文档库 最新最全的文档下载
当前位置:文档库 › 路径损耗和阴影衰落

路径损耗和阴影衰落

路径损耗和阴影衰落
路径损耗和阴影衰落

无线信道的衰落特性

无线通信

近年来移动通信技术飞速发展,经历了三个发展阶段,第一代模拟系统仅提供语音服务,不能传输数据;第二代数字移动通信系统的数据传输速率也只有9.6Kbit/s,最高可达32kbit/s;第三代移动通信系统数据传输速率可达到2Mbit/s。随着第三代移动通信(3G)陆续在各国投入商业运营,必将给人们的生活带来更多的方便。过去所采用的一些成熟的无线技术,例如窄带信道中的调制技术,由于其速率的限制,已渐渐被宽带信道调制技术所代替,对宽带信道的传输性能及调制技术的研究已经达到前所未有的高度。无线通信的发展目标是使用者能够在任意地点、任何时间与任何人实现即时通信。

无线电波的传播

无线信道的电波传输特性与传播环境—地貌、人工建筑、气候特征、电磁干扰情况、通信体移动速度和使用的频段等密切相关。无线通信系统的通信能力和服务质量、无线通信设备要采用的无线传输技术都与无线移动信道性能的好坏密切相关。电磁波在空中传播时,墙壁、地面、建筑物和其他物体会对电磁波形成反射、散射、折射和衍射等现象。

无线移动信号的损耗包括自由空间传播损耗与弥散、阴影衰落和多径效应。无线电波在理想的空间中传播时,电磁波的能量不会被障碍物吸收,也不存在电波的反射、折射、绕射、色散和吸收等现象,但是随着传播距离的增大,电磁能量在扩散过程中产生球面波扩散损耗;由于电波传播遇到的障碍物等阻挡,形成电波阴影区,阴影区的电场强度减弱的现象称为阴影效应。引起的衰落幅度服从对数正态分布(正态衰落或高斯衰落);由于移动传播环境的多径传播引起的衰落称为多径衰落。当接收信号中无主导信号时,衰落振幅服从瑞利分布。当接收信号中有主导信号时,衰落振幅服从莱斯分布。多径衰落使信号电平起伏不定,严重时将影响通话质量。

无线电波的衰落作用使得到达接收端的信号的功率变小。在发射机和接收机之间的存在的任何障碍物都会引起信号功率的衰减。

发送和接收信号模型

在频率范围为0.3GHz~3GHz的UHF频段和频率范围为3GHz~30GHz的SHF 频段,电波的传播特性良好,天线尺寸也比较小,很适合无线通信。我们假设传播距离不是很大,这样地球曲率的影响可以忽略。

调制器中的振荡器产生的是实正弦信号,所以我们认为接收与发送的信号均是实信号,虽然为了简化分析,我们经常采用复数信道建模,但信道实际上只是改变了发送信号在不同频率处的幅度和相位,因此接收信号也是实信号。因此,我们所研究的发射和接收信号都是实信号。但为了便于分析,常把实的发送和接收信号表示成一个复信号的实部,这就是带通信号的等效基带表示。

发送信号表示为

2()Re{()}

c j f t s t u t e π=Re{()}cos(2)Im{()}sin(2)

c c u t f t u t f t ππ=?()cos(2)()sin(2)I c Q c s t f t s t f t ππ=?公式(1-1)其中()()()I Q u t s t js t =+是一个复基带信号,其同相分量为()Re{()}I s t u t =,正交分量为()Im{()}Q s t u t =,带宽为u B ,功率为u P 。()u t 称为()s t 的复包络或等效基带信号。复包络得名于()u t 的振幅就是()s t 的振幅。()u t 的相位包括了载波相位移。对于带宽c B f <<的带通信号,等效基带表示使信号通过()u t 体现而与载波频率无关。发送信号的功率为/2t u P P =。

接收信号的表示与发送信号类似,只是叠加了噪声:

2()Re{()}()c j f t r t v t e n t π=+公式(1-2)

其中()n t 为信道噪声。等效基带信号()v t 与()s t 所传输的信道有关。当()s t 经过时不变信道时,可知()()*()v t u t c t =,其中()c t 是等效基带信道的冲激响应。

公式(1-2)中的接收信号包括两项,第一项是经过信道传播之后的发送信号,第二项是信道噪声。接收信号的信噪比定义为第一项和第二项的功率之比。由于信号的传播特性与噪声无关,为了突出所研究的信号传播问题,我们忽略了随机噪声分量()n t 。

当发射机和接收机有一方在移动式时,接收效应会有一个多普勒频移。如果

接收机朝着发射机的方向移动,多普勒频移为正值,反之则为负值。对于典型的车速(75km/h )和频率(约1GHz ),多普勒频移只有100Hz 左右。

假设发送信号()s t 的功率为t P ,相应的接收信号()r t 的功率为r P 。存在阴影时,r P 指对阴影平均后的结果。定义信道的路径损耗真值为发射功率和接收功率的比值:

t

L r P P P =公式(1-3)

