文档库 最新最全的文档下载
当前位置:文档库 › 金属热处理试题答案

金属热处理试题答案

金属热处理试题答案
金属热处理试题答案

1/工件淬火时常出现的缺陷有表面缺陷、性能缺陷、组织缺陷、形状缺陷。

2退火的目的主要是降低硬度,便于切削加工:消除或改善钢在铸造、轧制、锻造和焊接过程中所造成的各种组织缺陷;细化晶粒,改善组织,为最终热处理做准备;还有为了消除应力,防止变形和开裂。

3正火的目的和退火基本相同,但正火后得到细片状珠光体组织,对低碳钢来说讲,正火组织易进行机械加工;能降低工件切削加工的表面粗糙度;正火还可以消除过共析钢中的渗碳体网。

4淬火的目的是把奥氏体化的钢件淬成马氏体,然后和不同回火温度相配合,获得所需的力学性能。

5 热应力是由于工件加热或冷却时,各部温度不同,使之热胀冷缩

不同而产生的应力叫热应力。

减少变形与防止开裂的方法很多,但主要的是靠正确的选材、合理的结构设计、冷热加工工艺的密切配合以及正确的热处理制度来保证。

1将同一棒料上切割下来的4块45#试样,同时加热到850°,然后分别在水、油、炉和空气中冷却,说明:各是何种热处理工艺?各获得何种组织?排列一下硬度大小:

答:(1)水冷:淬火M(2)油冷:淬火M+T(3)炉冷:退火P+F(4)空冷:正火S+F

硬度(1)>(2)>(4)>(3)

2.两个碳质量分数为1.2%的碳钢薄试样,分别加热到780°C和900°C,保温相同时间奥氏体化后,以大于淬火临界冷却速度的速度冷却至室温。试分析:(1)哪个温度加热淬火后马氏体晶粒较粗大?

(2)哪个温度加热淬火后马氏体碳含量较多?

(3)哪个温度加热淬火后残余奥氏体较多?

(4)哪个温度加热淬火后未溶渗碳体较多?

(5)你认为哪个温度加热淬火合适?为什么?

答:(1)900°C(2)900°C(3)900°C(4)780°C(5)780°C,综上所述此温度淬火后得到的均匀细小的M+颗粒状Cm+AR的混合组织,使钢具有最大的硬度和耐磨性。

3.用T10钢制造形状简单的车刀,其工艺路线为:锻造—热处理—机加工—热处理—磨加工。

(1)写出其中热处理工序的名称及作用。

(2)制定最终热处理(磨加工前的热处理)的工艺规范,并指出车刀在使用状态下的显微组织和大致硬度。

答:(1)球化退火,作用:利于切削加工。得到球状珠光体,均匀组织,细化晶粒,为后面淬火处理作组织准备。淬火+低温回火,作用:使零件获得较高的硬度、耐磨性和韧性,消除淬火内应力,稳定组织和尺寸。

(2)工艺规范:760°C水淬+200°C回火;

显微组织:M回+Cm,大致硬度:60HRC.

4.如下图所示,T12钢加热到Ac1以上,用图示

的各种方法冷却,分析各自得到的组织。

A:水中淬火M+Fe3C

B:分级淬火M+Fe3C

C:油中淬火M+T+Fe3C

D:等温淬火B下+Fe3C

E:正火S+Fe3C

F:完全退火P+Fe3C

G:等温退火P+Fe3C

5为改善可加工性,确定下列钢件的预备热处理方法,并指出所得到组织:

(1)20钢钢板

(2)T8钢锯条

(3)具有片状渗碳体的T12钢钢坯

答:(1)20钢钢板:正火S+F(2)T8钢锯条:球化退火球状P;(3)具有片状渗碳体的T12钢钢坯:球化退火球状P+Cm

6指出下列工件的淬火及回火温度,并说明其回火后获得的组织和大致的硬度:

(1)45钢小轴(要求综合机械性能);

(2)60钢弹簧;

(3)T12钢锉刀。

答:(1)45钢小轴(要求综合机械性能),工件的淬火温度为850℃左右,回火温度为500℃~650℃左右,其回火后获得的组织为回火索氏体,大致的硬度25~35HRC。

(2)60钢弹簧,工件的淬火温度为850℃左右,回火温度为350℃~500℃左右,

其回火后获得的组织为

回火屈氏体,大致的硬度40~48HRC。

(3)T12钢锉刀,工件的淬火温度为780℃左右,回火温度为150℃~250℃,其回火后获得的组织为回火马氏体,大致的硬度60HRC。

7指出下列零件的锻造毛坯进行正火的主要目的及正火后的显微组织:

(1)20钢齿轮(2)45钢小轴(3)T12钢锉刀答:(1)目的:细化晶粒,均匀组织,消除内应力,提高硬度,改善切削加工性。组织:晶粒均匀细小的大量铁素体和少量索氏体。

(2)目的:细化晶粒,均匀组织,消除内应力。组织:晶粒均匀细小的铁

素体和索氏体。

(3)目的:细化晶粒,均匀组织,消除网状Fe3CⅡ,为球化退火做组织准备,消除内应力。组织:索氏体和球状渗碳体。

8确定下列钢件的退火方法,并指出退火目的及退火后的组织:

1)经冷轧后的15钢钢板,要求降低硬度;

答:再结晶退火。目的:使变形晶粒重新转变为等轴晶粒,以消除加工硬化现象,降低了硬度,消除内应力。细化晶粒,均匀组织,消除内应力,降低硬度以消除加工硬化现象。组织:等轴晶的大量铁素体和少量珠光体。

2)ZG35的铸造齿轮

答:完全退火。经铸造后的齿轮存在晶粒粗大并不均匀现象,且存在残余内应力。因此退火目的:细化晶粒,均匀组织,消除内应力,降低硬度,改善切削加工性。组织:晶粒均匀细小的铁素体和珠光体。

3)锻造过热后的60钢锻坯;

答:完全退火。由于锻造过热后组织晶粒剧烈粗化并分布不均匀,且存在残余内应力。因此退火目的:细化晶粒,均匀组织,消除内应力,降低硬度,改善切削加工性。组织:晶粒均匀细小的少量铁素体和大量珠光体。

4)具有片状渗碳体的T12钢坯;

答:球化退火。由于T12钢坯里的渗碳体呈片状,因此不仅硬度高,难以切削加工,而且增大钢的脆性,容易产生淬火变形及开裂。通过球化退火,使层状渗碳体和网状渗碳体变为球状渗碳体,以降低硬度,均匀组织、改善切削加工性。组织:粒状珠光体和球状渗碳体。

9何谓钢的热处理?钢的热处理操作有哪些基本类型?试说明热处理同其它工艺过程的关系及其在机械制造中的地位和作用。

答:(1)为了改变钢材内部的组织结构,以满足对零件的加工性能和使用性能的要求所施加的一种综合的热加工工艺过程。

(2)热处理包括普通热处理和表面热处理;普通热处理里面包括退火、正火、淬火和回火,表面热处理包括表面淬火和化学热处理,表面淬火包括火焰加热表面淬火和感应加热表面淬火,化学热处理包括渗碳、渗氮和碳氮共渗等。(3)热处理是机器零件加工工艺过程中的重要工序。一个毛坯件经过预备热处理,然后进行切削加工,再经过最终热处理,经过精加工,最后装配成为零件。热处理在机械制造中具有重要的地位和作用,适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。热处理工艺不但可以强化金属材料、充分挖掘材料潜力、降低结构重量、节省材料和能源,而且能够提高机械产品质量、大幅度延长机器零件的使用寿命,做到一个顶几个、顶十几个。此外,通过热处理还可使工件表面具有抗磨损、耐腐蚀等特殊物理化学性能。

10.为什么要对钢件进行热处理?

答:通过热处理可以改变钢的组织结构,从而改善钢的性能。热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。恰当的热处理工艺可以消除铸、锻、焊等热加工工艺造成的各种缺陷,细化晶粒、消除偏析、降低内应力,使钢的组织和性能更加均匀。

11.退火的主要目的是什么?生产上常用的退火操作有哪几种?指出退火操作的应用范围。

答:(1)均匀钢的化学成分及组织,细化晶粒,调整硬度,并消除内应力和加工硬化,改善钢的切削加工性能并为随后的淬火作好组织准备。

(2)生产上常用的退火操作有完全退火、等温退火、球化退火、去应力退火等。

(3)完全退火和等温退火用于亚共析钢成分的碳钢和合金钢的铸件、锻件及热轧型材。有时也用于焊接结构。球化退火主要用于共析或过共析成分的碳钢及合金钢。去应力退火主要用于消除铸件、锻件、焊接件、冷冲压件(或冷拔件)及机加工的残余内应力。

12何谓球化退火?为什么过共析钢必须采用球化退火而不采用完全退火?

答:(1)将钢件加热到Ac1以上30~50℃,保温一定

时间后随炉缓慢冷却至600℃后出炉空冷。

(2)过共析钢组织若为层状渗碳体和网状二次渗碳体时,不仅硬度高,难以切削加工,而且增大钢的脆性,容易产生淬火变形及开裂。通过球化退火,使层状渗碳体和网状渗碳体变为球状渗碳体,以降低硬度,均匀组织、改善切削加工性。

13正火与退火的主要区别是什么?生产中应如何选择正火及退火?

答:与退火的区别是①加热温度不同,对于过共析钢退火加热温度在Ac1以上30~50℃而正火加热温度在A ccm以上30~50℃。②冷速快,组织细,强度和硬度有所提高。当钢件尺寸较小时,正火后组织:S,而退火后组织:P。

选择:(1)从切削加工性上考虑

切削加工性又包括硬度,切削脆性,表面粗糙度及对刀具的磨损等。

一般金属的硬度在HB170~230范围内,切削性能较好。高于它过硬,难以加工,且刀具磨损快;过低则切屑不易断,造成刀具发热和磨损,加工后的零件表面粗糙度很大。对于低、中碳结构钢以正火作为预先热处理比较合适,高碳结构钢和工具钢则以退火为宜。至于合金钢,由于合金元素的加入,使钢的硬度有所提高,故中碳以上的合金钢一般都采用退火以改善切削性。

(2)从使用性能上考虑

如工件性能要求不太高,随后不再进行淬火和回火,那么往往用正火来提高其机械性能,但若零件的形状比较复杂,正火的冷却速度有形成裂纹的危险,应采用退火。

(3)从经济上考虑

正火比退火的生产周期短,耗能少,且操作简便,故在可能的条件下,应优先考虑以正火代替退火。

14一批45钢试样(尺寸Φ15*10mm),因其组织、晶粒大小不均匀,需采用退火处理。拟采用以下几种退火工艺;

(1)缓慢加热至700℃,保温足够时间,随炉冷却至室温;

(2)缓慢加热至840℃,保温足够时间,随炉冷却至室温;

(3)缓慢加热至1100℃,保温足够时间,随炉冷却至室温;

问上述三种工艺各得到何种组织?若要得到大小均匀的细小晶粒,选何种工艺最合适?

