文档库 最新最全的文档下载
当前位置:文档库 › BS EN 13445-2:2009 非燃烧压力容器.材料

BS EN 13445-2:2009 非燃烧压力容器.材料

BS EN 13445-2:2009 非燃烧压力容器.材料
BS EN 13445-2:2009 非燃烧压力容器.材料

BS EN 13445-2:2009 BRITISH STANDARD

National foreword

This British Standard is the UK implementation of EN 13445-2:2009.

It supersedes BS EN 13445-2:2002+A2:2006 which is withdrawn.

The UK participation in its preparation was entrusted to Technical

Committee PVE/1, Pressure vessels.

A list of organizations represented on this committee can be obtained on

request to its secretary.

This publication does not purport to include all the necessary provisions of

a contract. Users are responsible for its correct application.

? BSI 2009

ISBN 978 0 580 65560 9

ICS 23.020.30

Compliance with a British Standard cannot confer immunity from legal

obligations.

This British Standard was published under the authority of the Standards

Policy and Strategy Committee on 3 2009.

September

Amendments issued since publication

Date Text affected

EUROPEAN STANDARD NORME EUROPéENNE EUROP?ISCHE NORM EN 13445-2 July 2009

ICS 23.020.30Supersedes EN 13445-2:2002

English Version

Unfired pressure vessels - Part 2: Materials

Récipients sous pression non soumis à la flamme - Partie 2

: matériaux

Unbefeuerte Druckbeh?lter - Teil 2: Werkstoffe

This European Standard was approved by CEN on 30 June 2009.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION

C O M I TéE U R O PéE N

D

E N O R M A LI S A T I O N

EUR OP?IS C HES KOM ITEE FüR NOR M UNG

Management Centre: Avenue Marnix 17, B-1000 Brussels

? 2009 CEN All rights of exploitation in any form and by any means reserved

worldwide for CEN national Members.

Ref. No. EN 13445-2:2009: E

EN 13445-2:2009 (E) Issue 1 (2009-07)

2

Contents Page

Foreword..............................................................................................................................................................3 1 Scope......................................................................................................................................................4 2 Normative references............................................................................................................................4 3 Terms, definitions, symbols and units................................................................................................6 3.1 Terms and definitions ...........................................................................................................................6 3.2 Symbols and units.................................................................................................................................7 4 Requirements for materials to be used for pressure-bearing parts.................................................9 4.1 General....................................................................................................................................................9 4.2 Special provisions..............................................................................................................................11 4.2.1 Special properties...............................................................................................................................11 4.2.2 Design temperature above 20 °C.......................................................................................................11 4.2.3 Prevention of brittle fracture .............................................................................................................12 4.2.4 Design properties in the creep range...............................................................................................12 4.2.5 Specific requirements for steels for fasteners................................................................................12 4.3 Technical delivery conditions...........................................................................................................13 4.3.1 European Standards...........................................................................................................................13 4.3.2 European Approval for Materials......................................................................................................13 4.3.3 Particular material appraisals............................................................................................................13 4.3.4 Clad products......................................................................................................................................13 4.3.5 Welding consumables........................................................................................................................13 4.4 Marking................................................................................................................................................13 5

Requirements for materials to be used for non-pressure parts (14)

Annex A (normative) Grouping system for steels for pressure equipment...............................................15 Annex B (normative) Requirements for prevention of brittle fracture at low temperatures....................17 Annex C (informative) Procedure for determination of the weld creep strength reduction factor

(WCSRF)..............................................................................................................................................50 Annex D (informative) Technical delivery conditions for clad products for pressure purposes ............51 Annex E (informative) European steels for pressure purposes..................................................................55 Annex Y (informative) Differences between EN 13445-2:2002 and EN 13445-2:2009................................79 Annex ZA (informative) Relationship between this European Standard and the Essential Requirements

of the EU Pressure Equipment Directive 97/23/EC..........................................................................80 Bibliography.. (81)

BS EN 13445-2:2009

EN 13445-2:2009 (E) Issue 1 (2009-07)

3

Foreword

This document (EN 13445-2:2009) has been prepared by Technical Committee CEN/TC 54 “Unfired pressure vessels”, the secretariat of which is held by BSI.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by December 2009, and conflicting national standards shall be withdrawn at the latest by December 2009.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive(s).

For relationship with EU Directive(s), see informative annex ZA, which is an integral part of this document. This European Standard consists of the following Parts: ? Part 1: General . ? Part 2: Materials . ? Part 3: Design . ? Part 4: Fabrication .

? Part 5: Inspection and testing .

? Part 6: Requirements for the design and fabrication of pressure vessels and pressure parts constructed from

spheroidal graphite cast iron . ? CR 13445-7, Unfired pressure vessels — Part 7: Guidance on the use of conformity assessment procedures . ? Part 8: Additional requirements for pressure vessels of aluminium and aluminium alloys.

? CEN/TR 13445-9, Unfired pressure vessels — Part 9: Conformance of EN 13445 series to ISO 16528

This document supersedes EN 13445-2:2002. This new edition incorporates the Amendments which have been approved previously by CEN members, and the corrected pages up to Issue 36 without any further technical change. Annex Y to EN 13445-1:2009 and Annex Y to this Part provides details of significant technical changes between this European Standard and the previous edition.

Amendments to this new edition may be issued from time to time and then used immediately as alternatives to rules contained herein. It is intended to deliver a new Issue of EN 13445:2009 each year, consolidating these Amendments and including other identified corrections.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

BS EN 13445-2:2009

EN 13445-2:2009 (E) Issue 1 (2009-07)

4

1 Scope

This Part of this European Standard specifies the requirements for materials (including clad materials) for unfired pressure vessels and supports which are covered by EN 13445-1:2009 and manufactured from metallic materials; it is currently limited to steels with sufficient ductility but it is, for components operating in the creep range, also limited to sufficiently creep ductile materials .

It specifies the requirements for the selection, inspection, testing and marking of metallic materials for the fabrication of unfired pressure vessels.

2 Normative references

This European Standard incorporates by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this European Standard only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies (including amendments).

EN 764-1:2004, Pressure equipment — Terminology — Part 1: Pressure, temperature, volume, nominal size. EN 764-2:2002, Pressure equipment — Part 2: Quantities, symbols and units. EN 764-3:2002, Pressure equipment — Part 3: Definition of parties involved.

EN 1092-1:2007, Flanges and their joints — Circular flanges for pipes, valves, fittings and accessories, PN designated — Part 1: Steel flanges

EN 10002-1:2001, Metallic materials - Tensile testing - Part 1: Method of test at ambient temperature

EN 10028-2:2003, Flat products made of steels for pressure purposes — Part 2: Non-alloy and alloy steels with specified elevated temperature properties.

EN 10028-3:2003, Flat products made of steels for pressure purposes — Part 3: Weldable fine grain steels, normalized.

EN 10028-4:2003, Flat products made of steels for pressure purposes — Part 4: Nickel alloy steels with specified low temperature properties.

EN 10028-5:2003, Flat products made of steels for pressure purposes — Part 5: Weldable fine grain steels, thermomechanically rolled.

EN 10028-6:2003, Flat products made of steels for pressure purposes — Part 6: Weldable fine grain steels, quenched and tempered.

EN 10028-7:2007, Flat products made of steels for pressure purposes — Part 7: Stainless steels. EN 10045-1:1990, Metallic materials — Charpy impact test — Part 1: Test method.

EN 10164:2004, Steel products with improved deformation properties perpendicular to the surface of the product — Technical delivery conditions.

EN 10204:2004, Metallic products — Types of inspection documents.

BS EN 13445-2:2009

EN 13445-2:2009 (E) Issue 1 (2009-07)

5

EN 10216-3:2002, EN 10216-3:2002/A1:2004, Seamless steel tubes for pressure purposes — Technical delivery conditions — Part 3: Alloy fine grain steel tubes

EN 10216-4:2002, EN 10216-4:2002/A1:2004, Seamless steel tubes for pressure purposes — Technical delivery conditions — Part 4: Non-alloy and alloy steel tubes with specified low temperature properties.

EN 10217-3:2002, EN 10217-3:2002/A1:2005, Welded steel tubes for pressure purposes — Technical delivery conditions — Part 3: Alloy fine grain steel tubes.

EN 10217-4:2002, EN 10217-4:2002/A1:2005, Welded steel tubes for pressure purposes — Technical delivery conditions — Part 4: Electric welded non-alloy steel tubes with specified low temperature properties.

EN 10217-6:2002, EN 10217-6:2002/A1:2005, Welded steel tubes for pressure purposes — Technical delivery conditions — Part 6: Submerged arc welded non-alloy steel tubes with specified low temperature properties. EN 10222-3:1998, Steel forgings for pressure purposes — Part 3: Nickel steels with specified low temperature properties.

EN 10222-4:1998, EN 10222-4:1998/A1:2001, Steel forgings for pressures purposes — Part 4: Weldable fine grain steels with high proof strength.

EN 10269:1999, EN 10269:1999/A1:2006, Steels and nickel alloys for fasteners with specified elevated and/or low temperature properties.

EN 10273:2007, Hot rolled weldable steel bars for pressure purposes with specified elevated temperature properties.

EN 10291:2000, Metallic materials — Uniaxial creep testing in tension – Method of test .

EN 12074:2000, Welding consumables — Quality requirements for manufacture, supply and distribution of consumables for welding and allied processes.

EN 13445-1:2009, Unfired pressure vessels — Part 1: General. EN 13445-3:2009, Unfired pressure vessels — Part 3: Design. EN 13445-4:2009, Unfired pressure vessels — Part 4: Fabrication.

EN 13445-5:2009, Unfired pressure vessels — Part 5: Inspection and testing.

EN 13479:2004, Welding consumables — General product standard for filler metals and fluxes for fusion welding of metallic materials.

EN 20898-2:1993, Mechanical properties of fasteners — Part 2: Nuts with specified proof load values — Coarse thread (ISO 898-2:1992)

EN ISO 898-1:1999, Mechanical properties of fasteners made of carbon steel and alloy steel — Part 1: Bolts, screws and studs (ISO 898-1:1999)

EN ISO 2566-1:1999, Steel — Conversion of elongation values — Part 1: Carbon and low alloy steels (ISO 2566-1:1984).

