油盘间就形成若干个密封的工作区间,当转子按图示的方向回转时,叶片逐渐伸出,叶片间的工作空间逐渐增大,从吸油口吸油,这就是吸油腔。叶片被定子内壁逐渐压进槽内,工作空间逐渐减小,将油液从压油口压出,这就是压油腔。叶片泵转子每转一周,每个工作空间完成一次吸油和压油,称单作用叶片泵。 排量计算:下图是单作用叶片泵排量和流量计算简图。定子、转子直径分别为D 和d,宽度为B,两叶片间夹角为β,叶片数为Z,定子与转子的偏心量为e。当泵的转子转一转时,两相邻叶片间的密封容积的变化量为V1-V2。若把AB和CD看作是以O1为中心的圆弧,则有 所以,单作用叶片泵的排量为 泵的实际流量q为 式中,n—转子转速;ηpv—泵的容积效率。

为了使叶片运动自如、减小磨损,叶片槽通常向后(注意,这里与双作用叶片泵不同)倾斜20o~30o。下图为单作用叶片泵的配油盘和转子结构简图。 特点:单作用叶片泵的特点 可以通过改变定子的偏心距 e 来调节泵的排量和流量。 叶片槽根部分别通油,叶片厚度对排量无影响。 因叶片矢径是转角的函数,瞬时理论流量是脉动的。叶片数取为奇数,以减小流量的脉动。 单作用叶片泵与双作用叶片泵的区别: 一:单作用 1、单数叶片(使流量均匀) 2、定子、转子和轴受不平衡径向力 3、轴向间隙大,容积效率低 4、叶片底部的通油槽采取高压区通高压、低压区通低压,以使叶片底部和顶部的受力平衡,叶片靠离心力甩出。 5、叶片常后倾(压力角较小) 二:双作用 1、双数叶片(使流量均匀) 2、定子、转子和轴受平衡径向力 3、叶片底部的通油槽均通以压力油(定子曲线矢径的变化率较大,在吸油区外伸的加速度较大,叶片的离心力不足以克服惯性力和摩擦力) 4、叶片常前倾(叶片在吸油区和压油区的压力角变化较大) 总结:叶片泵流量大,压力大、压力稳定、噪音小。缺点:工作时易发热。制作精度高,成本高。 它是目前液压系统中应用最广的一种低噪音油泵。目前还没有能代替它的油泵,发展前景受到液压系统的限制,一般一套液压系统只用一台叶片泵。

液压泵常见故障及排除

有关液压系统知识 液压泵的故障诊断与排除 一,齿轮泵故障的诊断与排除 1,齿轮泵产生的剧烈震动与噪声 1)密封不严造成的,修泵体与泵盖的平面(0.005)。 2)泵轴上骨架密封老化,更换。 3)油箱内油少,泵吸空,加油。 4)回油管露出液面,瞬间负压使空气反灌系统,应插入液下。 5)泵距液面太高,低速是泵油腔不能真空而吸入空气,尽量缩短相对距离。 6)进油口阻力大或进油管过大进入空气,清洗过滤或加大过滤量或减小管径。 2,因机械原因产生的震动与噪音 1)泵与联轴器同轴度。 2)因油污泵齿轮磨损拉伤产生的噪音,更换油液,加强过滤,清洗泵或更换泵。 3)泵内滚针轴承不畅,更换轴承。 3,其他原因产生的震动与噪音 1)进油过滤器被堵引起,清洗过滤器。 2)油液粘度大产生噪音,选合理油液。 3)进油出油孔径过大产生噪音,适当减小管径。 4, 齿轮泵输出流量不足,压力上不去 1)进油堵塞吸空而流量不足,清洗过滤器。 2)泵内泄大而流量小,修模盖与齿轮端面或换泵。 3)油温太高,内泄大使输出流量小,加油冷机。 4)油液粘度过高,吸油阻力大或粘度过低,内泄大。选用合适的液压油。一般32(40度) 二,叶片泵的故障诊断与排除 1,叶片泵的要求: 1)叶片泵一般为中低压使用,液压油粘度一般32-46(40°),油箱容量为泵每分钟流量的3-6倍。进油管不得漏气,进油过滤精度设为30微米。 2)防止承受轴向力,避免配油盘过早磨损。 3)安装使用时,叶片泵转速要适中,过高会造成泵吸油不足而产生吸空,转速过低叶片不能紧贴定子表面,压力建立不起来。 2,常见故障与排除方法: (1)输油量不足,压力不高 1)各连接处密封不严,吸入空气,检查吸油口及连接处。 2)吸油不畅,清洗过滤器,定期更换工作油液,并加油至油标以上规定线。 3)个别叶片移动不灵活,应单独配研。 4)泵内部零件磨损过大,内泄,更换叶片泵。 5)吸油管过长,尽量缩短吸油管的长度。 (2)噪音与振动严重 1)有空气侵入,详细检查吸油管和油封的密封情况及油面的高度是否正常。 2)油液粘度过高,适当降低油液粘度。 3)转速过高,适当降低转速。