答:(1)因其未达到退火温度,加热时没有经过完全奥氏体化,故冷却后依然得到组织、晶粒大小不均匀的铁素体和珠光体。

(2)因其在退火温度范围内,加热时全部转化为晶粒细小的奥氏体,故冷却后得到组织、晶粒均匀细小的铁素体和珠光体。

(3)因其加热温度过高,加热时奥氏体晶粒剧烈长大,故冷却后得到晶粒粗大的铁素体和珠光体。

要得到大小均匀的细小晶粒,选第二种工艺最合适。

15淬火的目的是什么?亚共析碳钢及过共析碳钢淬火加热温度应如何选择?试从获得的组织及性能等方面加以说明。

答:淬火的目的是使奥氏体化后的工件获得尽量多的马氏体并配以不同温度回火获得各种需要的性能。亚共析碳钢淬火加热温度Ac3+(30~50℃),淬火后的组织为均匀而细小的马氏体。因为如果亚共析碳钢加热温度在Ac1~Ac3之间,淬火组织中除马氏体外,还保留一部分铁素体,使钢的强度、硬度降低。但温度不能超过Ac3点过高,以防奥氏体晶粒粗化,淬火后获得粗大马氏体。

过共析碳钢淬火加热温度Ac1+(30~50℃),淬火后的组织为均匀而细小的马氏体和颗粒状渗碳体及残余奥氏体的混合组织。如果加热温度超过A ccm,渗碳体溶解过多,奥氏体晶粒粗大,会使淬火组织中马氏体针变粗,渗碳体量减少,残余奥氏体量增多,从而降低钢的硬度和耐磨性。淬火温度过高,淬火后易得到含有显微裂纹的粗片状马氏体,使钢的脆性增加。

16常用的淬火方法有哪几种?说明它们的主要特点及其应用范围。

答:常用的淬火方法有单液淬火法、双液淬火法、等温淬火法和分级淬火法。

单液淬火法:这种方法操作简单,容易实现机械化,自动化,如碳钢在水中淬火,合金钢在油中淬火。但其缺点是不符合理想淬火冷却速度的要求,水淬容易产生变形和裂纹,油淬容易产生硬度不足或硬度不均匀等现象。适合于小尺寸且形状简单的工件。

双液淬火法:采用先水冷再油冷的操作。充分利用了水在高温区冷速快和油在低温区冷速慢的优点,既可以保证工件得到马氏体组织,又可以降低工件在马氏体区的冷速,减少组织应力,从而防止工件变形或开

裂。适合于尺寸较大、形状复杂的工件。

等温淬火法:它是将加热的工件放入温度稍高于M s 的硝盐浴或碱浴中,保温足够长的时间使其完成B转变。等温淬火后获得B下组织。下贝氏体与回火马氏体相比,在碳量相近,硬度相当的情况下,前者比后者具有较高的塑性与韧性,适用于尺寸较小,形状复杂,要求变形小,具有高硬度和强韧性的工具,模具等。

分级淬火法:它是将加热的工件先放入温度稍高于M s 的硝盐浴或碱浴中,保温2~5min,使零件内外的温度均匀后,立即取出在空气中冷却。这种方法可以减少工件内外的温差和减慢马氏体转变时的冷却速度,从而有效地减少内应力,防止产生变形和开裂。但由于硝盐浴或碱浴的冷却能力低,只能适用于零件尺寸较小,要求变形小,尺寸精度高的工件,如模具、刀具等。

17说明45钢试样(Φ10mm)经下列温度加热、保温并在水中冷却得到的室温组织:700℃,760℃,840℃,1100℃。

答:

温度加热后组

织水冷后组织

700°C P+F P+F

760°C A+F M+F

840°C A M

1100°C A M

700℃:因为它没有达到相变温度,因此没有发生相变,组织为铁素体和珠光体。

760℃:它的加热温度在Ac1~Ac3之间,因此组织为铁素体、马氏体和少量残余奥氏体。

840℃:它的加热温度在Ac3以上,加热时全部转变为奥氏体,冷却后的组织为马氏体和少量残余奥氏体。1100℃:因它的加热温度过高,加热时奥氏体晶粒粗化,淬火后得到粗片状马氏体和少量残余奥氏体。

18有两个含碳量为1.2%的碳钢薄试样,分别加热到780℃和860℃并保温相同时间,使之达到平衡状态,然后以大于V K的冷却速度至室温。试问:

(1)哪个温度加热淬火后马氏体晶粒较粗大?

答;因为860℃加热温度高,加热时形成的奥氏体晶粒粗大,冷却后得到的马氏体晶粒较粗大。

(2)哪个温度加热淬火后马氏体含碳量较多?答;因为加热温度860℃已经超过了A ccm,此时碳化物全部溶于奥氏体中,奥氏体中含碳量增加,而奥氏体向马氏体转变是非扩散型转变,所以冷却后马氏体含碳量较多。

(3)哪个温度加热淬火后残余奥氏体较多?

答:因为加热温度860℃已经超过了A ccm,此时碳化物全部溶于奥氏体中,使奥氏体中含碳量增加,降低钢的M s和M f点,淬火后残余奥氏体增多。

(4)哪个温度加热淬火后未溶碳化物较少?

答:因为加热温度860℃已经超过了A ccm,此时碳化物全部溶于奥氏体中,因此加热淬火后未溶碳化物较少(5)你认为哪个温度加热淬火后合适?为什么?答:780℃加热淬火后合适。因为含碳量为1.2%的碳钢属于过共析钢,过共析碳钢淬火加热温度Ac1+(30~50℃),而780℃在这个温度范围内,这时淬火后的组织为均匀而细小的马氏体和颗粒状渗碳体及残余奥氏体的混合组织,使钢具有高的强度、硬度和耐磨性,而且也具有较好的韧性。

19为什么工件经淬火后往往会产生变形,有的甚至开裂?减小变形及防止开裂有哪些途径?

答:淬火中变形与开裂的主要原因是由于淬火时形成内应为。淬火内应力形成的原因不同可分热应力与组织应力两种。

工件在加热和(或)冷却时由于不同部位存在着温度差别而导致热胀和(或)冷缩不一致所引起的应力称为热应力。热应力引起工件变形特点时:使平面边为凸面,直角边钝角,长的方向变短,短的方向增长,一句话,使工件趋于球形。

钢中奥氏体比体积最小,奥氏体转变为其它各种组织时比体积都会增大,使钢的体积膨胀;工件淬火时各部位马氏体转变-先后不一致,因而体积膨胀不均匀。这种由于热处理过程中各部位冷速的差异使工件各部位相转变的不同时性所引起的应力,称为相变应力(组织应力)。组织应力引起工件变形的特点却与此相反:使平面变为凹面,直角变为钝角,长的方向变长;短的方向缩短,一句话,使尖角趋向于突出。

工件的变形与开裂是热应力与组织应力综合的结果,但热应力与组织应力方向恰好相反,如果热处理适当,它们可部分相互抵消,可使残余应力减小,但是当残余应力超过钢的屈服强度时,工件就发生变形,残余应力超过钢的抗拉强度时,工件就产生开裂。为减小变形或开裂,出了正确选择钢材和合理设计工件的结构外,在工艺上可采取下列措施:

1.采用合理的锻造与预先热处理

锻造可使网状、带状及不均匀的碳化物呈弥散均匀分布。淬火前应进行预备热处理(如球化退火与正火),不但可为淬火作好组织准备,而且还可消除工件在前面加工过程中产生的内应力。

2.采用合理的淬火工艺;

正确确定加热温度与加热时间,可避免奥氏体晶粒粗化。对形状复杂或导热性差的高合金钢,应缓慢加热或多次预热,以减少加热中产生的热应力。工件在加热炉中安放时,要尽量保证受热均匀,防止加热时变形;选择合适的淬火冷却介质和洋火方法(如马氏体分级淬火、贝氏体等温淬火),以减少冷却中热应力和相变应力等。

3.淬火后及时回火

淬火内应力如不及时通过回火来消除,对某些形状复杂的或碳的质量分数较高的工件,在等待回火期间就会发生变形与开裂。

4.对于淬火易开裂的部分,如键槽,孔眼等用石棉堵塞。

20淬透性与淬硬层深度两者有何联系和区别?影响钢淬透性的因素有哪些?影响钢制零件淬硬层深度的因素有哪些?

答:淬透性是指钢在淬火时获得淬硬层的能力。不同的钢在同样的条件下淬硬层深不同,说明不同的钢淬透性不同,淬硬层较深的钢淬透性较好。淬硬性:是指钢以大于临界冷却速度冷却时,获得的马氏体组织所能达到的最高硬度。钢的淬硬性主要决定于马氏体的含碳量,即取决于淬火前奥氏体的含碳量。

影响淬透性的因素:

①化学成分

C曲线距纵坐标愈远,淬火的临界冷却速度愈小,则钢的淬透性愈好。对于碳钢,钢中含碳量愈接近共析成分,其C曲线愈靠右,临界冷却速度愈小,则淬透性愈好,即亚共析钢的淬透性随含碳量增加而增大,过共析钢的淬透性随含碳量增加而减小。除Co和Al (>2.5%)以外的大多数合金元素都使C曲线右移,使钢的淬透性增加,因此合金钢的淬透性比碳钢好。

②奥氏体化温度

温度愈高,晶粒愈粗,未溶第二相愈少,淬透性愈好。21回火的目的是什么?常用的回火操作有哪几种?指出各种回火操作得到的组织、性能及其应用范围。答:回火的目的是降低淬火钢的脆性,减少或消除内应力,使组织趋于稳定并获得所需要的性能。

常用的回火操作有低温回火、中温回火、高温回火。低温回火得到的组织是回火马氏体。内应力和脆性降低,保持了高硬度和高耐磨性。这种回火主要应用于高碳钢或高碳合金钢制造的工、模具、滚动轴承及渗碳和表面淬火的零件,回火后的硬度一般为HRC 58-64。

中温回火后的组织为回火屈氏体,硬度HRC35-45,具有一定的韧性和高的弹性极限及屈服极限。这种回火主要应用于含碳0.5-0.7%的碳钢和合金钢制造的各类弹簧。

高温回火后的组织为回火索氏体,其硬度HRC 25-35,具有适当的强度和足够的塑性和韧性。这种回火主要应用于含碳0.3-0.5% 的碳钢和合金钢制造的各类连接和传动的结构零件,如轴、连杆、螺栓等

22表面淬火的目的是什么?常用的表面淬火方法有哪几种?比较它们的优缺点及应用范围。并说明表面淬火前应采用何种预先热处理。

答:表面淬火的目的是使工件表层得到强化,使它具有较高的强度,硬度,耐磨性及疲劳极限,而心部为了能承受冲击载荷的作用,仍应保持足够的塑性与韧性。常用的表面淬火方法有:1.感应加热表面淬火;

2.火焰加热表面淬火。

感应加热表面淬火是把工件放入有空心铜管绕成的感应器(线圈)内,当线圈通入交变电流后,立即产生交变磁场,在工件内形成“涡流”,表层迅速被加热到淬火温度时而心部仍接近室温,在立即喷水冷却后,就达到表面淬火的目的。

火焰加热表面淬火是以高温火焰为热源的一种表面淬火法。将工件快速加热到淬火温度,在随后喷水冷却后,获得所需的表层硬度和淬硬层硬度。

感应加热表面淬火与火焰加热淬火相比较有如下特点:

1)感应加热速度极快,只要几秒到几十秒的时间就可以把工件加热至淬火温度,:而且淬火加热温度高(AC3以上80~150℃)。

2)因加热时间短,奥氏体晶粒细小而均匀,淬火后可在表面层获得极细马氏体,使工件表面层较一般淬火硬度高2~3HRC,且脆性较低。

3)感应加热表面淬火后,淬硬层中存在很大残余压应力,有效地提高了工件的疲劳强,且变形小,不易氧化与脱碳。

4)生产率高,便于机械化、自动化,适宜于大批量生产。但感应加热设备比火焰加热淬火费用较贵,维修调整比较困难,形状复杂的线圈不易制造

表面淬火前应采用退火或正火预先热处理。

23化学热处理包括哪几个基本过程?常用的化学热处理方法有哪几种?