EN ISO 2566-2:1999, Steel — Conversion of elongation values — Part 2: Austenitic steels (ISO 2566-2:1984). EN ISO 3506-1:1997, Mechanical properties of corrosion-resistant stainless-steel fasteners — Part 1: Bolts, screws and studs (ISO 3506- 1:1997)

BS EN 13445-2:2009

EN 13445-2:2009 (E) Issue 1 (2009-07)

6

EN ISO 3506-2:1997, Mechanical properties of corrosion-resistant stainless-steel fasteners — Part 2: Nuts (ISO 3506-2:1997)

CR ISO 15608:2000, Welding — Guidelines for a metallic material grouping system (ISO/TR 15608:2000).

3 Terms, definitions, symbols and units

3.1 Terms and definitions

For the purposes of this European Standard the terms and definitions given in EN 13445-1:2009, EN 764-1:2004, EN 764-3:2002 and the following terms and definitions shall apply.

3.1.1

minimum metal temperature T M

the lowest temperature determined for any of the following conditions (also see 3.1.2, 3.1.3): ? normal operations;

? start up and shut down procedures;

? possible process upsets, such as flashings of fluid, which have an atmospheric boiling point below 0 °C; ? during pressure or leak testing.

3.1.2

temperature adjustment term T S

relevant to the calculation of the design reference temperature T R and is dependent on the calculated tensile membrane stress at the appropriate minimum metal temperature

NOTE 1 Values for T S are given in Table B.2-12.

NOTE 2

For tensile membrane stress reference is made to EN 13445-3:2009, Annex C.

3.1.3

design reference temperature T R

the temperature used for determining the impact energy requirements and is determined by adding the temperature adjustment T S to the minimum metal temperature T M :

T R = T M + T S

3.1.4

impact test temperature T KV

the temperature at which the required impact energy has to be achieved (see clause B.2).

3.1.5

impact energy KV

the energy absorbed by a sample of material when subjected to a Charpy-V-notch test in accordance with EN 10045-1:1990

3.1.6

reference thickness e B

thickness of a component to be used to relate the design reference temperature T R of the component with its required impact test temperature T KV , (see Tables B.2-2 to B.2-7 and Figures B.2-1 to B.2-11). For unwelded parts the reference thickness e B is equal to the nominal wall thickness (including corrosion allowance). For welded parts the reference thickness is defined in Table B.4-1.

BS EN 13445-2:2009

EN 13445-2:2009 (E) Issue 1 (2009-07)

7

3.1.7

weld creep strength reduction factor (WCSRF)

factor to account for creep strength reduction at the weldment

3.2 Symbols and units

For the purpose of this part, the symbols and units of EN 764-2:2002 apply together with those given in Table 3.2-1 and Table 3.2-2.

Table 3.2-1 — Quantities for space and time

Quantity

Symbol

Unit time t s, min, h, d, a

frequency f

Hz dimension any Latin letter a

mm length l mm thickness

e mm corrosion allowance c mm diameter d, D mm radius r, R mm area

A, S mm 2

volume, capacity V mm 3

b, c

weight W

N, kN density

ρ

kg/mm 3 d second moment of area Ι mm 4 section modulus Z

mm 3 acceleration γ

m/s 2 plane angle

any Greek letter a

rad, °

a Symbols may use any lower-case letter, except for those defined elsewhere in this table.

b Volume may also be given in m 3

or L.

c Litre "L" is a non-SI unit which may be use

d with SI units and their multiples. d

Density may also be given in kg/m 3

.

BS EN 13445-2:2009

EN 13445-2:2009 (E) Issue 1 (2009-07)

8

Table 3.2-2 — Mechanical quantities

Quantity a Symbol b Unit

force F N

moment M N.mm pressure p, P bar c, MPa Temperature T °C

linear expansion coefficient αμm/m°C normal stress σMPa

shear stress τMPa

nominal design stress f MPa

tensile strength R m MPa

ultimate tensile strength at temperature T R m/T MPa

yield strength R e MPa

yield strength at temperature T R e/T MPa

upper yield strength R eH MPa

1 % proof strength R p1,0MPa

0,2 % proof strength R p0,2MPa

0,2 % proof strength at temperature T R p0,2/T MPa

modulus of elasticity E MPa

shear modulus G MPa

Poisson's ratio υ–

strain ε% elongation after fracture A %

impact energy KV J

hardness HB, HV –

Joint coefficient z –

safety factor S –

Mean 1 % creep strain limit at calculation temperature

T and lifetime t

p1,0/T/t

R MPa

Mean creep rupture strength at calculation

temperature T and lifetime t m/T/t

R MPa

Weld creep strength reduction factor c z-

a Quantities without a temperature index normally refer to room temperature.

b Some of these symbols, such as R, f, are not part of ISO 31.

c"bar" is a non-SI unit which may be used with SI units and their multiples. The unit bar shall be used on nameplates, certificates, drawings, pressure gauges and instrumentation and is always used as a gauge pressure. This is in line with the requirements of the Pressure Equipment Directive 97/23/EC.

BS EN 13445-2:2009

EN 13445-2:2009 (E) Issue 1 (2009-07)

9

4 Requirements for materials to be used for pressure-bearing parts

4.1 General

4.1.1 Materials to be used for pressure-bearing parts shall meet the general requirements of 4.1 and the special provisions of 4.2, if applicable. Materials for pressure bearing parts shall be ordered complying with the technical delivery conditions in 4.3.

Marking of materials for pressure-bearing parts shall be performed in accordance with 4.4.

Materials shall be selected to be compatible with anticipated fabrication steps and to be suitable for the internal fluid and external environment. Both normal operating conditions and transient conditions occurring during fabrication transport, testing and operation shall be taken into account when specifying the materials.

NOTE 1 The requirements of 4.1 and 4.2 should also be fulfilled when technical delivery conditions are developed for European material standards, European approval of materials or particular material appraisals.

NOTE 2 When technical delivery conditions for pressure-bearing parts are developed, the structure and requirements of EN 764-4:2002 should be met. Exceptions should be technically justified.

The materials shall be grouped in accordance with CR ISO 15608:2000 to relate manufacturing and inspection requirements to generic material types.

NOTE 3 Materials have been allocated into these groups in accordance with their chemical composition and properties in view of manufacture and heat treatment after welding.

4.1.2 Materials for pressure-bearing parts compliant with the requirements of this European Standard shall be accompanied by inspection documents in accordance with EN 10204:2004. Certificate of specific control (3.1 or 3.2 certificate) shall be required for all steels if Design by Analysis – Direct Route according to Annex B of EN 13445-3:2009 is used.

NOTE The type of inspection document should be in accordance with EN 764-5:2002 and include a declaration of compliance to the material specification.

4.1.3 The materials shall be free from surface and internal defects which can impair their intended usability. 4.1.4

Steels shall have a specified minimum elongation after fracture measured on a gauge length

o S L 65,5o = (4.1-1)

where

S o is the original cross sectional area within the gauge length.

The minimum elongation after fracture in any direction shall be ≥ 14 %;

However, lower elongation values may also be applied (e.g. for fasteners or castings), provided that appropriate measures are taken to compensate for these lower values and the specific requirements are verifiable.

NOTE

Examples for compensation:

? application of higher safety factors in design;

? performance of burst tests to demonstrate ductile material behaviour.

BS EN 13445-2:2009

EN 13445-2:2009 (E) Issue 1 (2009-07)

10

4.1.5 When measured on a gauge length other than that stated in 4.1.4, the minimum elongation after fracture shall be determined by converting the elongation given in 4.1.4 in accordance with

? EN ISO 2566-1:1999 for carbon and low alloy steels; ? EN ISO 2566-2:1999 for austenitic steels.

4.1.6 Steels shall have a specified minimum impact energy measured on a Charpy-V-notch impact test specimen (EN 10045-1:1990) as follows:

? ≥ 27 J for ferritic and 1,5 % to 5 % Ni alloy steels; ? ≥ 40 J for steels of material group 8, 9.3 and 10

at a test temperature in accordance with Annex B, but not higher than 20 °C. The other requirements of Annex B shall also apply.

4.1.7 The chemical composition of steels intended for welding or forming shall not exceed the values in Table 4.1-1. Line 2 of the table refers to vessels or parts designed using Design by Analysis – Direct Route according to Annex B of EN 13445-3:2009. Exceptions shall be technically justified.

Table 4.1-1 — Maximum carbon-, phosphorus- and sulphur contents for steels intended

for welding or forming

Maximum content of cast analysis

Steel group

(according to Table A-1)

% C % P % S Steels

(1 to 6 and 9)

0,23a 0,035 0,025 Steels

(1 to 6 and 9)

when DBA – Direct Route is used c

0,20 0,025 0,015 Ferritic stainless steels (7.1)

0,08 0,040 0,015 Martensitic stainless steels (7.2)

0,06 0,040 0,015 Austenitic stainless steels (8.1)

0,08 0,045 0,015b Austenitic stainless steels (8.2)

0,10 0,035 0,015 Austenitic-ferritic stainless steels (10)

0,030

0,035

0,015

a

Maximum content of product analysis 0,25 %.

b For products to be machined a controlled sulphur content of 0,015 % to 0,030 % is permitted by agreement provided the resistance to corrosion is satisfied for the intended purpose. c

In addition the ratio on thickness reduction (ratio of initial thickness of slab/ingot to the thickness of the final plate) shall be equal or greater than:

? 4 for NL2 steels and steels of material group 9; ? 3 for other materials .

BS EN 13445-2:2009

EN 13445-2:2009 (E) Issue 1 (2009-07)

11

4.2 Special provisions

4.2.1 Special properties 4.2.1.1

General

Where the behaviour of a material can be affected by manufacturing processes or operating conditions, to an extent that would adversely affect the safety or service life of the pressure vessel, this shall be taken into consideration when specifying material. Adverse effects may arise from:

? manufacturing processes: e.g. degree of cold forming and heat treatment;

? operating conditions: e.g. hydrogen embrittlement, corrosion, scaling and ageing behaviour of the material

after cold forming. 4.2.1.2

Lamellar tearing

Where lamellar tearing due to the joint design and loading needs to be addressed, steels shall be used which have improved deformation properties perpendicular to the surface and verified in accordance with EN 10164:2004.