叶片泵设计说明

叶片泵的结构设计及造型 叶片泵在液压系统中应用非常广泛,它具有结构紧凑、体积小、运转平稳、噪声小、使用寿命长等优点,但也存在着结构复杂、吸油性能差、对油液污染比较敏感等缺点。在此次课题设计过程过学习了解它的分类、结构特点、工作原理、应用场合等,在对流量,压力等技术参数进行计算的基础上,运用UG软件完成了一种典型叶片泵的设计,包括实体造型、装配图、工程图。 第一章叶片泵概述 1.1 叶片泵的分类 液压泵是液压系统的动力装置,它将原动机输入的机械能转化为液体的压力能。按不同的分类原则,划分如下: 1.按工作原理可分为 (1)叶片式泵、容积式泵、其它类泵。其中叶片式泵有立式泵、高速泵等;容积式泵有往复泵,如活塞(柱塞)泵、隔膜泵等;回转泵如齿轮泵、螺杆泵等。 2.叶片泵按结构分为单作用泵和双作用泵。单作用式叶片泵主要做变量泵使用,双作用式叶片泵主要做定量泵使用。 1.2叶片泵工作原理 1.2.1双作用式叶片泵的原理 当电机带动转子沿转动时,叶片在离心力和叶片底部压力油的双重作用下向外伸出,其顶部紧贴在定子表面上。处于四段同心圆弧上的四个叶片分别与转子外表面、定子表面及两个配流盘组成四个密封工作油腔。这些油腔随着转子的转动,密封工作油腔产生由小到大或由大到小的变化,可以通过配流盘的吸油窗口(与吸油口相连)或排油窗口(与排油口相连)将油液吸入或压出。 在转子每转过程中,每个工作油腔完成两次吸油和压油,所以称为双作用式叶片泵,由于高低压腔相互对称,轴受力平衡,为卸荷式。由于改善了机件的受力情况,

所以双作用叶片泵可承受的工作压力比普通齿轮泵高,一般国产双作用叶片泵的公称压力为5 1063 pa 。 图1.1 双作用叶片泵工作原理 1— 定子;2—压油口;3—转子;4—叶片;5—吸油口 1.2.2单作用叶片泵的原理 单作用叶片泵的工作原理如图所示,单作用叶片泵由转子1、定子2、叶片3和端盖等组成。定子具有圆柱形表面,定子和转子间有偏心距。叶片装在转子槽中,并可在槽滑动,当转子回转时,由于离心力的作用,使叶片紧靠在定子壁,这样在钉子、转子、叶片和两侧配油盘间就形成若干个密封的工作空间,当转子按图示的方向回转时,在图的右部,叶片逐渐伸出,叶片间的工作空间逐渐增大,从吸油口吸油,这是吸油腔。在图的左部,叶片被定子壁逐渐压进槽,工作空间逐渐缩小,将油液从压油口压出,这是压油腔,在吸油腔和压油腔之间,有一段封油区,把吸油腔和压油腔隔开,这种叶片泵在转子每转一周,每个工作空间完成一次吸油和压油,因此称为单作用叶片泵。转子不停地旋转,泵就不断地吸油和排油。 图 1.2 单作用叶片泵工作原理

