文档库 最新最全的文档下载
当前位置:文档库 › 抗生素应用现状及细菌耐药性研究_曹晓孚

抗生素应用现状及细菌耐药性研究_曹晓孚

抗生素应用现状及细菌耐药性研究_曹晓孚
抗生素应用现状及细菌耐药性研究_曹晓孚

抗生素在临床上应用广泛,而因不合理使用出现的细菌耐药、不良反应、二重感染等问题也日趋严重。为了解抗生素的使用情况,现对我院2007年8月份出院病例抗菌药物使用情况进行调查,并结合同期住院病例病原学检测及药物敏感试验结果进行分析,为临床合理使用抗生素提供依据,报告如下:

1资料与方法

1.1资料来源回顾性调查住院药房抗菌药物的销售数量,以用量大小统计出使用排名前10位的抗菌药物。病原学检测及药敏试验结果由医院细菌室提供。病例为该院同期的住院病例。

1.2调查方法抗菌药物采用WHO药物统计合作中心设定的限定日剂量(DDD)方法[1]计算抗菌药物的使用频度(DDDs),药品DDD来自药品说明书,采用其主要适应证的常用量计算。不同规格或不同商品名而通用名相同的药品,按同一种药物合并计算。同时,分析近几年抗菌药物联合应用情况,调查同期住院病例医院感染发病情况。医院感染诊断参照2000年11月卫生部颁布的《医院感染诊断标准(试行)》的有关规定。

1.3病原学检查采用法国生物梅里埃VITEK32细菌鉴定/药敏仪分析。所用培养基和试剂购自法国梅里埃公司、OXOID微生物制剂有限公司,经大肠埃希菌25922、铜绿假单孢菌27853作质控均符合标准。

1.4药敏试验采用VITEK32细菌鉴定/药敏仪分析得出,必要时用K-B法作补充,药敏纸片均购自OXOID微生物制剂有限公司,MH培养基由杭州天和微生物试剂有限公司提供。试验方法、质量控制与判定标准均按照NCCLS2004年标准[2]。

2结果

2.12007年8月抗生素按DDDs排序,见表1

表12006年8月抗菌药物按DDDs排序

2.2近3年来抗菌药物联合使用情况,见表2

表2抗菌药物联合使用率

2.3医院感染发病情况同期住院病例1034例中发生医院感染27例,发生率2.6%。感染部位构成比上呼吸道25.7%,下呼吸道48.4%,胃肠道3.2%,表浅切口6.5%,中枢神经6.5%,皮肤软组织3.2%,其它6.5%。

2.4病原学检查及药敏试验统计2007年8月住院病人感染病例送检标本分离出最多的2种常见致病菌及耐药情况,见表3

表32种常见致病菌耐药率情况

3讨论

3.1由表1可以看出,第三代头孢菌素在近期使用频度最大,已占据各类抗菌药物使用的首位,这可能是该类药物对医院内革兰氏阴性杆菌仍有较高的敏感率的原因。但也要认识到其耐药程度呈显著上升趋势,如表3所见大肠埃希菌、铜绿假单胞菌对多种头孢类菌素的耐药率均较高。抗菌药物的使用程度与细菌的耐药性息息相关,滥用抗菌药物必将导致耐药菌株的快速增长和扩散。加强抗菌药物的使用管理,掌握耐药菌的生物特点尤为重要。

3.2抗菌药物联用情况分析,从表2看出两药联用的现象不少,临床医师应掌握抗菌药物联合应用的指征,不具备联合应用指征应尽量避免联合用药,在临床诊断的基础上(下转第91页)

抗生素应用现状及细菌耐药性研究

曹晓孚

(济宁医学院附属医院药剂科,山东济宁272029)

[摘要]目的了解抗生素的应用情况,进一步规范临床用药。方法对我院出院病例的抗菌药物使用情况、病原学检查及药敏试验结果进行调查并加以分类统计。结果第三代头孢菌素在近期使用频度最大。细菌耐药性分析所见:大肠埃希菌、铜绿假单胞菌对多种头孢类抗生素的耐药率均较高。结论抗生素的不规范应用是造成医院感染的原因之一,应加强对《抗菌药物临床应用指导原则》的学习,合理使用抗生素更好地发挥它的临床效果。

[关键词]抗生素细菌耐药

[中图分类号]R978.1[文献标识码]A

药品名称DDDsDDDs排序左氧氟沙星注射液116531

头孢他啶94482

美洛西林钠注射液79793

头孢呋辛钠注射液56874

氨氯青霉素注射液41285

头孢哌酮钠/舒巴坦钠37286

氨苄西林钠/舒巴坦钠33267

乳糖酸阿奇霉素15818

克林霉素磷酸脂氯化钠14779

哌拉西林他唑舒巴坦103710

年份200520062007抗生素一种使用率(%)49.86353.8

抗生素二联使用率(%)46.13623.7

抗生素三联使用率(%)4.52.61.0药品名称

大肠埃希菌铜绿假单孢菌

耐药率(%)敏感率(%)耐药率(%)敏感率(%)氨苄西林(AMP)1000961.7头孢唑啉(CFZ)98.91.194.42.8头孢呋辛(CXM)100085.54.8头孢曲松(CRO)945.754.935.2头孢噻肟(CTX)95.34.75337.4头孢哌酮(CFP)95.34.741.653.6环丙沙星(CIP)52.335.238.549.8左旋氧氟沙星(LEV)47.736.437.153.1氨苄西林钠/舒巴坦钠(SAM)16.980.733.636哌拉西林(PIP)98.41.632.546.4奈米替星(NET)18.839.121.644.8头孢吡肟(FEP)14.174.118.281.8头孢他啶(CAZ)97.72.31577.9哌拉西林/他唑舒巴坦(TZP)3.484.17.573.7头孢哌酮钠/舒巴坦钠(SCF)1.693.80.659.6

作者简介:曹晓孚(1966-),主管药师,济宁医学院附属医院药剂科主任。

(上接第99页)预测致病菌的种类,参考药物的抗菌谱、抗菌作用、细菌耐药性等综合因素进行治疗,有条件的最好能做病原学检测和药敏试验。能用一种抗菌药物控制的感染,尽量避免使用多联。文献报道限制使用抗生素是控制医院感染的有效措施之一[3]。

临床医生必须遵循抗菌药物使用原则,抗菌药物使用标准应根据2004卫生部《抗菌药物临床应用指导原则》的有关规定执行。熟练掌握抗菌药物使用指征,避免给药方案不当,如:用法不合理、药物选择不合理、用药时间长、无指征用药、重复用药,如头孢呋辛钠+头孢噻肟钠联用必然会导致抗药菌株大量增加。力争减少或避免经验性使用抗生素,这样用药容易导致二重感染和治疗失败[4]

。医院的相关管理部门要充分发挥细菌室与临床药学专家的作用,及时反馈有关信息,根据本院抗菌药物的使用情况及

细菌耐药性趋势制定相应管理措施,合理调整抗菌药物的采购品种及数量,并指导临床合理使用抗菌药物,更好地发挥它的临床效果。参考文献:

[1]邹豪,邵元福.医院药品DDD数排序分析的原理及利用.中国

药房,1996,7(5):215.[2]刘运德.微生物学检验.第2版,北京:人民卫生出版社,2004:135-143.

[3]梁晓曼,赵丽萍,邓艳辉,等.手术患者抗菌药物使用的调查[J].

中华医院感染学杂志,2004,14(10):1156-1157.

[4]宋娟.围手术期抗生素应用的调查分析[J].中华医院感染学杂志,2004,14(7):797-798.

