文档库 最新最全的文档下载
当前位置:文档库 › Matlab小波分析在光谱信号处理中的应用.

Matlab小波分析在光谱信号处理中的应用.

Matlab小波分析在光谱信号处理中的应用.
Matlab小波分析在光谱信号处理中的应用.

Matlab小波分析在光谱信号处理中的应用

摘要:本文通过对小波分析的原理和光谱信号的特点着手,介绍了小波变换对光谱信号进行消噪处理的算法和实现过程,并应用Matlab软件的小波工具箱操作来对比分析光谱消噪前后的信号波形变化情况,分析了小波在光谱信号处理中应用的可行性并给出了光谱信号处理的Matlab设计程序。

关键词:光谱分析;故障诊断;小波变换;光谱消噪;Matlab程序及仿真。

引言:小波分析是最近发展起来的数学方法, 被认为是继傅里叶分析以来的重大理论突破。小波变换同时在时域和频域中有较好的局域化特性, 能将时频统一于一体来研究信号,而在各类传感器信号采集和传输过程中, 同样也存在原始信号会受到大量噪声信号的影响, 产生杂波等问题。因此及时对传感器接收到的信号加以处理和提取出有用的原始信号显得非常必要。因此小波分析对于信号的消噪滤波有着广泛的应用,本文着重对光谱信号的处理进行分析,并应用Matlab软件对光谱中消噪后的效果进行对比实验研究与分析。

1 小波分析的基本原理

小波分析的基本思想是用一族函数去表示或逼近一信号或函数,这一族函数称为小波函数系,它是通过~基本小波函数的不同尺度的平移和伸缩构成的。小波函数系表示的特点是它的时宽

带宽乘积很小,且在时间和频率轴上都很集中。若记基本小波函数为Ψ(t,伸缩和平移分别为a和b,则Ψ母函数生成的依赖于参数口a,b的连续小波定义为:

Ψa,b(t=|a|1/2Ψ{(t-b/a} a,b∈R a≠0

函数f(t∈L2(R的连续小波变换定义为:

W f(a,b= Ψa,b>=|a| 1/2 dt

它对应于f(t∈L2(R在在函数族Ψa,b(t上的分解。这一分解必须满足下列容许性条件:

CΨ=|Ψ(w2|dw﹤∞

这里Ψ(w是Ψ(t的傅里叶变换。由上式可知,函数Ψ(t可以描述为—带通滤波器的脉冲响应,因此小波变换式可描述为函数f(t∈L2(R通过—带通滤波器的滤波。由W f(a,b重构

f(t的小波逆变换定义为:

f(t= 1/CΨ W f(a,bΨa,b(tdadb

设W0是Ψ(w的通带中心频率,即(W-W0|Ψ(w2|dw=0,而σw是关于W0的rms的带宽,即σw=(W-W0|Ψ(w2|dw。

很显然,Ψa,b(w的通带中心是aW0。在对数坐标中,Ψa,b(w的rms带宽对所有a∈R是一致的,所以小波变换是将一信号分解为对数坐标中具有相同大小的多通道频带集合。换句话说,

小波在频域中能量集中于aW0,标准方差为aσw0。

2 基于小波分析的故障诊断

2.1 基于小波变换的检测信号奇异性故障诊断

利用小波变换可检测信号奇异性(对于随机信号则是频率结构的突变的特点来实现故障诊断。由于噪声的小波变换的模极大值随着尺度的增大迅速衰减,而信号的小波变换在突变点的模极大值随着尺度的增大而增大(或由于噪声的影响而缓慢衰减,即噪声的Lipschitz指数处处都远小于0,而信号在突变点的Lipschitz指数大于0(或由于噪声的影响而等于模很小的负数。因此,可以利用连续小波变换区分信号突变和噪声。这些方法不需要系统的数学模型,具有灵敏性高、克服噪声能力强的特点,已在管线泄漏诊断系统、滚动轴承故障诊断、导弹运输车辆故障诊断中等得到成功应用。小波在检验信号突变时比传统的付里叶变换无法比拟的优越性,利用小波分析可以精确地检测到信号突变时间点。

2.2 基于小波变换的多分辨率故障诊断

小波分析属于时频分析中的一种分析方法,它是在傅立叶变换基础上建立的。小波分析是一种信号的时间——尺度(时间——频率分析方法,具有多分辨分析的特点,而且在时频两域都具有表征信号局部特征的能力,时间窗和频率窗大小不变而其形状可以改变,时间窗和频率窗都可以改变的时频局部化分析方法。即在低频部分具有较高的频率分辨率和较低的时间分辨率;在高频时具有较高的时间分辨率和较低的频率分辨率,很适合于探i贝0在正常信号中带有瞬时反常现象,应用于故障检测与诊断具有良好的效果。

利用小波变换的多分辨率性质,基于信号和随机噪声在小波变换域中不同的模极大值系数特征,不但能提取信号和噪声在多尺度分辨空间中的波形特征,而且根据表征该特征的小波系数模极大值传播特性的不同,可以实现对信号波形的有效检测。这一新的思想方法既避免了矩阵

运算,降低了运算量,又能在获得—定改善信噪比增益的同时,保持对信号波形细节的较好分辨率,并且对待检测信号形式不敏感,因此在对非平稳信号的时变处理中具有自身的优越性。

3 光谱分析

光波是由原子内部电子受到激发后产生的,由于各种物质的原子内部电子运动情况不同,所以它们发射的光波也不相同,都具有自已的特性。因此,研究物体的发光或吸收光情况,就可以了解它的化学组成,方法是通过光谱的观察,进行光谱分析。由于每种原子都有自已的特征谱线,根据原子光谱来鉴别物质和确定它的化学组成的方法叫做光谱分析。光谱分析非常灵敏而且迅速,在科技中有广泛的应用。如检查半导体材料硅或锗的纯度。