NOTE

For guidance see EN 1011-2.

4.2.2 Design temperature above 20 °C

4.2.2.1 A material shall only be used for pressure parts within the range of temperatures for which the material properties required by EN 13445-3:2009 are defined in the technical specification for the material. If the technical delivery condition does not contain the specific material values required for the allowable temperature TS the values required in EN 13445-3:2009 for the design shall be determined by linear interpolation between the two adjacent values. Values shall not be rounded up.

For other than austenitic and austenitic-ferritic stainless steels, the specified value of R eH (R p 0,2) at room tempe-rature (RT) may be used for temperatures less than or equal to 50 °C. Interpolation between 50 °C and 100 °C shall be performed with the values of RT and 100 °C and using 20 °C as the starting point for interpolation. Above 100 °C linear interpolation shall be performed between the tabulated values given in the table.

4.2.2.2 As the impact properties may be affected by long or frequent holding of the material at elevated temperatures, it is presupposed that the temperatures and periods of exposure to elevated temperatures be recorded for review during in-service inspection. The influence of such exposure upon the lifetime expectancy shall be estimated and recorded.

For operations such as drying and cleaning of pressure vessels, steels with specified low temperature properties but without elevated temperature 0,2 % proof strength values may however be used at elevated temperatures for drying and cleaning processes provided that the values of 0,2 % proof strength used in design calculations for elevated temperatures shall be obtained by multiplying the specified minimum yield strength values at 20 °C by the factor given in Table 4.2-1.

BS EN 13445-2:2009

EN 13445-2:2009 (E) Issue 1 (2009-07)

12 Table 4.2-1 — Yield strength reduction factors for low temperature steels

Temperature T

Steel

100 °C 200 °C 250 °C 300 °C

Quenched and tempered 0,75 0,68 0,64 0,60 Normalised or thermomechanically treated 0,70 0,58 0,53 0,48

Interpolation shall be carried out as in 4.2.2.1.

4.2.3 Prevention of brittle fracture

The requirements in Annex B shall apply.

4.2.4 Design properties in the creep range

4.2.4.1 Creep properties of base material

For interpolation and extrapolation of creep properties given in the materials standard, see EN 13445-3:2009, Clause 19.

When creep properties are not available from a materials standard, they shall be determined using EN 10291:2000.

4.2.4.2 Creep properties of weldments

Creep properties of weld joints subjected to stresses normal to the weld can differ significantly from those of the base material.

For the design of vessels in the creep range, this is taken into account in EN 13445-3:2009 by making use of a weld creep strength reduction factor c z obtained from tests on weldments. If no data are available, a default value of c z is used.

An acceptable method to determine c z by cross-weld tests is given in Annex C (see also [17]).

4.2.5 Specific requirements for steels for fasteners

Fasteners include bolts, studs and nuts.

Free cutting steel shall not be used. Bolting made of carbon steel or Ni alloy ferritic steel with > 3,5 % nickel shall not be used above 300 °C.

The specified minimum tensile strength of bar material of ferritic and martensitic steel for bolts shall not exceed 1 000 MPa. The minimum elongation of bar material after fracture shall be at least A5 = 14 %.

Impact requirements for ferritic and martensitic steels are specified in B.2.2.4.

Bolt material with a design temperature below ? 160 °C shall be impact tested at ? 196 °C.

Hydrogen embrittlement, fatigue or relaxation properties shall be taken into account where appropriate.

BS EN 13445-2:2009

EN 13445-2:2009 (E) Issue 1 (2009-07)

13

NOTE 1 Detailed requirements on the surface condition and internal soundness of the bar can be necessary for some applications.

NOTE 2 Materials for fasteners compliant with the requirements of this standard should be certified on the basis of EN 10204:2004.

4.3 Technical delivery conditions

4.3.1 European Standards

The European Standards for plates, strips, bars, tubes, forgings and castings for pressure purposes shall be used.

NOTE 1

Table E.2-1 provides an overview on materials for pressure purposes specified in harmonised standards.

NOTE 2 Table E.1-1 contains an informative summary of European Materials Standards referred to and of European Standards covering components of pressure-bearing parts.

Special provisions due to fabrication and operation shall be taken into account, if appropriate. 4.3.2 European Approval for Materials

A material specified in an EMDS for pressure vessels shall only be used within its range of application and if 4.1 and 4.2 have been taken into consideration. 4.3.3 Particular material appraisals

Materials other than those specified in 4.3.1 and 4.3.2 may also be used provided that they have been undergone a particular material appraisal and if 4.1 and 4.2 have been taken into consideration. 4.3.4 Clad products

Technical delivery conditions for clad products for pressure parts shall be in accordance with the requirements of Annex D.

NOTE 1 European Standards specifying technical delivery conditions for clad products for pressure purposes are not currently available. NOTE 2

Examples of national documents covering technical delivery condition for clad steels are given in [2] to [4].

4.3.5 Welding consumables

Technical delivery conditions for welding consumables used of pressure parts and attachments to pressure parts shall be in accordance with EN 13479:2004 and EN 12074:2000.

NOTE Equivalent national/international specifications are accepted which fulfil the same criteria with respect to the requirements for the Quality Assurance System and the requirements for manufacture, supply, distribution, test methods and evaluation of consumables.

4.4 Marking

The marking of the products or delivery units shall ensure traceability between the product or delivery unit and the inspection documents.

BS EN 13445-2:2009

EN 13445-2:2009 (E) Issue 1 (2009-07)

14

For European standardised materials the marking shall fulfil the requirements of the relevant product standard. For materials not contained in a European Standard the marking shall at least contain: ? the material specification (reference, material designation); ? the manufacturers name or mark;

? the stamp of the inspection representative, if applicable.

For material supplied with specific inspection the marking shall include an identification which permits the correlation between the product or delivery unit and the relevant inspection document.

5 Requirements for materials to be used for non-pressure parts

For non-pressure parts, e.g. for supporting lugs, skirts, baffles and similar parts welded to pressure vessels, material shall be used which are supplied to material specifications covering at least requirements for the chemical composition and the tensile properties. These materials shall not limit the operating conditions of the material to which they are attached.

BS EN 13445-2:2009

EN 13445-2:2009 (E) Issue 1 (2009-07)

15

Annex A (normative)

Grouping system for steels for pressure equipment

Steels shall be grouped as shown in Table A-1. The figures given in group 1 are referring to the ladle analysis of the materials. The figures given in group 4 to 10 are based on the element content used in the designation of the alloys.

Table A-1 — Grouping system for steels (extract from CR ISO 15608:2000)

Group Sub- group

Type of steel

1

Steels with a specified minimum yield strength R eH ≤ 460 MPa a and with analysis in %: C ≤ 0,25 Si ≤ 0,60 Mn ≤ 1,70 Mo ≤ 0,70b S ≤ 0,045 P ≤ 0,045 Cu ≤ 0,40b Ni ≤ 0,5b

Cr ≤ 0,3 (0,4 for castings)b Nb ≤ 0,05 V ≤ 0,12b Ti ≤ 0,05

1.1 Steels with a specified minimum yield strength R eH ≤ 275 MPa

1.2 Steels with a specified minimum yield strength 275 MPa < R eH ≤ 360 MPa

1.3 Normalised fine grain steels with a specified minimum yield strength R eH > 360 MPa

1.4 Steels with improved atmospheric corrosion resistance whose analysis may exceed the requirements for the single elements as indicated under 1

2 Thermomechanically treated fine grain steels and cast steels with a specified minimum yield strength R eH > 360 MPa

2.1 Thermomechanically treated fine grain steels and cast steels with a specified minimum yield strength 360 MPa < R eH ≤ 460 MPa

2.2 Thermomechanically treated fine grain steels and cast steels with a specified minimum yield strength R eH > 460 MPa

3 Quenched and tempered steels and precipitation hardened steels except stainless steels with a specified minimum yield strength R eH > 360 MPa 3.1 Quenched and tempered steels

with

a

specified

minimum

yield

strength

360 MPa < R eH ≤ 690 MPa

3.2 Quenched and tempered steels with a specified minimum yield strength R eH > 690 MPa

3.3

Precipitation hardened steels except stainless steels

BS EN 13445-2:2009

EN 13445-2:2009 (E) Issue 1 (2009-07)

16 Table A-1 (concluded)

Group Sub-

group

Type of steel

4 Low vanadium alloyed Cr-Mo-(Ni) steels with Mo ≤ 0,7 % and V ≤ 0,1 %

4.1 Steels with Cr ≤ 0,3 % and Ni ≤ 0,7 %

4.2 Steels with Cr ≤ 0,7 % and Ni ≤ 1,5 %

5 Cr-Mo steels free of vanadium with C ≤ 0,35 %c

5.1 Steels with 0,75 % ≤ Cr ≤ 1,5 % and Mo ≤ 0,7 %

5.2 Steels with 1,5 % < Cr ≤ 3,5 % and 0,7 < Mo ≤ 1,2 %

5.3 Steels with 3,5 % < Cr ≤ 7,0 % and 0,4 < Mo ≤ 0,7 %

5.4 Steels with 7,0 % < Cr ≤ 10 % and 0,7 < Mo ≤ 1,2 %

6 High vanadium alloyed Cr-Mo-(Ni) steels

6.1 Steels with 0,3 % ≤ Cr ≤ 0,75 %, Mo ≤ 0,7 % and V ≤ 0,35 %

6.2 Steels with 0,75 % < Cr ≤ 3,5 %, 0,7 % < Mo ≤ 1,2 % and V ≤ 0,35 %

6.3 Steels with 3,5 % < Cr ≤ 7,0 %, Mo ≤ 0,7 % and 0,45 % ≤ V ≤ 0,55 %

6.4 Steels with 7,0 % < Cr ≤ 12,5 %, 0,7 % < Mo ≤ 1,2 % and V ≤ 0,35 %

7 Ferritic, martensitic or precipitation hardened stainless steels with C ≤ 0,35 % and

10,5 % ≤ Cr ≤ 30 %

7.1 Ferritic stainless steels

7.2 Martensitic stainless steels

7.3 Precipitation hardened stainless steels

8 Austenitic steels

8.1 Austenitic stainless steels with Cr ≤ 19 %

8.2 Austenitic stainless steels with Cr > 19 %

8.3 Manganese austenitic stainless steels with 4 % < Mn ≤ 12 %

9 Nickel alloyed steels with Ni ≤ 10 %

9.1 Nickel alloyed steels with Ni ≤ 3 %

9.2 Nickel alloyed steels with 3 % < Ni ≤ 8 %

9.3 Nickel alloyed steels with 8 % < Ni ≤ 10 %

10 Austenitic ferritic stainless steels (duplex)

10.1 Austenitic ferritic stainless steels with Cr ≤ 24 %

10.2 Austenitic ferritic stainless steels with Cr > 24 %

a In accordance with the specification of the steel product standards, R eH may be replaced by R p0,2 or R t05.

b A higher value is accepted provided that Cr + Mo + Ni + Cu + V ≤ 0,75 %.

c"Free of vanadium" means not deliberately added to the material.