作者简介:施欣,男,主治医师,四川攀枝花市第四人民医院特检科主任。

Ⅱ型肺结核在临床上早期可无明显中毒症状,病情发展也较

缓慢,患者常无自觉症状,总是在作X线摄片检查时才发现。我院自2002———2007年间收治Ⅱ型肺结核中资料较完整,治疗效果明显者98例,经胸片确诊96例,确诊后在治疗上取得了明显效果,现就其临床,X线摄片和治疗情况作如下分析。

1资料和方法1.1一般资料男56例,女42例;年龄:17-27岁36例;33-55岁42例;56-70岁18例,误诊2例。1.2诊断标准:所有病例均符合2006年版传染病学的肺结核诊断标准。

2临床症状及X线表现2.1临床表现:合并结核性脑膜炎5例,合并颈淋巴结结核3例,合并肺气肿5例,合并痛风1例。并发急性一过性黄疸者4例。发热者有37例,其中37-38℃者27例,

达39℃者6例,39℃以上者4例,最高40℃;热程:一周以内者11例,达14天者19例,14天以上者7例。2.2化验:红细胞沉降率高于正常值者占78.2%,痰查抗酸杆菌阳性患者占21.88%。2.3X线表现:在临床上,该病早期若仅凭X线透视或只注意痰检而未行摄片,常会导致漏诊误诊。本文98例中有96例经摄片证实为Ⅱ型肺结核。其中大部分病例在急性早期病变表现在整个肺野呈毛玻璃样密度增高,约2周左右可出现分布均匀、

大小、密度相同的粟粒状病灶,且正常肺纹理不能显示。病灶恶化时,可发生病灶融合,表现为病灶增大,边缘模糊,甚至形成片状影或干酪样化而形成空洞,有时还并发胸膜改变,而临床症状表现则比较典型。对慢性者则表现为大小不一、密度不同、分布不均的多种性质的病灶,如粟粒状、结节状,其主要分布于两肺中、下野,恶化时可转化为慢性纤维空洞型。以上病灶均经摄片确诊后行正规抗痨用药治疗2月后均有明显好转。

3结果96例患者均在入院明确诊断后,经正规联合强化抗

痨好转出院。出院后随访,92例治愈,4例失去联系。

4讨论在临床,该病发展较缓慢,可无明显中毒症状,其确

诊的主要依据是痰中查见结核杆菌

(即痰菌阳性),但是痰菌阳性检出率受诸多因素影响,如痰标本选留不当,查痰次数少或操作不认真,病变性质等,均可使其呈阴性。在本统计中有96例均反复多次

(6-14次不等)查,仅有15例2次痰菌阳性,6例1次痰菌阳性,余均阴性。对阴性者靠摄片确诊后均得到有效治疗。故认为在痰菌阴性患者不应轻易排除本病,此时应将X线摄片检查例为临床诊断依据。

据我院临床统计资料表明,Ⅱ型肺TB患者多为青壮年,其临床表现不典型,早期病灶凭透视不易发现。而对于老年患者,病灶一般较清晰,但痰菌阳性率较低,而血沉诊断该病价值较小,合并症病变无特殊,故胸部X线片则成为本病的确诊依据。本文中67例均最后经胸片确诊。据有关报道统计,约63%的病例因未作X线摄片或仅满足于透视,痰菌阴性而耽搁诊断。故建议加强胸部X线早期检查,以便早期诊断、

早期治疗。当代临床检测手段日趋完善,肺结核诊断的辅助检查方法如查结核标志物(ATM

),PCR法查TBC ̄DNA等也有较大的辅助诊断意义,但胸部X线摄片作为常规辅助检查手段,对本病在基层医院可作出肯定性诊断,在其它肺部疾病的诊断中仍有不可替代的重要意义。本文96例患者经X线胸部摄片确诊,同时结合病史、临床症状、体征及痰菌情况肯定诊断后,予三联及三联以上抗痨,并用短期小剂量激素治疗,取得较佳疗效。出院后继续巩固抗痨,多预后良好,能正常劳作。参考文献:

[1]王宠林.肺结核及其它肺病误诊剖析.粟粒性肺结核与其它疾病

的误诊.1999;2(5):153,143.

[2]王英年.血型播散型肺结核.新编结核病学1993;10(2):176.[3]潘纪戊.重视肺结核的影像学诊断中华放射学杂志2004.38:5-6

胸部X线摄片诊断Ⅱ型肺结核的可靠性分析

施欣

李树民

(攀枝花市第四人民医院,四川

攀枝花

617061)

[摘要]目的了解、

分析胸部X线摄片在临床上对Ⅱ型肺结核的诊断可靠性。方法收集我院6年间经胸部X线片确诊的Ⅱ型肺结核98例,分析在其诊断中X线摄片的重要价值。

结果从胸部X线片上表现出不同的发病特点,诊断Ⅱ型肺结核肯定,且该检查具有安全、无创、快速、简便、易于操作的特点,在临床诊断中具有其它辅助检查不可替代的重要位置,提高了Ⅱ型肺结核在临床上的诊疗效果。

[关键词]胸部X线摄片Ⅱ型肺结核可靠性

[中图分类号]R521;R816.41[文献标识码]A

抗细菌抗生素及细菌耐药性的论述

抗细菌抗生素及细菌耐 药性的论述 Document number:BGCG-0857-BTDO-0089-2022

抗细菌抗生素及细菌耐药性的论述 微生物产生的次级代谢产物具有各种不同的生理活性,抗生素是由(包括、、属)或高等动植物在生活过程中所产生的具有抗病原体或其它活性的一类,具有抗微生物、抗肿瘤作用和干扰其他生活发育功能的。其中抗细菌抗生素[1]是抗生素中发现最早,数量最多的一类。细菌在对抗抗菌药物的过程中,为了避免遭受伤害,形成了许多防卫机制,由此而产生的耐药菌得以生存和繁殖,大多数细菌对某种抗菌药物或对多种抗菌药物的抗性具有多种耐药机制。细菌对抗生素的耐药性尤其是多重药物耐药性已成为全球关注的医学与社会问题,严重地威胁着感染性疾病的治疗。本文就抗生素的发现,不同种类的抗生素以及其细菌耐药性,研究前景这四方面进行论述。 1 抗生素的发现 很早以前,人们就发现某些微生物对另一些微生物的生长繁殖具有抑制作用,随着科学的发展人们终于揭示出了这种称为“抗生”现象的本质,从某些微生物内找到了具有抗生作用的物质,所以人们把由某些微生物在生活过程中产生的,对某些其他病原微生物具有抑制或杀灭作用,能抑制其它细胞增殖的一类化学物质称为抗生素。1929年细菌学家在培养皿中培养细菌时,发现从空气中偶然落在培养基上的青霉菌中长出的菌落周围没有细菌生长,他认为是青霉菌产生了某种化学物质,分泌到培养基里抑制了细菌的生长。这种化学物质便是最先发现的抗生素--青霉素。其中抗细菌抗生素是抗生素中发现最早,数量最多的一类。 2不同种类的抗细菌抗生素 2.1 氨基糖苷类抗生素 2.1.1 定义及发展 氨基糖苷类抗生素[2]是一类分子中含有一个环己醇型的配基、以糖苷键与氨基酸结合(有的与中性糖结合)的化合物,因此也常被称为氨基环醇类抗生素。微生物产生的天然氨基糖苷类抗生素有近200种,氨基糖苷类抗生素具有抗菌谱广、杀菌完全、与β-内酰胺等抗生素有很好的协同作用、对许多致病菌有抗生素后效应( PAE) 等特点。氨基糖苷类抗生素的历史起源于1944年链霉素的发现,链霉素的发现极大的刺激了世界范围内的无数学者开始系统地、有计划地筛选新抗生素。其后又成功地上市了一系列具有里程碑意义的化合物(卡那霉素、庆大霉素、妥布霉素),因此根据这类抗生素的结构特征,卡那霉素等被列为第一代氨基糖苷类抗生素。这一代抗生素的品种最多,应用范围涉及农牧业,其结构特征是分子中含有完全羟基化的氨基糖与氨基环醇相结合。以庆大霉素为代表的第二代氨基糖苷类抗生素的品种比第一代的少,但是抗菌谱更广,结构中含有脱氧氨基糖,对铜绿假单胞菌有抑杀能力。 2.1.2 抗生素的作用机制 氨基糖苷类抗生素的主要作用靶点是细菌30S核糖体,但直到近年来,随着核糖体的结构及核糖体RNA-AGs复合物结构的阐明,才得以在分子水平上真正了解这类抗生素是如何作用于核糖体的。由于细菌核糖体的沉降系数是70S,分为30S和50S这两个亚基,而真核生物的核糖体多由RNA分子构成,其沉降