4 光谱信号的特点

在分析化学领域,光谱分析一直是最富有活力的。光谱仪器的测量信号常常含有一定的噪声,影响光谱信号的形状、谱峰大小与位置的准确度和稳定性,使得其与理论设计曲线的吻合程度受到严重影响,因而不能准确提取有用信息,导致分析结果的准确度和精密度下降。特别是低浓度样品分析噪声的存在甚至会导致错误的结果。所以需要采用滤波的方法去除噪声,改善光谱信号分析的性能。而小波阈值的方法就是最常用的方法,其中阈值是指光谱信号输入图像的像元密度值。

5 小波分析的信号消噪方法

实际工程应用中, 有用信号通常表现为低频信号或是一些比较平稳的信号,而噪声信号则通常表现为高频信号。因此在进行消噪过程中可以按照以下三个步骤:

①信号的小波分解:选择子波及小波分解层N , 对信号s进行N层多尺度小波分解。

②高频系数进行阈值量化:实际工程中, 有用信号常表现为低频和较平稳的信号,而噪声信号则表现为高频信号,所以消噪主要针对高频系数。大致有3 种处理方法:

a 强制消噪: 把分解后的高频系数全部强制为0。

b 默认阈值消噪: 用Matlab中的ddencmp 函数产生默认阈值, 再用wdencmp 函数消噪。即选择默认阈值进行量化处理。

c 给定软/硬阈值消噪:阈值由经验公式取得其值比默认阈值更有可信度。

③一维信号的小波重构: 用分解和消噪后的第N层低频和高频系数重构信号S。

6 基于Matlab的光谱信号消噪程序及演示

Open orange 1.csv.

Save orange 1,orange 1;

x=orange 1;

[c,1]=wavedec(x,3,‘db6’;

A3=appcoef(c,1,‘db6’,3;

d3=detcoef(c,1,3;

d2=detcoef(c,1,2;

d1=detcoef(c,1,1;

信号消噪的两通用函数程序如下:

xd=wden(x,tptr,sorh,scal,n,wavename;

xd=wdencmp(opt,x,wavename,n,thr,sorh,keepapp

本研究中光谱信号的消噪程序如下:

[thr,sorh,keppapp]=ddencmp(‘den’,‘wav’,x;

xd=wdencmp(‘gb1’,c,1,‘db6’,3,thr,sorh,keepapp;

分别用硬阈值、默认阈值和软阈值三种消噪方法进行。实验选取3尺度小波基函数为[db6]进行多尺度一维离散小波分解, 实验结果如图1示。

图1 光谱信号的3尺度一维小波分解结果

强制性信号去噪方法, 对原始信号与第三层近似信号的比较, 得出的结果如图2:

图2 光谱信号去噪前后对比图

7 结论

本文首先介绍了小波变换的原理及其在故障诊断中的应用,并简单介绍了光谱分析的原理和特点,然后通过小波分析阈值法对光谱信号进行消噪处理,并应用Matlab进行编程操作,并通过对光谱信号波的对比证明了小波分析在信号消噪应用中的可行性。采用阈值法进行去噪处理时,阈值的选择也是关键因素之一,在仿真消噪程序中,随着信噪比的提高,消噪的默认阈值会越来越小,但若要得到最适合的阈值需要多次计算或通过经验获得。多尺度小波变换法虽然用的函数较多,但形式均较简单,是一种比较流行的方法,充分消除了信号中的杂波信号,得到了有用的原始信号,有极高的使用价值。

参考文献

[1] Rao Y J, Henderson P J, Jackson D A, Zhang L, Bennion I. Sim- ult aneous St rain, Temperature and Vibrat ion Measurement Using a Mult iplexed in-Fiber-Bragg-Grating/ Fiber-Fabry-Perot S ensor System[ J] . Elect ron Let t, 1997, (23 : 20632064.

[2] Jackson D A, Kers ey A D, Corke M, Jones J D C. Pseudo Het er odyn e Detect ion Sch eme f or Opt ical Int erf eromet ers [J] Elect ron Let t , 1982, ( 18 : 10811083.

[3] U dd E ( ed . Fiber Opt ic Smart St ructu re[M] . New York : John Wiley& Sous, 1995.

[4] Lam D K W, Garside B K. Charact eriz at ion of Single-Mode Opt ical Filt

ers[J] . Appl Opt , 1981, 20(3.

[5]饶云江等.,非本征法布里- 珀罗干涉仪光纤布拉格光栅应变温度传感器极其应用[ J] . 光学学报, 2002, 22(1 : 85-88.

[6]关柏欧等,光纤光栅法布里-珀罗腔透射特性的理论研究[J]. 光学学报, 2000, 20( 1 : 34-38.

[7]Joon Tea Ahn, H ak Kyu Lee, Kyong Hon Kim, et al. A St abi- lized Fib er-Opti cal Mach-Zehn der In t erf eromet er Filt er Using an Independen t St abi lizati onl ight source[J]https://www.wendangku.net/doc/3b7892506.html,mun ica- tion , 1998, 157: 62-66.

[8] 秦前清, 杨宗凯. 实用小波分析[M]. 西安:西安电子科技大学出版社, 1998.

[9] 程正兴. 小波分析算法与应用[M]. 西安:西安交通大学出版社, 1998.

[10] 胡昌, 张军波, 夏军, 等. 基于MATLAB 的系统分析与设计——小波分析[M]. 西安: 西安电子科技大学出版社, 2000.

[11]王嘉梅,基于Matlab的小波变换信号消噪处理,无线电通信技术,2001.5.

[12]何风华,小波分析在信号消噪中的应用[J],自动检测技术,2002(6:22-24.