答:化学热处理是把钢制工件放置于某种介质中,通过加热和保温,使化学介质中某些元素渗入到工件表层,从而改变表层的化学成分,使心部与表层具有不同的组织与机械性能。

化学热处理的过程:

1 分解:化学介质要首先分解出具有活性的原子;

2 吸收:工件表面吸收活性原子而形成固溶体或化合物;

3 扩散:被工件吸收的活性原子,从表面想内扩散形成一定厚度的扩散层。

常用的化学热处理方法有:渗碳、氮化、碳氮共渗、氮碳共渗。

24试述一般渗碳件的工艺路线,并说明其技术条件的标注方法。

答:一般渗碳件的工艺路线为:

下料→锻造→正火→切削加工→渡铜(不渗碳部位)→渗碳→淬火→低温回火→喷丸→精磨→成品

25氮化的主要目的是什么?说明氮化的主要特点及应用范围。

答:在一定温度(一般在A C1以下)使活性氮原子渗入工件表面的化学热处理工艺称为渗氮。其目的是提高工件表面硬度、耐磨性、耐蚀性及疲劳强度。氮化的主要特点为:1)工件经渗氮后表面形成一层极硬的合金氮化物(如CrN、MoN、AIN等),渗氮层的硬度一般可达950~1200HV(相当于68-72HRC),且渗氮层具有高的红硬性(即在600~650℃仍有较高硬度)。2)工件经渗氮后渗氮层体积增大,造成表面压应力,使疲劳强度显著提高。3)渗氮层的致密性和化学稳定性均很高,因此渗氮工件具有高的耐蚀性。4)渗温度低,渗氮后又不再进行热处理,所以工件变形小,一般只需精磨或研磨、抛光即可。

渗氮主要用于要求耐磨性和精密度很高的各种高速传动的精密齿轮、高精度机床主轴(如锺轴、磨床主轴)、分配式液压泵转子,交变载荷作用下要求疲劳强度高的零件(高速柴油机曲轴),以及要求变形小和具有一定耐热、抗蚀能力的耐磨零件(阀门)等。

26试说明表面淬火、渗碳、氮化热处理工艺在用钢、性能、应用范围等方面的差别。

答:表面淬火一般适用于中碳钢(0.4~0.5%C)和中碳低合金钢(40Cr、40MnB等),也可用于高碳工具钢,低合金工具钢(如T8、9Mn2V、GCr15等)。以及球墨铸铁等。它是利用快速加热使钢件表面奥氏体化,而中心尚处于较低温度即迅速予以冷却,表层被淬硬为马氏体,而中心仍保持原来的退火、正火或调质状态的组织。应用范围:(1)高频感应加热表面淬火应用于中小模数齿轮、小型轴的表面淬火。(2)中频感应加热表面淬火主要用于承受较大载荷和磨损的零件,例如大模数齿轮、尺寸较大的曲轴和凸轮轴等。(3)工频感应加热表面淬火工频感应加热主要用于大直径钢材穿透加热和要求淬硬深度深的大直径零件,例如火车车轮、轧辘等的表面淬火。

渗碳钢都是含0.15~0.25%的低碳钢和低碳合金钢,如20、20Cr、20CrMnTi、20SiMnVB等。渗碳层深度一般都在0.5~2.5mm。

钢渗碳后表面层的碳量可达到0.8~1.1%C范围。渗碳件渗碳后缓冷到室温的组织接近于铁碳相图所反映的平衡组织,从表层到心部依次是过共析组织,共析组织,亚共析过渡层,心部原始组织。

渗碳主要用于表面受严重磨损,并在较大的冲载荷下工作的零件(受较大接触应力)如齿轮、轴类、套角等。

氮化用钢通常是含Al、Cr、Mo等合金元素的钢,如38CrMoAlA是一种比较典型的氮化钢,此外还有35CrMo、18CrNiW等也经常作为氮化钢。与渗碳相比、氮化工件具有以下特点:

1)氮化前需经调质处理,以便使心部组织具有较高的强度和韧性。

2)表面硬度可达HRC65~72,具有较高的耐磨性。3)氮化表面形成致密氮化物组成的连续薄膜,具有一定的耐腐蚀性。

4)氮化处理温度低,渗氮后不需再进行其它热处理。氮化处理适用于耐磨性和精度都要求较高的零件或要求抗热、抗蚀的耐磨件。如:发动机的汽缸、排气阀、高精度传动齿轮等。

27拟用T10制造形状简单的车刀,工艺路线为:

锻造—热处理—机加工—热处理—磨加工

(1)试写出各热处理工序的名称并指出各热处理工序的作用;

(2)指出最终热处理后的显微组织及大致硬度;

(3)制定最终热处理工艺规定(温度、冷却介质)

答:(1)工艺路线为:锻造—退火—机加工—淬火后低温回火—磨加工。退火处理可细化组织,调整硬度,改善切削加工性;淬火及低温回火可获得高硬度和耐

磨性以及去除内应力。

(2)终热处理后的显微组织为回火马氏体,大致的硬度60HRC。

(3)T10车刀的淬火温度为780℃左右,冷却介质为水;回火温度为150℃~250℃。

28选择下列零件的热处理方法,并编写简明的工艺路线(各零件均选用锻造毛坯,并且钢材具有足够的淬透性):

(1)某机床变速箱齿轮(模数m=4),要求齿面耐磨,心部强度和韧性要求不高,材料选用45钢;

(2)某机床主轴,要求有良好的综合机械性能,轴径部分要求耐磨(HRC 50-55),材料选用45钢;(3)镗床镗杆,在重载荷下工作,精度要求极高,并在滑动轴承中运转,要求镗杆表面有极高的硬度,心部有较高的综合机械性能,材料选用38CrMoALA。答:(1)下料→锻造→正火→粗加工→精加工→局部表面淬火+低温回火→精磨→成品

(2)下料→锻造→正火→粗加工→调质→精加工→局部表面淬火+低温回火→精磨→成品

(3)下料→锻造→退火→粗加工→调质→精加工→氮化→研磨→成品

29某型号柴油机的凸轮轴,要求凸轮表面有高的硬度(HRC>50),而心部具有良好的韧性(Ak>40J),原采用45钢调质处理再在凸轮表面进行高频淬火,最后低温回火,现因工厂库存的45钢已用完,只剩15钢,拟用15钢代替。试说明:

(1)原45钢各热处理工序的作用;

(2)改用15钢后,应按原热处理工序进行能否满足性能要求?为什么?

(3)改用15钢后,为达到所要求的性能,在心部强度足够的前提下采用何种热处理工艺?

答:(1)正火处理可细化组织,调整硬度,改善切削加工性;调质处理可获得高的综合机械性能和疲劳强度;局部表面淬火及低温回火可获得局部高硬度和耐磨性。

(2)不能。改用15钢后按原热处理工序会造成心部较软,表面硬,会造成表面脱落。

(3)渗碳。

30解释下列现象:

(1)在相同含碳量情况下,除了含Ni和Mn的合金钢外,大多数合金钢的热处理加热温度都比碳钢高;答:在相同含碳量情况下,除了含Ni和Mn的合金钢外,大多数合金钢的热处理加热温度都比碳钢高,其主要原因是合金元素的加入而改变了碳在钢中的扩散速度所致。非碳化物形成元素如Ni、Co,可降低碳在奥氏体中的扩散激活能,增加奥氏体形成速度。相反,强碳化物形成元素如v、Ti、w、Mo等,与碳有较大的亲合力,增加碳在奥氏体中的扩散激活能,强烈地减缓碳在钢中的扩散,大大减慢了奥氏体化的过程。

奥氏体形成后,尚未固溶的各种类型的碳化物,其稳定性各不相同。稳定性高的碳化物,要使之完全分解和固溶于奥氏体中,需要进一步提高加热温度,这类合金元素将使奥氏体化的时间增长。

合金钢中奥氏体化过程还包括均匀化的过程。它不但需要碳的扩散,而且合金元素也必需要扩散。但合金元素的扩散速度很慢,即使在1000℃的高温下,也仅是碳扩散速度的万分之几或干分之几。因此,合金钢的奥氏体成分均匀化比碳钢更缓慢。以保证合金元素溶入奥氏体并使之均匀化,从而充分发挥合金元素的作用。(2)在相同含碳量情况下,含碳化物形成元素的合金钢比碳钢具有较高的回火稳定性;

答:当温度超过150℃以后,强碳化物形成元素可阻碍碳的扩散,因而提高了马氏体分解温度。与碳钢相比,合金钢中的残余奥氏体要在更高的回火温度才能转变。在高合金钢中残余奥氏体十分稳定,甚至加热到500~600℃并保温一段时间仍不分解。合金元素的扩散慢并阻碍碳的扩散,阻碍了碳化物的聚集和长大,使回火的硬度降低过程变缓,从而提高钢的回火稳定性。由于合金钢的回火稳定性比碳钢高,若要得到相同的回火硬度时,则合金钢的回火温度就比同样含碳量的碳钢要高,回火时间也长。而当回火温度相同时,合金钢的强度、硬度都比碳钢高。

33W18Cr4V钢的A c1约为820℃,若以一般工具钢A c1+30-50℃常规方法来确定淬火加热温度,在最终热处理后能否达到高速切削刃具所要求的性能?为什么?W18Cr4V钢刀具在正常淬火后都要进行560℃三次回火,又是为什么?