多种细菌耐药的分析

2014年第三季度多重耐药菌监测情况分析与对策 院感科检验科药学部 2014年7-9月份共监测多重耐药感染或定植患者80例次,涉及22个科室。检出多重耐药菌96 株(含重复送检),占全院送检有临床意义的细菌总数阳性比例的16.45%,同比上升2.22个百分点;其中院内感染多重耐药菌17株,占多耐菌株的17.71%。 一、多重耐药菌分离通报 2014年7月至9月共计分离多重耐药菌71株。主要分布在ICU、泌尿外科、呼吸内科及神经外科等。 二、前五位的多重耐药菌株标本分布 表一:2014年第三季度前五位多耐菌株标本统计 细菌名称 标本名称 痰液尿液分泌物血液引流液脓液其他 金黄色葡萄球菌 3 1 15 2 1

三、多重耐药菌中发生院内感染科室分布 表二:2014年第三季度多耐院内感染菌种及感染部位科室统计 图二、2014年第二季度与第三季度常见多耐菌院内感染检出变化 四、多重耐药菌病例用药合理性情况 本季度共审核使用抗菌药物的多耐病例70份,其中用药合理病例66份,用药合理率为94.29%。病程中对多重耐药菌及抗菌药物使用情况有分析记录的病例57份,记录合格率81.43%。用药方面存在的问题有:(1)前期用药与药敏结果不一致,未做具体分析,也未更改用药,(2)将主要供全身应用的品

种(万古霉素)作局部用药。记录方面存在的问题有:未记录培养结果和用药情况、更改用药未记录分析、对多重耐药菌的性质未做具体分析(考虑为致病菌、定植菌或污染菌)。 表三:第三季度抗菌药物使用不合理原因和或记录存在问题 五、多重耐药菌患者临床科室管理存在问题: 1、第三季度多耐患者临床管理经督查仍存在许多问题,涉及科室有脑外、心胸、肝胆、骨二、泌外、肾内、东呼吸、西呼吸、东心血管、消化、内分泌、血液肿瘤、东神内、重症医学科、耳鼻喉、皮肤、微生物等18个科室。主要存在问题: (1)不能及时开立隔离医嘱;不能及时上报多耐报告卡; (2)抗菌药物使用、多耐培养结果无分析记录; (3)多重耐药患者解除隔离未进行讨论; (4)多耐患者隔离措施落实不到位(无隔离标识等); (5)MDRO定植或感染患者,转科、转院、出院时,未在转科交接单或出院小

细菌对抗生素耐药性的研究进展

细菌对抗生素耐药性的研 究进展 班级:09药剂4班 组长:11-何燕珊:分配工作、选题、摘要、关键词和整理全篇文章 找资料:09-何炳俊:细菌耐药性产生的机理 10-何根铭:耐药性产生的因素及预防措施 12-洪春庆:抗生素的抑菌机理

细菌对抗生素耐药性的研究进展 摘要:抗生素作为治疗细菌感染性疾病的主要药物,在全世界上是应用最广、发展最快、品种最多的一类药物。但随着抗生素的广泛使用,其耐药性亦不断增长,并已迅速发展至十分严重的程度。耐药性的大量出现与广泛传播会给人们的健康造成很大的危害,给临床治疗带来很大困难,甚至造成治疗失败,目前已是全球关注的公共卫生问题。本文通过对抗生素的抑菌机理、细菌的耐药机制、耐药性产生因素以及预防等方面内容作简要综述,以示预防抗生素耐药性产生的重要性。 关键词:抗生素、细菌、耐药性 抗生素是能抑制细菌生长或杀死细菌的一类化学物质,绝大多数由微生物合成,临床上对控制、预防和治疗各种感染性疾病具有重要作用。近年来,由于人类对抗生素的滥用,导致感染性细菌对抗生素不敏感,产生了耐药性,并开始对人类展开致命的反击,严重地威胁着人类的健康。中国工程院院士许文思也感叹:“可以毫不夸张的说,细菌耐药性是21世纪全球关注的热点,它对人类生命健康所构成的威胁绝不亚于艾滋病、癌症和心血管疾病。”可见,预防抗生素耐药性的产生是十分重要的。 一、抗生素的抑菌机理 依据抑菌作用方式的不同,可将抗生素分为三类:一类抗生素通过阻止糖肽交联来阻止细菌细胞壁合成,使细菌失去保护,并因渗透压或自溶酶作用最终导致死亡(如青霉素) ;第二类主要是通过与细菌细胞膜内磷脂结合(如粘菌素) ,或者合成异常蛋白质而导致病菌细胞膜透性增加(如氨基糖苷) ;第三类则是通过阻止细菌DNA (如喹诺酮类)、RNA (如利福平类)、蛋白质(如林可霉素类)的合成而抑菌或杀菌。[1]因此,根据主要作用靶位的不同,抗生素的抑菌机理可分为以下几种。 1)抑制细菌细胞壁合成,细胞壁缺损细菌在低渗条件下常因细胞吸水过多破裂而死亡,而对人和动物无毒害作用,因人和动物不具有细胞壁,如青霉素、头孢菌素、杆菌肽等。 2)破坏细胞模的通透性。主要通过下面 3 种途径:①多肽类抗生素,如多粘菌素E,能降低细菌细胞膜表面张力,因而改变了细胞膜的通透性,甚至破坏膜的结构,结果使氨基酸、单糖、核苷酸、无机盐离子等外漏,影响细胞正常代谢,致使细菌死亡。②多烯类抗生素,如制霉菌素与固醇具有亲和力,因此能与微生物的膜(含固醇物质)结合后形成膜- 多烯化合物,引起细胞膜的通透性能改变,导致胞内代谢物的泄漏。这类抗生素对真菌细胞膜起作用,而对细菌不起作用,因细菌细胞膜不含固醇类物质。③离子载体类抗生素,这类抗生素是脂溶性的,能结合并运载特定阳离子通过双脂层膜。如缬氨霉素、短杆菌肽A 等能增加线粒体膜对H+、K+或 Na+的通透性,为维持线粒体内正常的K+浓度就必须使泵入K+的速度与流出速度平衡,这样使得线粒体消耗能量用于泵入K+,而不是用来形成ATP,因此抑制了氧化磷酸化作用,从而起杀菌作用。 3)抑制蛋白质的合成。能抑制蛋白质合成的抗生素很多,其作用机理也较复杂,主要有下面 4 个方面:①抑制氨酰-tRNA 的形成。如吲哚霉素的抑菌作用是在氨基酸活化反应中和色氨酸竞争与色氨酸激活酶结合,从而抑制氨酰-tRNA的形成。②抑制蛋白质合成的起始。如链霉素、庆大霉素等能抑制 70S 合成起始复合体的形成以及引起 N-甲酰-甲硫氨酰-tRNA从70S合成起始复合体上的解离,因此阻碍蛋白质合成的起始。③抑制肽链的延长。如四环素族抗生素