[13] 刘燕德,欧阳爱国,应义斌,小波分析用于光谱信号处理及其在Matlab中的实现[J],传感技术学报,2006(3:821-823.

matlab小波变换

matlab小波变换 Matlab 1. 离散傅立叶变换的 Matlab实现 Matlab 函数 fft、fft2 和 fftn 分别可以实现一维、二维和 N 维 DFT 算法;而函数 ifft、ifft2 和 ifftn 则用来计算反 DFT 。这些函数的调用格式如下: A=fft(X,N,DIM) 其中,X 表示输入图像;N 表示采样间隔点,如果 X 小于该数值,那么Matlab 将会对 X 进行零填充,否则将进行截取,使之长度为 N ;DIM 表示要进行离散傅立叶变换。 A=fft2(X,MROWS,NCOLS) 其中,MROWS 和 NCOLS 指定对 X 进行零填充后的 X 大小。别可以实现一维、二维和 N 维 DFT A=fftn(X,SIZE) 其中,SIZE 是一个向量,它们每一个元素都将指定 X 相应维进行零填充后的长度。 函数 ifft、ifft2 和 ifftn的调用格式于对应的离散傅立叶变换函数一致。 别可以实现一维、二维和 N 维 DFT 例子:图像的二维傅立叶频谱 1. 离散傅立叶变换的 Matlab实现% 读入原始图像 I=imread('lena.bmp');函数 fft、fft2 和 fftn 分 imshow(I) % 求离散傅立叶频谱 J=fftshift(fft2(I)); figure;别可以实现一维、二维和 N 维 DFT imshow(log(abs(J)),[8,10]) 2. 离散余弦变换的 Matlab 实现 Matlab

2.1. dct2 函数 功能:二维 DCT 变换 Matlab 格式:B=dct2(A) B=dct2(A,m,n) B=dct2(A,[m,n])函数 fft、fft2 和 fftn 分 说明:B=dct2(A) 计算 A 的 DCT 变换 B ,A 与 B 的大小相同;B=dct2(A,m,n) 和 B=dct2(A,[m,n]) 通过对 A 补 0 或剪裁,使 B 的大小为 m×n。 2.2. dict2 函数 功能:DCT 反变换 格式:B=idct2(A) B=idct2(A,m,n)别可以实现一维、二维和 N 维 DFT B=idct2(A,[m,n]) 说明:B=idct2(A) 计算 A 的 DCT 反变换 B ,A 与 B 的大小相同;B=idct2(A,m,n) 和 B=idct2(A,[m,n]) 通过对 A 补 0 或剪裁,使 B 的大小为m×n。 Matlab 2.3. dctmtx函数 功能:计算 DCT 变换矩阵 格式:D=dctmtx(n) 说明:D=dctmtx(n) 返回一个n×n 的 DCT 变换矩阵,输出矩阵 D 为double 类型。 1. 离散傅立叶变换的 Matlab实现 3. 图像小波变换的 Matlab 实现函数 fft、fft2 和 fftn 分 3.1 一维小波变换的 Matlab 实现 (1) dwt 函数 Matlab

基于Matlab的脑电波信号处理

做脑电波信号处理滴嘿嘿。。Matlab addicted Codes %FEATURE EXTRACTER function [features] = EEGfeaturetrainmod(filename,m) a = 4; b = 7; d = 12; e = 30; signals = 0; for index = 1:9; % read in the first ten EEG data because the files are numbered as ha11test01 rather than ha11test1. s = [filename '0' num2str(index) '.dat']; signal = tread_wfdb(s); if signals == 0; signals = signal; else signals = [signals signal]; end end for index = 10:1:m/2; % read in the rest of the EEG training data s = [filename num2str(index) '.dat']; signal = tread_wfdb(s); if signals == 0;

signals = signal; else signals = [signals signal]; end end %%%%% modification just for varying the training testing ratio ------ for index = 25:1:25+m/2; % read in the rest of the EEG training data s = [filename num2str(index) '.dat']; signal = tread_wfdb(s); if signals == 0; signals = signal; else signals = [signals signal]; end end %%%%%end of modification just for varying the training testing ratio----- for l = 1:m % exrating features (power of each kind of EEG wave forms) [Pxx,f]=pwelch(signals(:,l)-mean(signals(:,l)), [], [], [], 200); % relative power fdelta(l) = sum(Pxx(find(fa))); falpha(l) = sum(Pxx(find(fb))); fbeta(l) = sum(Pxx(find(fd))); fgama(l)= sum(Pxx(find(f>e))); % gama wave included for additional work

小波理论

小波变换 一、小波变换的基本原理及性质 1、小波是什么? 小波可以简单的描述为一种函数,这种函数在有限时间范围内变化,并且平均值为0。这种定性的描述意味着小波具有两种性质:A 、具有有限的持续时间和突变的频率和振幅;B 、在有限时间范围内平均值为0。 2、小波的“容许”条件 用一种数学的语言来定义小波,即满足“容许”条件的一种函数,“容许”条件非常重要,它限定了小波变换的可逆性。 小波本身是紧支撑的,即只有小的局部非零定义域,在窗口之外函数为零;本身是振荡的,具有波的性质,并且完全不含有直流趋势成分,即满足 3、信号的信息表示 时域表示:信号随时间变化的规律,信息包括均值、方差、峰度以及峭陡等,更精细的表示就是概率密度分布(工程上常常采用其分布参数)。 频域表示:信号在各个频率上的能量分布,信息为频率和谱值(频谱或功率谱),为了精确恢复原信号,需要加上相位信息(相位谱),典型的工具为FT 。 时频表示:时间和频率联合表示的一种信号表示方法,信息为瞬时频率、瞬时能量谱 信号处理中,对不同信号要区别对待,以选择哪种或者哪几种信号表示方法 ) ()(ωψ??x ∞ <=?∞ ∞-ωω ωψ?d C 2 ) (0 )()0(==?∞ ∞ -dx x ?ψ