答:若以一般工具钢A c1+30-50℃常规方法来确定W18Cr4V钢淬火加热温度,在最终热处理后不能达到高速切削刃具所要求的性能。因为若按常规方法来确定淬火加热温度,则合金碳化物不易溶解,不能满足在高速切削时刀具应保持红硬性、高耐磨性的要求。为使奥氏体得到足够的合金化,必须加热到远远大于A c1的温度,既1280℃左右。18Cr4V钢刀具在正常淬火后都要进行560℃三次回火,这是为消除残余奥氏体。

34.钢的淬硬层深度通常是怎规定的?用什么方法测定结构钢的淬透性?怎样表示钢的淬透性值。

答:为了便于比较各种钢的淬透性,常利用临界直径

D c来表示钢获得淬硬层深度的能力。所谓临界直

径就是指圆柱形钢棒加热后在一定的淬火介质中

能全部淬透的最大直径。

对同一种钢D c油<D c水,因为油的冷却能力比水低。

目前国内外都普遍采用“顶端淬火法”测定钢的淬透性曲线,比较不同钢的淬透性。

“顶端淬火法”——国家规定试样尺寸为φ25×

100mm;水柱自由高度65mm;此外应注意加热过程

中防止氧化,脱碳。将钢加热奥氏体化后,迅速

喷水冷却。显然,在喷水端冷却速度最大,沿试

样轴向的冷却速度逐渐减小。据此,末端组织应

为马氏体,硬度最高,随距水冷端距离的加大,

组织和硬度也相应变化,将硬度随水冷端距离的

变化绘成曲线称为淬透性曲线。

不同钢种有不同的淬透性曲线,工业上用钢的淬

透性曲线几乎都已测定,并已汇集成册可查阅参

考。由淬透性曲线就可比较出不同钢的淬透性大

小。

此外对于同一种钢,因冶炼炉冷不同,其化学成分会在一个限定的范围内波动,对淬透性有一定的影响,因此钢的淬透性曲线并不是一条线,而是一条带,即表现出“淬透性带”。钢的成分波动愈小,淬透性带愈窄,其性能愈稳定,因此淬透性带愈窄愈好。

35 有一φ10mm的20#钢制工件,经渗碳热处理后空冷,随后进行正常的淬火、回火处理,试分析工件在渗碳空冷后以及淬火回火后,由表面到心部的组织。答:1)渗碳空冷后:由表及里:

表面:网状渗碳体+珠光体相当于 T12 平衡组织

次层:100% 珠光体相当于 T8 平衡组织

再次层:珠光体+少量先共析铁素体相当于 45#钢平衡组织

心部:大量先共析铁素体+少量珠光体相当于20#钢平衡组织

由表及里是逐渐过渡的。

2)渗碳淬火+回火处理:

表面:断续网状渗碳体+马氏体相当于 T12 淬火组织次层:马氏体+少量碳化物+残余奥氏体相当于

T8 淬火组织

再次层:混合马氏体组织相当于 45#钢亚温淬火组织

心部:先共析铁素体+马氏体相当于20#钢亚温淬火组织

由表及里是逐渐过渡的。

1 化学热处理的基本过程有哪些?

2 什么叫纯扩散?什么叫反应扩散?

3某齿轮要求具有高的耐磨性,并承受一定的冲击载荷,拟采用下列材料和热处理工艺:

(1)45钢的淬火和低温回火;(2)45钢的高频淬火和低温回火;(3)T8钢淬火和中温回火;(4)20钢渗碳淬火和低温回火。你认为哪种工艺比较合适?为什么?

4确定下列零件的热处理工艺,并制定简明的工艺路线:

(1)某机床变速箱齿轮,要求齿面耐磨,心部强度和韧性要求不高,且选用45钢;

(2)某机床主轴,要求有良好的综合机械性能,轴颈部要求耐磨(50~55HRC),材料选用45钢;(3)柴油机凸轮轴,要求凸轮表面有较高的硬度(HRC>60),心部有较好的韧性(Ak>50J),材料选用15钢;

(4)镗床和镗杆,在重载荷作用下工作,并在滑动轴承中运转,要求镗杆表面有极高的硬度,心部有较高的综合力学性能,材料选用38CrMoAlA。

金属热处理原理及工艺总结 整理版(精编文档).doc

【最新整理,下载后即可编辑】 5.实际晶体中的点缺陷,线缺陷和面缺陷对金属性能有何影响? 答:如果金属中无晶体缺陷时,通过理论计算具有极高的强度,随着晶体中缺陷的增加,金属的强度迅速下降,当缺陷增加到一定值后,金属的强度又随晶体缺陷的增加而增加。因此,无论点缺陷,线缺陷和面缺陷都会造成晶格崎变,从而使晶体强度增加。同时晶体缺陷的存在还会增加金属的电阻,降低金属的抗腐蚀性能。 6.为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性? 答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。 7.过冷度与冷却速度有何关系?它对金属结晶过程有何影响?对铸件晶粒大小有何影响? 答:①冷却速度越大,则过冷度也越大。②随着冷却速度的增大,则晶体内形核率和长大速度都加快,加速结晶过程的进行,但当冷速达到一定值以后则结晶过程将减慢,因为这时原子的扩散能力减弱。③过冷度增大,ΔF大,结晶驱动力大,形核率和长大速度都大,且N的增加比G增加得快,提高了N与G的比值,晶粒变细,但过冷度过大,对晶粒细化不利,结晶发生困难。 8.金属结晶的基本规律是什么?晶核的形成率和成长率受到哪些因素的影响?答:①金属结晶的基本规律是形核和核长大。②受到过冷度的影响,随着过冷度的增大,晶核的形成率和成长率都增大,但形成率的增长比成长率的增长快;同时外来难熔杂质以及振动和搅拌的方法也会增大形核率。 9.在铸造生产中,采用哪些措施控制晶粒大小?在生产中如何应用变质处理?答:①采用的方法:变质处理,钢模铸造以及在砂模中加冷铁以加快冷却速度的方法来控制晶粒大小。②变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒。③机械振动、搅拌。 第二章金属的塑性变形与再结晶 2.产生加工硬化的原因是什么?加工硬化在金属加工中有什么利弊? 答:①随着变形的增加,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细碎的亚晶粒,变形愈大,晶粒破碎的程度愈大,这样使位错密度显著增加;同时细碎的亚晶粒也随着晶粒的拉长而被拉长。因此,随着变形量的增加,由于晶粒破碎和位错密度的增加,金属的塑性变形抗力将迅速增大,即强度和

金属材料与热处理题库及复习资料

金属材料与热处理(第五版)练习题及答案第一章金属的结构与结晶 一、判断题 1、非晶体具有各同性的特点。( √) 2、金属结晶时,过冷度越大,结晶后晶粒越粗。( √) 3、一般情况下,金属的晶粒越细,其力学性能越差。( ×) 4、多晶体中,各晶粒的位向是完全相同的。( ×) 5、单晶体具有各向异性的特点。( √) 6、金属的同素异构转变是在恒温下进行的。( √) 7、组成元素相同而结构不同的各金属晶体,就是同素异构体。( √) 8、同素异构转变也遵循晶核形成与晶核长大的规律。( √) 9、钢水浇铸前加入钛、硼、铝等会增加金属结晶核,从而可细化晶粒。( ×) 10、非晶体具有各异性的特点。( ×) 11、晶体的原子是呈有序、有规则排列的物质。( √) 12、非晶体的原子是呈无序、无规则堆积的物质。( √)

13、金属材料与热处理是一门研究金属材料的成分、组织、热处理与金属材料性能之间的关系和变化规律的学科。( √) 14、金属是指单一元素构成的具有特殊的光泽延展性导电性导热性的物质。( √) 15、金银铜铁锌铝等都属于金属而不是合金。( √) 16、金属材料是金属及其合金的总称。( √) 17、材料的成分和热处理决定组织,组织决定其性能,性能又决定其用途。( √) 18、金是属于面心立方晶格。( √) 19、银是属于面心立方晶格。( √) 20、铜是属于面心立方晶格。( √) 21、单晶体是只有一个晶粒组成的晶体。( √) 22、晶粒间交接的地方称为晶界。( √) 23、晶界越多,金属材料的性能越好。( √) 24、结晶是指金属从高温液体状态冷却凝固为固体状态的过程。 ( √) 25、纯金属的结晶过程是在恒温下进行的。( √) 26、金属的结晶过程由晶核的产生和长大两个基本过程组成。( √) 27、只有一个晶粒组成的晶体成为单晶体。( √) 28、晶体缺陷有点、线、面缺陷。( √) 29、面缺陷分为晶界和亚晶界两种。( √) 30、纯铁是有许多不规则的晶粒组成。( √)

金属材料与热处理教案

绪论 引入: 材料金属材料 机械行业本课程得重要性 主要内容:金属材料得基本知识(晶格结构及变性) 金属得性能(力学及工艺性能) 金属学基础知识(铁碳相图、组织) 热处理(退火、正火、淬火、回火) 学习方法:三个主线 重要概念 ①掌握 基本理论 ②成分 组织性能用途热处理 ③理论联系实际 引入:内部结构决定金属性能 内部结构? 第一章:金属得结构与结晶 §1-1金属得晶体结构 ★学习目得:了解金属得晶体结构 ★重点:有关金属结构得基本概念:晶面、晶向、晶体、晶格、单晶

体、晶体,金属晶格得三种常见类型. ★难点:金属得晶体缺陷及其对金属性能得影响. 一、晶体与非晶体 1、晶体:原子在空间呈规则排列得固体物质称为“晶体"。(晶体内得原子之所以在空间就是规则排列,主要就是由于各原子之间得相互吸引力与排斥力相平衡得结晶。) 规则几何形状 性能特点: 熔点一定 各向异性 2、非晶体:非晶体得原子则就是无规则、无次序得堆积在一起得(如普通玻璃、松香、树脂等)。 二、金属晶格得类型 1、晶格与晶胞 晶格:把点阵中得结点假象用一序列平行直线连接起来构成空间格子称为晶格. 晶胞:构成晶格得最基本单元 2、晶面与晶向 晶面:点阵中得结点所构成得平面。 晶向:点阵中得结点所组成得直线 由于晶体中原子排列得规律性,可以用晶胞来描述其排列特征。(阵点(结点):把原子(离子或分子)抽象为规则排列于空间得几何点,称为阵点或结点。点阵:阵点(或结点)在空间得排列方式称