细菌耐药机制的国内外最新研究进展_丁元廷

·实验技术及其应用·细菌耐药机制的国内外最新研究进展 丁元廷 (贵阳中医学院第一附属医院检验科,贵州贵阳550001) 摘要:全球性的细菌抗生素耐药是近年来感染性疾病治疗所面临的一大难题,细菌可对某类抗菌药物产生耐药性,也可 同时对多种化学结构各异的抗菌药物耐药。随着各种新型抗生素在临床的应用,细菌的耐药也越来越广。本文对细菌耐 药机制近年来国内外的研究进展进行简要综述,并探索有效的防治措施。 关键词:细菌耐药性;耐药机制;进展 中图分类号:R446.5文献标志码:A文章编号:1003-8507(2013)06-1109-03 The research progress on mechanism of bacterial resistance at home and aboad DING Yuan-ting. Department of Clinical Laboratory,The First Affiliated Hospital,Traditional Chinese Medical College of Guiyang, Guiyang550001,China Abstract:A big problem we meet during the treatment of infectious diseases is the global antibiotic resistance of baceria.Bacte- ria can develop resistance to not only a certain kind of antimicrobial agent,but also a variety of different chemical structure of the antimicrobial drugs.With a variety of new antibiotics applied in clinical practice,more and more extensive drug-resistant bacteria appear.The aim of this paper was to give a brief overview of the progress of bacterial resistance at home and abroad in recent years,and also to explore effective control measures. Key words:Bacterial resistance;Mechanisms of resistance;Progress 随着抗菌药物的大量使用,尤其抗生素的滥用导致细菌在抗生素及环境压力下,细菌群体中的敏感株被灭杀,耐药株被选择或诱导出来并繁殖生长而成为优势菌群,通过多种形式获得了对抗生素耐药性。细菌耐药性不仅可通过基因水平在相同或不同种属细菌中传播,而且结构完整的耐药菌株还可以在医院之间乃至全球播散,所致感染治疗棘手,病死率高,严重威胁人类健康,已成为全球关注的热点[1]。而临床在应用抗生素过程中,不适当治疗和滥用更加速和扩大了细菌对抗生素产生耐药性。据报道,一种新抗生素从研制到临床应用一般需要5~10年,而产生细菌耐药仅需要2年[2]。因此,在临床上减缓耐药性产生与追求抗菌疗效同等重要。了解细菌耐药发生机制的研究状况对于指导合理应用抗生素、预防菌株耐药和有效抗感染治疗具有重要的意义,本文就有关细菌耐药机制主要从基因水平、蛋白质水平及细菌多重耐药性角度对近年来研究进展进行综述。 1细菌耐药性概况 细菌在接触过抗菌药物后,就会千方百计地制造出能灭活抗菌药物的物质,例如各种灭活酶,或通过改变自身代谢规律来使抗菌药物失效,这样就形成了细菌的耐药性。早期细菌的耐药性主要表现在某种细菌对某类药物的耐药,20世纪30年代末磺胺药上市,40年代临床广泛使用磺胺药后,1950年日 作者简介:丁元廷(1975-),男,硕士,副主任检验技师,研究方向:分子生物学本报道80%~90%的志贺痢疾杆菌对磺胺药耐药了;1940年青霉素问世,1951年发现金黄色葡萄球菌能产生β-内酰胺酶灭活青霉素;60~70年代,细菌耐药性主要表现为金黄色葡萄球菌和一般肠道阴性杆菌由于能产生β-内酰胺酶使青霉素类和一代头孢菌素抗菌作用下降;80~90年代,阴性杆菌产生的超广谱β-内酰胺酶和染色体介导的I类酶,三代头孢菌素在内的多种抗生素耐药的多重耐药革兰阴性杆菌,阳性球菌中出现了非常难治的多重耐药菌感染。近年来由于出现了万古霉素中介金葡菌,关注对耐万古霉素MRSA的监测。近年来还开始注意红霉素耐药β-溶血性化脓性链球菌的发展,特别是耐大环内酯类-林可霉素类-链阳霉素B的β-溶血性化脓性链球菌的耐药性发展。 2细菌耐药机制 2.1基因水平(耐药性产生的遗传方式)遗传学机制 细菌可通过自身基因的突变产生耐药性,也可以通过染色体垂直传播和通过质粒或转座子水平传播而获得外源耐药性基因,还可通过整合子捕获外源基因并使之转变为功能性基因来传播耐药性基因。包括细菌先天固有耐药和染色体突变或获得新的脱氧核糖核酸分子。 2.1.1固有耐药天然或基因突变产生的是细菌染色体基因决定的代代相传的天然耐药性,亦称突变耐药。通过染色体遗传基因DNA发生突变,细菌经突变后的变异株对抗生素耐药。一般突变率很低,由突变产生的耐药菌生长和分裂缓慢,故由突变造成的耐药菌在自然界中不占主要地位,但染色体介导的

细菌的耐药机制与抗菌药物的合理使用

细菌的耐药机制与抗菌药物的合理使用 (1) 一、细菌耐药性的产生 (1) (一)细菌耐药性产生的分子遗传学基础 (1) (二)突变耐药性 (2) (三)质粒介导的耐药性 (2) (四)细菌耐药性产生的机制 (3) 二、细菌耐药性的防治 (6) 三、抗菌药物临床应用的基本原则 (7) (一)应及早确立病原学诊断 (7) (二)熟悉选用药物的适应证、抗菌活性、药动学和不良反应 (7) (三)应根据患者的生理、病理、免疫等状态而合理用药 (8) 细菌的耐药机制与抗菌药物的合理使用 近年来,抗菌药物发展迅速,出现了许多疗效显著的新品种,在临床感染性疾病的防治中发挥着重要作用。然而,随着抗菌药物的广泛使用,临床上细菌对抗菌药物的耐药问题也日趋严重,成为临床抗感染治疗失败的一个重要原因。 一、细菌耐药性的产生 (一)细菌耐药性产生的分子遗传学基础 1.细菌在某一核苷酸碱基对中发生了点突变,引起抗菌药物作

用靶位的结构变化,导致细菌耐药性的产生。 2.通过转座子或插入顺序,细菌DNA的一大片全部重排,包括插入、倒位、复制、中间缺失或细菌染色体DNA的大段序列从原有部位转座至另一部位,引起细菌耐药性的产生。 3.通过质粒或噬菌体所携带的外来DNA片段,导致细菌产生耐药性。 (二)突变耐药性 突变耐药性即染色体介导的耐药性。耐药性的产生系细菌经理化因素而诱发,也可为遗传基因DNA自发突变的结果。细菌产生这种耐药性的发生率很低,由突变产生的耐药性,一般只对一种或两种类似的药物耐药,且较稳定,其产生和消失(即回复突变)与药物无关。由突变产生的耐药菌的生长和细胞分裂变慢,竞争力也变弱。因此,突变造成的耐药菌在自然界的耐药菌中仅居次要地位。 (三)质粒介导的耐药性 质粒是一种染色体外的DNA,耐药质粒广泛存在于所有致病菌中。因此,通过耐药质粒传递的耐药性在自然界发生的细菌耐药现象中最多见,也最重要。耐药质粒在微生物间的转移方式有:①转化,即耐药菌溶解后释出的DNA进入敏感菌体内,其耐药基因与敏感菌中的同种基因重新组合,使敏感菌耐药。这种传递方式基本限于革兰阳性细菌,在临床上并无重要性。②转导,耐药菌通过噬菌体将耐药基因转移给敏感菌,是金黄色葡萄球菌中耐药性转移的主要方式。由于

《抗生素耐药性》word版

细菌的耐药性 1.细菌对抗生素的耐药性分类 耐药性分为两类,固有耐药性和获得性耐药性。前者是染色体介导的代代相传的天然耐药性;后者多由质粒介导,也可由染色体介导,当微生物接触抗菌药物后,通过改变自身的代谢途径,从而避免被药物抑制或杀灭。 1.2耐药基因 细菌特别是条件致病菌,因经常有机会与各种抗菌药物接触,故在细菌细胞内的质粒、染色体、转座子、整合子上可有耐药基因和多种耐药基因的积聚并借结合、转导和转化而在不同种细菌、革兰氏阳性菌和革兰氏阴性菌间彼此频繁交换,耐药基因一旦获得较长期存留,转座子和整合子(以及更小的DNA片段)由于分子量小和活动自如,所以在耐药基因转移和MDR形成中起主导作用。 1.3染色体和质粒介导产生的耐药菌 需要指出的是,在正常情况下,由染色体介导而产生耐药性的细菌往往有一定缺陷,而质粒介导产生的耐药菌则与敏感菌一样,可迅速生长繁殖。但质粒与染色体介导的耐药性,一般只发生于少数细菌中,难以与占压倒优势的敏感菌竞争,只有当敏感菌因抗菌药物的选择性压力而被大量杀灭后,耐药菌才得以迅速繁殖而成为优势菌,并导致各种感染的发生。 2.细菌耐药的机理 抗生素成功使用的同时,也带来了严重的细菌耐药性问题,目前已成为全球性的难题。细菌产生耐药性可能是基于以下几种机制。 2.1水解酶和修饰酶水解和修饰抗生素 ⑴水解酶:如β-内酰胺酶可水解β-内酰胺类抗生素 ⑵修饰酶(钝化酶或合成酶):可催化某些基团结合到抗生素