BS EN 13445-2:2009

EN 13445-2:2009 (E) Issue 1 (2009-07)

17

Annex B (normative)

Requirements for prevention of brittle fracture at low temperatures

B.1 General

This annex distinguishes between pressure equipment that has design temperature for normal operation higher or lower than 50 °C.

For pressure equipment with normal operation temperatures higher than 50 °C B.5 applies. If B.5 is not applicable, the following rules for lower normal operation temperatures shall be used.

For pressure equipment with design temperature equal to or less than 50 °C this annex specifies three alternative methods for establishing criteria for the prevention of low temperature brittle fracture 1) of steels in the form of plate, strip, tubes, fittings, forgings, castings, flanges, fasteners and weldments used in pressure parts. The criteria are based on impact energy requirements at specified temperatures for the base material, heat affected zone (including the fusion line) and weld metals. The three methods are: Method 1

Code of Practice:

a) Technical requirements based on the choice of T R = T 27J as specified in harmonised European

Material Standards and on the assumption that it is possible to achieve these minimum properties after fabrication. Calculated from the principles of fracture mechanics used for method 2 for C and CMn steels with yield strength < 460 MPa and b) based on operating experience for Ni-alloyed steels with Ni ≥ 3 % up to 9 %, for austenitic steels

and for bolts and nuts.

Method 2 Method developed from the principles of fracture mechanics and from operating experiences:

A more flexible approach than method 1 for derivation of technical requirements applicable to C, CMn and low alloy ferritic steels with a specified minimum yield strength ≤ 500 MPa and for austenitic-ferritic steels with a specified minimum yield strength ≤ 550 MPa. This method can be applied for these steels to a wider range of thicknesses and temperatures than method 1 because T R must not be equal to T 27J (see Figures B.2–1 to B.2–11). In addition, for ferritic steels with max 355 MPa in PWHT condition operation experience was considered for higher thicknesses.

Method 3

The application of a fracture mechanics analysis. This general method is applicable to cases not covered by methods 1 or 2. This method may also be used to justify deviations from the requirements of method 1 or 2. Only general guidance is given on the use of this method which shall only be used in agreement with the parties concerned.

1) Including temperatures at pressure tests

BS EN 13445-2:2009

EN 13445-2:2009 (E) Issue 1 (2009-07)

18

Each of the three methods may be used independently. It is only necessary to satisfy the requirement of any one method.

All applicable combinations of the temperatures T M (minimum metal temperature) and T S (temperature adjustment term) shall be considered and the lowest possible T R -value (design reference temperature) shall be used for the determination of the required material impact test temperature.

NOTE

For definitions of temperature terms see 3.1.1 to 3.1.4.

B.2 Material selection and impact energy requirements

B.2.1 Introduction

The methods specified in B.2.2 (method 1) or B.2.3 (method 2) shall be used to determine the impact energy required to avoid brittle fracture. Alternatively, B.2.4 (method 3) may be used to determine the required toughness. The method used shall be fully documented, in order to ensure that compliance can be verified. Reference thickness for constructional details is defined in Table B.4-1.

B.2.2 Method 1

B.2.2.1 General

Method 1 allows the selection of materials taken from harmonised European material standards with regard to prevention of brittle fracture. Table B.2–1 gives an overview to the following tables by steel type and product form. The weld metal, the heat affected zone and other parts affected by manufacturing processes shall satisfy the same impact energy requirements as the guaranteed minimum properties for the base material at T R given in the tables. The Table lists design reference temperatures for maximum thickness at given strength levels represented by steels from harmonised European material standards with guaranteed minimum strength and impact properties. Where it is not possible to achieve these minimum properties after fabrication, a tougher starting material shall be selected.

Table B.2–1 ― Guide to material selection

Table

Material or product form

Steel group

Clause

B.2–2 Plates and strips B.2–3 Seamless and welded pipes

B.2–4 Bars B.2–5 Forgings

Ferritic steels B.2.2.2

B.2–6 Ni alloyed steels (1,5 < Ni ≤ 5 %)

B.2–7 Ni-alloyed steel (9 % Ni)

Ferritic steels B.2.2.3 B.2–8 B.2–9 B.2–10

Bolts and nuts Ferritic steels Austenitic steels B.2.2.4

B.2–11

Austenitic steel grades

Austenitic steels

B.2.2.5

BS EN 13445-2:2009

压力容器焊接质量控制技术探讨

压力容器焊接质量控制技术探讨 摘要:在工业领域,压力容器属于特种作业设备,一般是在高温、高压、腐蚀 性的工作环境进行生产作业,因此,压力容器在制造环节的焊接质量直接影响这 设备整体性能质量,而且焊接直接也能够对压力容器的使用寿命产生较大的影响。压力容器一旦在生产作业过程中发生事故,破坏性比较强,会对压力容器的周边 环境以及操作人员的人身安全造成极大伤害,给企业也会造成重大的经济损失。 为了能有效避免压力容器在使用过程中出现安全事故,需要针对压力容器的制造 环节建立起完善的质量控制体系,能保证压力容器的质量。针对在压力容器的制 造过程中出现的焊接质量问题以及影响焊接质量的因素进行全面分析,并在此基 础上制定了相应的质量控制措施,控制了压力容器在制造环节的质量,保证压力 容器在生产作业过程中的安全性和可靠性。 关键词:压力容器;焊接质量;控制技术 引言 压力容器在工业生产中的应用表现出了较高的质量和安全性能要求,如果其 质量得不到有效保障,必然会导致压力容器的应用可靠性降低,容易出现安全隐患。基于此,在压力容器制造的焊接过程中,同样也需要严格把关,力求选择更 为适用的焊接工艺、焊接方法和焊接手段,保证和提高焊接质量,从而降低或避 免压力容器在焊接区域安全隐患的存在。 1 压力容器焊接质量控制的意义 压力容器在生产制造的过程中的焊接质量直接影响着压力容器使用的安全、 稳定运行,而在压力容器生产制造的环节中能够影响压力容器焊接质量的因素有 很多,在压力容器的生产制造过程中,如果能够严格的按照压力容器生产制造的 相关规范以及标准来实施压力容器的设计、施工、监督、检验过程,那么压力容 器的焊接质量就会得到极大提升,同时也能保障其在使用过程中的安全和性能。 对压力容器在焊接过程中出现的各种缺陷的形式进行深入分析,可以对其焊接质 量问题有一个深入的了解,同时也能有针对性地对压力容器的各个环节进行焊接 质量的控制,让压力容器制造企业对压力容器质量控制的重要性有一个清晰的认识。分析压力容器焊接过程中出现的焊接质量缺陷,能从中总结出提升压力容器 焊接质量的经验,同时也能让压力容器制造企业更多地关注压力容器母材以及焊 接材料的选择,高度重视焊接工艺的安排、焊接过程的管理以及检验工作,从而 提高整个压力容器的质量,有效提升压力容器的安全性和可靠性。 2压力容器焊接质量控制技术 2.1焊接技术准备工作 油田企业在具体实施压力容器焊接施工过程中,首先必须要做好焊接施工准 备工作。相关施工人员必须要充分结合压力容器焊接施工实际状况,来合理的编 制压力容器焊接施工作业指导书,并针对不同施工情况制定出完善的焊接工艺, 这样才能够为油田企业压力容器焊接施工的顺利进行打下坚实的基础。在此基础上,要充分结合油田施工实际情况,及相关焊接人员综合素质水平,来制定出合理、可行的焊接施工方案,针对不同的焊接母材、焊接材料以及施工工艺进行合 理选择,要充分保证焊接工艺能够达到相关标准要求,这样才能充分保证压力容 器的焊接质量以及焊接效率。在实际中对压力容器焊接工艺进行评定的过程中, 可以充分利用钢材焊接性能试验作为主要依据,而且在具体实施焊接施工前,要 充分结合焊接工艺评定结果来进一步明确施工作业指导书,能做好施工现场记录