平稳信号 非平稳信号 不满足平稳性条件至少是宽平稳条件的信号。 信号的时域表示和频域表示只适用于平稳信号,对于非平稳信号而言,在时间域各种时间统计量会随着时间的变化而变化,失去统计意义;而在频率域,由于非平稳信号频谱结构随时间的变化而变化导致谱值失去意义。 时频表示主要目的在于实现对非平稳信号的分析,同样的可以应用于平稳信号的分析。 4、为什么选择小波 小波提供了一种非平稳信号的时间-尺度分析手段,不同于FT 方法,与STFT 方法比较具有更为明显的优势。 ) ,,,;,,,(),,,;,,,(21212121τττ+++=n n n n t t t x x x f t t t x x x f [][][] ??? ????∞<-=====?+∞ ∞-)(),()()(),()()(21 22121t x E t t R t x t x E t t R m dx x xf t x E x x x ττ时间幅度 小波变换 时间 尺度

matlab与信号 处理知识点

安装好MATLAB 2012后再安装目录下点击setup.exe 会出现 "查找安装程序类时出错,查找类时出现异常"的错误提示。该错误的解决方法是进入安装目录下的bin 文件夹双击matlab.exe 对安装程序进行激活。这是可以对该matlab.exe 创建桌面快捷方式,以后运行程序是直接双击该快捷方式即可。 信号运算 1、 信号加 MATLAB 实现: x=x1+x2 2、 信号延迟 y(n)=x(n-k) 3、 信号乘 x=x1.*x2 4、 信号变化幅度 y=k*x 5、 信号翻转 y=fliplr(x) 6、 信号采样和 数学描述:y=∑=2 1)(n n n n x MATLAB 实现: y=sum(x(n1:n2)) 7、 信号采样积 数学描述:∏==2 1)(n n n n x y MATLAB 实现: y=prod(x(n1:n2)) 8、 信号能量 数学描述:∑∞ -∞ == n x n x E 2 | )(| MATLAB 实现:Ex=sum(abs(x)^2)

9、 信号功率 数学描述:∑-== 1 2 | )(|1 P N n x n x N MATLAB 实现:Px=sum((abs(x)^2)/N MATLAB 窗函数 矩形窗 w=boxcar(n) 巴特利特窗 w=bartlett(n) 三角窗 w=triang(n) 布莱克曼窗 w=blackman(n) w=blackman(n,sflag) 海明窗 w=haiming(n) W=haiming(n,sflag) sflag 用来控制窗函数首尾的两个元素值,其取值为symmetric 、periodic 汉宁窗 w=hanning(n) 凯塞窗 w=Kaiser(n,beta) ,beta 用于控制旁瓣的高度。n 一定时,beta 越大,其频谱的旁瓣越小,但主瓣宽度相应增加;当beta 一定时,n 发生变化,其旁瓣高度不变。 切比雪夫窗:主瓣宽度最小,具有等波纹型,切比雪夫窗在边沿的采样点有尖峰。 W=chebwin(n,r)

MATLAB小波变换指令及其功能介绍(超级有用)解读

MATLAB小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1) dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname') [cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT 说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信 号进行分解。 (2) idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname') X=idwt(cA,cD,Lo_R,Hi_R) X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L) 说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经 小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。 X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能

--------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1) wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分 格式:Y=wcodemat(X,NB,OPT,ABSOL) Y=wcodemat(X,NB,OPT) Y=wcodemat(X,NB) Y=wcodemat(X) 说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16; OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现 一维、二维和 N 维 DFT OPT='row' ,按行编码 OPT='col' ,按列编码

基于MATLAB的语音信号处理系统设计(程序+仿真图)--毕业设计

语音信号处理系统设计 摘要:语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科。语音信号处理的目的是得到某些参数以便高效传输或存储,或者是用于某种应用,如人工合成出语音、辨识出讲话者、识别出讲话内容、进行语音增强等。本文简要介绍了语音信号采集与分析以及语音信号的特征、采集与分析方法,并在采集语音信号后,在MATLAB 软件平台上进行频谱分析,并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。利用MATLAB来读入(采集)语音信号,将它赋值给某一向量,再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波,然后我们还可以通过sound命令来对语音信号进行回放,以便在听觉上来感受声音的变化。 关键词:Matlab,语音信号,傅里叶变换,滤波器 1课程设计的目的和意义 本设计课题主要研究语音信号初步分析的软件实现方法、滤波器的设计及应用。通过完成本课题的设计,拟主要达到以下几个目的: 1.1.了解Matlab软件的特点和使用方法。 1.2.掌握利用Matlab分析信号和系统的时域、频域特性的方法; 1.3.掌握数字滤波器的设计方法及应用。 1.4.了解语音信号的特性及分析方法。 1.5.通过本课题的设计,培养学生运用所学知识分析和解决实际问题的能力。 2 设计任务及技术指标 设计一个简单的语音信号分析系统,实现对语音信号时域波形显示、进行频谱分析,

利用滤波器滤除噪声、对语音信号的参数进行提取分析等功能。采用Matlab设计语言信号分析相关程序,并且利用GUI设计图形用户界面。具体任务是: 2.1.采集语音信号。 2.2.对原始语音信号加入干扰噪声,对原始语音信号及带噪语音信号进行时频域分析。 2.3.针对语音信号频谱及噪声频率,设计合适的数字滤波器滤除噪声。 2.4.对噪声滤除前后的语音进行时频域分析。 2.5.对语音信号进行重采样,回放并与原始信号进行比较。 2.6.对语音信号部分时域参数进行提取。 2.7.设计图形用户界面(包含以上功能)。 3 设计方案论证 3.1语音信号的采集 使用电脑的声卡设备采集一段语音信号,并将其保存在电脑中。 3.2语音信号的处理 语音信号的处理主要包括信号的提取播放、信号的重采样、信号加入噪声、信号的傅里叶变换和滤波等,以及GUI图形用户界面设计。 Ⅰ.语音信号的时域分析 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。语音信号分析可以分为时域和变换域等处理方法,其中时域分析是最简单的方法。 Ⅱ.语音信号的频域分析 信号的傅立叶表示在信号的分析与处理中起着重要的作用。因为对于线性系统来说,可以很方便地确定其对正弦或复指数和的响应,所以傅立叶分析方法能完善地解决许多信号分析和处理问题。另外,傅立叶表示使信号的某些特性变得更明显,因此,它能更