利用solidworks进行单作用叶片泵设计及其有限元分析本科大学论文

摘要 液压泵是随着液压传动技术的产生而产生的,随着我国工业和科学技术的不断发展,机、电、液一体化在整个机械行业所占的比重越来越大,液压传动技术在诸多领域得到了越来越广泛的应用,因此,液压泵作为动力元件成为液压传动元件中不可缺少的一部分,起到非常重要的作用,同时越来越受人们的关注。 单作用叶片泵作为液压泵的一种,在液压传动系统中有较为广泛的应用。基于单作用叶片泵的应用范围和优缺点,本文主要对单作用叶片泵做了从结构设计到部分结构性能分析的工作。其主要过程是通过现有工况确定单作用叶片泵主要的零件尺寸,然后通过SolidWorks软件对单作用叶片泵进行三维实体建模和虚拟装配。再对装配体中叶片的运动进行运动学分析和装配体进行动力学分析,最后对转子的静态应力进行有限元分析。整篇论文对于单作用叶片泵的设计具有参考和实用意义,同时也对单作用叶片泵的优化具有一定的指导作用。 关键字:单作用叶片泵,有限元,优化设计

Abstract Hydraulic pump is produced with hydraulic transmission technology, With the continuous development of industry and science and technology in our country, machine, andelectric, iquid integration in throughout machinery industry by accounted for of share increasingly big.Hydraulic drive technology get has increasingly widely of application in many area.So hydraulic pump as power components became hydraulic drive components in the not missing of part, up to very important of role, while increasingly by people of concern. Single-acting vane pump as a hydraulic pump.There are used in hydraulic transmission system more and more.Based on the scope of application of the single-acting vane pump and the advantages and disadvantages.This article focuses on single-acting vane pump part made from structural design to structural analysis. Its main processes are determined by existing conditions of single-acting vane pump parts dimensio. Through SolidWorks software for single-acting vane pump for three-dimension solid modeling, and virtual Assembly.Assembly blade motion in kinematics analysis and Assembly dynamics analysis, static finite element analysis of the stress of the last rotor. Papers for the design of single-acting vane pump with references and practical significance, as well as optimization of single-acting vane pump capable of guiding. Keywords: single-acting vane pump; finite; optimal design

限压式变量叶片泵的工作原理

1.限压式变量叶片泵的工作原理 限压式变量叶片泵是单作用叶片泵,根据前面介绍的单作用叶片泵的工作原理,改变定子和转子间的偏心距e,就能改变泵的输出流量,限压式变量叶片泵能借助输出压力的大小自动改变偏心距e的大小来改变输出流量。当压力低于某一可调节的限定压力时,泵的输出流量最大; 压力高于限定压力时,随着压力增加,泵的输出流量线性地减少,其工作原理如图3-20所示。泵的出口经通道7与活塞6相通。在泵未运转时,定子2在弹簧9的作用下,紧靠活塞4,并使活塞4靠在螺钉5上。这时,定子和转子有一偏心量e0,调节螺钉5的位置,便可改变e0。当泵的出口压力p较低时,则作用在活塞4上的液压力也较小,若此液压力小于上端的弹簧作用力,当活塞的面积为A、调压弹簧的刚度k s、预压缩量为x0时,有:pA<k s x0(3-22) 此时,定子相对于转子的偏心量最大,输出流量最大。随着外负载的增大,液压泵的出口压力p也将随之提高,当压力升至与弹簧力相平衡的控制压力p B时,有 p B A=k s x0(3-23) 当压力进一步升高,使pA>k s x0,这时,若不考虑定子移动时的摩擦力,液压作用力就要克服弹簧力推动定子向上移动,随之泵的偏心量减小,泵的输出流量也减小。p B称为泵的限定压力,即泵处于最大流量时所能达到的最高压力,调节调压螺钉10,可改变弹簧的预压缩量x0即可改变p B的大小。 设定子的最大偏心量为e0,偏心量减小时,弹簧的附加压缩量为x,则定子移动后的偏心量e为: e=e0-x (3-24) 这时,定子上的受力平衡方程式为: pA=k s(x0+x) (3-25) 将式(3-23)、式(3-25)代入式(3-24)可得: e=e0-A(p-p B)/k s(p≥p B) (3-26) 式(3-26)表示了泵的工作压力与偏心量的关系,由式可以看出,泵的工作压力愈高,偏心量就愈小,泵的输出流量也就愈小,且当p=ks(e0+x0)/A时,泵的输出流量为零,控制定子移动的作用力是将液压泵出口的压力油引到柱塞上,然后再加到定子上去,这种控制方式称为外反馈式。