压力容器用钢

压力容器用 钢 、钢材的机械性能材料在外力作用下表现出来的特性叫作材料的机械性 能,也称为力学性能。钢材的重要机械性能指标有: 1. 强度—物体在外力作用下, 抵抗产生塑性变形和断裂的特性。常用的特性指标有屈服极限CT s和强度极限ab,系由拉伸试验获得。1屈服极限材料承受载荷时,当载荷不再增加而仍继续 发生塑性变形的现象叫做“屈服”。开始发生屈服现象'即开始出现塑性变形时的 应力叫做“屈服极限”或“屈服点”。工程上取试样发生0.2 残余变形时的应力 值作为条件屈服极限,通常称为屈服强度Uo.z. 在拉伸试验中,屈服强度是试样在 拉伸过程中标距部分残余伸长达到原标距长度的0.2 帕时的负荷除以原横截面积 的商,单位为MPa. —般说来,材料是不允许在超过其Idl服点的载荷条件下工作 的。2 强度极限材料抵抗外力破坏作用的最大能力称为强度极限。钢材的强度极 限是试样在拉断前所承受的最大应力即抗拉强度Sb,单位为IvIPa 。工程上希 望金属材料不仅具有较高的。,而且具有一定的屈强比a SQ b o 屈强比愈小,结 构零件的可靠性愈高。但屈强比太小,则材料的有效利用率太低。因此,一般希望 屈强比高一些,碳素钢为0.6 左右,低合金高强度钢为0.650.75 ,合金结构钢 为。.85 左右。2. 塑性—指材料在外力作用一下产生塑性变形而不破坏的能力, 用延伸率6及断面收缩率冲来表示,其数值由拉伸试验获得。延伸率以试样拉断 后的总伸长与原始长度的比值百分率来度量,其数值与试样尺寸有关. 为了便于 比 较,必须采用标准试样,规定试样的原始长度与原始直径的比例关系。8。或6 。表示试样计算长度为其直径的5或10倍时的延伸率b。小于Ss。断面收缩率以试样拉断后断面积的缩小量与原始截面积之比值的百分率来度量。塑性良好的材料可以顺利地进行某些成型工艺,如冷冲压、冷弯曲等。其次,良好的塑性可使 零件在使用过程中万一超载也不致突然断裂。压力容器的主要零部件都是承压的,

航空航天复合材料技术发展现状

航空航天复合材料技术发展现状 2008-11-25 中国复合材料在线[收藏该文章] 材料的水平决定着一个领域乃至一个国家的科技发展的整体水平;航空、航天、空天三大领域都 对材料提出了极高的要求;材料科技制约着宇航事业的发展。 固体火箭发动机以其结构简单,机动、可靠、易于维护等一系列优点,广泛应用于武器系统及航 天领域。而先进复合材料的应用情况是衡量固体火箭发动机总体水平的重要指标之 一。在固体发动机研制及生产中尽量使用高性能复合材料已成为世界各国的重要发展目标, 目前已拓展到液体动力领域。科技发达国家在新材料研制中坚持需求牵引和技术创新相结合,做到了需求牵引带动材料技术发展,同时材料技术创新又推动了发动机水平提高的良性发展。 目前,航天动力领域先进复合材料技术总的发展方向是高性能、多功能、高可靠及低成本。 作为我国固体动力技术领域专业材料研究所,四十三所在固体火箭发动机各类结构、功能复合材料研究及成型技术方面具有雄厚的技术实力和研究水平,突破了我国固体火箭发动 机用复合材料壳体和喷管等部件研制生产中大量的应用基础技术和工艺技术难关,为我国的 固体火箭发动机事业作出了重要的贡献,同时牵引我国相关复合材料与工程专业总体水平的 提高。建所以来,先后承担并完成了通讯卫星东方红二号远地点发动机,气象卫星风云二号 远地点发动机,多种战略、战术导弹复合材料部件的研制及生产任务。目前,四十三所正在 研制多种航天动力先进复合材料部件,研制和生产了载人航天工程的逃逸系统发动机部件。 二、国内外技术发展现状分析 1、国外技术发展现状分析 1.1结构复合材料 国外发动机壳体材料采用先进的复合材料,主要方向是采用炭纤维缠绕壳体,使发动机质量比有较大提高。如美国“侏儒”小型地地洲际弹道导弹三级发动机(SICBM-1 、-2、- 3 )燃烧室壳体由IM-7炭纤维/HBRF-55A 环氧树脂缠绕制作,IM-7炭纤维拉伸强度为 5 300MPa , HBRF-55A 环氧树脂拉伸强度为84.6MPa,壳体容器特性系数(PV/Wc )>3 9KM ;美国的潜射导弹“三叉戟II (D5 )”第一级采用炭纤维壳体,质量比达0.944,壳 体特性系数43KM,其性能较凯芙拉/环氧提高30% 国外炭纤维的开发自八十年代以来,品种、性能有了较大幅度改观,主要体现在以下两个方 面:①性能不断提高,七、八十年代主要以3000MPa的炭纤维为主,九十年代初普遍使用 的IM7、IM8纤维强度达到5300MPa,九十年代末T1000纤维强度达到7000MPa,并已开始工程应用;②品种不断增多,以东丽公司为例,1983年产的炭纤维品种只有4种,至U 1995 年炭纤维品种达21种之多。不同种类、不同性能的炭纤维满足了不同的需要,为炭纤维复合材料的广泛应用提供了坚实的基础。 芳纶纤维是芳族有机纤维的总称,典型的有美国的Kevlar、俄罗斯的APMOC,均已在多 个型号上得到应用,如前苏联的SS24、SS25洲际导弹。俄罗斯的APMOC纤维生产及其应 用技术相当成熟,APMOC纤维强度比Kevlar高38%、模量高20%,纤维强度转化率已达到75%以上。PBO纤维是美国空军1970年开始作为飞机结构材料而着手研究的产品,具有刚

压力容器制造过程检验制度

压力容器制造过程检验制度 1 主题内容 本制度对压力容器制造主要过程的工序检验内容、方法、要求及检验记录和签署作出了规定,以保证压力容器的产品质量。 2 适用范围 本制度适用于压力容器产品制造各工序的检验要求。 3 检验的依据和原则 3.1 检验的依据: a 产品图纸和工艺文件; b 有关法规、标准和规范,主要是:《压力容器安全技术监察规程》、GB150-1998《钢制压力容器》、GB151-1999《管壳式换热器》等及相关标准; c 质量体系文件包括质量手册、有关管理制度或程序文件等。 3.2 检验的原则是:不合格的原材料不投料,不合格的零部件不转下道工序,不合格的成品不出厂。 4 工序检验的一般要求 4.1 工序检验应坚持“三检制”,即自检、互检和专检相结合。操作者完成工序的工作后应首先进行自检和互检,合格后交专职检查员检验,合格后签署,转下道工序。 4.2 体系文件中定为检查点(E点)的项目,必须经专职检查员检查;定为审阅点(R点)的项目,检查员检查合格后,有关的责任师应到场检查或审阅有关检验记录、报告;定为停止点(H点)的项目,当工作到此点时应停止操作,由专职检查员到场检查,有关责任师到场审核,一般情况下驻厂检验员也应到场检查认可,合格后方可继续进行下道工序。

4.3 检验员应配合驻厂监检员做好驻厂监检工作。列为A类监检项目的,当该工序进行完毕经检查员检查合格后应通知驻厂监检员到厂检测;列为B类监检项目的,一般情况下监检员也应到场,当无法到场监检时应由监检员审查检查记录或报告,并签字确认。 4.4 主要受压元件制造应编制制造卡,压力容器组装应编制组装卡。制造卡、组装卡中列出的主要工序完成后,操作者应签署,并交专职检查员检查,检查合格并签署后转下道工序。 4.5 检查员应按有关图纸、工艺文件和标准及检验工艺守则的规定,使用规定的适宜的计量器具和测量方法,对规定的检验项目进行测量和检验,认真填写检验记录。 4.6 检验中发现不合格时,按QB/XXJY04-2006《不合格品管理制度》的规定处理。 5 工序检验的内容、方法及要求 5.1 材料检验 5.1.1 应按QB/XXCL03-2006《采购材料验收入库管理制度》的规定对进厂材料的质证书进行审查,对材料实物的标识、几何尺寸及表面质量进行检查,需要复验的进行复验,合格后给出材料本厂(公司)代号并进行标记种植。 5.1.2 按QB/XXCL04-2006《外购件、外协件、配套件管理制度》的规定对外购外协件、安全附件等进行检查验收,审查质证书、按有关标准进行检定、校验和检验。 5.1.3 经验收合格的材料及外购外协件,应办理验收入库手续,经材料责任师审核,驻厂监检员审查确认后入库。

压力容器焊接的质量控制研究参考文本

压力容器焊接的质量控制研究参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

压力容器焊接的质量控制研究参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 压力容器这种工业产品,优良的工序和加工质量是保 证产品质量的重要条件。焊接是保证压力容器致密性和强 度的关键,是压力容器制造中最重要的一个环节,是保证 压力容器质量的关键,是保证压力容器寿命和安全运行的 重要条件。焊接质量的控制从某种程度上说,锅炉、压力 容器的质量就是其焊接质量。通过焊接对压力容器质量控 制的因素分析,从操作人员控制,焊接工艺控制,焊接材 料选择控制,焊接检验控制与焊接环境控制等五个方面来 论述压力容器焊接的质量控制。 1. 焊接工作人员控制 焊条电弧焊和气体保护焊等手工操作占支配地位的焊 接,操作者的个人技能和谨慎态度对焊接质量至关重要。

即使自动化程度高的埋弧自动化,其工艺参数的调节和施焊也离不开人的操作;各种半自动焊中电弧沿焊接方向的移动也是靠人掌握。操作者质量意识差、操作时粗心大意、不遵守焊接工艺规程、操作技能低或操作技术不熟练等都会影响焊接质量。做好压力容器质量焊接控制,要在操作人员控制上做到几下几点: 1.1.定期进行岗位培训,从理论上认识执行工艺规程的重要性,从实践上提高操作者的技能。 1.2.加强质量意识教育,提高操作者的责任心和一丝不苟的工作作风,建立质量责任制。 1.3.加强焊接工序的自检及专职检查。 1.4.进行焊工上岗资格控制。凡参加压力容器施焊工作的焊工都应按照《锅炉、压力容器、压力管道焊工考试与管理规则》进行培训、考试,并取得相应资格;生产单位应按焊接工艺的要求,指定有相应资格的焊工承担焊接工