定义信道的路径损耗为路径损耗真值的分贝数,即发送功率和接收功率的分贝差:

1010log t L r P P dB dB P =公式(1-4)

信道时无源的,它只能衰减信号,所以用分贝表示的路径损耗一般都是非负值。定义路径增益分贝值为路径损耗分贝值的负数:1010log (/)G L r t P P P P dB =?=,通常是负值。考虑阴影效应时,物体的随机遮蔽将使接收功率呈现出随机性。大尺度衰落

为了深入研究和实际应用的需要,把无线信道的衰落主要分为两种形式:大尺度衰落和小尺度衰落。大尺度衰落使由于发射机和接收机之间的距离和两者之间的障碍物引起的平均信号能量减少,包括路径损耗和阴影衰落。

假设信号经过自由空间到达距离d 处的接收机,发射机和接收机之间没有任何障碍物,信号沿直线传播。这样的信道称为视距信道,相应的接收信号为LOS 信号或直射信号。自由空间路径损耗使接收信号相对于发送信号引入了一个复数

因子,产生的接收信号:

2()Re ()c j f t r t t e π??=?????公式(1-5)

公式中,是在视距方向上发射天线和接收天线的增益之积,2/j d e πλ?是由传播视距d 引起的相移。

发射信号()s t 的功率为t P ,由公式(1-5)

可得到接收功率和发射功率的比为

2r P P =??公式(1-6)

可见接收功率与收发天线间距离d 的平方成反比。公式(1-6)中的接收功率还和波长的平方成正比,因此,载波频率越高则接收功率越小。接收功率与波长λ有关是因为接收天线的有效面积和波长有关。

自由空间传播时,接收功率也可以表示为dBm 的形式

1010101010log ()20log ()20log (4)20log ()r t

l P dBm PdBm G d λπ=++??公式(1-7)自由空间路径损耗定义为自由空间模型下的路径损耗

2

10102

10log 10log (4)t l L r P G P dB P d λπ==?公式(1-8)相应的自由空间路径增益为2

10210log (4)l G L G P P d λπ=?=公式(1-9)

信号在无线信道传播过程中,我们用统计模型来来表征包括障碍物的位置、大小和介电特性及反射面和散射体的变化情况造成的信号的随机衰减。最常用的模型是对数正态阴影模型,它可以精确地建模室外和室内无线传播中接收功率的变化。

对数正态阴影模型把发射和接收功率的比值/t r P P ψ=假设为一个对数正态

分布的随机变量,即()210210log (2dB dB p ψψψμψσ??????????0ψ>公式(1-10)

其中10/ln10ξ=、dB ψμ是以dB 为单位的()1010log dB ψψ=的均值、dB ψσ是dB ψ的标准差(单位也是dB )。确定均值时,可以实测,dB ψμ等于路径损耗;也可以用

解析模型,dB ψμ必须结合考虑障碍物造成的平均衰减和路径损耗。服从对数正态

分布的随机变量称为对数正态随机变量。如果ψ为对数正态分布,那么接收功率和接收信噪比也是对数正态分布的,因为这两个量只是ψ乘上了一个常系数。路径损耗真值ψ的平均值可以从公式(1-10)求出为

[]22exp 2dB dB E ψψψμσμψξξ??==+??????

公式(1-11)由此可得线性平均与对数平均的转换关系为

21010log 2dB dB ψψψσμμξ=+公式(1-12)

对数正态阴影衰落的参数一般采用对数均值dB ψμ,称为平均分贝路径损耗,

单位是dB 。经过变量代换后可以看出,ψ的分贝值服从均值为dB ψμ、标准差为

dB ψσ的正态分布

(

)()22

2dB dB dB dB p ψψψμψσ?????=?????公式(1-13)

对数正态分布由两个参数dB ψμ和dB ψσ确定。

当阴影衰落主要由阻挡衰减决定时,分贝平均接收功率的高斯模型可以用下面的衰减模型来分析。信号穿过宽度为d 的物体时其衰减近似为

()d s d e α?=公式(1-14)

公式中α是依赖于障碍物材料和介电性质的衰减常数。若第i 个障碍物的衰减常数为i α、宽度为随机值i d ,那么信号穿过该区域时的衰减为

()i i i d i s d e α?∑=公式(1-15)

如果发射机和接收机之间有多个障碍物,那么由中心极限定理,i i i d α∑可

s d就是一个均值为μ,方差为σ的随机变近似为高斯随机变量。这样,()

log

t

量(σ的值由传播环境决定)。

小尺度衰落

小尺度衰落是由于发射机与接收机之间空间位置的微小变化引起的,描述小范围内接收信号场强中瞬时值的快速变化特性,是由多径传播和多普勒频移两者共同作用的结果,包括由多径效应引起的衰落和信道时变性引起的衰落,具有信号的多径时延扩展特性和信道的时变特性。根据信号带宽和多径信道的相干带宽关系,将由多径效应引起是衰落分为平坦衰落和频率选择性衰落。

