文档库

最新最全的文档下载
当前位置:文档库 > 浅析二项分布与泊松分布之间的关系

浅析二项分布与泊松分布之间的关系

浅析二项分布与泊松分布之间的关系

学年论文

浅析二项分布与泊松分布之间的关系

题目:浅析二项分布与泊松分布之间的关系

学生:

学号:

院(系):理学院

专业:信息与计算科学

指导教师:安晓钢

2013 年11月25日

浅析二项分布与泊松分布之间的关系

信息121班; 指导教师:安晓钢

(陕西科技大学理学院 陕西 西安 710021)

摘 要:泊松分布刻画了稀有事件在一段时间内发生次数这一随机变量的分布,如电话交换台单位时间内接到的呼唤次数等。二项分布是n 个独立的是/非试验中成功的次数的离散概率分布。它们有着密切的关系。泊松分布是二项分布的特例。某现象的发生率很小,而样本例数n 很大时,则二项分布接近于泊松分布,即:如果试验次数n 很大,二项分布的概率p 很小,且乘积np =λ比较适中,则事件出现的次数的概率可以用泊松分布来逼近。事实上,二项分布可以看作泊松分布在离散时间上的对应物,是二项分布的特例。通过分析二项分布和泊松分布之间的关系,使学生对概率分布理论的理解更为深刻,能够将学到的理论知识应用在实际生活中,从而提高自己的综合素质。

关 键 词:二项分布, 泊松分布, 近似

The Application of Asignment Poblem

ABSTRACT: Poisson distribution is used to depict the distribution of rare events that a random variable frequency over a period of time, such as a telephone exchange in unit time received the call number. The two distribution is n independent / discrete probability distributions of number of successful non trials. They have a close relationship. Poisson distribution is two distribution case. The incidence of the phenomenon is very small, and the number of sample n is large, then the two distribution is close to the Poisson distribution, i.e.: if the test number n is large, the two probability distribution P is small, and the product of lambda = N P is moderate, the probability of the event can be used to force the Poisson distribution near. In fact, the two distribution can be seen as the counterpart of Poisson distribution in discrete time, are the two distribution case. Through the analysis of the relationship between two binomial distribution and Poisson distribution, enables the student to the theory of probability distribution for more profound understanding will be able to learn the application of theoretical knowledge in real life, so as to improve their comprehensive quality.

KEY WORDS : Two distribution, Poisson distribution, Approximate

1、问题重述:泊松分布刻画了稀有事件在一段时间内发生次数这一随机变量的分布,如电话交换台单位时间内接到的呼唤次数,某公共汽车站在单位时间内来站乘车的乘客数,宇宙中单位体积内星球的个数,耕地上单位面积内杂草的数目等。二项分布是n 个独立的是/非试验中成功的次数的离散概率分布。下面是本人列出的关于二项分布和泊松分布作出的比较表格:

浅析二项分布与泊松分布之间的关系

从上表可以看出,当n 越大时,二项分布和泊松分布之间产生一种越明显的逼近关系。那么,它们之间到底存在何种“亲密”的关系呢?下面就让我们一起来更深层地去探究吧! 2、预备知识

2.1二项分布 概率论中最常用的一种离散型概率分布。若随机变量X 取整数值k 的概率为

()()()(),,,1,0,,,1n k p n k b p p k n k X p k n k ==-???

? ??==- 式中n 是给定的正整数;()!!!;10k n k n k n p -=???