的羟基或氨基上,使抗生素灭活。多数对氨基糖甙类抗生素耐药的革兰氏阴性杆菌能产生质粒介导的钝化酶。

2.2细菌体内靶位结构的改变 如青霉素结合蛋白(PBPs) 的改变是革兰氏阳性菌耐药的主要机制;链霉素耐药株的细菌核蛋白体30s 亚基上 蛋白质发生改变等。 链霉素受体P 10 2.3其它原因 ⑴细菌泵出系统增多、增强,以排出已进入细菌内的药物; ⑵细胞膜主动转运减少; ⑶建立了新的代谢途径; ⑷细菌对磺胺类药的耐药则可能系对药物具有拮抗作用的底物PABA的产生增多所致。 3.近年来细菌耐药性发展的现状 3.1细菌耐药情况的变迁 ?1920~1960年 G+菌葡萄球菌 ?1960~1970年 G--菌铜绿假单胞菌等 ?70年代末至今 G+,G--菌 _MRSA 耐甲氧西林葡萄球菌 _VRE 耐万古霉素肠球菌 _PRP 耐青霉素肺炎链球菌 _ESBLs 超广谱β-内酰胺酶(G--) _AmpC Ⅰ型β-内酰胺酶(G--) 3.2葡萄球菌的耐药现状 近年来,国内耐药严重的耐甲氧西林金葡菌(MRSA)在医院内的流行已引起临床微生物学、临床抗生素学和感染病学专家的广泛重视。MRSA株同时也不同程度的耐所有β-内酰胺类抗生素、卡巴配能类及配能类。这是由于带有一mecA基因的MRSA能产生特殊的青霉素结合蛋白PBP2α,使β-内酰胺类不能与之结合,细胞壁合成也就不被终止,细菌得以生存。凝固酶阴性的葡萄球菌中耐苯唑青霉素的菌株表皮葡萄球菌称为MRSE,这类菌株经常同时耐氨基糖甙类、利福平、氟喹诺酮类。 3.3肠球菌的耐药现状

细菌耐药性机理分析

细菌耐药性机理分析 卢嘉程 1142042005

抗生素的杀菌机理简介 ?抑制细胞壁的合成 ?某些含有β-内酰胺环的抗生素,如青霉素类和头孢菌素类,能与细菌细胞壁上一种叫PBPS的特定蛋白结合,抑制分裂中的细菌细胞壁的形成,使细菌因失去细胞壁的保护作用而在渗透作用下裂解死亡。 ?改变细胞膜通透性 ?某些抗生素(多粘菌素和短杆菌素)能与细菌细胞膜相互作用,改变膜的通透性,让细菌因体内的有用物质大量流失到胞外或者电解质失调而死亡

?干扰蛋白质的合成(氨基糖苷类四环素类氯霉素类等) ?抗生素进入细菌体内后与细菌的核糖体或者是tRNA,mRNA等反应底物相互作用,抑制细菌蛋白质的合成,某些重要的蛋白如结构蛋白或酶等无法合成,则细菌必死 ?阻碍核酸的复制和转录(人工合成喹诺酮类抗生素) ?通过阻碍细菌DNA的复制,可以阻止其分裂繁殖。而阻碍DNA的转录则可以导致后续的翻译无法进行,使细菌因缺乏生存所必需的蛋白质而死亡

道高一尺,魔高一丈

细菌抗药性的五种机制 ?使抗生素分解或失去活性 ?有的细菌能产生相应的水解酶或钝化酶来水解掉或修饰抗生素,使之失去生物活性。如细菌产生的β-内酰胺酶就能使含β-内酰胺环的青霉素类抗生素被水解掉,而钝化酶(磷酸转移酶、核酸转移酶、乙酰转移酶)则可以使氨基糖苷类抗生素失去抗菌活性 ?改变抗生素的作用靶点 ?耐甲氧西林的金黄色葡萄球菌通过对细胞壁上的青霉素结合蛋白PBPS进行修饰,使抗生素无法和结构改变了的蛋白结合发挥作用。

?改变细胞膜特性 ?细菌发生突变后改变了质膜的通透性,某些原来需进入细菌细胞内发挥作用的抗菌药物被隔离在细胞外 ?改变代谢途径 ?通过大量增加某些代谢底物的产量,稀释抗生素的作用,让细菌对该种抗生素不再敏感。如磺胺药与对氨基苯甲苯酸(PABA),竞争二氢喋酸合成酶而产生抑菌作用。金黄色葡萄球菌多次接触磺胺药后,其自身的PABA 产量增加,可达原敏感菌产量的20~100 倍,后者与磺胺药竞争二氢喋酸合成酶,使磺胺药的作用下降甚至消失。