若多径信道的相干带宽远大于信号的带宽,此时的信道衰落称为平坦衰落。研究表明,平坦衰落的幅度符合瑞利分布或莱斯分布。若某一路经信号在传播过程中存在视距路经传播时,衰落信号幅度符合莱斯分布。当反射路经的数量很多,并且没有主要的视距传播路经时,衰落信号的幅度服从瑞利分布。

若信号的相干带宽小于信号的带宽,此时的信道衰落称之为频率选择性衰落。此时,信道冲激响应具有多径时延扩展,反应衰落信号相位的随机变化。频率选择性衰落是由于多径时延接近或超过发射信号的周期引起的,是影响信号传输的重要特性。信号在多径传播过程中,容易引起选择性衰落,从而造成码间干扰。为了不引起明显的频率选择性衰落,传输信号带宽必须小于多径信号的相关带宽。为了减少码间干扰的影响,通常限制信号的传输速率。

简化的路径损耗模型

简化的路径损耗模型 信号传播的复杂性使得用一个单一的模型准确描述信号穿越一系列不同的环境的路径损耗的特征非常困难。准确的路径损耗模型可以通过复杂的射线追踪模型或者经验测量获得,其中必须满足严格的系统规范,或者基站和接入点的布局必须在最佳的位置。然而,出于对不同系统设计的通用权衡分析,有时候最好的方式是用一个简单的模型抓住信号传播的本质特征,而不是求助于复杂的路径损耗模型,后者也仅仅是真实的信道的近似。这样,下面这个路径损耗(以距离为自变量的函数)的简单模型成为系统设计的常用方法。 (2.20) 如果用dB衰减的形式表达,则为: (2.21) 在这个近似公式中,K是无单位常数,取值取决于传播、天线参数和阻塞引起的平均衰减,d0是天线远场的参考距离,γ是路径损耗指数。由于在天线近场存在散射现象,模型(2.20)通常只适用于传播距离d>d0,其中室内环境下假设d0的范围是1-10米,室外环境下假设d0的范围是10-100米。K的值小于1,而且通常被设定为在距离d0处的自由空间路径损耗(这个设定已经被经验测试数据证实): (2.22) 或者K也可以由在d0处的测量数据决定,并且进行进一步的优化,以便模型或者经验数据之间的均方误差(MSE)能够最小化。γ的值取决于传播环境:对于近似遵循自由空间模型或者双路径模型的传播来说,γ值相应地取为2—4。在更复杂的环境中,γ值可以通过拟合经验测试数据的最小均方误差(MMSE,Mimimum Mean Square Error)来取得(如下面的例子所示)。或者γ值也可以由考虑了载频和天线高度的经验模型(如Hata模型、Okumura模型等)来取得。表格2.1概括了900MHz下不同的室内环境和室外环境下的γ值。如果载频更高,则路径损耗指数γ也会更高。主要指出的是,室内环境下γ的取值范围变化比较大,这是由地板、隔墙和物体引起的信号衰减导致的。

室内传播和路径损耗计算及实例(完整版)

室内传播与路径损耗计算及实例 RFWaves公司 Adi Shamir 摘要:通过对传播路径损耗得估算来预测无线通信系统在其工作环境下得性能;解释了自由空间传播损耗得计算;电磁波在介质中得发射与反射系数得理论计算就是预测反射与发射系数得工具。下面得一些实例与模型就是在2、4GHz工作频率时给出得。 ------------------------------------------------------------------------------------------- 1、简介 大多数无线应用设计人员最关心得问题就是系统能否正常工作在无线信道得最大距离。最简单得方法就是计算与预测:a)系统得动态范围;b)电磁波得传播损耗。 动态范围对设计者而言就是一个重要得系统指标。它决定了传输信道上(收发信机之间)允许得最大功率损耗。决定动态范围得主要指标就是发射功率与接收灵敏度。例如:某系统有80dB得动态范围就是指接收机可以检测到比发射功率低80dB得信号电平。传播损耗就是指传输路径上损失得能量,传播路径就是电磁波传输得路径(从发射机到接收机)。例:如果某路径得传播损耗就是50dB,发射机得功率就是10dB,那末接收机得接收信号电平就是-40dB。 2.自由空间中电磁波得传播 如上所述,当电磁波在自由空间传播时,其路径可认为就是连接收发信机得一条射线,可用Ferris公式计算自由空间得电波传播损耗: Pr/Pt= Gt、Gr、 (λ/4πR)2 (2、1) 式中Pr就是接收功率,Pt就是发射功率,Gt与Gr分别就是发射与接收天线得增益,R就是收发信机之间得距离,功率损耗与收发信机之间得距离R得平方成反比。公式2、1可以对数表示为: PL=-Gr-Gt+20log(4πR/λ)=Gr+Gt+22+20log(R/λ) (2、2) 式中Gr与Gt分别代表接收天线与发射天线增益(dB),R就是收发信机之间得距离,λ就是波长。 当λ=12、3cm时(f=2、44GHz)可得出: PL2、44=-Gr-Gt+40、2+20log(R) (2、3) R得单位为米。 图2-1表示了信号频率2、44GHz,天线得增益为0dBi时得自由空间得损耗曲线。 注意:在此公式中收发天线得极化要一致(匹配),天线得极化不同会产生另一损耗系数。一般情况下对于理想得线极化天线,极化损耗同两个天线得极化方向得夹角得余弦得平方成正比。例如:两个偶极天线得方向夹角为45°时,极化损耗系数为-3dB左右。