晶体。) 晶胞晶面晶向 3、金属晶格得类型就是指金属中原子排列得规律。 7个晶系 14种类型 最常见:体心立方晶格、面心立方晶格、密排六方晶格 (1)、体心立方晶格:(体心立方晶格得晶胞就是由八个原子构成得立方体,并且在立方体得体中心还有一个原子)。 属于这种晶格得金属有:铬Cr、钒V、钨W、钼Mo、及α—铁α-Fe 所含原子数 1/8×8+1=2(个) (2)、面心立方晶格:面心立方晶格得晶胞也就是由八个原子构成得立方体,但在立方体得每个面上还各有一个原子。 属于这种晶格得金属有:Al、Cu、Ni、Pb(γ-Fe)等 所含原子数1/8×8+6×1/2=4(个) (3)、密排六方晶格:由12个原子构成得简单六方晶体,且在上下两个六方面心还各有一个原子,而且简单六方体中心还有3个原子。 属于这种晶格得金属有铍(Be)、Mg、Zn、镉(Cd)等。 所含原子数 1/6×6×2+1/2×2+3=6(个) 三、单晶体与多晶体 金属就是由很多大小、外形与晶格排列方向均不相同得小晶体组成得,

机械加工常见热处理工艺

渗碳 渗碳热处理 渗碳:是对金属表面处理的一种,采用渗碳的多为低碳钢或低合金钢,具体方法是将工件置入具有活性渗碳介质中,加热到900--950摄氏度的单相奥氏体区,保温足够时间后,使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分。相似的还有低温渗氮处理。这是金属材料常见的一种热处理工艺,它可以使渗过碳的工件表面获得很高的硬度,提高其耐磨程度。 概述 渗碳(carburizing/carburization)是指使碳原子渗入到钢表面层的过程。 也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。 渗碳工件的材料一般为低碳钢或低碳合金钢(含碳量小于0.25%)。渗碳后﹐钢件表面的化学成分可接近高碳钢。工件渗碳后还要经过淬火﹐以得到高的表面硬度﹑高的耐磨性和疲劳强度﹐并保持心部有低碳钢淬火后的强韧性﹐使工件能承受冲击载荷。渗碳工艺广泛用于飞机﹑汽车和拖拉机等的机械零件﹐如齿轮﹑轴﹑凸轮轴等。 渗碳工艺在中国可以上溯到2000年以前。最早是用固体渗碳介质渗碳。液体和气体渗碳是在20世纪出现并得到广泛应用的。美国在20年代开始采用转筒炉进行气体渗碳。30年代﹐连续式气体渗碳炉开始在工业上应用。60年代高温(960~1100℃)气体渗碳得到发展。至70年代﹐出现了真空渗碳和离子渗碳。 分类 按含碳介质的不同﹐渗碳可分为气体渗碳、固体渗碳﹑液体渗碳﹑和碳氮共渗(氰化)。 气体渗碳是将工件装入密闭的渗碳炉内,通入气体渗剂(甲烷、乙烷等)或液体渗剂(煤油或苯、酒精、丙酮等),在高温下分解出活性碳原子,渗入工件表面,以获得高碳表面层的一种渗碳操作工艺。 固体渗碳是将工件和固体渗碳剂(木炭加促进剂组成)一起装在密闭的渗碳箱中,将箱放入加热炉中加热到渗碳温度,并保温一定时间,使活性碳原子渗人工件表面的一种最早的渗碳方法。 液体渗碳是利用液体介质进行渗碳,常用的液体渗碳介质有:碳化硅,“603”渗碳剂等。 碳氮共渗(氰化)又分为气体碳氮共渗、液体碳氮共渗、固体碳氮共渗。 原理 渗碳与其他化学热处理一样﹐也包含3个基本过程。

第四章 有色金属热处理原理与工艺

第四章有色金属热处理原理与工艺 一、概述 热处理是有色加工的重要组成部分 有色金属材料:黑色金属以外的所有金属及其合金。 分类:轻有色、重有色、稀有色、贵金属 作用:改善工艺性能,保证后续工序顺利进行;提高使用性能,充分发挥材料潜力。 类型:退火、淬火、时效、形变热处理 退火:加热到适当温度,保温一定时间,缓慢速度冷却。 有色中的退火:去应力退火、再结晶退火、均匀化退火 二、均匀化退火 对象:铸锭、铸件—→浇铸冷速大,造成成分偏析以及内应力 目的:提高铸件的性能,消除内应力,稳定尺寸与组织,消除偏析枝晶,改善性能。 非平衡铸态组织特征:晶内偏析or枝晶偏析;伪共晶or离异共晶;非平衡第二相;最大固溶度偏移。非平衡组织对性能的影响:枝晶偏析&非平衡脆性相—→塑性↓; 晶内偏析、浓度差微电池—→耐腐蚀性↓; 粗大的枝晶和严重的偏析—→各向异性&晶间断裂倾向↑; 非平衡针状组织—→性能不稳定。 固相线以下100~200℃长时间保温—→也称为扩散退火 组织变化:获得均匀的单相、晶粒长大、过饱和固溶体的分解、第二相聚集与球化 性能变化:塑性↑、改善冷变形的工艺性能、耐蚀性↑、尺寸形状稳定、消除残余应力 缺点:加热温度高,时间长,耗时耗能;高温长时间出现变形、氧化以及吸气缺陷;产品强度下降。制定均匀化推过规程的原则: (1)加热温度:温度越高,原子扩散越快,均匀化过程越快,但不宜过高,易发生过烧。一般为 0.90~0.95T m ①高温均匀化退火:在非平衡相线温度以上但在平衡固相线温度以下进行均匀化退火。 适用:大截面工件or铝合金 ②分级加热均匀化退火:现在低于非平衡固相线温度加热,待非平衡相部分溶解及固溶体 内成分不均匀部分降低,从而非平衡固相线温度升高后,再加热 至更高温度保温,在此温度下完成均匀化退火过程。 目的:均匀化更迅速、更彻底,且避免过烧 适用:镁合金 (2)保温时间:包括非平衡相溶解及消除晶内偏析所需的时间 取决于退火温度:T↑,D↑,时间↓; 铸锭原始组织特征:合金化程度、第二相分散度、尺寸 铸锭的致密程度 (3)加热速度与冷却速度 原则:铸锭不产生裂纹和大的变形,不能过快or过慢 主要采用均匀化退火的合金:Al合金、Mg合金、Cu合金中的锡磷青铜、白铜

常用热处理工艺【详情】

常用的几种热处理方法 内容来源网络,由深圳机械展收集整理! 更多相关表面处理及精密零件加工展示,就在深圳机械展! 1.常用热处理方式 1.1.退火 把钢加热到一定温度并在此温度下保温,然后缓慢冷却到室温。 退火有完全退火、球化退火、去应力退火等几种。 a.将钢加热到预定温度,保温一段时间,然后随炉缓慢冷却称为完全退火.目的是降 低钢的硬度,消除钢中不均匀组织和内应力. b.把钢加热到750度,保温一段时间,缓慢冷却至500度下,最后在空气中冷却叫球 化退火。目的是降低钢的硬度,改善切削性能,主要用于高碳钢。 c.去应力退火又叫低温退火,把钢加热到500~600度,保温一段时间,随炉缓冷到 300度以下,再室温冷却.退火过程中组织不发生变化,主要消除金属的内应力。 1.2.正火 将钢件加热到临界温度以上30-50℃,保温适当时间后,在静止的空气中冷却的热处理工艺称为正火。 正火的主要目的是细化组织,改善钢的性能,获得接近平衡状态的组织。 正火与退火工艺相比,其主要区别是正火的冷却速度稍快,所以正火热处理的生产周期短。故退火与正火同样能达到零件性能要求时,尽可能选用正火。 1.3.淬火 将钢件加热到临界点以上某一温度(45号钢淬火温度为840-860℃,碳素工具钢的淬火温度为760~780℃),保持一定的时间,然后以适当速度在水(油)中冷却以获得马氏体或贝氏体组织的热处理工艺称为淬火。 淬火与退火、正火处理在工艺上的主要区别是冷却速度快,目的是为了获得马氏体组织。马氏体组织是钢经淬火后获得的不平衡组织,它的硬度高,但塑性、韧性差。马氏体的硬度随钢的含碳量提高而增高。

1.4.回火 钢件淬硬后,再加热到临界温度以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺称为回火。 淬火后的钢件一般不能直接使用,必须进行回火后才能使用。因为淬火钢的硬度高、脆性大,直接使用常发生脆断。通过回火可以消除或减少内应力、降低脆性,提高韧性;另一方面可以调整淬火钢的力学性能,达到钢的使用性能。根据回火温度的不同,回火可分为低温回火、中温回火和高温回火三种。 A 低温回火150~250.降低内应力,脆性,保持淬火后的高硬度和耐磨性。 B 中温回火350~500;提高弹性,强度。 C 高温回火500~650;淬火钢件在高于500℃的回火称为高温回火。淬火钢件经高温淬火后,具有良好综合力学性能(既有一定的强度、硬度,又有一定的塑性、韧性)。所以一般中碳钢和中碳合金钢常采用淬火后的高温回火处理。轴类零件应用最多。 淬火+高温回火称为调质处理。 2.Q235热处理工艺 Q235属于碳素结构钢,含碳量大概0.12%-0.2%之间,相当于普通的10、20钢,淬火后硬度改变不大。具有较高的强度,良好的塑性,韧性和焊接性能,综合性能好,能满足一般钢结构和钢筋混凝土结构用钢的要求。 Q235一般买来就用不热处理,一般它都用在工程上大量需要钢材的地方,数量巨大,一般是热轧后就使用,热轧也就是有正火这个热处理,不热处理的原因有几个: 1)这些场合不需要太高的力学要求。 2)这些钢构件的体积太大了,你想热处理也不现实。 3)这些钢很多情况下要被焊接使用的,你热处理了被焊接后也被焊接过程中将焊缝的 热处理给破坏了。 4)材料价格便宜,质量要求比较低,而且是低碳钢,热处理的效果也不太好。 5)如果非要用Q235淬出硬度那只能渗碳,但是一件很不划算的事情。 Q235在理论上是可以淬火得到马氏体的。但是由于马氏体碳过饱和度很低,淬火后的硬度很低,只有170HBS左右。而这种钢的供应状态硬度大概就有144HBS左右(出