复合材料结构分析总结

复合材料结构分析总结 说明:整理自Simwe论坛,复合材料版块,原创fea_stud,大家要感谢他呀 目录 1# 复合材料结构分析总结(一)——概述篇 5# 复合材料结构分析总结(二)——建模篇 10# 复合材料结构分析总结(三)——分析篇 13# 复合材料结构分析总结(四)——优化篇 做了一年多的复合材料压力容器的分析工作,也积累了一些分析经验,到了总结的时候了,回想起来,总最初采用I-deas,到MSC.Patran、Nastran,到最后选定Ansys为自己的分析工具,确实有一些东西值得和大家分享,与从事复合材料结构分析的朋友门共同探讨。 (一)概述篇 复合材料是由一种以上具有不同性质的材料构成,其主要优点是具有优异的材料性能,在工程应用中典型的一种复合材料为纤维增强复合材料,这种材料的特性表现为正交各向异性,对于这种材料的模拟,很多的程序都提供了一些处理方法,在I-Deas、Nastran、Ansys中都有相应的处理方法。笔者最初是用I-Deas下建立各项异性材料结合三维实体结构单元来模拟(由于研究对象是厚壁容器,不宜采用壳单元),分析结果还是非常好的,而且I-Deas强大的建模功能,但由于课题要求要进行压力容器的优化分析,而且必须要自己写优化程序,I-Deas的二次开发功能开放性不是很强,所以改为MSC.Patran,Patran 提供了一种非常好的二次开发编程语言PCL(以后在MSC的版中专门给大家贴出这部分内容),采用Patran结合Nastran的分析环境,建立了基于正交各项异性和各项异性两种分析模型,但最终发现,在得到的最后结果中,复合材料层之间的应力结果始终不合理,而模型是没有问题的(因为在I-Deas中,相同的模型结果是合理的),于是最后转向Ansys,刚开始接触Ansys,真有相见恨晚的感觉,丰富的单元库,开放的二次开发环境(APDL 语言),下面就重点写Ansys的内容。 在ANSYS程序中,可以通过各项异性单元(Solid 64)来模拟,另外还专门提供了一类层合单元(Layer Elements)来模拟层合结构(Shell 99, Shell 91, Shell 181, Solid 46 和Solid 191)的复合材料。 采用ANSYS程序对复合材料结构进行处理的主要问题如下: (1)选择单元类型 针对不同的结构和输出结果的要求,选用不同的单元类型。 Shell 99 ——线性结构壳单元,用于较小或中等厚度复合材料板或壳结构,一般长度方向和厚度方向的比值大于10; Shell 91 ——非线性结构壳单元,这种单元支持材料的塑性和大应变行为; Shell 181——有限应变壳单元,这种单元支持几乎所有的包括大应变在内的材料 的非线性行为; Solid 46 ——三维实体结构单元,用于厚度较大的复合材料层合壳或实体结构;

压力容器的设计、制造和检验(正式版)

文件编号:TP-AR-L7601 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 压力容器的设计、制造和检验(正式版)

压力容器的设计、制造和检验(正式 版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、压力容器概述 1.压力容器规范化 早在19世纪末就有了对锅炉和压力容器规范化 的要求。20世纪最初的十年,发生了近一万起锅炉 爆炸,造成了约一万人的死亡和约一万五千人的伤 残。这些血的教训使人们对压力容器制造和安装的规 范化有了更清醒的认识。 1907年,美国Massachusetts州继1905年和 1906年两次灾难性的锅炉爆炸之后,提出了世界上 第一部锅炉制造和安装的法规。循着Massachusetts

州的范例,美国其他州和城市也制定出了蒸气锅炉制造、安装和检验的不同形式的法规或条例。不同州的技术规范缺乏一致性,使得制造者无法制造出其他州可以接受的标准锅炉。制造出的锅炉不能运出州界,一个州的有资格的锅炉检验员也得不到其他州的承认。要求订出蒸气锅炉和压力容器制造的标准规范的呼声越来越强烈,为解决这个问题,美国机械工程师协会于1911年成立了一个专门委员会,后来被称为锅炉规范委员会。 美国机械工程师协会非燃火压力容器规范对压力容器没有给出定义。压力容器一般是指装有加压流体用于完成某项过程的封闭容器,例如贮罐、热交换器、蒸发器和反应器等。规范规定压力容器的范围还包括容器外的管线,终止于管线端焊连接的第一条焊缝、螺栓连接的第一个法兰面、或类似连接的第一个

压力容器焊接质量控制的具体措施

压力容器焊接质量控制的具体措施 发表时间:2017-11-13T17:12:07.860Z 来源:《基层建设》2017年第22期作者:裘臻[导读] 摘要:随着工业发展的不断深入,对于压力容器焊接质量的要求也越来越高。 斯派莎克工程(中国)有限公司上海 201114 摘要:随着工业发展的不断深入,对于压力容器焊接质量的要求也越来越高。在压力容器的焊接过程中,只有采取针对性的焊接措施,并加强管理才能够确保焊接质量。随着科技的进步和现代焊接技术的进步,压力容器的焊接质量控制也应与时俱进,不断更新焊接方法,保证压力容器的安全可靠性。本文主要对制造压力容器中焊接质量的重要性及焊接质量管理措施进行了探讨。 关键词:压力容器;焊接质量;控制措施 1 压力容器焊接质量控制的重要性 压力容器的质量很大程度上决定于其焊接工艺的质量,压力容器的焊接性能很大程度上直接决定了压力容器的质量和安全性能。在焊接过程中,焊机熔渣中以及焊接表面有油污时,可能造成气孔。在潮湿环境中,空气中的水汽或液体在熔渣中形成气泡导致焊接过程中的质量影响,严重的内部缺陷最后可能导致压力容器在高压环境下演变成裂纹,形成巨大安全隐患。 因此要控制压力容器焊接过程中的质量,优化压力容器焊接过程中的措施就要控制以上影响因素。外部缺陷通常肉眼就能看出来,一般表现为焊缝尺寸偏差大、焊缝截面不规整等。裂纹对压力容器的影响非常大,压力容器通常承受着较大的压力、压强,同时伴随着腐蚀性气体或液体的影响,裂纹极易扩大,最后造成整体的崩溃,严重时可能造成极大的安全事故,影响群众的生命财产安全,造成社会经济损失。由此可见,在压力容器的设计制造过程中,压力容器的焊接质量十分重要。 2 在焊接过程中比较多见的质量问题 焊接工艺的好坏对压力容器的质量有非常大的影响,不仅对生产效率和生产成本造成了一定程度的影响,而且对压力容器的安全性能和质量也有非常大的影响。目前来说,压力容器存在的焊接问题主要有容器表面飞溅、容器咬边、容器有裂纹、容器尺寸不合格、容器融合度低等。一般情况下,用肉眼就可以观察到容器外部的焊接问题,常见外部焊接问题有:焊缝的界面不规则、焊缝的尺寸偏差较大、表面出现了裂纹和气孔、焊缝过大或者过小等。在压力容器中一般装有压强比较大的气体,而且在腐蚀性气体和液体的影响下,很容易导致裂缝扩大的情况出现,进而引发压力容器崩溃,甚至引发安全事故的情况出现。人为焊接操作失误是导致压力容器出现内部缺陷的主要原因,在所有的内部焊接问题中,气孔是一个非常常见的问题,在焊接的过程中,操作方法不正确、焊接表面存在油污、熔池过快等都是导致气孔产生的主要因素,另外焊接的环境也会对焊接质量造成影响。例如焊接的环境比较潮湿液体中的熔渣或者空气中的水汽就会产生影响焊接质量的气泡,如果内容缺陷比较严重,会使压力容器在高压环境下出现裂纹,进而产生更加严重的安全隐患。 3 压力容器焊接质量控制的具体措施 3.1 焊接材料的选择控制 对于不等强度级别钢的焊接,原则上应选择低强度等级的焊接材料,在某些特殊情况下,如点固焊或厚板的第一道焊往往要求强度高,可以选用高强度等级的焊接材料。焊接材料的选择还应综合考虑结构和工艺因素及刚度特点,如冷冲压冷卷要求焊接接头有较高的塑性变形能力,热卷和热处理则要求接头经高温热处理后仍能保证所要求的强度性能及韧性,因此,应选用合金成分较高的焊材,而形状复杂,结构刚性大以及大厚度的焊件,由于焊接过程中产生较大的焊接应力,容易产生裂纹,因此必须选用抗裂性好的低氢焊条。 .2 焊接工艺方面的控制 在对压力容器产品进行施焊之前,一定要根据由国家能源局认可的《承压设备焊接工艺评定》的相关要求,实施对受压元件焊缝、受压元件彼此互焊的焊缝、存在于永久焊缝里面的定位焊缝,并以上提到焊缝的返修焊缝等在焊接工艺方面的评估。在评定过程中,关于接头型式和材料种类以及焊接工艺并厚度覆盖方面都要符合公司产品在焊接方面的要求,而且其覆盖率一定要实现100%。 3.3 加强对焊工的管理 合格的焊工要具有丰富的专业知识,必须持国家考试证书上岗就业,企业也必须聘用这样的工人进行压力容器的焊接操作。企业要根据各个步骤的难易、各道工序的工作特点,并结合焊工的技能水平,合理的安排焊工,保证焊接工作的顺利进行。同时要对在岗焊工进行定期的技能培训,使焊工形成“虚心接受任务,认真读通图纸,严格按工艺施工,时刻保持工作环境整洁,保证设备器具摆放整齐”这样一个工作流程,提高焊工的综合素质。作为焊接工人自身,必须遵守职业操守,不断提高自身素质和职业修养,修其品德,诚信工作,脚踏实地,努力钻研业务,严守操作规范,勤于思考,使理论与实践结合起来,不断更新自己的业务水平,增强工作能力。 3.4 焊接环境控制 环境因素在特定环境下,焊接质量对环境的依赖程度也是比较大的。焊接操作常常在室外露天进行,必然受到外界自然条件(如温度、湿度、风力及雨雪天气)的影响,在其他因素一定的条件下也有可能单纯因环境因素造成焊接质量问题。环境因素的控制措施比较简单,当环境条件不符合规定要求时,可对工件进行适当预热。 3.5 焊接检验控制 3.5.1 焊前检验 焊前检验主要注意一下焊工的资格问题。施焊压力容器的焊工必须按《锅炉压力容器压力管道焊工考试与管理规则》的规定考试合格并取得资格证方可施焊。焊工合格证必须具有与焊工所施焊的焊缝相对应的项目,不可无证施焊。制造厂应经常检查焊工持证上岗情况,焊工施焊时必须严格执行焊接工艺;焊接工作结束后,焊工或检验员应在规定部位打上施焊焊工的钢印,并在相应的检验记录上记录。焊接坡口、接头装配及清理工作也应注意,因为这些方面有缺陷将直接影响到焊缝性能。焊工技术水平的高低直接影响产品的焊接质量,因此必须认真组织好焊工的培训及考试,不断提高焊工的理论水平和实际操作技能,建立焊工质量档案,实行奖罚制度,鼓励焊工提高操作水平。 3.5.2 施焊过程的检验 施焊过程的主要检验内容是检查焊工是否严格按照焊接工艺、技术标准、图样规定进行焊接,以及检验产品试板的焊缝外观等相关方面的执行情况。焊缝外观的检验可以一定程度的反应产品的内部缺陷,所以要求焊工要了解焊缝外现的检查要求,以及外观缺陷产生的原因和补救措施等,这对压力容器的焊接质量起着非常重要的作用。