细菌耐药机制研究进展

细菌耐药机制研究进展 发表时间:2013-01-08T13:58:09.640Z 来源:《中外健康文摘》2012年第42期供稿作者:黄碧娇 [导读] 药物作用靶位的改变,菌体类有许多抗生素结合的靶位,细菌可以通过靶位的改变使抗生素不易结合是耐药发生的重要机制 黄碧娇 (井冈山大学附属医院江西吉安 343000) 【中图分类号】R915 【文献标识码】A【文章编号】1672-5085(2012)42-0085-02 【摘要】了解细菌对β—内酰胺类,喹诺酮类及大环内酯类等临床常用抗菌药物耐药机制的研究进展,有助于抗菌药物的正确使用,尽量减少抗菌药物的耐药出现,为新的抗菌药物的开发及利用打下坚实的基础。 【关键词】细菌耐药性抗菌药物 细菌耐药,为人类战胜病原菌提出了一个严峻的挑战,细菌耐药机制非常复杂,通常认为涉及到以下几个方面: 1 细菌对抗菌药物产生耐药性的可能性机制 主要有四种:①产生灭活酶和钝化酶,细菌能产生破坏抗生素或使之失去抗菌作用的酶,使药物在作用于菌体前即被破坏或失效;②抗菌药物渗透障碍,细菌外层的细胞膜和细胞壁结构对阻碍抗生素进入菌体有着重要的作用,膜上有亲水性的药物通过蛋白,称外膜蛋白,主要有两种分子较大的为ompf和分子较小ompc,最近又发现了第三种蛋白phoe,外膜蛋白的缺失可导致细菌耐药性的发生,在某些药物的外膜上含有特殊药物泵出系统,使菌体药物的浓度不足以发挥抗菌作用而导致耐药;③药物作用靶位的改变,菌体类有许多抗生素结合的靶位,细菌可以通过靶位的改变使抗生素不易结合是耐药发生的重要机制;④代谢途径的改变绝大多数细菌不能利用已有叶酸及其衍生物必须自行合成四氢叶酸,肠球菌属等某些营养缺陷细菌能用外源性胸苷或胸腺嘧啶,表现对磺胺和甲氧嘧啶等药物的耐药。 从分子生物学角度认识细菌的耐药机制过去主要集中在基因突变的研究中,认为基因突变的积累使细菌产生耐药性的重要机制,但近来研究发现,没有接触过抗生素的病原菌,对抗生素也有抗药性,耐药性具有转移的特点,螯分子被认为是抗性基因在水平传播的重要因子,由两部分组成,5’与3’端保守区域(简称cs)以及中间的基因簇,选择性的整合到螯分子上面获得耐药性,通过螯合子的螯合作用,抗性基因之间能够互相转换,再借助于转化,转导与结合作用,使得耐药性在畜禽与畜禽,畜禽与人类,人类与人类之间的病原菌广泛传播,给人类健康造成严重威胁。 2 细菌对β—内酰胺类抗药性的耐药机制。 2.1产生β—内酰胺酶 β—内酰胺环为β—内酰胺类抗菌药物的活性部位,一旦被β—内酰胺酶水解就将失去其抗菌活性,细菌对β—内酰胺类抗菌药物的耐药性约80%通过产生β—内酰胺酶实现,β—内酰胺酶种类繁多,已经报道通过的就有200余种。具有不同特性的β—内酰胺酶的细胞对不同的β—内酰胺酶抗菌药物的耐受性不同。G+菌、G-菌、分枝杆菌和诺卡菌种都发现有各种不同特性的β—内酰胺酶。 针对这一耐药机制,临床上目前应用的药物有2类:①具有对β—内酰胺酶稳定的化学结构的药物,包括苯唑西林、双氯西林、甲氧西林、异口恶唑青霉素等半合成青霉素以及亚胺培南、美罗培南等碳青霉烯类药物等。②β—内酰胺酶抑制剂,包括克拉维酸,舒巴坦、他唑巴坦等,它们与β—内酰胺类药物联用,对产酶菌有很强的增效作用。其复合制剂有:由阿莫西林与克拉维酸组成的奥格门汀,由羧苄西林与克拉维酸组成的替门汀,由氨苄西林与舒巴坦组成的优立新及由哌拉西林与他唑巴坦组成的他唑辛等。 2.2药物作用的靶蛋白改变 β—内酰胺类抗菌药物的作用靶位为青霉结合蛋白(PBP),对β—内酰胺类抗菌药物耐药的细菌除了由于产生大量β—内酰胺酶破坏进入胞内的抗菌药物外,还由于PBP发生了改变使之与这类抗菌药物(如青霉素类、头孢菌素类、单环β—内酰胺类和碳青霉烯类等)的亲和力降低,或是出现了新的PBP所致,这种耐药机制在金萄球菌、表皮葡萄球菌、皮炎链球菌、大肠杆菌、绿脓杆菌和流感嗜血杆菌等耐药菌种均已证实。 2.3细胞外膜渗透性降低细菌的细胞膜使细菌与环境离开。细胞外膜上的某些特殊蛋白即孔蛋白是一种非特异性的、跨越细胞膜的水溶物质扩散通道。一些半合成的β—内酰胺类抗菌药物很容易透过肠细菌的孔蛋白通道;但一些具有高渗透性外膜的对抗菌药物敏感的细菌可以通过降低外膜的渗透性产生耐药性,如原来允许某种抗菌药物通过的孔蛋白通道由于细菌发生突变而使该孔蛋白通道关闭或消失,则细菌就会对该抗菌药物产生很高的耐药性。亚胺培南是一种非典型的β—内酰胺类抗菌药物,其对铜绿假单胞菌的活性,主要是通过一个特殊的孔蛋白通道OprD的扩散而实现的,这就意味着一旦这一简单的孔蛋白通道消失,则铜绿假单胞菌对亚胺培南就会产生耐药性。事实上,最近已经分离到许多具有这种耐药机制的耐亚胺培南的铜绿假单胞菌。 3 细菌喹诺酮类抗菌药物的耐药机制 3.1喹诺酮类药物的作用机制是通过抑制DNA拓扑异构酶而抑制DNA的合成,从而发挥抑菌和杀菌作用,细菌DNA拓扑异构酶有Ⅰ、Ⅱ、Ⅲ、Ⅳ分2大类:第一类有拓扑异构酶Ⅰ、Ⅲ主要参与DNA的松解;第二类包括拓扑异构酶Ⅱ、Ⅳ,其中拓扑异构酶Ⅱ又称DNA促旋酶,参与DNA超螺旋的形成,拓扑异构酶Ⅳ则参与细菌子代染色质分配到子代细菌中,但拓扑异构酶Ⅰ和Ⅲ对喹诺酮类药物不敏感,喹诺酮类药物的主要作用靶位是DNA促旋酶和拓扑异构酶Ⅳ。革兰阴性菌中DNA促旋酶是喹诺酮类的第一靶位,而革兰阳性菌中拓扑异构酶Ⅳ是第一靶位。 DNA促旋酶是通过暂时切断DNA双链,促进DNA复制转导过程中形成的超螺旋松解,或使松弛DNA链形成超螺旋空间构型,喹诺酮类药物通过嵌入断裂DNA链中间,形成DNA—拓扑异构酶—喹诺酮类3者复合物,阻止DNA拓扑异异构变化,妨碍细菌的DNA复制转录,已达到杀菌的目的。 3.2作用靶位的改变,编码组成DNA促旋酶的A亚单位和B亚单位及组成拓扑异构酶Ⅳ和ParC和ParE亚单位中任一亚基的基因发生突变均可引起喹诺酮类药物的耐药性,在所有的突变型中,以gxyA的突变为主,主要为Thr—83→Ile,Ala和ASp—87→Asn,Gly、Thr两者均占75%以上,而其他的突变型罕见,GyrA双点突变仅发生在喹诺酮类高度耐药的菌株中,这是因为gyxA上的83和87位的氨基酸在提供喹诺酮类结合位点时具有重要的作用,而gyrB的突变株则较gyrA上突变少见,主要为Glu—470→Asp,Ala—477→val和ser—468→phe,Parc 的突变主要为Ser—87→Leu,Trp位值得注意的是所有存在parc改变的发生是在gyxA突变之后才发生的,在同时具有gyxA和parc突变的菌株中,以gxyA上的Thx—83→Ile和parc上的ser—87→leu类型为最多见,ParE的突变型为ASp—419→Asn、Ala—425→val但现在parE出现突变极为罕见3/150 3.3 膜通透性改变,喹诺酮类药物与其他抗菌药物一样,依靠革兰阴性菌的外膜蛋白(oMp)和脂多糖的扩散作用而进入细菌体内,

抗菌药物临床应用和细菌耐药预警管理机制0001

抗菌药物临床应用和细菌耐药预警管理机制 一、将临床抗菌药物应用的管理纳入医院医疗质量管理和综合目标考核中,并与各临床科室绩效考核相结合。 二、抗菌药物管理工作组要定期对抗菌药物应用情况进行检查(每月》1次),药剂科每季度对门诊和住院部抗菌药物使用情况进行1次分析,并在《处方及临床用药通报》上向全院进行通报。 三、药剂科每半年要进行一次抗菌药物应用专题分析,形式为会议或者通报。内容包括:抗菌药物使用情况调查分析,医师、药师与护理人员抗菌药物知识调查以及医院细菌耐药趋势分析等;对不合理用药情况提出纠正与改进意见。 四、药剂科应完善各类抗菌药物的出入及消耗登记制度,对某些用量异常、价格昂贵和不良反 应较大的抗菌药物实行限制性应用。 五、根据“卫生部全国细菌耐药监测报告”的监测结果,医院感染管理科结合医院实际情况,米取以下干预措施: 1 ?对细菌耐药率超过30%的抗菌药物,将预警信息及时通报有关科室医务人员。 2.对细菌耐药率超过40%的抗菌药物,慎重经验用药。 3.对细菌耐药率超过50%的抗菌药物,参照药敏试验结果用药。 4.对细菌耐药率超过75%的抗菌药物,暂停该类抗菌药物的临床应用,根据细菌耐药监测结果再决定是否恢复临床应用。 六、有下列情况之一者,视为不合理使用抗菌药物: 1.无用药指征; 2.越线用药或药敏试验有低线药物敏感而不及时修改; 3.不按常规疗程、剂量、给药途径、时间间隔给药的; 4.病人转科时频繁换用抗菌药物或者病程记录中对换用抗菌药物的理由不当; 5.不进行药物不良反应观察或发生药物不良反应后不及时处理; 6.不按规定上报药物不良反应; 7.其它不符合“天门市第一人民医院抗菌药物分级管理细则”行为; 8.其它不符合“天门市第一人民医院抗菌药物临床应用原则"行为。

细菌耐药及应对措施

本课重点介绍临床抗菌药物在使用过程中,给我们带来最大挑战的细菌耐药问题。由于抗菌药物的大量使用,耐药细菌出现。这是一个矛盾的两方面:如果正常、合理使用,耐药就出现的晚、慢;如果滥用抗菌物,细菌受到的压力更大,它出现的耐药能力就越大,出现耐药的机会就越高,耐药的强度也会强。这将导致临床可用药物越来越少,治疗愈加困难。 举例:耐甲氧西林的葡萄球菌被称为MRSA,其我国调查大约为60%;从国外耐药后导致的结果看,在美国,发生耐药菌感染和非耐药菌感染患者的死亡率分别为21%和8%;每个患者的治疗费分别为3万4千美元和3万1千5百美元。可见,由于抗菌药物的不合理使用,细菌耐药导致更多患者死亡及更多医药资源浪费。因此,必须要合理使用抗菌药物,减少耐药性的产生。 在用药中,治疗性运用抗菌药物及预防用抗菌药物都要合理。在我国医院,抗菌药的患者使用率达70%多,使用最多的在外科,大约95%患者以上都需使用抗菌药物,其中大部分是预防性应用抗菌药。所以,做到预防性抗菌药的合理使用,会大幅度减少不合理使用抗菌药的比例,它包括内科与儿科预防用药和外科手术预防用药。 1.内科与儿科预防用药 2004年卫生部颁布的指导原则中明确指出,对于内科和儿科的预防用药,相对比较严格。对于其应用范围具有以下相关规定: (1)预防特定病原菌入侵体内引起的感染,可能有效;如目的在于防止任何细菌入侵,则往往无效。 (2)预防在一段时间内发生的感染可能有效;长期预防用药,常不能达到目的。 (3)患者原发疾病可以治愈或缓解者,预防用药可能有效。原发疾病不能治愈或缓解者(如免疫缺陷者),预防用药应尽量不用或少用。 (4)通常不宜常规预防性应用抗菌药物的情况:普通感冒、麻疹、水痘等病毒性疾病,昏迷、休克、中毒、心力衰竭、肿瘤、应用肾上腺皮质激素等。 2.外科手术预防用药 外科的预防用药在我国较宽松,需要明确的是,它是预防手术切口的感染以及这个切口深在部位的感染,以及清洁-污染或污染手术后手术部位感染及术后可能发生的全身性感染,并非预防手术以后所有发生的感染。