移动信道的模型(多径衰落信道)

6.1.4 移动信道的模型(多径衰落信道) 、时变线性滤波器模型及其响应 1. 带通系统分析 1)离散多径 2)连续多径 信道:(,t ), (t ),即(,t )表示在0时刻的冲激在T 时刻的响应。 响应: x(t) ( ,t)s(t )d 14-1-6) 信道:信道系数 n (t ),即(n ,t ),时延 n (t ) 响应: x(t) n (t)s(t n ( n ,t)s(t n n (t)) n (t)) 14-1-2)

2.等效低通分析 1)离散多径 由带通信道模型: 其中n(t) ( n,t)为实函数,所以有 即得到等效低通模型为 所以得到: 其中n(t) @ ( n;t)。 2)连续多径 信道:c( ;t) ( ;t)e j2 fc (t) 响应:r l (t) c( ;t)s l (t )d ( ;t)e j2 fc (t)s l(t )d 信道系数:n(t)e j2 fcn(t)或(n;t)e j2 fcn(t)14-1-5) 响应:r l (t)n(t)e j2 f n n(t)s l (t n(t))14-1-4) 若令c( ;t) n(t)e j2 f c n(t) n ( n (t)) ,则 可见c( ;t)是0时刻的冲激通过信道后在时刻上的响应。 14-1-8)

二、多径衰落信道的统计特性 1.等效低通信道 论冲激响应:即0时刻的冲激通过信道后在时刻上的响应。 其中n(t) 2 f c n(t) 离散多径:c( ;t) n(t)e jn⑴(n(t)) n 连续多径: c( ;t) ( ;t)e j⑴其中(t) 2 f c (t) 2.分析:c( ;t)由许多时变随机向量组成 幅度系数n(t)-随移动台运动而随机变化; 相位偏移n(t)—在[0,2 )内随机变化。且各条路径是独立的,各个向量分量是独立随机变量,且零均值的。 3.初步结论 (1) 根据中心极限定理,合成的时变随机向量c( ;t)是零均值,低通复高斯过程 其幅度c( ;t)服从Rayleigh分布,相位n (t)服从(0, 2 )均匀分布。 (2) 信道传输函数:C(f;t) c( ;t)e j2 f d (线性变换) 故C(f;t)也是零均值、低通复高斯过程。称为时变传递函数。 (3) 若其中有一条路径的分量相当强(如直射分量LOS,超过其他分量之总和), 则合成向量幅度服从Rice分布。

路径损耗模型和参数-ITU

ITU-R P. 1791建议书* 用于评估超宽带设备影响的传播预测方法 (ITU-R 第211/3号课题) (2007年) 范围 本建议书提供适用1-10 GHz频率范围的方法,以计算视距(LoS)和障碍路径环境下室内和室外超宽带(UWB)系统的路径损耗,并评估传统窄带接收机从UWB发射机接收功率的情况。 国际电联无线电通信全会, 考虑到 a) 超宽带(UWB)技术是一项迅速发展的无线技术; b) 采用UWB技术的设备使用多个高速数据流,并覆盖广泛带宽; c) 了解传播特性对于评估UWB设备的影响至关重要; d) 人们既需要了解有关干扰评估的实验(即适用各站址)模型和意见,又需要了解进行详细传播预测所需的确定性(或针对具体站址的)模型, 注意到 a) ITU-R P. 525建议书提供有关自由空间衰减的计算方法; b) ITU-R P. 528建议书提供VHF、UHF和SHF频段航空移动和无线电导航业务的传播曲线; c) ITU-R P. 618建议书提供地对空链路的传播数据和预测方法; d) ITU-R P. 452建议书阐述约0.7 GHz至30 GHz频率范围内地球表面台站之间微波干扰的评估程序; e) ITU-R P. 1238建议书提出有关900 MHz至100 GHz频率范围的室内传播指导; f) ITU-R P. 1411建议书提供约300 MHz至100 GHz频率范围室外短路径的传播方法; *应提请无线电通信第1研究组注意本建议书。