最新压力容器常用材料的基本知识

压力容器常用材料的 基本知识

压力容器常用材料的基本知识 1、压力容器用钢板选用时应考虑: ①设计压力;②设计温度;③介质特性;④容器类别。 2、从材料力学性能来说,升温等效于升压,降温将导致钢材的脆性增加。 3、对同一种材料来说,随温度和板厚的增加,其许用应力则降低。因而当容器 壳体的名义厚度处于钢板许用应力变化的临界值时,应考虑此问题。如处于16mm的Q235-B、Q235-C和16mm、36mm的Q345R都会发生许用应力跳档现象。 4、钢材的强度和塑性指标可通过拉伸试验和冷弯试验(室温下进行)获得。 5、板材供货时薄板以热轧状态供货,厚板以正火状态供货(因强度和韧性下 降)。 6、压力容器用钢板当达到一定的厚度时,应在正火状态下使用,即使用正火 板,如用于壳体厚度>30mm的Q345R钢板必须要求正火状态下供货和使用。需注意:正火仅对板材而言,而非整体设备。(热轧板呈铁红色,正火板呈铁青色)。 7、压力容器用钢与锅炉用钢类同,首先要保证足够的强度,还要有足够的塑 性,质地均匀等。因此,必须选用杂质(S、P)和有害气体含量较低的碳素钢和低合金钢,均为镇静钢。且为保证受压元件材料的焊接性能,一般须控制材料的含碳量≤0.25%。材料的含碳量升高,则其冲击韧性下降,脆性转变温度升高,在焊接时容易产生裂纹。 8、低合金钢的机械性能、耐腐蚀性、耐热性、耐磨性等均比碳素钢有所提高, 其中最常用的是:Q345R。它不仅S、P含量控制较严,更重要的是要求保证足够的冲击韧性,在材料验收方面也比较严格。因此其使用压力不受限制,使用温度上限为475℃,下限为-20℃。板厚为3~200mm。是应用很广的材料。 9、Q345R(GB713-2008,代替原16MnR)的使用说明: ①、Q345R的适用范围是:使用压力不限、使用温度为-20~475℃。 ②、 Q345R用作压力容器壳体的板厚>30mm时,则容器需焊后作退火 热处理,热处理的温度为600~650℃;若焊前预热至100℃,则板厚 可提高至34mm。 ③、Q345R钢板一般是以热轧状态供货;当板厚>30mm时,为保证塑 性和韧性,一般采用正火板,且逐张钢板应超声波检测,Ⅲ级合格。

压力容器用复合材料的性能与应用分析

龙源期刊网 https://www.wendangku.net/doc/387905763.html, 压力容器用复合材料的性能与应用分析 作者:徐丽 来源:《世界家苑》2018年第08期 摘要:当今社会,压力容器在在我们的工业活动中运用上非常广泛,涉及了冶金、机械 加工、安全防护、化工、石油、核能、航空等等各行各业中,甚至检验检测上也有用到压力容器。他是工业上必不可少的一项重要仪器,是衡量一个国家科技发展水平的重要标准。压力容器的种类也非常多。针对不同的压力等级,压力容器的作用,可以细分不同的压力容器装备。由于压力容器具有体积大,危险性高等特殊的特点,从压力容器的制造材质上也是重要的部分,复合材料作为一种新型材料越来越多的被使用在压力容器上,本文从复合材料压力容器的性能和应用上进行剖析,为后续研究此类型材料压力容器提供参考。 关键词:压力容器;制造材质;复合材料 引言:随着压力容器在生产制造中的广泛使用,转变了许多传统行业的发展模式,使得冶金、机械加工、焊接和无损检测等技术有了质的突破,特别是在一些高新科学智能技术的飞速发展,也带动了相关产业的发展,在激烈的行业竞争中,对压力容器也提出越来越高的要求,以适应时代的发展。在相同的环境作用力下,压力容器与其他机械比,所具有的危险性更大,压力容器的危险性主要是在技术层面和使用管理维护以及选材上。材料选取是衡量压力容器质量和性能的关键部分,材料的所具有的机械强度和耐腐蚀性等性能等对与压力容器的使用上也有重要作用。本文主要从选材的角度来进行分析,以复合材料的优势结合压力容器的特点来进行说明。 1复合材料概念 复合材料是指把两种或两种以上的不同性质的材料进行优化再结合在一起,形成一种新的材料。通过多种材料的结合,使得性能在原有的基础上再增强。复合材料主要是金属、聚合物、无极胶囊等。根据复合材料所结合的不同的材料性能又可以分为,金属复合材料和非金属复合材料以及增强复合材料。复合材料结合多种材料的优点,在物理和化学性能上都更比单一材料更优越,综合了多种材料结合成一种材料,化学性能更稳定。物理性能也在一定程度上加强,经过复合材料所制造的压力容器更加轻便,韧度强,刚性复合材料内结合了纤维材料,在结构上更加丰富,以往单一的材料缺少纤维更容易断裂,复合材料综合多种材料物质,其中一个材质纤维断裂后再补上另一材料,使得压力容器能更持久的使用。复合材料是以金属材料作为基体再结合其他材料,既保证了物体所需要的刚性,又具备了一定的承载力。 2 复合材料压力容器的应力分析 复合材料压力容器主要是指金属与金属复合材料,非金属与非金属复合材料,金属和非金属复合材料在压力容器的特殊受力特点上的不同进行比较。在复合材料的物理性能方面,他是

定期检验压力容器 确保企业生产安全参考文本

定期检验压力容器确保企业生产安全参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

定期检验压力容器确保企业生产安全 参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 随着我国经济的快速发展,压力容器作为一种特种设 备应用日益广泛,目前我国在用的压力容器已近250万 台。压力容器成为企业生产不可或缺的设备同时,其巨大 的压力和有毒有害的介质也对人民的生命健康带来了潜在 的威胁。定期检验作为一项及时发现和消除事故隐患的手 段,在安全生产中的作用日益突出。 由于压力容器量大面广,管理难度较大,再加上有些 单位重生产轻安全,对定期检验的重要性存在模糊认识, 压力容器漏检、超期不检验的现象还比较严重。为保证压 力容器的安全,国家20xx年6月1日颁布实施了《特种设 备安全监察条例》,对压力容器等特种设备实行强制检验

制度,主动申报定期检验是压力容器使用单位必须履行的法定义务,如何及时正确地申报压力容器定期检验成为使用单位压力容器安全管理人员必须认真做好的一项工作。 一、要正确地理解科学地安排压力容器的定期检验周期,以避免出现漏检。 为进一步做好压力容器检验工作,充分发挥其重要作用,国家质量技术监督总局重新修订了《压力容器定期检验规则》,对在用压力容器的定期检验周期作为一定的修改,作为压力容器管理人员必须正确的理解和掌握。 1.新投入使用的“压力容器一般应当于投用满3年时进行首次全面检验”。如果一台容器为02年5月制造,而04年6月投入使用,则其首次全面检验时间应为07年6月,而不是05年5月,压力容器使用单位要注意掌握每台设备的投入使用时间,以便正确确定其首次全面检验时间。

锅炉用材料

第15章锅炉及压力容器常用钢材 15.1. 锅炉及压力容器对钢材性能的要求 按工作条件分为两大类: 一、用以制造室温及中温承压元件的钢板与钢管 具有特点: 1有较高的室温强度 通常以屈服极限 σs和强度极限σb为设计依据,要求有较大的σs和σb良好的韧性性能 材料需具有足够的韧性防止脆性断裂,在考虑强度的同时也不能忽略韧性, 表示。 (1)材料的韧性通常用冲击韧性值 αk 压力容器用钢的冲击韧性要求 2) 冲击韧性值 αk(N·m/cm 20℃-40℃ >=60>=35 (2)还需要考虑时效韧性 时效就是钢材经冷加工变形后,在室温或较高温度下,冲击韧性随时间变化。通常在200-300℃,冲击韧性值显著降低。一般要求下降率不超过50%。 由于容器断裂过程包括在缺陷处形成裂纹和裂纹扩散两个阶段,相应两种防止断裂方法(1)选用具有足够韧性的钢材以防止裂纹产生,要求如上表所示 (2)选用韧性更高的材料,以求在裂纹产生后能够阻止裂纹扩展。(要求温度比无塑性转变温度 一半时,要高17℃NPT高一定数值,例如元件的设计应力为屈服极限σ s 3较低的缺口敏感性 制造过程中,开孔和焊接会产生局部应力集中,要求材料有较低的缺口敏感性,以防止产生裂纹 4良好的加工工艺性能和焊接性能 由于焊接热循环作用,会 (1)降低热影响区材料的韧性、塑性 (2)在焊缝内产生各种缺陷 其中(1)、(2)均会产生裂纹 在选材料时需考虑 (1)材料中碳的当量值(保证材料具有较好的可焊性) (2)适当的焊接材料和焊接工艺 (3)材料具有良好的塑性(碳钢和碳锰钢 δs不低于16%,合金钢δs不低于14%) (4)良好的低倍组织 (5)钢材的分层、非金属夹杂物、气孔、疏松等缺陷尽可能减少(防止裂纹的产生) 二、用以制造高温承压元件的钢管 1具有足够的蠕变强度、持久强度和持久塑性 通常以持久强度为设计依据,保证在蠕变的条件下安全运行