推荐:叶片泵常见故障的排除方法

叶片泵常见故障的排除方法 【学员问题】叶片泵常见故障的排除方法? 【解答】在叶片泵的产品说明书中一般都有详细的安装指南与注意事项。但在实际使用过程中,往往还存在或出现这样那样的故障与问题,这些问题绝大多数应属于使用不当造成,使用不当占油泵损坏的比例高达95%以上,真正属于产品质量问题的却是很少。为了区别是属于哪一类问题,正确的使用与判定故障原因,特提供以下经验供参考: 、使用不当的几种表现: 1错误的安装方法: a、连轴器过于紧:由于连轴器与轴配合间隙太小或无间隙,在用力敲击时,轴承会受伤, 导致轴承早期损坏而影响整个泵芯的寿命。 b轴头轴向受力:由于连轴器在安装时没有一定的轴向间隙,硬件安装会使轴承与轴承挡圈损坏,严重时会伤及整个泵芯。 C、同轴度超差:如果安装时同轴度超过规定值,会使轴承及整个泵芯偏心而早期损坏, 般控制在0.1毫米左右为好。 2、系统环境恶劣a、油太脏:由于邮箱不是密封状态,周围粉尘及铁混入油液中能使油泵早期损坏。 b温度太高:由于未装冷却装置,在机器连续使用中,油温会不断升高。如果油温长期

高达70度以上时,油泵寿命会大大缩短,一般在半年到一年中就会损坏(有时更短) C、油中进水:在有水冷却的装置中,由于水管的密封不好,导致水进入了油液中,使泵芯零件产生了生锈、抱死、叶片甩不出等现象。 3、旋转油口方向时产生的错误: a、泵芯肖子未进肖孔里去(或旋转时拔出造成),这是油泵吸油口空间缩小,吸油遇阻吸油不畅,表现为:噪音特大,压力摆动,长时间使用会使油温升高过快,定子内曲线冲击成波纹状后寿命缩短。 b旋转时将密封圈切边或螺钉紧固不匀产生漏油现象。 二、常见故障现象的判定: 1研泵(烧盘):原因:油太脏,安装不当,油中进了水,油中有铁屑(新机市场发生)油温度高或零部件制造精度不够。 3、噪音大:特别大时a.进油口漏气。(0型圈密封失灵,螺钉太长或法兰太薄) b.过滤器堵塞,进油流量不够。 C.油的粘度太高。(天气太冷或牌号不对)d.装配错误。(调换进出口方向位置时方法及要领不妥或密封圈未装好及泵芯定位肖未插到后盖的空里去等)。 比较大时

叶片泵有哪些优缺点(内容清晰)

叶片泵有哪些优缺点? 油液的温度和粘度一般不宜超过55℃,粘度要求在17~37mm2/s之间。粘度太大则吸油困难;粘度太小则漏泄严重。 液压机双作用叶片泵的优缺点 发布者:admin 发布时间:2011-9-23 8:36:58 液压机双作用叶片泵的优缺点 双作用叶片泵的优点有以下几方面: ①流量均匀,运转平稳,噪声小。 ②转子所受径向液压力彼此平衡.轴承使用寿命长,耐久性好。 ③容积效率较高,可达95%以上。 ④工作压力较高。目前双作用叶片泵的工作压力为6. 86~10.3 MPa,有 时可达20.6 MPa。 ⑤结构紧凑,外形尺寸小且排量大。 双作用叶片泵的缺点有以下几方面: ①叶片易咬死,工作可靠性差,对油液污染敏感,故要求工作环境清洁, 油液要求严格过滤。 ②结构较齿轮泵复杂,零件制造精度要求较高。 ③要求吸油的可靠转速在8. 3—25 r/s范围内。如果转速低于8.3 rls, 因离心力不够,叶片不能紧贴在定子内表面,不能形成密封良好的封闭容积, 从而吸不上油。如果转速太高,由于吸油速度太快,会产生气穴现象,也吸不 上油,或吸油不连续。 叶片泵的优缺点及其应用 主要优点: (1)输出流量比齿轮泵均匀,运转平稳,噪声小。 (2)工作压力较高,容积效率也较高。 (3)单作用式叶片泵(Tokimec东京计器叶片泵)易于实现流量调节,双作用式叶片泵则因转子所受径向液压力平衡,使用寿命长。