g) ITU-R P.1546建议书提出有关30 MHz至3 GHz频率范围距离为1公里或1公里以上系统的传播指导; h) ITU-R P. 530建议书提供地面视距(LoS)系统设计的传播数据和预测方法, 建议 1应采用本建议书附件1提供的信息和方法计算1 GHz至10 GHz频率范围内UWB设备的路径损耗; 2应采用本建议书附件2提供的信息评估传统窄带接收机从UWB发射机接收的功率。 附件 1 1 引言 UWB视距传输损耗对频率的依赖主要由天线特性决定。因此,通常用于窄带信号传播建模的传统路径损耗模型对于计算UWB信号的路径损耗十分有益。 迄今为止,人们已在复杂多样的环境条件下对UWB传播进行了广泛研究和实验,从而建立了UWB的传播模型及其参数。 UWB设备既可能用于室内,也可能用于室外。在进行传播研究时,人们需要详细了解室内站址的具体情况,包括其几何图形、材料和家具等。对于室外传播,有关建筑物和树木的信息对传播计算至关重要。这些因素往往造成UWB接收机能够解决的、多径效应的产生。因此,UWB传播模型应当容纳UWB设备将运行其中的、典型环境的路径损耗和多径特性。能够广泛代表相关环境传播特性的模型更有助于人们实现上述目标。通常而言,这些模型不需要用户获得大量输入信息即可以进行计算工作。 本建议书确定相关的运行环境和路径损耗类别,并提供估算此类条件下UWB路径损耗的方法。应在确定UWB链路预算工作中采用本建议书。 2 实际运行环境 本建议书仅从无线电传播的角度对环境加以分类。本建议书确定两种不同的室内传播环境和一种室外传播环境。人们认为,这些环境是最具代表性的环境。表1列出了上述三种环境。由于认识到在各类别中存在多种不同的环境,因此本建议书并非旨在对每一种可能的情况都进行建模,而是给出能够代表人们通常遇到的环境的传播模型。

(精选)信道衰落模型汇总

简单模型2种:常量(Constant )模型和纯多普勒模型 1. 常量(Constant )模型: 常量模型既没有衰落,也没有多普勒频移,适用于可预测的固定业务无线信道。其幅度分布的概率密度函数(PDF )为: 0(r)A (r r ) p δ=- 式中r 为信道响应的幅度,A 为概率常数。 常量模型的多普勒谱为: ()db d f P B f δ= 式中fd 为最大多普勒频移,f 为基带频率,B 为常数。 2. 纯多普勒模型: 纯多普勒模型无衰落,但有多普勒频移,适用于可预测的移动业务无线信道。其幅度分布与常量模型相同,多普勒谱为: ()x db d d f f P C f f δ=-,C 为常数。 由于移动通信中移动台的移动性,无线信道中存在多普勒效应。在移动通信中,当移动台移向基站时,频率变高,远离基站时,频率变低。我们在移动通信中要充分考虑“多普勒效应”。虽然,由于日常生活中,我们移动速度的局限,不可能会带来十分大的频率偏移,但是这不可否认地会给移动通信带来影响,为了避免这种影响造成我们通信中的问题,我们不得不在技术上加以各种考虑。也加大了移动通信的复杂性。 3. 瑞利模型: 瑞利衰落信道(Rayleigh fading channel )是一种无线电信号传播环境的统计模型。这种模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落”,并且其包络服从瑞利分布。这一信道模型能够描述由电离层和对流层反射的短波信道,以及建筑物密集的城市环境。瑞利衰落只适用于从发射机到接收机不存在直射信号(LoS ,Line of Sight )的情况,否则应使用莱斯衰落信道作为信道模型。在无线通信信道环境中,电磁波经过反射折射散射等多条路径传播到达接收机后,总信号的强度服从瑞利分布。 同时由于接收机的移动及其他原因,信号强度和相位等特性又在起伏变化, 故称为瑞利衰落。