(完整版)金属材料与热处理题库

《金属材料与热处理》期末复习题库 一、填空 1.晶体与非晶体的根本区别在于原子的排列是否规则。 2.常见金属的晶体结构有体心立方晶格、面心立方晶格、密排六方晶格三种。 3.实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷、体缺陷。 4.根据溶质原子在溶剂晶格中占据的位置不同,固溶体可分为置换固溶体和间隙固溶体两种。 5.置换固溶体按照溶解度不同,又分为无限固溶体和有限固溶体。 6.合金相的种类繁多,根据相的晶体结构特点可将其分为固溶体和金属化合物两种。 7.同非金属相比,金属的主要特征是良好的导电性、导热性,良好的塑性,不透明,有光泽,正的电阻温度系数。 8.晶体与非晶体最根本的区别是原子(分子、离子或原子集团)在三维空间做有规则的周期性重复排列的物质,而非晶体则不是。 9.金属晶体中最主要的面缺陷是晶界和亚晶界。 10.位错两种基本类型是刃型位错和螺型位错,多余半原子面是刃型位错所特有的。 11.点缺陷有空位、间隙原子和置换原子等三种;属于面缺陷的小角度晶界可以用位错来描述。 12.人类认识材料和使用材料的分为石器时代、青铜器时代、铁器时代、钢铁时代四个历史阶段。 13.金属材料与热处理是研究金属材料的成分、组织、热处理与金属材料性能之间的关系和变化规律的课程。 14.金属是由单一元素构成的具有特殊光泽、延展性、导电性、导热性的物质。 15.合金是由一种金属元素与其他金属元素或非金属元素通过熔炼或其他方法合成的具有金属特性的物质。 16.金属材料是金属及其合金的总称。 17.金属材料的基本知识主要介绍金属的晶体结构及变形的相关知识。 18.金属的性能只要介绍金属的力学性能和工艺性能。 19.热处理的工艺包括退火、正火、淬火、回火、表面处理等。 20。物质是由原子和分子构成的。 21.物质的存在状态有气态、液态和固态。 22. 物质的存在状态有气态、液态和固态,固态物质根据其结构可分为晶体和非晶体。 23自然界的绝大多数物质在固态下为晶体。所有金属都是晶体。 24、金属的晶格类型是指金属中原子排列的规律。 25、一个能反映原子排列规律的空间架格,成为晶格。 26、晶格是由许多形状、大小相同的小几何单元重复堆积而成的。 27、能够反映晶体晶格特称的最小几何单元成为晶胞。 28、绝大多数金属属于体心立方晶格、面心立方晶格、密排六方晶格三种简单晶格。 29、只由一个晶粒组成的晶体成为单晶体。 30、单晶体的晶格排列方位完全一致。单晶体必须人工制作。 31、多晶体是由很多大小、外形和晶格排列方向均不相同的小晶体组成的。 32、小晶体成为晶粒,晶粒间交界的地方称为晶界。 33、普通金属材料都是多晶体。 34、晶体的缺陷有点缺陷、线缺陷和面缺陷。 35、金属的结晶必须在低于其理论结晶温度条件下才能进行。 36、理论结晶温度和实际结晶温度之间存在的温度差成为过冷度。 37、过冷度的大小与冷却速度有关。 38、纯金属的结晶是在恒温下进行的。 39、一种固态金属,在不同温度区间具有不同的晶格类型的性质,称为同素异构性。 40、在固态下,金属随温度的改变由一种晶格转变为另一种晶格的现象,称为金属的同素异构性。 41、纯铁是具有同素异构性的金属。

《金属材料与热处理》课程教学大纲

《金属材料与热处理》课程教学大纲 一、课程性质、目的和任务 属材料与热处理是一门技术基础课。其要紧内容包括:金属的性能、金属学基础知识、钢的热处理、常用金属材料及非金属材料的牌号等。 二、教学差不多要求 本课程的任务是使学生掌握金属材料与热处理的差不多知识,为学习专业理论,掌握专业技能打好基础。通过本课程的学习,学生应达到下列差不多要求: (1)了解金属学的差不多知识。 (2)掌握常用金属材料的牌号、性能及用途。 (3)了解金属材料的组织结构与性能之间的关系。 (4)了解热处理的一般原理及其工艺。 (5)了解热处理工艺在实际生产中的应用。 三、教学内容及要求 绪论 教学要求: 1、明确学习本课程的目的。 2、了解本课程的差不多内容。 教学内容: 1、学习金属材料与热处理的目的 2、金属材料与热处理的差不多内容 3、金属材料与热处理的进展史

4、金属材料在工农业生产中的应用 教学建议: 1、结合实际生产授课,以激发学生学习本课程的兴趣。 2、展望金属材料与热处理的进展前景。 第一章金属的性能 教学要求: 1、掌握金属的力学性能,包括强度、塑性、硬度、冲击韧性、疲劳等概念及各力学性能的衡量指标。 2、了解金属的工艺性能。 教学内容: §1—1 金属的力学性能 一、强度 二、塑性 三、硬度 四、冲击韧性 五、疲劳强度 §1-2金属的工艺性能 一、铸造性能 二、锻造性能 三、焊接性能 四、切削加工性能

第二章金属的结构与结晶 教学要求: 1、了解金属的晶体结构。 2、掌握纯金属的结晶过程。 3、掌握纯铁的同素异构转变。 教学内容: §2-1 金属的晶体结构 一、晶体与非晶体 二、晶体结构的概念 三、金属晶格的类型 §2—2纯金属的结晶 一、纯金属的冷却曲线及过冷度 二、纯金属的结晶过程 三、晶粒大小对金属力学性能的阻碍 *四、金属晶体结构的缺陷 §2—3 金属的同素异构转变 教学建议: 1、晶体结构较抽象,可使用模型配合讲课。 2、讲透同素异构转变与结晶过程之间的异同点。 *第三章金属的塑性变形与再结晶 教学要求: 1、了解金属塑性变形的差不多原理。

各种热处理工艺介绍

第4章热处理工艺 热处理工艺种类很多,大体上可分为普通热处理(或叫整体热处理),表面热处理,化学热处理,特殊热处理等。 4.1钢的普通热处理 4.1.1退火 将金属或合金加热到适当温度,保温一定时间,然后缓慢冷却(一般为随炉冷却),的热处理工艺叫做退火。 退火的实质是将钢加热到奥氏体化后进行珠光体转变,退火后的组织是接近平衡后的组织。 退火的目的: z降低钢的硬度,提高塑性,便于机加工和冷变形加工; z均匀钢的化学成分及组织,细化晶粒,改善钢的性能或为淬火作组织准备; z消除内应力和加工硬化,以防变形和开裂。 退火和正火主要用于预备热处理,对于受力不大、性能要求不高的零件,退火和正火也可作为最终热处理。 一、退火方法的分类 常用的退火方法,按加热温度分为: 临界温度(Ac1或Ac3)以上的相变重结晶退火:完全退火、扩散退火、不完全退火、球化退火 临界温度(Ac1或Ac3)以下的退火:再结晶退火、去应力退火 碳钢各种退火和正火工艺规范示意图: 1、完全退火 工艺:将钢加热到Ac3以上20~30 ℃℃,保温一段时间后缓慢冷却(随炉)以获得接近平衡组织的热处理工艺(完全A化)。 完全退火主要用于亚共析钢(w c=0.3~0.6%),一般是中碳钢及低、中碳合金钢铸件、锻件及热轧型材,有时也用于它们的焊接件。低碳钢完全退火后硬度偏 低,不利于切削加工;过共析钢加热至Ac cm以上A状态缓慢冷却退火时,Fe3C Ⅱ

会以网状沿A晶界析出,使钢的强度、硬度、塑性和韧性显著降低,给最终热处理留下隐患。 目的:细化晶粒、均匀组织、消除内应力、降低硬度和改善钢的切削加工性。 亚共析钢完全退火后的组织为F+P。 实际生产中,为提高生产率,退火冷却至500℃左右即出炉空冷。 2、等温退火 完全退火需要的时间长,尤其是过冷A比较稳定的合金钢。如将A化后的钢较快地冷至稍低于Ar1温度等温,是A转变为P,再空冷至室温,可大大缩短退火时间,这种退火方法叫等温退火。 工艺:将钢加热到高于Ac3(或Ac1)的温度,保温适当时间后,较快冷却到珠光体区的某一温度,并等温保持,使A?P然后空冷至室温的热处理工艺。 目的:与完全退火相同,转变较易控制。 适用于A较稳定的钢:高碳钢(w(c)>0.6%)、合金工具钢、高合金钢(合金元素的总量>10%)。等温退火还有利于获得均匀的组织和性能。但不适用于大截面钢件和大批量炉料,因为等温退火不易使工件内部或批量工件都达到等温温度。 3、不完全退火 工艺:将钢加热到Ac1~Ac3(亚共析钢)或Ac1~Ac cm(过共析钢)经保温后缓慢冷却以获得近于平衡组织的热处理工艺。 主要用于过共析钢获得球状珠光体组织,以消除内应力,降低硬度,改善切削加工性。球化退火是不完全退火的一种 4、球化退火 使钢中碳化物球状化,获得粒状珠光体的一种热处理工艺。 ℃℃温度,保温时间不宜太长,一般以2~4h 工艺:加热至Ac1以上20~30 为宜,冷却方式通常采用炉冷,或在Ar1以下20℃左右进行较长时间等温。 主要用于共析钢和过共析钢,如碳素工具钢、合金工具钢、轴承钢等。过共析钢经轧制、锻造后空冷的组织是片层状的珠光体与网状渗碳体,这种组织硬而脆,不仅难以切削加工,在以后的淬火过程中也容易变形和开裂。球化退火得到球状珠光体,在球状珠光体中,渗碳体呈球状的细小颗粒,弥散分布在铁素体基体上。球状珠光体与片状珠光体相比,不但硬度低,便于切削加工,而且在淬火加热时,奥氏体晶粒不易粗大,冷却时变形和开裂倾向小。如果过共析钢有网状渗碳体存在时,必须在球化退火前采用正火工艺消除,才能保证球化退火正常进行。 目的:降低硬度、均匀组织、改善切削加工性为淬火作组织准备。 球化退火工艺方法很多,主要有: a)一次球化退火工艺:将钢加热到Ac1以上20~30 ℃℃,保温适当时间,然后随炉缓慢冷却。要求退火前原始组织为细片状珠光体,不允许有渗碳体网存在。

金属学与热处理课后习题答案第二章

第二章纯金属的结晶 2-1 a)试证明均匀形核时,形成临界晶粒的△Gk与其体积V之间关系式为△Gk=V△Gv/2 b)当非均匀形核形成球冠状晶核时,其△Gk与V之间的关系如何? 答: 2-2 如果临界晶核是边长为a的正方体,试求出△Gk和a之间的关系。为什么形成立方体晶核的△Gk比球形晶核要大。 答:

2-3 为什么金属结晶时一定要由过冷度?影响过冷度的因素是什么?固态金属熔化时是否会出现过热?为什么? 答: 金属结晶时需过冷的原因: 如图所示,液态金属和固态金属的吉布斯自由能随温度的增高而降低,由于液态金属原子排列混乱程度比固态高,也就是熵值比固态高,所以液相自由能下降的比固态快。当两线相交于Tm温度时,即Gs=Gl,表示固相和液相具有相同的稳定性,可以同时存在。所以如果液态金属要结晶,必须在Tm温度以下某一温度Tn,才能使G s<Gl,也就是在过冷的情况下才可自发地发生结晶。把Tm-Tn的差值称为液态金属的过冷度 影响过冷度的因素: 金属材质不同,过冷度大小不同;金属纯度越高,则过冷度越大;当材质和纯度一定时,冷却速度越大,则过冷度越大,实际结晶温度越低。 固态金属熔化时是否会出现过热及原因: 会。原因:与液态金属结晶需要过冷的原因相似,只有在过热的情况下,Gl<G s,固态金属才会发生自发地熔化。 2-4 试比较均匀形核和非均匀形核的异同点。 答: 相同点: 1、形核驱动力都是体积自由能的下降,形核阻力都是表面能的增加。