压力容器质量控制点一览表

压力容器质量控制点一览表 、压力容器生产过程停止点 序号停止点停止时间确认容和执行条例执行人确认人见证件 1审图编制受压元件工艺流转检验卡之 前 (1)图纸的合法性,有设计资格印章。 (2)选用标准的有效性。 (3)容器划类的正确性。 (4)探伤比例、合格级别的正确性。 (5)结构、选材是否符合有关法规。 (6)本公司制造的可行性。 设计、工艺质控负 责人 质保工程师审图记录 2材料验收 原材料(焊材)进入合格区(一级库 之前)(含外协构件)(1)审查材料原始质量证明书(原件)。 (2)审查验收记录。 (3)审核材料复验报告。 (4)外协件质量证明书、合格证。均合格后签字放行。 材料检验员材料质控负责人材料入库通知单 3焊接工艺评定编制焊接工艺卡之前 (1)产品新做的焊接工艺评定必须按JB4708 评定合格,并经总工程师批准 后才能用于编制焊接工艺卡。 焊接工艺员 焊接质控负责人总工 程师 焊接流转检验卡 焊接工艺卡下发之后 (2)所有焊卡应有焊接工艺评定为依据,并符合JB4708 的要求。 4划线开孔开孔之前按产品的开孔方位图逐个核对其划线位置(产品总装过程中)。冷作检验员检验质控负责人工艺流转检验卡 5耐压试验水、气压试验之前(1)审查检验资料,无漏检、错检,且所有检验项目均合格。 (2)应装配的零部件(含铭牌)均已装配妥当。 (3)对产品焊接试板进行审查,并有合格报告。 (4)图纸规定的无损检测均已结束,并有合格报告。 (5)应返修的部位均有返修报告,并有复检报告。 总检验员 探伤员 检验质控负责人 无损检测 质控负责人 (1)汇总资料; (2)签字齐全。 探伤报告

压力容器焊接的质量控制研究

压力容器焊接的质量控制 研究 Revised by Hanlin on 10 January 2021

压力容器焊接的质量控制研究压力容器这种工业产品,优良的工序和加工质量是保证产品质量的重要条件。焊接是保证压力容器致密性和强度的关键,是压力容器制造中最重要的一个环节,是保证压力容器质量的关键,是保证压力容器寿命和安全运行的重要条件。焊接质量的控制从某种程度上说,锅炉、压力容器的质量就是其焊接质量。通过焊接对压力容器质量控制的因素分析,从操作人员控制,焊接工艺控制,焊接材料选择控制,焊接检验控制与焊接环境控制等五个方面来论述压力容器焊接的质量控制。 1.焊接工作人员控制 焊条电弧焊和气体保护焊等手工操作占支配地位的焊接,操作者的个人技能和谨慎态度对焊接质量至关重要。即使自动化程度高的埋弧自动化,其工艺参数的调节和施焊也离不开人的操作;各种半自动焊中电弧沿焊接方向的移动也是靠人掌握。操作者质量意识差、操作时粗心大意、不遵守焊接工艺规程、操作技能低或操作技术不熟练等都会影响焊接质量。做好压力容器质量焊接控制,要在操作人员控制上做到几下几点: 1.1.定期进行岗位培训,从理论上认识执行工艺规程的重要性,从实践上提高操作者的技能。

1.2.加强质量意识教育,提高操作者的责任心和一丝不苟的工作作风,建立质量责任制。 1.3.加强焊接工序的自检及专职检查。 1.4.进行焊工上岗资格控制。凡参加压力容器施焊工作的焊工都应按照《锅炉、压力容器、压力管道焊工考试与管理规则》进行培训、考试,并取得相应资格;生产单位应按焊接工艺的要求,指定有相应资格的焊工承担焊接工作,焊接检查人员监督焊工资格,并做好焊接检查记录。 2.焊接工艺控制 2.1.焊接工艺评定焊接工艺是控制锅炉、压力容器焊接接头质量的关键,产品施焊前,对受压元件之间的对接焊接接头和要求全焊透的T形焊接接头、受压元件与承载的非受压元件之间全焊透的T形或角接焊接接头、以及受压元件的耐腐蚀堆焊层都应进行焊接工艺评定。制造厂应根据产品的情况做好相应工作,如焊接方法、母材钢号、母材厚度和熔敷金属厚度、焊材保护气体、有无衬垫、是否预热。 2.2.工艺参数焊接线能量综合体现了焊接规范参数对接头性能的影响,对于低合金高强钢、低温钢和不锈钢都要求采用小线能量焊接,对于易

压力容器质量计划

产品质量计划 产品名称: 产品图号:产品编号:计划完成日期:年 6 月15 日 编制:__________ 日期: ___________ 审核:__________ 日期:___________ 批准:__________ 日期:___________ 产品质量计划 一、产品概述:本产品为我公司为取得D1,D2类压力容器制造许可证而生产的II类容器试制产品,其中成品一台,半成品一台。 1、产品技术条件: A:引用规范及执行标准: TSGR0004-2009《固定式压力容器安全技术监察规程》 GB150-1998《钢制压力容器》

NB/T47014《承压设备焊接工艺评定 NB/T47015《压力容器焊接规程》 B 设计参数 容器类别Ⅱ类设计温度℃主要受压元件材料Q345R 工作压力MPa 工作介质全容积m3 0 设计压力MPa 介质特性非爆焊接接头系数0.85 工作温度℃40 腐蚀裕度mm 热处理 水压试验压力MPa 气密性试验压力MPa / 2、产品主体材料: 件号名称材料规格尺寸数量备注 1 封头Q345R EHA 2 δmin=9.0 2 筒体Q345R DN×H= 1 δ=10 二、设计文件审查: 产品设计由温州市工业设计院承担,该单位具有压力容器设计资质,并在有效期内。设计图纸符合《固定式压力容器安全技术监察规程》、GB150-1998《钢制压力容器》及相关规范、标准的规定。 设计责任人: 三、产品制造前准备: 1、工艺准备: 工艺责任人员首先对设计图纸进行工艺审图,本公司是否具备制造该设备的能力。工艺上是否能得到保证。并

有工艺员编制制造工艺,工艺责任人员审核。在工艺过程卡中,明确控制点。工艺人员还要根据图纸编制材料清单,其内容包括:材料的数量,标准、交货状态等。并由工艺责任人员批准,交材料采购人员。 工艺责任人: 2、材料准备: 材料采购人员根据采购清单,对市场进行询价。首先要对供方进行评介,评介内容包括:营业执照、组织代码、年销售额、业绩,对封头、法兰等还需要有特种设备制造许可证。采购材料一定要在合格供方名单中采购。并每年对合格供方进一次评介。评介内容包括:供货是否及时、质量是否合格,服务态度是否满意,价格是否适合。对不合格的,不作为合格供方。 材料采购到厂应进行检验。先放在待检区。采购人员将采购单交给仓库保管员,保管员应通知材料检验员进行材料检验。检验合格的材料放入合格区,不合格的材料放入不合格区。对不合格的材料由材料责任人作出裁定。通常由二种处置方法:退货、降级使用。对合格的材料作好检验记录,并给予入库号。并在材料上做好标记。 材料责任人: 四、产品制造过程中主要质量控制环节、控制点: 1、封头、筒休 ○1封头的制造:

压力容器焊接质量控制分析

压力容器焊接质量控制分析 在压力容器制造过程中,容器的制造质量在很大程度上取决于容器的焊接质量,焊接质量的优劣直接关系到产品的运行安全和人民生命财产的安全。因此,在压力容器的制造过程中对焊接方面的要求很高,焊接的质量控制是工程建设质量控制的关键。 标签:压力容器;焊接质量;分析 “质量-市场-效益-生存-发展”已成为现代经济生活的生命线,随着科学技术和世界范围的经济、贸易和交往迅速发展,质量也成为一个永恒的、跨越国界的主题。压力容器能否安全运行,首先取决于它的制造质量,而焊接质量又是压力容器制造质量的关键。 1 压力容器焊接常见的缺陷及原因分析 广义的焊接缺陷是指焊接过程中在焊接接头处产生不符合设计或工艺文件要求的缺陷,亦称为焊接缺欠。焊接过程中有着许多不能够人为控制的因素,焊件出现缺陷是不可能完全避免。焊接缺陷按其形成的部位可分为焊缝内部缺陷和焊缝外部缺陷两大类,其中内部缺陷有未熔透、未熔合、夹渣、内部气孔、内部裂纹等;外部缺陷有焊缝尺寸与形状不符合要求、咬边、焊瘤、凹坑(包括弧坑)、塌陷、烧穿、表面气孔、表面裂纹等。 1.1 压力容器焊接常见的内部缺陷 夹渣是指焊后非金属夹杂物残留在焊道之间或焊缝与坡口侧壁之间的焊渣,究其原因主要是焊接过程中的被焊边缘和各层焊缝清渣不干净;焊条角度和运条技法不当;焊接电流过小,焊接速度过快;坡口设计加工不合适等。气孔是指在焊接过程中,熔池金属高温时产生和吸收的气泡,在凝固时未能及时逸出,残存于焊缝之中所形成的空穴。气孔的产生有很多原因,主要的原因表现为焊接材料不干净或受潮,未按规定温度烘干;焊接线能量过小且熔池冷却速度大导致气体难以逸出;焊接区未能得到有效保护等。未焊透和未熔合是焊接时会产生的严重缺陷,未熔合是指在熔焊时,焊缝金屬与母材金属之间熔化不良的现象。未焊透是指焊接时,母材金属未熔化,焊缝金属没有进入接头根部。未焊透和未熔合一般出现在焊缝坡口中间。 1.2 压力容器焊接常见的外部缺陷 焊接裂纹是一种会造成极大安全隐患的严重缺陷,裂纹是指焊缝及附近区域内部或表面有裂纹。它具有尖锐的缺口和较大的长宽比,通常在焊接接头中是不允许存在的。焊接材料或工件化学成分不当、焊缝深宽比太大、焊缝金属冷却凝固过快、焊道太窄(特别是角焊缝和底层焊道)、焊接工艺不合理等都是造成焊接裂纹的主要原因。咬边则是由于焊接工艺参数选择不当,操作不当、焊接电流

相关文档