无线衰落信道、多径与OFDM、均衡技术要点

无线衰落信道、多径与OFDM、均衡技术 (2012-08-30 14:14:43) 转载▼ 标签: 杂谈 参见张贤达通信信号处理。OFDM移动通信技术原理与应用,移动通信原理吴伟陵 目录 无线信道的传播特征 无线信道的大尺度衰落 阴影衰落 无线信道的多径衰落 多径时延与与叠加后的衰落 频率选择性衰落和非频率选择性衰落 符号间干扰ISI的避免 多径信号的时延扩展引起频率选择性衰落,相干带宽=最大时延扩展的倒数 无线信道的时变性以及多普勒频移 多普勒效应 时变性、时间选择性衰落与多普勒频移 相干时间与多径 OFDM对于多径的解决方案 多径信号在时域、频域的分析思考 1,多径信号是空间上的多个不同信号。各参数应分别从时域、频率进行考察。 2,符号间干扰ISI是时域的概念,时延、多径均影响了ISI 3,信道间干扰ICI是频域的概念,时延、多径均影响了ICI 4,时延、多普勒频移分别对应于:频率选择性衰落、时间选择性衰落,它们具有对偶性质 多径对信号频谱的影响,OFDM如何抗多径 GSM中的自适应均衡技术 无线信道的传播特征 与其他通信信道相比,移动信道是最为复杂的一种。电波传播的主要方式是空间波,即直射波、折射波、散射波以及它们的合成波。再加之移动台本身的运动,使得移动台与基站之间的无线信道多变并且难以控制。信号通过无线信道时,会遭受各种衰落的影响,一般来说接收信号的功率可以表达为: 其中d表示移动台与基站的距离向量,|d|表示移动台与基站的距离。根据上式,无线信道对信号的影响可以分为三种: (1)电波中自由空间内的传播损耗|d|-n ,也被称作大尺度衰落,其中n一般为3~4;

MATLAB仿真瑞利衰落信道实验报告结果

封面: 题目:瑞利衰落信道仿真实验报告 题目:MATLAB仿真瑞利衰落信道实验报告 引言 由于多径效应与移动台运动等影响因素,使得移动信道对传输信号在时间、频率与角度上造成了色散,即时间色散、频率色散、角度色散等等,因此多径信道得特性对通信质量有着重要得影响,而多径信道得包络统计特性则就是我们研究得焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布等。在此专门针对服从瑞利分布得多径信道进行模拟仿真,进一步加深对多径信道特性得了解、 一、瑞利衰落信道简介: 瑞利衰落信道(Rayleigh fading channel)就是一种无线电信号传播环境得统计模型、这种模型假设信号通过无线信道之后,其信号幅度就是随机得,即“衰落”,并且其包络服从瑞利分布。 二、仿真原理 (1)瑞利分布分析 环境条件: 通常在离基站较远、反射物较多得地区,发射机与接收机之间没有直射波路径(如视距传播路径),且存在大量反射波,到达接收天线得方向角随机得((0~2π)均匀分布),各反射波得幅度与相位都统计独立。

幅度与相位得分布特性: 包络 r 服从瑞利分布,θ在0~2π内服从均匀分布。瑞利分布得概率分布密度如图2-1所示: 图2-1瑞利分布得概率分布密度 (2)多径衰落信道基本模型 离散多径衰落信道模型为 其中,复路径衰落,服从瑞利分布; 就是多径时延。多径衰落信道模型框图如图2—2所示:

图2-2 多径衰落信道模型框图 (3)产生服从瑞利分布得路径衰落r(t) 利用窄带高斯过程得特性,其振幅服从瑞利分布,即 上式中,分别为窄带高斯过程得同相与正交支路得基带信号。 三、仿真程序: function[h]=rayleigh(fd,t) %产生瑞利衰落信道 fc=900*10^6;%选取载波频率 v1=30*1000/3600;%移动速度v1=30km/h c=3*10^8; %定义光速 fd=v1*fc/c; %多普勒频移 ts=1/10000; %信道抽样时间间隔 t=0:ts:1; %生成时间序列 h1=rayleigh(fd,t); %产生信道数据 v2=120*1000/3600; %移动速度v2=120km/h fd=v2*fc/c; %多普勒频移 h2=rayleigh(fd,t); %产生信道数据 subplot(2,1,1),plot(20*log10(abs(h1(1:10000)))) title(’v=30km/h时得信道曲线’) xlabel(’时间’);ylabel(’功率’) subplot(2,1,2),plot(20*log10(abs(h2(1:10000)))) title('v=120km/h时得信道曲线') xlabel('时间');ylabel(’功率’)