2、具有相同的临界形核半径。 3、所需形核功都等于所增加表面能的1/3。 不同点: 1、非均匀形核的△Gk小于等于均匀形核的△Gk,随晶核与基体的润湿角的变 化而变化。 2、非均匀形核所需要的临界过冷度小于等于均匀形核的临界过冷度。 3、两者对形核率的影响因素不同。非均匀形核的形核率除了受过冷度和温度的 影响,还受固态杂质结构、数量、形貌及其他一些物理因素的影响。 2-5 说明晶体生长形状与温度梯度的关系。 答: 液相中的温度梯度分为: 正温度梯度:指液相中的温度随至固液界面距离的增加而提高的温度分布情况。负温度梯度:指液相中的温度随至固液界面距离的增加而降低的温度分布情况。固液界面的微观结构分为: 光滑界面:从原子尺度看,界面是光滑的,液固两相被截然分开。在金相显微镜下,由曲折的若干小平面组成。 粗糙界面:从原子尺度看,界面高低不平,并存在着几个原子间距厚度的过渡层,在过渡层中,液固两相原子相互交错分布。在金相显微镜下,这类界 面是平直的。 晶体生长形状与温度梯度关系: 1、在正温度梯度下:结晶潜热只能通过已结晶的固相和型壁散失。 光滑界面的晶体,其显微界面-晶体学小平面与熔点等温面成一定角度,这种情况有利于形成规则几何形状的晶体,固液界面通常呈锯齿状。 粗糙界面的晶体,其显微界面平行于熔点等温面,与散热方向垂直,所以晶体长大只能随着液体冷却而均匀一致地向液相推移,呈平面长大方式,固液界面始终保持近似地平面。 2、在负温度梯度下: 具有光滑界面的晶体:如果杰克逊因子不太大,晶体则可能呈树枝状生长;当杰克逊因子很大时,即时在较大的负温度梯度下,仍可能形成规则几何形状的晶体。具有粗糙界面的晶体呈树枝状生长。 树枝晶生长过程:固液界面前沿过冷度较大,如果界面的某一局部生长较快偶有突出,此时则更加有利于此突出尖端向液体中的生长。在尖端的前方,结晶潜热散失要比横向容易,因而此尖端向前生长的速度要比横向长大的速度大,很块就长成一个细长的晶体,称为主干。这些主干即为一次晶轴或一次晶枝。在主干形成的同时,主干与周围过冷液体的界面也是不稳的的,主干上同样会出现很多凸出尖端,它们会长大成为新的枝晶,称为称为二次晶轴或二次晶枝。二次晶枝发展到一定程度,又会在它上面长出三次晶枝,如此不断地枝上生枝的方式称为树枝状生长,所形成的具有树枝状骨架的晶体称为树枝晶,简称枝晶。 2-6 简述三晶区形成的原因及每个晶区的特点。 答: 三晶区的形成原因及各晶区特点: 一、表层细晶区

金属热处理原理与工艺复习提纲精选版

金属热处理原理与工艺 复习提纲 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

一、名词解释 1.正火:把零件加热到临界温度以上30-50℃,保温一段时间,然后在空气中冷却的热处理工艺。 2.退火:将钢加热、保温后,随炉冷却后,获得接近平衡状态组织的热处理工艺。 3.回火:将淬火钢重新加热到A1线以下某一温度,保温一定时间后再冷却到室温的热处理工艺。 4.淬火:将钢加热到AC1或AC3以上某一温度,保温一定时间,以大于临界冷却速度进行快速冷却,获得马氏体或下贝氏体组织的热处理工艺。 5.淬硬性:钢淬火后的硬化能力。 6.淬透性:钢淬火时获得马氏体的能力。 7.贝氏体:过冷奥氏体中温转变的产物。 8.马氏体:C原子溶入 -Fe形成的饱和间隙固溶体。 9.贝氏体转变:奥氏体中温转变得到贝氏体的过程。 10.马氏体转变:将奥氏体快速冷却到Ms点以下得到马氏体组织的过程。 11.脱溶:从过饱和固溶体中析出第二相(沉淀相)、形成溶质原子聚集区以及亚稳定过渡相的过程称为脱溶或沉淀,是一种扩散型相变。 12.固溶:将双相组织加热到固溶度线以上某一温度保温足够时间,获得均匀的单相固溶体的处理工艺。 13.固溶强化:当溶质原子溶入溶剂原子而形成固溶体时,使强度、硬度提高,塑性、韧性下降的现象。 14.渗碳:向钢的表面渗入碳原子的过程。

15.渗氮:向钢的表面渗入氮原子的过程。 16.化学热处理:将零件放在特定的介质中加热、保温,以改变其表层化学成分和组织,从而获得所需力学或化学性能的工艺总称。 17.表面淬火:在不改变钢的化学成分及心部组织情况下,利用快速加热将表层奥氏体化后进行淬火以强化零件表面的热处理方法。 二、简答题 1.材料的强韧化机制及其应用 答:固溶强化; 位错强化; 第二相强化; ④细晶强化。 2.相变应力/组织应力是什么对组织性能有什么影响 3. 答:组织应力又称相变应力:金属制品在加热和冷却时发生相变,由于新旧相之间存在着结构和比容差异,制品各部分又难以同时发生相变,或者各部分的相变产物有所不同,也会引起应力,这种因组织结构转变不均均而产生的应力称为组织应力。 热应力:金属制品在加热和冷却过程中,由于各部分加热速度或冷却速度不同造成制品各部分温度差异,从而热胀冷缩不均匀所引起的内应力。4.奥氏体化的形成及控制(形成过程、机理、及控制措施)其中包含的化学反应有哪些? 答:奥氏体:C溶于γ–Fe的八面体间隙形成间隙式固溶体

(完整版)金属材料与热处理题库及答案

金属材料与热处理习题及答案 第一章金属的结构与结晶 一、判断题 1、非晶体具有各同性的特点。( √) 2、金属结晶时,过冷度越大,结晶后晶粒越粗。(×) 3、一般情况下,金属的晶粒越细,其力学性能越差。( ×) 4、多晶体中,各晶粒的位向是完全相同的。( ×) 5、单晶体具有各向异性的特点。( √) 6、金属的同素异构转变是在恒温下进行的。( √) 7、组成元素相同而结构不同的各金属晶体,就是同素异构体。( √) 8、同素异构转变也遵循晶核形成与晶核长大的规律。( √) 10、非晶体具有各异性的特点。( ×) 11、晶体的原子是呈有序、有规则排列的物质。( √) 12、非晶体的原子是呈无序、无规则堆积的物质。( √) 13、金属材料与热处理是一门研究金属材料的成分、组织、热处理与金属材料性能之间的关系和变化规律的学科。( √)

14、金属是指单一元素构成的具有特殊的光泽延展性导电性导热性的物质。( √) 15、金银铜铁锌铝等都属于金属而不是合金。( √) 16、金属材料是金属及其合金的总称。( √) 17、材料的成分和热处理决定组织,组织决定其性能,性能又决定其用途。( √) 18、金是属于面心立方晶格。( √) 19、银是属于面心立方晶格。( √) 20、铜是属于面心立方晶格。( √) 21、单晶体是只有一个晶粒组成的晶体。( √) 22、晶粒间交接的地方称为晶界。( √) 23、晶界越多,金属材料的性能越好。( √) 24、结晶是指金属从高温液体状态冷却凝固为固体状态的过程。 ( √) 25、纯金属的结晶过程是在恒温下进行的。( √) 26、金属的结晶过程由晶核的产生和长大两个基本过程组成。( √) 27、只有一个晶粒组成的晶体成为单晶体。( √) 28、晶体缺陷有点、线、面缺陷。( √) 29、面缺陷分为晶界和亚晶界两种。( √) 30、纯铁是有许多不规则的晶粒组成。( √) 31、晶体有规则的几何图形。( √) 32、非晶体没有规则的几何图形。( √)

《金属材料与热处理》课程标准

《金属材料与热处理》课程标准 一、课程性质、定位与设计思路 (一)课程性质 本课程是机械制造及自动化专业高职学生的一门必修专业基础课,讲授金属材料与热处理相关理论知识的专业课。主要内容包括:金属材料的分类,金属材料的结构,金属材料的性能测试,铁碳合金组织,金属材料的常规热处理,金属材料的表面热处理,金属材料的工程选用等。使学生初步认识材料的性能、了解晶体结构、掌握铁碳合金相图、掌握常用材料的牌号及其用途,并能够合理选择热处理方法。 (二)课程定位 通过本课程的学习,学生具有处理简单的金属材料与热处理力学性能测试和硬度性能测试的能力,具有分析金属的晶体结构、二元合金相图和铁碳合金相图的基本能力,具有初步的钢热处理知识,并应用钢热处理知识完成钢的热处理能力,具有鉴别金属材料与的能力,具有选择热处理方式的能力,具有选择机械工程常用材料的能力。同时通过对典型机械材料的分析,培养学生分析问题、解决问题的能力。 (三)课程设计思路

本课程是根据高职教育机械设计及制造专业人才培养目标,通过素质教育、金属材料与热处理知识提升、技能操作以及策略的制定与应用,充分体现素质、知识、能力“三位一体”的要求。本课程应用项目任务驱动和项目问题引入来激发学生的学习动机和兴趣,遵循以“校企合作,工学结合”的教学理念设计课程。 1.主要结构 课程教学内容根据高职学生对金属材料理论知识和应用能力的要求,精简学科理论知识,突出理论与实际的“前因后果”关系,按照“感性认识→理性认识→综合利用”对教学内容进行序化,使学生由浅入深,从具备金属材料的基本概念和初步鉴别能力,到掌握金属材料的本质和具备显微鉴别能力,再到具备金属材料及热处理的工程应用能力。 2.课程设计理念 (1)贴近生产岗位。本标准以企业需求为基本依据,加强实践性教学,以满足企业岗位对高技能人才的需求作为课程教学的出发点,使本书内容与相关岗位对从业人员的要求 相衔接。 (2)借鉴国内外先进职业教育教学模式,突出项目教学。 (3)工学结合。培养理论联系实际,学以致用,在“做中学”的优良学风。突出实践,立足于实际运用。 (4)充分应用多媒体教学的优势,很多的知识以图、表、视频、动画等方式进行展现。 (5)实施项目教学,项目制作课题的考评标准具体明确,直观实用,可操作性强。 (6)突出高职教育特点,重视实践教学环节,培养学生的创新能力和实践能力。 (四)本课程对应的职业岗位标准 本课程的学习内容,与机械加工类的职业岗位的要求是相符的,如:中高级