小波分析的发展历程

小波分析的发展历程 一、小波分析 1910年,Haar提出了L2(R)中第一个小波规范正交基,即Haar正交基。 (1)操作过程:Haar正交基是以一个简单的二值函数作为母小波经平移和伸缩而形成的。 (2)优点:Haar小波变换具有最优的时(空)域分辨率。 (3)缺点:Haar小波基是非连续函数,因而Haar小波变换的频域分辨率非常差。 1936年,Littlewood和Paley对傅立叶级数建立了二进制频率分量分组理论,(即L-P理论:按二进制频率成分分组,其傅立叶变换的相位并不影响函数的大小和形状),这是多尺度分析思想的最早起源。 1952年~1962年,Calderon等人将L-P理论推广到高维,建立了奇异积分算子理论。 1965年,Calderon发现了著名的再生公式,给出了抛物型空间上H1的原子分解。 1974年,Coifman实现了对一维空间和高维空间的原子分解。 1976年,Peetre在用L-P理论对Besov空间进行统一描述的同时,给出了Besov空间的一组基。1981年,Stromberg引入了Sobolev空间H p的正交基,对Haar正交基进行了改造,证明了小波函数的存在性。 1981年,法国地球物理学家Morlet提出了小波的正式概念。 1985年,法国数学家Meyer提出了连续小波的容许性条件及其重构公式。 1986年,Meyer在证明不可能存在同时在时频域都具有一定正则性(即光滑性)的正交小波基时,意外发现具有一定衰减性的光滑性函数以构造L2(R)的规范正交基(即Meyer基),从而证明了正交小波系的存在。 1984年~1988年,Meyer、Battle和Lemarie分别给出了具有快速衰减特性的小波基函数:Meyer小波、Battle-Lemarie样条小波。 1987年,Mallat将计算机视觉领域中的多尺度分析思想引入到小波分析中,提出了多分辨率分析的概念,统一了在此前的所有具体正交小波的构造,给出了构造正交小波基的一般方法,提出了快速小波变换(即Mallat算法)。它标志着第一代小波的开始? (1)操作过程:先滤波,再进行抽二采样。 (2)优点:Mallat算法在小波分析中的地位相当于FFT在经典傅立叶分析中的地位。它是小波分析从纯理论走向实际应用。 (3)缺点:以傅立叶变换为基础,直接在时(空)域中设计滤波器比较困难,并且计算量大。 1988年,Daubechies基于多项式方式构造出具有有限支集的光滑正交小波基(即Daubechies基)。 Chui和中国学者王建忠基于样条函数构造出单正交小波函数,并提出了具有最优局部化性能的尺度函数和小波函数的一般性构造方法。1988年,Daubechies在美国NSF/CBMS主办的小波专题研讨会上进行了10次演讲,引起了广大数学家、物理学家、工程师以及企业家的重视,将小波理论发展与实际应用推向了一个高潮。 1992年,Daubechies对这些演讲内容进行了总结和扩展形成了小波领域的经典著作——小波十讲《Ten Lectures on Wavelet》。 1992年3月,国际权威杂志《IEEE Transactions on Information Theory》专门出版了“小波分析及其应用”专刊,全面介绍了此前的小波分析理论和应用及其在不同学科领域的发展,从此小波分析开始进入了全面应用阶段。 1992年,Kovacevic和Vetterli提出了双正交小波的概念。 1992年,Cohen、Daubechies和Feauveau构造出具有对称性、紧支撑、消失矩、正则性等性质的双正交小波。 (1)操作过程:利用两组互为对偶的尺度函数和小波函数实现函数的分解与重构。 (2)优点:具有正交小波无法同时满足的对称性、紧支撑、消失矩、正则性等性质。

MATLAB在数字信号处理中的应用:连续信号的采样与重建

MATLAB 在数字信号处理中的应用:连续信号的采样与重建 一、 设计目的和意义 随着通信技术的迅速发展以及计算机的广泛应用,利用数字系统处理模拟信号的情况变得更加普遍。数字电子计算机所处理和传送的都是不连续的数字信号,而实际中遇到的大都是连续变化的模拟量,现代应用中经常要求对模拟信号采样,将其转换为数字信号,然后对其进行计算处理,最好在重建为模拟信号。 采样在连续时间信号与离散时间信号之间其桥梁作用,是模拟信号数字化的第一个步骤,研究的重点是确定合适的采样频率,使得既要能够从采样信号(采样序列)中五失真地恢复原模拟信号,同时由要尽量降低采样频率,减少编码数据速率,有利于数据的存储、处理和传输。 本次设计中,通过使用用MATLAB 对信号f (t )=A1sin(2πft)+A2sin(4πft)+A3sin(5πft)在300Hz 的频率点上进行采样,并进行仿真,进一步了解MA TLAB 在数字信号处理上的应用,更加深入的了解MA TLAB 的功能。 二、 设计原理 1、 时域抽样定理 令连续信号 xa(t)的傅立叶变换为Xa (j Ω),抽样脉冲序列p(t)傅立叶变换为P (j Ω),抽样后的信号x^(t)的傅立叶变换为X^(j Ω)若采用均匀抽样,抽样周期Ts ,抽样频率为Ωs= 2πfs ,有前面分析可知:抽样过程可以通过抽样脉冲序列p (t )与连续信号xa (t )相乘来完成,即满足:x^(t)p(t),又周期信号f (t )傅立叶变换为: F[f(t)]=2[(]n s n F j n π δ∞ =-∞Ω-Ω∑ 故可以推得p(t)的傅立叶变换为: P (j Ω)=2[(]n s n P j n π δ∞ =-∞Ω-Ω∑ 其中: 根据卷积定理可知: X (j Ω)=12π Xa (j Ω)*P(j Ω) 得到抽样信号x (t )的傅立叶变换为: X (j Ω)= [()]n n s n P X j n ∞=-∞Ω-Ω∑ 其表明:信号在时域被抽样后,他的频率X (j Ω)是连续信号频率X (j Ω)的形状以抽样频率Ωs 为间隔周期重复而得到,在重复过程中幅度被p (t )的傅立叶级数Pn 加权。因为只是n 的函数,所以X (j Ω)在重复过程中不会使其形状发生变化。 假定信号x (t )的频谱限制在-Ωm~+Ωm 的范围内,若以间隔Ts 对xa (t )进行抽样信号X^(j Ω)是以Ωs 为周期重复。显然,若早抽样过程中Ωs<Ωm ,则 X^ (j Ω)将会发生频谱混叠的现象,只有在抽样的过程中满足Ωs>2Ωm 条件,X^(j Ω)才不会产生混频的混叠,在接收端完全可以有x^(t )恢复原连续信号xa (t ),这就是低通信号的抽样定理的核心内容。