(4)结构紧凑,轮廓尺寸小而流量较大。 主要缺点: (1)自吸性能较齿轮泵差,对吸油条件要求较严,其转速范围必须在 500~ 1500 r/min范围内。 (2)对油液污染较敏感,叶片容易被油液中杂质咬死,工作可靠性较差。 (3)结构较复杂,零件制造精度要求较高,价格较高。 叶片泵一般用在中压(6.3 M Pa)液压系统中,主要用于机床控制,特别是双作用式叶片泵(东京计器SQP叶片泵)因流量脉动很小,因此在精密机床中得到广泛使用。 叶片泵运行注意事项 发布时间:2012-09-03 09:58:30 浏览次数:127 作为泵产品,叶片泵更多地指滑片泵,例如:东京计器SQP叶片泵,油研PV2R 叶片泵,丹尼逊T6叶片泵,叶片泵的管理要点除需防干转和过载、防吸入空气和吸入真空度过大外,还应注意: 1、泵转向改变,则其吸排方向也改变,叶片泵都有规定的转向,不允许调反。因为转子叶槽有倾斜,叶片有倒角,叶片底部与排油腔通,配油盘上的节流槽和吸、排口是按既定转向设计,因此可逆转的叶片泵必须专门设计。 2、叶片泵装配配油盘与定子用定位销正确定位,叶片、转子、配油盘都不得装反,定子内表面吸入区部分最易磨损,必要时可将其翻转安装,以使原吸入区变为排出区而继续使用。 3、拆装注意工作表面清洁,工作时油液应很好过滤。 4、叶片在叶槽中的间隙太大会使漏泄增加,太小则叶片不能自由伸缩,会导致工作失常。 5、叶片泵的轴向间隙对ηv影响很大。 a)小型泵-0.015~0.03mm b)中型泵-0.02~0.045mm 6、油液的温度和粘度一般不宜超过55℃,粘度要求在17~37mm2/s之间。粘度太大则吸油困难;粘度太小则漏泄严重。

YB40双作用叶片泵常见故障诊断论文

1.YB-40型双作用叶片泵的简介及参数的计算 液压泵是依靠泵的密封工作腔的容积变化来实现吸油和压油的,因而称之为容积式泵。 容积式泵的流量大小取决于密封工作腔容积变化的大小和次数。若不计泄漏,则流量与压力无关。 液压泵的分类方式很多,它可按压力的大小分为低压泵、中压泵和高压泵;也可按流量是否可调节分为定量泵和变量泵;还可按泵的结构分为齿轮泵、叶片泵和柱塞泵,其中,齿轮泵和叶片泵多用于中、低压系统,柱塞泵多用于高压系统。 1.1 YB-40型双作用叶片泵的工作原理 它的作用原理和单作用叶片泵的原理相似,不同之处只在于定子表面是由两段长半径圆弧、两段短半径圆弧和四段过渡曲线八个部分组成,且定子和转子是同心的。在图示转子顺时针旋转的情况下,密封工作腔的容积在左上角和右下角处逐渐增大,为吸油区;在左下角和右上角处逐渐减小,为压油区;吸油区与压油区之间有一段封油区把它们分开。这种泵的转子每转一转,每个密封工作腔完成吸油和压油动作各两次,所以称为双作用叶片泵。泵的两个吸油区和两个压油区是径向对称的,作用在转子上的液压力径向平衡,所以称为平衡式叶片泵。 定子内表面近似为椭圆柱形,该椭圆形由两段长半径R、两段短半径r和四段过渡曲线所组成。当转子转动时,叶片在离心力和(建压后)根部压力油的作用下,在转子槽内作径向移动而压向定子内表面,由叶片、定子的内表面、转子的外表面和两侧配油盘间形成若干个封闭空间,当转子按图示方向旋转时,处于小圆弧上的密封空间经过渡曲线而运动到大圆弧的过程中,叶片外伸,密封空间的容积增大,要吸入油液;在从大圆弧经过渡曲线运动到小圆弧的过程中,叶片被定子内壁逐渐压进槽内,密封空间容积变小,将油液从压油口压出,因而,当转子每转一周,每个工作空间要完成两次吸油和压油,这种叶片泵由于有两个吸油腔和两个压油腔,并且各自的中心夹角是对称的,所以作用在转子上的油液压力相互平横,因此双作用叶片泵又称为卸荷式叶片泵,为了要是径向力完全平衡,密封空间数(即叶片数)应当是双数。 YB-40型双作用叶片泵的工作原理如图1-1所示,定子内表面近似椭圆,转子和定子同心安装,有两个吸油区和两个压油区对称布置。转子每转一周,完成