2016年第三季度细菌耐药监测预警分析

2016年第三季度细菌耐药监测预警分析 为加强细菌耐药监测预警工作和临床合理应用抗菌药物,根据《卫生部办公厅关于抗菌药物临床应用管理有关问题的通知》(卫办医政发[2009]38号)、《抗菌药物临床应用指导原则》的要求,结合检验科《2016年第三季度常见细菌耐药性统计、分析》报告,对我院的抗菌药物使用提出以下预警: 一、细菌培养情况 2016年07-09月临床共送检细菌培养标本1178份,共检出病原菌389株,阳性检出率为%。排在前五位的细菌是:肺炎克雷伯杆菌118株、大肠埃希菌75株、铜绿假单胞菌30株、金黄色葡萄球菌29株、鲍曼不动杆菌13株,其他细菌162株。 二、全院细菌耐药监测结果分析及用药建议 根据卫生部办公厅关于抗菌药物临床应用管理有关问题的[2009]38号文件和《抗菌药物临床应用管理办法》要求:1.主要目标细菌耐药率超过30%的抗菌药物,应当及时将预警信息通报本机构医务人员;2.主要目标细菌耐药率超过40%的抗菌药物,应当慎重经验用药;3.主要目标细菌耐药率超过50%的抗菌药物,应当参照药敏试验结果选用;4.主要目标细菌耐药率超过75%的抗菌药物,应当暂停针对此目标细菌的临床应用,根据追踪细菌耐药监测结果,再决定是否恢复临床应用。现根据我院第三季度细菌耐药监测情况,对检出率居前五位的细菌根据该要求及抗菌药物的特点进行推荐用药。 1、肺炎克雷伯氏菌

肺炎克雷伯菌是产质粒介导的超广谱β-内酰胺酶(ESBL)的代表菌种。本季度共检出118株,对抗菌药物耐药情况如下: ①对复方新诺明、妥布霉素、哌拉西林/他唑巴坦、头孢他啶、头孢吡肟、庆大霉素、左氧氟沙星、头孢西丁、氨曲南、呋喃妥因、环丙沙星的耐药率均低于30%,可以作为肺炎克雷伯氏菌的首选治疗用药。 ②对头孢曲松、头孢唑林、氨苄西林/舒巴坦的耐药率超过30%,将预警信息通报本机构医务人员。 ③对氨苄青霉素的耐药率达到99%,应暂停其对肺炎克雷伯氏菌感染的临床应用。 2、大肠埃希氏菌 本季度检出大肠埃希氏菌75株,其中,耐碳青霉烯类大肠埃希菌5例,其对抗菌药物耐药情况如下: ①对哌拉西林/他唑巴坦、头孢替坦、亚胺培南、阿米卡星、呋喃妥因、厄他培南的耐药率均低于30%,可作为初始经验治疗和首选用药。 ②对复方新诺明、妥布霉素的耐药率超过30%,将预警信息通报本机构医务人员。 ③对头孢曲松、头孢他啶、头孢吡肟、头孢西丁、氨曲南的耐药率超过40%,建议临床慎重经验用药。 ④对头孢唑林、庆大霉素、氨苄西林/舒巴坦的耐药率均高于50%,需参照药敏试验结果选用,在大肠埃希菌感染的病例中,不宜作为经验和治疗用药。

抗细菌抗生素及细菌耐药性的论述

抗细菌抗生素及细菌耐药性的论述微生物产生的次级代谢产物具有各种不同的生理活性,抗生素是由微生物(包括细 菌、真菌、放线菌属)或高等动植物在生活过程中所产生的具有抗病原体或其它活性的一类次级代谢产物,具有抗微生物、抗肿瘤作用和干扰其他生活细胞发育功能的化学物质。其中抗细菌抗生素[1]是抗生素中发现最早,数量最多的一类。细菌在对抗抗菌药物的过程中,为了避免遭受伤害,形成了许多防卫机制,由此而产生的耐药菌得以生存和繁殖,大多数细菌对某种抗菌药物或对多种抗菌药物的抗性具有多种耐药机制。细菌对抗生素的耐药性尤其是多重药物耐药性已成为全球关注的医学与社会问题,严重地威胁着感染性疾病的治疗。本文就抗生素的发现,不同种类的抗生素以及其细菌耐药性,研究前景这四方面进行论述。 1抗生素的发现 很早以前,人们就发现某些微生物对另一些微生物的生长繁殖具有抑制作用,随着科学的发展人们终于揭示出了这种称为“抗生”现象的本质,从某些微生物内找到了具有抗生作用的物质,所以人们把由某些微生物在生活过程中产生的,对某些其他病原微生物具有抑制或杀灭作用,能抑制其它细胞增殖的一类化学物质称为抗生素。1929年英国细菌学家弗莱明在培养皿中培养细菌时,发现从空气中偶然落在培养基上的青霉菌中长出的菌落周围没有细菌生长,他认为是青霉菌产生了某种化学物质,分泌到培养基里抑制了细菌的生长。这种化学物质便是最先发现的抗生素--青霉素。其中抗细菌抗生素是抗生素中发现最早,数量最多的一类。 2不同种类的抗细菌抗生素 2.1 氨基糖苷类抗生素 2.1.1 定义及发展 氨基糖苷类抗生素[2]是一类分子中含有一个环己醇型的配基、以糖苷键与氨基酸结合(有的与中性糖结合)的化合物,因此也常被称为氨基环醇类抗生素。微生物产生的天然氨基糖苷类抗生素有近200种,氨基糖苷类抗生素具有抗菌谱广、杀菌完全、与β-内酰胺等抗生素有很好的协同作用、对许多致病菌有抗生素后效应( PAE) 等特点。氨基糖苷类抗生素的历史起源于1944年链霉素的发现,链霉素的发现极大的刺激了世界范围内的无数学者开始系统地、有计划地筛选新抗生素。其后又成功地上市了一系列具有里程碑意义的化合物(卡那霉素、庆大霉素、妥布霉素),因此根据这类抗生素的结构特征,卡那霉素等被列为第一代氨基糖苷类抗生素。这一代抗生素的品种最多,应用范围涉及农牧业,其结构特征是分子中含有完全羟基化的氨基糖与氨基环醇相结合。以庆大霉素为代表的第二代氨基糖苷类抗生素的品种比第一代的少,但是抗菌谱更广,结构中含有脱氧氨基糖,对铜绿假单胞菌有抑杀能力。 2.1.2 抗生素的作用机制 氨基糖苷类抗生素的主要作用靶点是细菌30S核糖体,但直到近年来,随着核糖体的结构及核糖体RNA-AGs复合物结构的阐明,才得以在分子水平上真正了解这类抗生素是如何作用于核糖体的。由于细菌核糖体的沉降系数是70S,分为30S和50S这两个亚基,而真核生物的核糖体多由RNA分子构成,其沉降系数为80S,由40S和60S亚基组成,细菌和真核生物的核糖体存在差异,使得这类抗生素能有选择性地作用于细菌,而对真核细胞的影响极小。这类抗生素只要结合在30S核糖体的A位点上,例如在链霉