基于小波分析的一维信号处理方法研究

基于小波分析的一维信号处理方法研究 [摘要]小波分析是在傅立叶变换的基础上发展起来的一种时频分析方法。作为一种新的变换域信号处理方法,小波变换尤其擅长处理在非平稳信号的分析。 目前,这种分析方法已经广泛应用于信号处理、图像处理、量子场论、分形理论等领域 。 【关键词 】小波分析 ;时域 ;频域 1 前言 小波分析是近年来发展起来的一门新技术,是建立在Fourier 分析、泛函分析、调和分析 及样条分析基础上的分析处理工具。是傅里叶分析发展史上里程碑式的进展,它被看成是调和分析这一数学领域半个世纪以来工作的结晶。在信号处理方面Fourier 变换是不可缺少的分析工具,但由于Fourier 只适用于平稳信号的分析,不能做局部分析,加窗Fourier 变换无法满足正交性。且窗口大小固定,它不能敏感反映信号的突变,而小波分析优于Fourier 分析之处在于它的时间域和频率域同时具有良好的局部化性质,即在低频部分具有较高的频率分辨率和较低的时间分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率。这种特性正符合低频信号变化缓慢而高频信号变化迅速的特点,使小波变换县有对信号的自适应能力。有一个灵活可变的时间-频率窗,它被称为多分辨分析,并且常被誉为信号分析的“数学显微镜”。 2 小波分析的发展历史 小波分析方法的提出,可以追溯到1910年Haar 提出的小“波”规范正交基及1938年Littlewood-Paley 对Fourier 级数建立的L-P 理论,即按二进制频率成分分组。Fourier 变换的相位变化本质上不影响函数的形状及大小。其后,Calderon 于1975年用其早年发现的再生公式给出抛物型空间上H 1的原子分解,它的离散形式已接近小波展开,只是还无法得到组成一个正交系的结论。1981年,Stromberg 对Haar 系统进行了改进,证明了小波函数的存在性。1984年,法国地球物理学家Morlet 在分析地震波的局部性质时,发现传统的Fourier 变换难以达到要求,引入“小波”概念对信号进行分解。随后,理论物理学家Grossman 对Morlet 的这种信号按一个确定函数的伸缩,平移系展开的可行性进行了研究,这无疑为小波分析的形成开了先河。 真正的小波热开始于1986年,Meyer 创造性的构造出了具有一定衰减性的光滑函数ψ,其二进制伸缩与平移/2,{()2(2):,}j j k j t t k j k z ψψ--=-∈构成L 2(R)的规范正交 基。继Meyer 提出了小波变换之后,Lemarie 和Battle 又分别独立地给出了具有指数衰减的小波函数。1987年,Mallat 巧妙地将计算机视觉领域内的多尺度分析的思

用matlab小波分析的实例

1 绪论 1.1概述 小波分析是近15年来发展起来的一种新的时频分析方法。其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。 从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。 在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。换言之,短时傅立叶分析只能在一个分辨率上进行。所以对很多应用来说不够精确,存在很大的缺陷。 而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。 全文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,它们的主要性质包括紧支集长度、滤波器长度、对称性、消失矩等,都做了简要的说明。在不同的应用场合,各个小波函数各有利弊。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。

基于MATLAB的语音信号采集与处理

工程设计论文 题目:基于MATLAB的语音信号采集与处理 姓名: 班级: 学号: 指导老师:

一.选题背景 1、实践意义: 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在于方便有效地提取并表示语音信号所携带的信息。所以理解并掌握语音信号的时域和频域特性是非常重要的。 通过语音相互传递信息是人类最重要的基本功能之一.语言是人类特有的功能.声音是人类常用工具,是相互传递信息的最重要的手段.虽然,人可以通过多种手段获得外界信息,但最重要,最精细的信息源只有语言,图像和文字三种.与用声音传递信息相比,显然用视觉和文字相互传递信息,其效果要差得多.这是因为语音中除包含实际发音容的话言信息外,还包括发音者是谁及喜怒哀乐等各种信息.所以,语音是人类最重要,最有效,最常用和最方便的交换信息的形式.另一方面,语言和语音与人的智力活动密切相关,与文化和社会的进步紧密相连,它具有最大的信息容量和最高的智能水平。 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,处理的目的是用于得到某些参数以便高效传输或存储;或者是用于某种应用,如人工合成出语音,辨识出讲话者,识别出讲话容,进行语音增强等. 语音信号处理是一门新兴的学科,同时又是综合性的多学科领域,

是一门涉及面很广的交叉学科.虽然从事达一领域研究的人员主要来自信息处理及计算机等学科.但是它与语音学,语言学,声学,认知科学,生理学,心理学及数理统计等许多学科也有非常密切的联系. 语音信号处理是许多信息领域应用的核心技术之一,是目前发展最为迅速的信息科学研究领域中的一个.语音处理是目前极为活跃和热门的研究领域,其研究涉及一系列前沿科研课题,巳处于迅速发展之中;其研究成果具有重要的学术及应用价值. 数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。它在语音、雷达、图像、系统控制、通信、航空航天、生物医学等众多领域都获得了极其广泛的应用。具有灵活、精确、抗干扰强、度快等优点。 数字滤波器, 是数字信号处理中及其重要的一部分。随着信息时代和数字技术的发展,受到人们越来越多的重视。数字滤波器可以通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。数字滤波器种类很多,根据其实现的网络结构或者其冲激响应函数的时域特性,可分为两种,即有限冲激响应( FIR,Finite Impulse Response)滤波器和无限冲激响应( IIR,Infinite Impulse Response)滤波器。 FIR滤波器结构上主要是非递归结构,没有输出到输入的反馈,系统函数H (z)在处收敛,极点全部在z = 0处(因果系统),因而只能

MATLAB小波变换指令及其功能介绍(超级有用).