变量叶片泵工作原理

变量叶片泵工作原理 单作用叶片泵,它的理论排量为V=4BzeRsin(丌/z) 式中 y——变量叶片泵的排量; B——叶片宽度; z——叶片数; R——定子圆半径; e——定子环对转子的偏心距。 显然,泵的理论排量正比于定子环对转子的偏心距e。 1.内控式变量叶片泵 内控式泵的变量操纵力来自其本身的排出压力。如图7.1所示,定子环5在其顶部滚动轴承的支承下可在水平方向移动。泵配流盘的吸、排油窗口的布置和定子运动方向存在偏角0,排油压力对定子环的作用力可分解为垂直方向的分量F1及与定子移动方向同向的水平分量F2。F2克服调节弹簧的压缩力,形成调节力,推动定子环移动。当泵的工作压力所形成的调节力R小于弹簧预紧力时,定子对转子的偏心距e 受最大流量调节螺钉的限制,保持在最大值。因而泵的流量基本不变,只是由于泄漏略有下降,如图7—2中AB所示。当泵的工作压力超过P。值后,调节力F2大于弹簧预紧力。随工作压力的增加,调节力F,增加,克服弹簧力使定子环向偏心距减小方向移动,泵的排量开始下降。当工作压力到达P,时,定子环的偏心距所对应的泵的理论流量等于它的泄漏量,泵的实际输出流量为零。此时泵的输出压力为最大。 增加调节弹簧的预紧力可以使图7—2的曲线船段平行右移。减小弹簧刚度,可改变BC段的斜率,使其更陡。调节最大流量调节螺钉,可调节曲线A点的位置(即最大流量)。这种变量泵称为限压式(亦称压力反馈或压力补偿式)泵。 内控式变量叶片泵结构简单,调节容易。但是,由于配流盘的偏转会使泵的有效排量减少、并使流量脉动增加。它的动态调节特性也比较差,因而一般仅用于经济型的小规格泵上。对于性能要求比较高的大、中规格的变量叶片泵,大图7—2限压式变量叶片泵特性部分采用外控式。 2.外控式变量叶片泵 外控式变量叶片泵的工作原理如图7.3所示。定子在顶部滑块3的限制下可水平移动。泵的吸、排油腔对称地布置在定子中心线的两侧。因而,作用在定子环上的液压力不产生使定子移动的调节力。外来控制压力通过控制活塞2克服弹簧力推动定子环移动,改变其对于转子的偏心距而实现变量。 采用不同的液压控制手段及不同的泵的输出参数反馈,可以组成各种控制形式的变量叶片泵。

定量叶片泵设计与计算

1 双作用叶片泵简介 1.1双作用叶片泵组成结构 组成结构:定子、转子、叶片、配油盘、传动轴、壳体等 1.2 双作用叶片泵工作原理 图3-19 双作用叶片泵工作原理 1-定子 2-压油口 3-转子 4-叶片 5-吸油口 图1-1 双作用叶片泵工作原理 Fig 1-1 Double-acting vane pump principle of work 1—定子;2—吸油口;3—转子;4—叶片;5—压油口 如图1-1所示。它的作用原理和单作用叶片泵相似,不同之处只在于定子表面是由两段长半径圆弧、两段短半径圆弧和四段过渡曲线八个部分组成,且定子和转子是同心的。在图示转子顺时针方向旋转的情况下,密封工作腔的容积在左上角和右下角处逐渐增大,为吸油区,在左下角和右上角处逐渐减小,为压油区;吸油区和压油区之间有一段封油区把它们隔开。这种泵的转子每转一转,每个密封工作腔完成吸油和压油动作各两次,所以称为双作用叶片泵。泵的两个吸油区和两个压油区是径向对称的,作用在转子上的液压力径向平衡,所以又称为平衡式叶片泵。 定子表面近似为椭圆柱形,该椭圆形由两段长半径R 、两段短半径r 和四段过渡曲线所组成。当转子转动时,叶片在离心力和建压后>根部压力油的作用下,