移动衰落信道现状与发展

1.2研究现状分析 近年来,常用的信道建模方法可以分为两类:第一类是统计模型,它总结了建筑地形的统计特性(包括建筑物本身),这种无线传播的统计描述包括地形和多次反射、散射、衍射的次数等;第二类是确定性射线跟踪模型,它利用了从地形 中各个障碍点到达接收机的多条射线进行直接计算,在接收点统计多条射线,以得到接收信号的统计特性,包括幅度、相位等,这样得到的结果十分精确。第二 种方法在未对环境进行功率测量的情况下就可以进行建模,因此比较省时方便。 使用统计模型来对无线信道建模的研究分析比较早。最早出现的是瑞利模 型、莱斯模型和对数正态模型,其中前面两个模型都是针对小尺度衰落而建立的,而对数正态模型则是针对大尺度衰落而建立的。后来随着人们对无线信道建模精确性要求的提高,越来越多的统计混合模型出现了,但都是以这三个模型为基础。 1960年Nakagami.M提出了以其名字命名的模型,这种衰落信道模型适用性十分广泛,比瑞利、莱斯和对数正态模型更适应复杂的环境,Suzuki提出瑞利对数正态模型,该模型同时反映了大尺度衰落和小尺度衰落的特性,描述了这样一种传播场景,在发射端发射的信号主波经过几次反射和衍射后,达到了一个建筑物密集的地方,主波由于当地物体的散射、衍射等的结果将会分为许多子路径。 模型令发射端到小区的路径服从对数正态分布,因为路径经历了乘法效应;而当地路径由于是加性散射效应导致的,服从瑞利分布;这时接收信号的包括服从瑞利一对数正态模型。 第一个移动信道多径统计模型是由Ossana在1964年提出,它基于入射波和建筑物表面随机分布的反射波相互干涉的原理。但该模型假设在收发之间存在一条直射路径,且反射的角度局限于一个严格的范围之内,所以该模型对于市区传播环境来说,既不方便也不准确。后来Clarke建立了移动台接收信号场强的统计特性是基于散射的统计模型,他认为接收端的电磁波由N个平面波组成,这些平面波具有任意载频相位、入射方位角及相等的平均幅度,Clarke模型已经被广泛使用。 以上都是针对小尺度衰落的统计模型,在大尺度衰落的统计建模方面的研究

3路径损耗模型-ITU

ITU-R P.1238-5建议书 用于规划频率范围在900 MHz到100 GHz内的室内无线电 通信系统和无线局域网的传播数据和预测方法 (ITU-R第211/3号课题) (1997-1999-2001-2003-2005-2007年) 范围 本建议书介绍了在900 MHz 至100 GHz频率范围内的室内传播的指导原则,主要内容如下: –路径损耗模型; –时延扩展模型; –极化和天线辐射图的效应; –发射机和接收机选址的效应; –建材装修和家具的效应; –室内物体移动的效应。 考虑到 a)正在开发将在室内工作的许多短距离(工作范围短于1 km)的个人通信应用; b)正如许多现有产品和热门的研究活动所表明的那样,无线局域网(RLAN)和无线专用交换机(WPBX)需求很旺盛; c)希望设立无线局域网标准,可与无线和有线通信都兼容; d)采用非常低功率的短距离系统在移动和个人环境下提供业务有许多优点; e)在建筑物内的传播特性和在同一区域内许多用户引起的干扰这两方面的知识,对系统的有效设计是非常重要的; f)用于系统初步规划和干扰估算的通用(即与位置无关)模型和用于某些细致评估的定型(或具体地点)模型都是需要的; 注意到 a)ITU-R P.1411建议书为频率范围在300 MHz到100 GHz的室外短距离电波传播提供了指导,并且该建议也应该作为同时存在室内和室外传播条件的那些情况下的参考文件。 建议 1 对工作于900 MHz到100 GHz之间的室内无线电系统的传播特性进行评估时,采用附件1中的资料和方法。

附件 1 1 引言 室内无线电系统的传播预测在某些方面是与室外系统有区别的。跟室外系统中一样,根本目的是保证在所要求的区域内有效覆盖(或在点对点系统情况下保证有可靠的传播路径)和避免干扰,包括系统内的干扰以及其他系统的干扰。然而,在室内情况下,覆盖的范围是由建筑物的几何形状明确地限定的,而且建筑物本身的各边界将对传播有影响。除了一建筑物的同一层上的频率要重复使用外,经常还希望在同一建筑物的各层之间要频率共用。这样就增添了三维干扰问题。最后,距离很短,特别是使用毫米波频率的场合,意味着无线电路径附近环境的微小变化可能会对传播特性有重大的影响。 由于这些因素的复杂性,若要着手室内无线电系统的具体规划,就需要知道特定位置的详细情况,如几何形状、材料、家具、预期的使用模型等。但是,为了进行系统初步规划,必须估计出覆盖该区域内所分布的移动站所需要的基站数目以及要估计与其他业务的可能干扰或系统之间的潜在干扰。对这些系统规划的情况而言,通常必须要有代表该环境中的传播特性的模型。同时,为了完成计算,该模型不应该要求使用者提供许多输入信息。 本附件主要说明了在室内无线电环境中遇到的传输损伤的通用的、与位置无关的模型和定性的建议。如有可能,也给出与位置有关的专用模型。在许多情况下,基本模型可用的数据受限于频率或试验环境。当可以取得更多的数据时,希望将附件中的建议加以扩充。同样,要根据使用这些模型过程中取得的经验来改善这些模型的精度。但是,本附件代表了目前可以使用的最佳建议。 2 室内无线电系统中的传播损伤和质量的度量标准 室内无线电信道的传播损伤主要由下列因素所造成: —来自房间内的物体(包括墙和地板)的反射和物体附近的衍射; —穿过墙、地板和其他障碍物的传输损耗; —高频情况下能量的通道效应,特别时走廊中这个效应更明显; —房间中人和物体的运动,包括在无线电链路的一端或两端可能的运动,而引起的传播损伤如下: —路径损耗——不仅有自由空间损耗,还有由于障碍物以及穿过建筑物材料传输引起的附加损耗,并且由于通道效应,自由空间损耗可能会减小; —路径损耗随时间和空间的变化; —从波的反射分量和衍射分量而引起的多径效应; —由于移动终端的随机位置变化而引起的极化失配。 室内无线通信业务可以由如下特性来表征: —高/中/低数据速率;