? ??<<是从n 个对象中任意选取k 个的组合数,则称X 的分布为二项分布,记作B (n,p )。它的命名来源于()p n k b ,,恰好是()[]n

p p +-1的二项式展开的第k+1项。 从不合格品率为p 的产品中独立地抽出n 个(每次抽一个,抽出后又放回),其中恰有k 个不合格品的概率就是()p n k b ,,。统计学由此建立检验产品质量的方案。类似的例子在生产实践和科学试验中是常见的。将问题模型化,假设每次试验只有两个可能结果:A 以及它的对立事件A ,出现A 的概率为P(A)=p ,则对立事件A 出现的概率则为 1-p 。这种只有两个可能结果的随机试验称为伯努利试验。将这种试验独立地重复进行n 次所组成的随机试验称为n 重伯努利试验,其中A 出现的次数X

是一个服从二项分布()p n B ,的随机变量。

2.2泊松分布

由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。若X 服从参数为的泊松分布,记为X~P(λ),泊松分布的概率分布函数:

()!

k e k X p k

λλ-== 参数λ是单位时间(或单位面积)内随机事件的平均发生率。 统计学上,满足三个条件,即可用泊松分布(1)小概率事件,两次以上事件发生概率趋于0;(2)事件发生的概率独立且互不影响;(3)发生概率是稳定的。

泊松分布主要用于描述在单位时间(空间)中稀有事件的发生数,例如:放射性物质在单位时间内的放射次数;在单位容积充分摇匀的水中的细菌数; 野外单位空间中的某种昆虫数等。

2.3推理论证二项分布和泊松分布的关系

在二项分布的n 次伯努利试验中,如果试验次数n 很大,二项分布的概率p 很小,且乘积λ= n p 比较适中,则事件出现的次数的概率可以用泊松分布来逼近。事实上,二项分布可以看作泊松分布在离散时间上的对应物。

回顾e 的定义:λλe n n

n =??? ??-∞→1lim 二项分布的定义:()()k n k p p k n k X P --???

? ??==1 .如 果令p=λ/n, 则p 趋于无穷时的极限: ()()()()λλλλλλλλλλ-???

? ??=??? ??-??? ??-???? ??????????? ??--??? ??-??? ?

?-=??? ??-??? ??-???? ????????-=??? ??-??? ??-=-???

? ??==-∞→-∞→-∞→-∞→∞→exp !11!112111lim 11!!!lim 1!!!lim )1(lim lim k n n k n k n n n n k k n n n n n k k n n p p k n k X P k k n k n k n k k n k

n k n k n k n n

这说明,当p 很小而n 较大时,B(n,p)可以用泊松分布近似。

4、应用实例

4.1二项分布的泊松近似计算在保险问题中的应用

4.1.1保险公司的利润问题。

例2: 10000 名同年龄同社会阶层的人参加某保险公司的人寿保险,每个投保人在每年初需交纳200 元保费,在这一年中若投保人死亡,受益人可从保险公司获得100000 元赔偿费。据生命表知这类

人的年死亡率为0.001。试计算: ( 1) 保险公司亏本的概率; ( 2) 至少获利500000 元的概率。

解: 设X 为10000 名投保人在一年中死亡的人数,则X 服从二项分布B( 10000,0.001)一方面,因为n = 10000 很大,p = 0.001 很小,λ= np= 10,考虑用泊松分布进行近似计算:

( 1) 保险公司在这项业务上一年的收入为200 ×10000 = 2000000( 元) ,保险公司在这项业务上“亏本”就相当于{ X >20} ,因此所求概率为P{ X >20} = 1 -p{ x≤20}≈1 -0.998 = 0.002 ( 2) 保险公司业务上“至少获利500000 元”相当于{ X≤15},因此所求概率为P{ X≤15} ≈0.951 4.1.2 二项分布的泊松近似计算在林业试验中的应用

二项分布在林业试验中也是常见的。例如在林木病虫害调查中,树木要么染病,要么不染病,n株树木中有x株染病的规律就是二项分布。由于二项分布概率函数的计算在n较大时比较繁杂,为了简化计算,通常用泊松分布来近似地求得:当n充分大,np很小时,二项分布近似于参数为λ=np的泊松分布。

5、得出结论

如果试验次数n很大,二项分布的概率p很小,且乘积λ= n p比较适中,则事件出现的次数的概率可以用泊松分布来逼近。二项分布可以看作泊松分布在离散时间上的对应物,是二项分布的特例。