在转子槽作径向移动而压向定子表,由叶片、定子的表面、转子的外表面和两侧配油盘间形成若干个密封空间,当转子按图示方向旋转时,处在小圆弧上的密封空间经过渡曲线而运动到大圆弧的过程中,叶片外伸,密封空间的容积增大,要吸入油液;再从大圆弧经过渡曲线运动到小圆弧的过程中,叶片被定子壁逐渐压进槽,密封空间容积变小,将油液从压油口压出,因而,当转子每转一周,每个工作空间要完成两次吸油和压油,所以称之为双作用叶片泵,这种叶片泵由于有两个吸油腔和两个压油腔,并且各自的中心夹角是对称的,所以作用在转子上的油液压力相互平衡,因此双作用叶片泵又称为卸荷式叶片泵,为了要使径向力完全平衡,密封空间数即叶片数>应当是双数。 1.3 双作用叶片泵结构特点 1>双作用叶片泵的转子与定子同心; 2>双作用叶片泵的定子表面由两段大圆弧、两段小圆弧和四段定子过渡曲 线组成; 3>双作用叶片泵的圆周上有两个压油腔、两个吸油腔,转子每转一转,吸、压油各两次双作用式>。 4>双作用叶片泵的吸、压油口对称,转子轴和轴承的径向液压作用力基本平衡;即径向力平衡卸荷式>。 5>双作用叶片泵的所有叶片根部均由压油腔引入高压油,使叶片顶部可靠地与定子表面密切接触。 6>传统双作用叶片泵的叶片通常倾斜安放,叶片倾斜方向与转子径向辐射线成倾角θ,且倾斜方向不同于单作用叶片泵,而沿旋转方向前倾,用于改善叶片的受力情况,最近观点认为倾角为0o最佳。

德国REXROTH力士乐叶片泵常见故障排除方法及注意事项

德国REXROTH力士乐叶片泵常见故障排除方法及注意事项 排除方法:顶盖处螺丝松动,轴向间隙增大,容积效率下降适当拧紧螺钉,保证间隙均匀、适当(间隙为0.04~0.07mm) 个别叶片滑动不灵活清洗。清洗后仍不灵活时,应单槽调配,使叶片定子内表面磨损,叶片不能与定子内表面良好接触定子内表面磨损一般在吸油腔处配流盘端面磨损严重,更换叶片与转子装反,使叶片倾角方向和转子的旋转方向一致系统泄漏大逐个元件检査泄漏,同时检查压力表是否被脏物堵塞 (2)油液吸不上。叶片泵油吸不上的原因和排除方法见表1-7。 表1-7叶片泵油吸不上的原因和排除方法 常见故障及其原因:排除方法:油面过低,油液吸不上检査并加注到规定油标线 油液黏度过大,使叶片在转子槽内滑动不 灵活一般用20#液压油或22#汽轮机油 配油盘端面与壳体内平面接触不良,高低压腔串通整修配油盘端面 泵体内部有砂眼,高低压腔串通更换 电动机转向反了纠正 (3)泵的噪声过大。泵的噪声过大的原因及排除方法见表1-8。 表1-8泵的噪声过大的原因及排除方法常见故障及其原因排除方法 滤油器堵塞,吸油不畅淸洗 吸入端漏气用涂黄油的方法,逐个检査吸油管接头处,若噪声减少应紧固接头 泵端密封磨损在轴端油封处涂上黄油,若噪声减小,应更换油封 泵盖螺钉由于振动而松动将螺钉连接处涂上黄油,若噪声小,应紧固螺钉 泵与电动机轴不同心重新调整使之同心 转子的叶片槽两侧与其两端面不垂直更换转子 配油盘卸荷三角槽太短用什锦锉适当修改,使前一叶片过卸荷槽时,后一叶片已脱离吸油腔 花键槽轴端的密封过紧(有烫手现象)适当调整更换 泵的转速太高按规定转速使用 德国REXROTH力士乐叶片泵常见故障排除方法及注意事项 力士乐REXROTH叶片泵注意事项: 力士乐REXROTH叶片泵叶片泵的管理要点除需防干转和过载、防吸入空气和吸入真空度过大外,还应注意: 1.泵转向改变,则其吸排方向也改变叶片泵都有规定的转向,不允许反。因为转子叶槽有倾斜,叶片有倒角,叶片底部与排油腔通,配油盘上的节流槽和吸、排口是按既定转向设计。可逆转的叶片泵