MATLAB 小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1 dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname' [cA,cD]=dwt(X,Lo_D,Hi_D别可以实现一维、二维和 N 维 DFT 说明:[cA,cD]=dwt(X,'wname' 使用指定的小波基函数 'wname' 对信号X 进行分解,cA 、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。 (2 idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname' X=idwt(cA,cD,Lo_R,Hi_R X=idwt(cA,cD,'wname',L函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L 说明:X=idwt(cA,cD,'wname' 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L 和 X=idwt(cA,cD,Lo_R,Hi_R,L 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能 --------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1 wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式: Y=wcodemat(X,NB,OPT,ABSOL Y=wcodemat(X,NB,OPT Y=wcodemat(X,NB

实验一 基于Matlab的数字信号处理基本

实验一 基于Matlab 的数字信号处理基本操作 一、 实验目的:学会运用MA TLAB 表示的常用离散时间信号;学会运用MA TLAB 实现离 散时间信号的基本运算。 二、 实验仪器:电脑一台,MATLAB6.5或更高级版本软件一套。 三、 实验内容: (一) 离散时间信号在MATLAB 中的表示 离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。离散序列通常用)(n x 来表示,自变量必须是整数。 离散时间信号的波形绘制在MATLAB 中一般用stem 函数。stem 函数的基本用法和plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。如果要实心,需使用参数“fill ”、“filled ”,或者参数“.”。由于MATLAB 中矩阵元素的个数有限,所以MA TLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。 1. 单位取样序列 单位取样序列)(n δ,也称为单位冲激序列,定义为 ) 0() 0(0 1)(≠=?? ?=n n n δ 要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n =0处是取确定的值1。在MATLAB 中,冲激序列可以通过编写以下的impDT .m 文件来实现,即 function y=impDT(n) y=(n==0); %当参数为0时冲激为1,否则为0 调用该函数时n 必须为整数或整数向量。 【实例1-1】 利用MATLAB 的impDT 函数绘出单位冲激序列的波形图。 解:MATLAB 源程序为 >>n=-3:3; >>x=impDT(n); >>stem(n,x,'fill'),xlabel('n'),grid on >>title('单位冲激序列') >>axis([-3 3 -0.1 1.1]) 程序运行结果如图1-1所示。 图1-1 单位冲激序列

小波分析及其在信号处理中的应用

小波分析及其在信号处理中的应用 发表时间:2016-07-27T16:15:12.383Z 来源:《基层建设》2016年9期作者:王亚东杨浩雷娜 [导读] 小波分析,是当前迅速发展的新领域。 西安电子工程研究所陕西西安 710100 摘要:小波分析,是当前迅速发展的新领域。在应用数学和工程学科中,在经过近30年的研究和探索中,已经建立起非常重要的数学形式化体系,在理论基础中也更加的扎实。那么与Fourier的变换相比,小波的变换是空间,和频率的局部性变换,所以能高效率地从信号中提取有用的信息。通过平移和伸缩等一些运算功能,对信号或函数进行微观的细化分析。它解决了Fourier变换所不能解决的很多困难。小波变换联系了多个学科,包括:应用数学、物理学、科学、信号与信息处理、计算机、图像处理、地震勘探等。有数学家认为,小波分析就是一个新的数学分支,它是泛函分析、Fourier分析、样条分析、数值分析的完美结晶;信号和信息处理专家认为,小波分析是时间—尺度分析和多分辨分析的一种新技术,它在信号分析、语音合成、图像识别、计算机视觉、数据压缩、地震勘探、大气与海洋波分析等方面的研究都取得了有科学意义和应用价值的成果。 关键词:小波分析;信号处理;主要应用 引言: 小波分析是当前数学中一个迅速发展的新领域,它同时具有理论深刻和应用十分广泛的双重意义。小波分析是近年来发展起来的一种新的信号处理工具,这种方法是因为傅立叶分析,小波(wavelet),就是在小范围的波,只在有限的区间内有非零值,比起正弦波和余弦波那样无始无终完全不同。小波是可以通过时间轴上下平移的,同时也可以按比例伸展和压缩,用来获取低频和高频的小波,一些构造好的小波函数,就可以用于滤波或者压缩信号,从而可以提取出信号中的有用信号。 1.小波分析的概念 小波(Wavelet)这一词语,顾名思义,“小波”通俗说就是小的波形。“小”的意思就是具有减退性;而“波”的意思就是指它的震动性,它的振幅有上下相间的震荡。与Fourier变换相比,小波变换也就是时间(空间)频率的部分化解析,它通过伸缩平移运算对信号(函数)逐步细致的对比,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。还有人把小波变换称为“数学显微镜”。 2.小波分析基本理论 小波变换的时频窗是可以由伸缩因子 a 和平移因子 b 来调节的,平移因子 b,可以改变窗口在相平面时间轴上的位置,而伸缩因子 b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。对在不同的频率在时域上小波变换的取样步长是可调节的。在频率较低时,小波变换的时间分辨率也比较低,但是频率分辨率较高;在频率较高时,小波变换的时间分辨率较高,但是频率分辨率却较低。处理信号时如要使用小波变换,首先应当选取适当的小波函数,对其信号进行分解,其次,要进行阈值处理对分解出的参数,再选取适当的阈值进行简要分析,最后要进行逆小波变换利用处理后的参数对信号进行重构。它可以用于边界的处理与滤波、信噪时频、时频分析,分析分离提取信号、求分形指数、信号的识别以及诊断以及多尺度边缘检测。 3.小波分析在信号处理中的应用 事实上,小波分析在应用上,领域十分宽泛,它包括:数学领域的许多学科,以及信号分析和图像处理甚至大型机械的故障诊断的方面。小波分析应用的一个重要方面是小波分析用于信号与图像压缩。它的主要特点是压缩比例高,压缩的速度也快,在压缩后不仅能保持信号与图像的特征不变,而且在传递中可以抵抗干扰。小波分析的压缩方法有很多。小波包最好基形式,小波域的纹理模型形式,都是科学的例子。 3.1在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等;在信号的分析方面它能用于边界的处理与滤波也可以用于时频分析、求分形指数、信噪分离与提取弱信号、信号的识别和与诊断以及多尺度边缘检测等;在图像压缩方面,它具有压缩比高,压缩的速度快的特征。在医学成像方面的减少B超、CT、核磁共振成像的时间,以提高分辨率等。 3.2信号的小波和小波包分解:小波变换可以等效为一组镜像滤波的过程,即信号通过一个分解快速的滤波器和一个分解慢速的滤波器。细节信号就是快速滤波器输出对应信号的高频分量组成。慢速滤波器所输出对应信号的相对较低的频率分量组成,称为近似分量。并同时对信号进行一次二抽一采样,以一个多层分解来说明的。 3.3小波在去噪方面的应用:从信号学的角度看,小波去噪是一个信号滤波的问题。小波去噪在很大程度上可以看成是低通滤波,但是因为在去噪后,也还能成功地保留信号特征,所以在这一点上,又比传统的低通滤波器更加优良。所以可以分析出,小波去噪的实质就是特征提取和低通滤波的相互综合。小波分析的重要应用之一就是用于信号消噪,一个含噪的一维信号模型可表示为如下形式:S f k e k (k)()()k=0.1…….n-1其中,f(k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。假设 e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号。 3.4在工程技术等方面:包括计算机视觉、计算机图形学、曲线设计、湍流、远程宇宙的研究与生物医学方面。 4.小波提升方案具有的优点 20世纪90年代中期,Sweldens提出了小波提升方案(lifting scheme)以及第二代小波概念,它不依赖于Fourier变换,在时域和空域中直接实现小波变换,并切确定了经典小波中,双正交小波的提升方案(又称提升格式)。同年,Daubechies和Sweldens合作,将小波分化成有限步的过程利用提升方法,并同时证明,凡是用Mallat算法完成的小波变动,都可以转用提升格式来完成。从理论上说,提升方案大大拓展了小波分析的研究领域小波提升格式可以实现整数到整数变换的优点,给图像处理带来了极大的方便。它具有良好的特性:结构方便简单、原位计算、运算量较低、节省空间、逆变换可直接反转实现,以及可逆的整数到整数的变换,非常便于实现。在移动的手持设备、高速处理、低功耗设备应用中也具有很大的吸引力。在静态图像处理中,提升小波已被选JPEG2000的变换核心。它提供了多精度的功能,同基于JPEG2000的标准相比,在很低的比特率时具有良好的压缩DCT的JPEG性能,并且提供了在同一个编码结构内有效的失真和