6、参考文献

[黄必恒]关于二项分布的泊松近似问题

[马小侠]有关二项分布的近似计算

浅析二项分布_泊松分布和正态分布之间的关系
浅析二项分布_泊松分布和正态分布之间的关系_自然科学_专业资料。泊松分布 阅 年第 期 总第 期 企业 科技与发展巨它 , 改 】 们比 浅析二 项分 布 泊 ......
浅析二项分布与泊松分布之间的关系
浅析二项分布与泊松分布之间的关系_数学_自然科学_专业资料。浅析二项分布与泊松分布之间的关系,泊松分布和二项分布,二项分布 泊松分布,泊松分布与二项分布,泊松......
浅析二项分布泊松分布和正态分布之间的关系
二项分布的泊松近似常常被应用于研究稀有事件(即每次 来意薷叫~。竹b+O.5-圳npI一吐端]2.3泊松分布与正态分布之间的关系 试验中事件出现的概率p很小)’,......
浅析二项分布泊松分布和正态分布之间的关系
浅析二项分布泊松分布和正态分布之间的关系 1 预备知识 1.1 二项分布 在同...
二项分布, 泊松分布和正态分布之间的关系
在一定条件下,这 三个分布之间 存在 着密切关系。文章通过求极限分布 研究了二项分布 与泊松分布 二项分布与正态分布之间的关系 ,并利用特 征 涵数 和分布 ......
二项分布泊松分布和正态分布之间的关系
在一定条件下,这 三个分布之间 存在 着密切关系。文章通过求极限分布 研究了二项分布 与泊松分布 二项分布与正态分布之间的关系 ,并利用特 征 涵数 和分布 ......
二项分布与泊松分布区别与联系
第七章 二项分布与泊松分布 (Binomial Distribution and...
二项分布和泊松分布的剖析
? 10 ? 统计教育 2006 年第 10期 二项分布和泊松分布的剖析文/ 傅军和 概率是 t 的高阶无穷小。则X 的概率函数为 : 摘要 :本文从二项分布和泊松分布的......
二项分布与泊松分布
二项分布与泊松分布_数学_自然科学_专业资料。二项分布与Poisson分布 分布...
浅析二项分布与其它分布的关系
龙源期刊网 浅析二项分布与其它分布的关系 作者:薛玉娟 来源:《中国基础教育研究》2013 年第 10 期 【摘要】 二项分布是一种常见......
二项分布与泊松分布区别和联系
第七章 二项分布与泊松分布 (Binomial Distribution and...
二项分布与泊松分布的近似关系
二项分布与泊松分布的近似关系_数学_自然科学_专业资料。概率论上机实验报告 数学...
浅谈二项分布与正态分布之间的关系
浅谈二项分布与正态分布之间的关系 李晓辉;任伟和; 【期刊名称】《石家庄理工职业...
基于MGF研究二项分布泊松分布与正态分布之间的联系
朱芳, 李啸芳 【摘要】主要基于动差生成函数进一步研究概率论中三大重要分布之间的内在 联系,通过证明体现二项分布泊松分布与正态分布在一定条件下的近似关系。 【......
浅析二项分布泊松分布和正态分布之间的关系
浅析二项分布泊松分布和正态分布之间的关系 作者:于洋 作者机构:东北财经大学数...
浅析二项分布泊松分布和正态分布之间的关系
浅析二项分布泊松分布和正态分布之间的关系 作者:于洋 作者机构:东北财经大学,...
统计学:二项分布与泊松分布
第7章二项分布与泊松分布 目录 第一节 二项分布及其应用 第二节 泊松分布及其应...
二项分布与泊松分布
常用离散型变量概率分布 及应用二项分布和泊松分布张合喜 公共卫生学院 第一节 二...
二项分布与泊松分布区别和联系
二项分布与泊松分布区别和联系_数学_自然科学_专业资料。文档均来自网络,如有侵权请联系我删除文档 第七章 二项分布与泊松分布 (Binomial Distribution and Poisson......