叶片泵的正确使用及故障排除

叶片泵厂的正确使用与故障判定 叶片泵正确使用与故障判定 在叶片泵的产品说明书中一般都有详细的安装指南与注意事项,可是在实际使用过程中,往往不被人们所重视,还会出现这样那样的故障与问题,这些问题绝大多数应属于使用不当造成,使用不当占油泵损坏的比例高达95%以上,真正属于产品质量问题的却是很少。在液压系统中元件最容易出故障的就是油泵,而液压阀和油缸的故障比例相对油泵来说要少许多,它们最多清洗一下就能解决,而叶片泵一旦出故障就是致命的,为此,能否正确使用叶片泵至关重要,为了区别是属于哪一类问题,正确的使用与判定故障原因,特提供以下经验供参考: 一、使用不当的几种表现: 1.连轴器安装错误:由于连轴器与轴配合间隙太小或无间隙,在用力敲击时,轴承会受伤,导致轴承早期损坏而影响整个泵芯的寿命。再有,连轴器在安装时如果没有一定的轴向间隙,用螺丝直接硬性将泵安装到泵套上,就会使轴承轴向受力,如果长期承受轴向受力,轴承就会很快损坏并产生偏心而秧及了泵芯,表面上看象是泵芯出了故障,其实始作俑者是轴承。(这是油泵损坏的第一大杀手) 2.同轴度超差:如果安装时同轴度超过规定值,会使轴承及整个泵芯偏心而早期损坏,轴也会被切断(轴切断在轴头最粗的地方),同轴度一般控制在≦0.1毫米左右为好。 3.油液太脏:由于油箱不是密封状态,周围粉尘及杂物混入油液中致使油液的清洁度超过标准,如果过滤器精度不够或无过滤器,泵芯就会很快划伤并损坏。 (这是油泵损坏的第二大杀手) 4.油液变质:由于使用了过期的液压油或再生油,使泵芯零件表面呈黑色状或粘胶状,油中的杂物、毒物及腐蚀性可使油泵早期损坏,再生的过期油因缺乏润滑及抗磨性也会使泵芯寿命大大的缩短,甚至将叶片及泵芯粘死不能运动。 抗磨液压油的使用寿命按石油公司介绍是2000-3000小时(连续半年),环境较好时可延长寿命至6000小时(约一年),所以,建议客户每年更换一次新油。 (这是油泵损坏的第三大杀手) 5.油温太高:由于未装冷却装置,在机器连续使用中,油温会不断升高。如果油温长期高达70°以上时,油泵寿命会大大缩短,一般在半年到一年中就会损坏。 6.油中进水:在有水冷却的装置中,由于密封不好导致水进入油液中,油液呈乳白状(乳化),油泵内部金属零件会生锈或局部锈蚀,泵在高速旋转中会加速磨损并缩短寿命,油泵的轴封也会早期损坏并使泵轴漏油。 (这是油泵损坏的第四大杀手) 7、变换油口方向:当油口方向不合适,没有经验的客户自己调整时,未将泵芯肖子插进肖孔里去(旋转时拔出造成),这时油泵吸油口空间缩小,吸油遇阻吸油不畅,表现为:噪音特大,压力摆动,长时间使用会使油温升高过快,定子内曲线冲击成波纹状后寿命会缩短。再有,旋转时将密封圈切边或螺钉紧固不匀还会产生漏油现象。 8、瞬间超压:有很多时侯,油泵出现了“崩后盖”、“崩前盖”、“断轴”、“断叶片”、“裂定子”等极端性事故,简单的判断好象又是油泵质量问题,可仔细分析下来,它确另有原因,比如:崩高压后盖与断轴或崩高压前盖与断叶片、断定子,它门之间就没有任何联系,这种情况其实是瞬间超压造成的,当油泵内部压力超过本身能承受的压力时,泵内最薄弱的零件就会出现损坏,如:前、后盖(高压出口)崩裂,叶片断、定子断裂,轴断,而叶片断、定子断裂两个中任何一个先断都可能会导致另一个瞬间断裂,同时在高速旋转的其它零件“转子”和“侧板”及“轴”也会被动损坏,超压才是极端性事故的罪魁祸首,瞬间超压的原因是溢流阀堵塞。

相关文档
相关文档 最新文档