小波分析简述

第一篇:小波分析发展历史简述 1910年,Haar提出了L2(R)中第一个小波规范正交基,即Haar正交基。 1936年,Littlewood和Paley对傅立叶级数建立了二进制频率分量分组理论,(即L-P理论:按二进制频率成分分组,其傅立叶变换的相位并不影响函数的大小和形状),这是多尺度分析思想的最早起源。1952年~1962年,Calderon等人将L-P理论推广到高维,建立了奇异积分算子理论。 1965年,Calderon发现了著名的再生公式,给出了抛物型空间上H1的原子分解。 1974年,Coifman实现了对一维空间和高维空间的原子分解。 1976年,Peetre在用L-P理论对Besov空间进行统一描述的同时,给出了Besov空间的一组基。 1981年,Stromberg引入了Sobolev空间Hp的正交基,对Haar正交基进行了改造,证明了小波函数的存在性。 1981年,法国地球物理学家Morlet提出了小波的正式概念。 1985年,法国数学家Meyer提出了连续小波的容许性条件及其重构公式。 1984年~1988年,Meyer、Battle和Lemarie分别给出了具有快速衰减特性的小波基函数:Meyer小波、Battle-Lemarie样条小波。1987年,Mallat将计算机视觉领域中的多尺度分析思想引入到小波分析中,提出了多分辨率分析的概念,统一了在此前的所有具体正交小波的构造,给出了构造正交小波基的一般方法,提出了快速小波变换(即Mallat算法)。

1988年,Daubechies基于多项式方式构造出具有有限支集的光滑正交小波基(即Daubechies基)。Chui和中国学者王建忠基于样条函数构造出单正交小波函数,并提出了具有最优局部化性能的尺度函数和小波函数的一般性构造方法。1988年,Daubechies在美国NSF/CBMS 主办的小波专题研讨会上进行了10次演讲,引起了广大数学家、物理学家、工程师以及企业家的重视,将小波理论发展与实际应用推向了一个高潮。 1991年,Alpert用多项式构造了第一个多小波。Geronimo等利用分形插值函数构造了正交、对称、紧支撑、逼近阶位2的GHM多小波。1992年,Daubechies对这些演讲内容进行了总结和扩展形成了小波领域的经典著作——小波十讲《Ten Lectures on Wavelet》。1992年3月,国际权威杂志《IEEE Transactions on Information Theory》专门出版了“小波分析及其应用”专刊,全面介绍了此前的小波分析理论和应用及其在不同学科领域的发展,从此小波分析开始进入了全面应用阶段。 1992年,Bamberger和Smith提出无冗余且能完全重构的方向滤波器(Directional Filter Banks,DFB,也即2D-DFB),DFB能有效地对二维信号进行方向分解。具有不可分性,把DFB从二维扩展多维,至今没有完美的实现方法。 1992年,Kovacevic和Vetterli提出了双正交小波的概念。 1992年,Cohen、Daubechies和Feauveau构造出具有对称性、紧支撑、消失矩、正则性等性质的双正交小波。 1992年,Coifman和Wickerhauser提出了小波包(Wavelet Packet,WP)分析。

相关文档
相关文档 最新文档