《金属学与热处理》试题库

《金属学与热处理》试题库 一、名词解释 1、铁素体、奥氏体、珠光体、马氏体、贝氏体、莱氏体 2、共晶转变、共析转变、包晶转变、包析转变 3、晶面族、晶向族 4、有限固溶体、无限固溶体 5、晶胞 6、二次渗碳体 7、回复、再结晶、二次再结晶 8、晶体结构、空间点阵 9、相、组织 10、伪共晶、离异共晶 11、临界变形度 12、淬透性、淬硬性 13、固溶体 14、均匀形核、非均匀形核 15、成分过冷 16、间隙固溶体 17、临界晶核 18、枝晶偏析 19、钢的退火,正火,淬火,回火 20、反应扩散 21、临界分切应力 22、调幅分解 23、二次硬化 24、上坡扩散 25、负温度梯度 26、正常价化合物 27、加聚反应 28、缩聚反应 四、简答 1、简述工程结构钢的强韧化方法。(20分)

2、简述Al-Cu二元合金的沉淀强化机制(20分) 3、为什么奥氏体不锈钢(18-8型不锈钢)在450℃~850℃保温时会产生晶间腐蚀?如何防止或减轻奥氏体不锈钢的晶间腐蚀? 4、为什么大多数铸造合金的成分都选择在共晶合金附近? 5、什么是交滑移?为什么只有螺位错可以发生交滑移而刃位错却不能? 6、根据溶质原子在点阵中的位置,举例说明固溶体相可分为几类?固溶体在材料中有何意义? 7、固溶体合金非平衡凝固时,有时会形成微观偏析,有时会形成宏观偏析,原因何在? 8、应变硬化在生产中有何意义?作为一种强化方法,它有什么局限性? 9、一种合金能够产生析出硬化的必要条件是什么? 10、比较说明不平衡共晶和离异共晶的特点。 11、枝晶偏析是怎么产生的?如何消除? 12、请简述影响扩散的主要因素有哪些。 13、请简述间隙固溶体、间隙相、间隙化合物的异同点? 14、临界晶核的物理意义是什么?形成临界晶核的充分条件是什么? 15、请简述二元合金结晶的基本条件有哪些。 16、为什么钢的渗碳温度一般要选择在γ-Fe相区中进行?若不在γ-Fe相区进行会有什么结果? 17、一个楔形板坯经冷轧后得到相同厚度的板材,再结晶退火后发现板材两端的抗拉强度不同,请解释这个现象。 18、冷轧纯铜板,如果要求保持较高强度,应进行何种热处理?若需要继续冷轧变薄时,又应进行何种热处理? 19、位错密度有哪几种表征方式? 20、淬透性与淬硬性的差别。 21、铁碳相图为例说明什么是包晶反应、共晶反应、共析反应。 22、马氏体相变的基本特征?(12分) 23、加工硬化的原因?(6分) 24、柏氏矢量的意义?(6分) 25、如何解释低碳钢中有上下屈服点和屈服平台这种不连续的现象?(8分) 26、已知916℃时,γ-Fe的点阵常数0.365nm,(011)晶面间距是多少?(5分) 27、画示意图说明包晶反应种类,写出转变反应式?(4分) 28、影响成分过冷的因素是什么?(9分) 29、单滑移、多滑移和交滑移的意义是什么?(9分) 30、简要说明纯金属中晶粒细度和材料强度的关系,并解释原因。(6分)

金属材料与热处理课程标准

《金属材料与热处理》课程教学标准 课程名称:金属材料与热处理 适用专业: 1.前言 1.1课程性质 《金属材料与热处理》课程是数控专业必修的技术基础课。该课程理论性较强,新概念较多,同时又与生产实际有着密切联系。该课程主要讲授金属材料典型组织、结构的基本概念,金属材料的成分、组织结构变化对性能的影响,热处理的基本类型及简单热处理工艺的制定,合金钢种类、牌号、热处理特点及应用,为学生从事机械设计、制造及相关的工作打下基础。 1.2设计思路 以“项目为主线,任务为主题”,采用“项目导向、任务驱动”相结合的教学模式,实现教、学、做、练一体化。为加强学生创造思维和工程技术素质的培养,根据学生个性特点与发展的需要,本门课程建议采用讲课、自学、习题课、辅导课、报告会等多种形式组织教学。本门课程可灵活采用全班学习、分组学习等学习形式,也可以组建课外兴趣小组进行知识拓展学习。 教师要认真研究学生特点,针对学生实际情况,结合教学内容,多种教学方法手段综合运用。在教学方法上,将项目任务引入课程,将理论讲授包含在项目训练中,使学生在实践中掌握理论、学习知识,将生产中的新工艺、新方法、新技术引入课堂。采用项目式、启发式、互动式、案例式等教学方法,提高学生的学习兴趣。在教学手段上,充分利用现代多媒体电子教学,视频教学、实物教学、现场教学、网络教学等将现代科学技术充分应用于教学改革之中。 2.课程目标 本课程的任务是使学生掌握金属材料与热处理的基本知识,为学习专业理论,掌握专业技能打好基础。通过本课程的学习,学生应达到下列基本要求: ●了解金属学的基本知识 ●掌握常用金属材料的牌号、性能及用途

热处理工艺方法

典型零件热处理工艺方法 发布时间: 2007-5-05 21:36 作者: 网络转载来源: 字体: 小中大 | 上一篇下一篇 | 打印 a、紧固件的热处理 1)螺栓、螺钉和螺柱的力学性能。 2)螺母力学性能。 3)不同强度级别、不同之境的螺栓所对应的钢号。 4)钢材球化退火工艺。 5)螺栓和螺母用部分合金钢热处理规范。 6) 35、45钢螺栓和螺母热处理规范。 7)螺栓和螺母低碳合金钢的热处理和力学性能。 8)几种不锈钢热处理规范及力学性能。 9)几种钢材的高温力学性能。 10)几种钢材低温冲击值。 11)弹性垫圈及弹性挡圈的技术要求。 12)销的材料选用及热处理。 13)铆钉用材料、热处理机表面处理。 b、大型铸件的热处理 1)大型铸件的热处理。 c、模具的热处理内增加。 1)塑料模的热处理 塑料模具的工作条件和分类。 塑料模具的主要失效形式。 塑料模具材料的选用。 塑料模具的热处理工艺。 2)提高模具性能和寿命的途径 高强韧模具材料的应用及效果实例。 模具强韧化处理应用实例。 常用模具钢真空淬火工艺参数。 模具表面强化技术及应用实例。 d、轴类零件的热处理内增加 1)连杆 连杆材料。 常用碳素钢和合金结构钢连杆的调质工艺。 经不同工艺处理的40Cr和45钢连杆的力学性能。 连杆的常见热处理缺陷及预防补救措施。 2)活塞销 活塞销的服役条件和失效方式。 活塞销材料。

活塞销的渗碳热处理工艺。 活塞销常见热处理缺陷及预防补救措施。 3)挺杆 挺杆的服役条件和失效方式。 挺杆的材料。 各种挺杆的热处理工艺及技术要求。 冷镦合金铸铁挺杆的热处理工艺。 e、机床零件的热处理 1)机床导轨的热处理 导轨服役条件及失效形式。 机床导轨材料。 铸铁导轨的感应淬火。 灰铸铁导轨感应淬火常见缺陷及解决办法。 铸铁导轨的火焰淬火。 铸铁导轨的接触电阻加热淬火。 2)机床主轴的热处理 机床主轴的服役条件和失效方式。 机床主轴材料。 机床主轴的热处理工艺。 3)机床丝杠的热处理 机床丝杠的服役条件和失效方式。 机床丝杠材料。 机床普通丝杠的热处理工艺。 机床滚珠丝杠的热处理工艺。 4)机床离合器零件的热处理。 f、液压元件的热处理 1)齿轮泵零件的热处理。 2)叶片泵零件的热处理。 3)柱塞泵零件的热处理。 4)液压阀零件的热处理。 g、化工机械零件的热处理 1)压力容器的热处理。 压力容器的失效。 压力容器用碳钢和低合金钢的力学性能。 压力容器用低温钢和不锈钢的力学性能。 压力容器用耐热钢和抗氢钢的力学性能。 压力容器用不锈钢铸件的力学性能。 压力容器用钢的正火工艺。 各种压力容器用钢最佳回火温度。 各种压力容器用钢的去应力退火温度及保温时间。

金属热处理1-3章

一.名词解释 弹性模量、弹性极限、屈服强度、抗拉强度、伸长率、断面收缩率、冲击韧性、布氏硬度、洛氏硬度、韧脆转变、韧催转变温度、疲劳、断裂韧性 二、填空题 1.材料常用的塑性指标有________和________两种,其中_________表示塑性更接近硬度。 2.检验淬火钢成品件的硬度一般用________硬度,而布氏硬度适用于测定_______的硬度。 3.零件表面加工质量对其________性能有很大的影响。 4.材料性能是指________性_________性_________性和___________性。 5.表征材料抵抗冲击载荷能力的性能指标是_________,其单位是___________。 三、选择题 1.在设计拖拉机缸盖螺钉时应选用的强度指标是() A.σb B、σs C、σ0.2 D、σp 2.有一碳钢支架刚性不足,解决办法是() A、通过热处理强化 B、选用合金钢 C、增加横截面积 D、在冷加工状态下使用 3.材料的使用温度() A、应在其韧脆转变温度以上 B、应在其韧脆转变温度以下 C、应与其韧脆转变温度相等 D、与其韧脆转变温度无关 4.汽车后半轴热处理后冷校直,造成力学性能指标下降,主要是() A、σb B、δ C、σ-1 D、HB 5.在有关工件的图纸上,出现了以下几种硬度技术条件的标注方法,其中正确的是() A、500HBS B、HV800 C、12~15HRC D、229HB 四、判断题 1、所有金属材料都有明显的屈服现象。() 2、同种材料不同尺寸试样所测得的伸长率相同。() 3、σ0.2是机械零件的设计依据,如果使用σb代替,则应选择较大的安全系数。() 五、计算题 1.一根直径为 2.5mm、长为3m的钢丝,受4900N拉伸载荷作用后的变形量是多少? (钢丝的变形为弹性变形,其弹性模量为205000MN/m2)[提示:参考第一部分第一章的例题1] 六、简答题 1.如何提高金属材料的刚度和疲劳寿命? 2.韧脆转变在工程上有何意义?

相关文档
相关文档 最新文档