大肠埃希菌耐药机制研究进展

大肠埃希菌耐药机制研究进展 【摘要】大肠埃希菌是典型的革兰氏阴性杆菌,致病性大肠埃希菌更是临床上最常见的病原菌之一。近年来,大肠埃希菌的耐药株不断增多,特别是多重耐药株的出现增多,使临床大肠埃希菌病的预防和治疗十分困难。本文对大肠埃希菌耐药现状以及耐药性机制的研究进行了综述,为防治大肠埃希菌耐药性的产生及合理用药提供帮助。 【关键词】大肠埃希菌;耐药机制;细菌生物膜 【文章编号】1004-7484(2014)05-2897-02 大肠埃希菌是存在于人和动物肠道内的一类正常菌群,但当大肠埃希菌侵入到人体其他部位或器官时,则会导致感染。近些年,致病性大肠埃希菌特别是泛耐药大肠埃希菌临床监测率逐年升高,本文针对大肠埃希菌耐药性机制以及耐药现状的研究进行综述。 1 大肠埃希菌的生物学特性 1.1大肠埃希菌概述 大肠埃希菌(E. coli)是肠杆菌科埃希氏菌属的代表菌,于1885年被Escherichia首次发现并命名为大肠埃希菌,简称大肠埃希菌。为兼性厌氧菌,生长温度范围为15~45℃。营养要求不高。大多数大肠埃希菌能发酵多种糖类并产气。一般大小为0.4-1μm,长1.7-3μm。无芽孢,多数菌株周身有鞭毛,能运动。有菌毛。

大肠埃希菌有O、K、H、F四种抗原,抗原构造比较复杂,O抗原为脂多糖,组成细胞壁的耐热成分;K抗原位于O抗原外层,与细菌的侵袭力有关,为酸性多糖;H抗原是位于鞭毛上的蛋白质,氨基酸的含量及排列顺序决定其特异性; F 抗原与大肠埃希菌的粘附作用有关。 1.2 大肠埃希菌分类和致病机理 大肠埃希菌是肠道内重要的正常菌群,在宿主免疫力下降或细菌侵入肠道外组织器官后就可以成为条件致病菌,引起肠道外感染。根据引起疾病的不同可将病原性大肠埃希菌分为三个致病型:肠道感染/腹泻型、尿道感染型和化脓性/脑膜炎型。致病性大肠埃希菌除具有一般的毒力因子,如内毒素、荚膜、Ⅲ型分泌系统等还具有自身一些特殊的毒力因子如粘附素与外毒素,二者主要能引起泌尿道感染和肠道感染。 肠道感染/腹泻型大肠埃希菌根据携带毒力因子的不同可以分为5类:肠产毒性大肠埃希菌(ETEC)、肠致病性大肠埃希菌(EPEC)、肠出血性大肠埃希菌(EHEC)、肠粘附性大肠埃希菌(EAEC)、肠侵袭性大肠埃希菌(EIEC)。引起泌尿道感染的大肠埃希菌大多来源于结肠,污染尿道,上行至膀胱,甚至肾脏与前列腺,为上行性感染。化脓性/脑膜炎型大肠埃希菌感染则可能得大肠埃希菌败血症。常由大肠埃希菌尿道和胃肠道感染引起。据陈立涛的研究的血流感染中产ESBLs大肠埃希菌检出阳性率约60%,且多药耐药严重[1]。此外新生儿脑膜炎的主要致病因子即为大肠埃希菌与B组链球菌约75%的大肠

2017年1季度细菌耐药情况分析与对策报告

太和县人民医院2013年三季度细菌耐药情况分析与对策报告 一.标本送检及细菌检出情况 本季度细菌培养送检率为35.24%。微生物室共收到标本2068份,分离出病原菌496株,阳性率23.98%。其中革兰氏阴性菌412株、占83.06%,革兰氏阳性菌54株,占10.89%,白假丝酵母菌5株,占1.01%。科室分布前六位的是:重症医学科422例,儿科422例,肝胆外科112例,神经外科103例,呼吸内科80例,普外科62例,内分泌科59例。送检标本类型较多的依次是:痰581份、大便114份、尿液111份、渗出液111份、脓液75份、血液57份,阳性率最高的为血液,其它依次为:脓液、渗出液、痰液、尿液、大便。 标本中检出的常见菌如下:以肺炎克雷伯菌最多,其次是大肠埃希菌、产气肠杆菌、阴沟肠杆菌、铜绿假单胞菌、奇异变形杆菌。 共筛选出多重耐药菌20株,占总菌数的4.03%,其构成为:大肠埃希菌11株,占多重耐药菌菌株总数的55% 鲍曼不动杆菌3株,占多重耐药菌菌株总数的15%肺炎克雷伯菌2株,占多重耐药菌菌株总数的10%铜绿假单胞菌1 株,占多重耐药菌菌株总数的5%阴沟肠杆菌1株,占多重耐药菌菌株总数的5% 产气肠杆菌1株,占多重耐药菌菌株总数的5% 嗜麦芽寡食单胞菌1株,占多重耐药菌菌株总数的5% 第三季度主要标本类型分布情况 临床常见前几位病原菌 第三季度多重耐药菌菌株类型构成情况(%

二.常见临床分离细菌耐药情况与分析 1.革兰氏阳性菌 本次分离的革兰氏阳性菌较少,不具代表性,无法具体分析。 2.革兰氏阴性菌 本次分离出的大肠埃希菌对哌拉西林、头抱呋辛、头抱他啶耐药率高,应 暂停该类抗菌药物的临床应用;对庆大霉素、哌拉西林/他唑巴坦、头抱吡肟、 复合磺胺、环丙沙星的耐药率在50-75%之间,参照药敏实验结果选择用药;对氨苄西林/舒巴坦为中敏,提示医务人员慎重经验用药;对头抱西丁、阿米卡星耐药率在30-40%应及时将抗菌药物预警信息通报医务人员,对亚胺培南敏感性高。 本次分离的肺炎克雷伯菌对哌拉西林、头抱呋辛的耐药率高,根据细菌耐药预警机制,应暂停使用;对头抱唑林、头抱曲松、氨苄西林、氨苄西林/舒巴坦、头抱他啶、头抱吡肟、哌拉西林/他唑巴坦、复合磺胺耐药率在50-75%之间,提示医务人员参照药敏实验结果用药;对氨曲南、庆大霉素耐药率在40-50% 之间,提示医务人员慎重经验用药;对环丙沙星耐药率在30-40%应及时将抗菌 药物预警信息通报医务人员;对头抱西丁、左氧沙星、阿米卡星、亚胺培南均敏感,是肺炎克雷伯菌的治疗用药。 本次分离的产气肠杆菌对哌拉西林、头抱西丁、头抱呋辛、庆大霉素、复合磺胺耐药率在50-75%之间,提示医务人员参照药敏实验结果用药;对氨苄西林、哌拉西林/他唑巴坦耐药率在40-50%之间,提示医务人员慎重经验用药;对氨苄西林/舒巴坦耐药率在30-40%应及时将抗菌药物预警信息通报医务人员;对阿米卡星、头抱他啶、环丙沙星、头抱吡肟、头抱曲松、亚胺培南、氨曲南均敏感,是产气肠杆菌的治疗用药。 本次分离的阴沟肠杆菌对哌拉西林的耐药率高,根据细菌耐药预警机制,应暂停使用,避免耐药范围的扩大;对头抱西丁、氨苄西林、哌拉西林/他唑巴 坦耐药率大于50%提示医务人员参照药敏实验结果用药;对氨苄西林/舒巴坦、头抱他啶、庆大霉素耐药率在40-50%之间,提示医务人员慎重经验用药;对头抱吡肟、复合磺胺耐药率在30-40%之间,应及时将抗菌药物预警信息通报医务人员。对环丙沙星、阿米卡星、亚胺培南、头抱呋辛、左氧沙星、氨曲南均敏感,是阴沟肠杆菌的治疗用药。 本次分离出的铜绿假单胞菌对头抱西丁、复合磺胺、哌拉西林/他唑巴坦 的耐药率大于75%按照细菌耐药预警机制,应暂停该类抗菌药物的在铜绿假单胞菌感染中的临床应用,根据追踪细菌耐药监测结果,再决定是否恢复其的临床应用;对哌拉西林、

相关文档