MATLAB仿真瑞利衰落信道实验报告结果

封面: 题目:瑞利衰落信道仿真实验报告

题目:MATLAB仿真瑞利衰落信道实验报告 引言 由于多径效应和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,即时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着重要的影响,而多径信道的包络统计特性则是我们研究的焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布等。在此专门针对服从瑞利分布的多径信道进行模拟仿真,进一步加深对多径信道特性的了解。 一、瑞利衰落信道简介: 瑞利衰落信道(Rayleigh fading channel)是一种无线电信号传播环境的统计模型。这种模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落”,并且其包络服从瑞利分布。 二、仿真原理 (1)瑞利分布分析 环境条件: 通常在离基站较远、反射物较多的地区,发射机和接收机之间没有直射波路径(如视距传播路径),且存在大量反射波,到达接收天线的方向角随机的((0~2π)均匀分布),各反射波的幅度和相位都统计独立。 幅度与相位的分布特性: 包络 r 服从瑞利分布,θ在0~2π内服从均匀分布。瑞利分

布的概率分布密度如图

2-1所示: 图2-1 瑞利分布的概率分布密度 (2)多径衰落信道基本模型 离散多径衰落信道模型为 ()1()()() N t k k k y t r t x t τ==-∑ 其中,()k r t 复路径衰落,服从瑞利分布; k τ是多径时延。 多径衰落信道模型框图如图2-2所示:

图2-2 多径衰落信道模型框图 (3)产生服从瑞利分布的路径衰落r(t) 利用窄带高斯过程的特性,其振幅服从瑞利分布,即 22()()()c s r t n t n t =+ 上式中()()c s n t n t 、,分别为窄带高斯过程的同相和正交支路的基带信号。

室内传播和路径损耗计算及实例(完整版)

室内传播和路径损耗计算及实例 RFWaves公司 Adi Shamir 摘要:通过对传播路径损耗的估算来预测无线通信系统在其工作环境下的性能;解释了自由空间传播损耗的计算;电磁波在介质中的发射和反射系数的理论计算是预测反射和发射系数的工具。下面的一些实例和模型是在工作频率时给出的。 ------------------------------------------------------------------------------------------- 1.简介 大多数无线应用设计人员最关心的问题是系统能否正常工作在无线信道的最大距离。最简单的方法是计算和预测:a)系统的动态范围;b)电磁波的传播损耗。 动态范围对设计者而言是一个重要的系统指标。它决定了传输信道上(收发信机之间)允许的最大功率损耗。决定动态范围的主要指标是发射功率和接收灵敏度。例如:某系统有80dB的动态范围是指接收机可以检测到比发射功率低80dB的信号电平。传播损耗是指传输路径上损失的能量,传播路径是电磁波传输的路径(从发射机到接收机)。例:如果某路径的传播损耗是50dB,发射机的功率是10dB,那末接收机的接收信号电平是-40dB。 2.自由空间中电磁波的传播 如上所述,当电磁波在自由空间传播时,其路径可认为是连接收发信机的一条射线,可用Ferris公式计算自由空间的电波传播损耗: Pr/Pt= . (λ/4πR)2 式中Pr是接收功率,Pt是发射功率,Gt和Gr分别是发射和接收天线的增益,R是收发信机之间的距离,功率损耗与收发信机之间的距离R的平方成反比。公式可以对数表示为: PL=-Gr-Gt+20log(4πR/λ)=Gr+Gt+22+20log(R/λ) () 式中Gr和Gt分别代表接收天线和发射天线增益(dB),R是收发信机之间的距离,λ是波长。 当λ=时(f=可得出: =-Gr-Gt++20log(R) () R的单位为米。 图2-1表示了信号频率,天线的增益为0dBi时的自由空间的损耗曲线。

路径损耗和阴影衰落

路径损耗和阴影衰落 1 概述 无线通信是要实现信息准确可靠且高速地传输,然而这个目标的实现存在着严峻的挑战。因为无线信道易受噪声、干扰和其他信道因素影响,而且由于用户的移动和信道的动态变化,这些因素还在随时间随机变化。其中路径损耗和阴影衰落是两个影响接收信号功率非常重要的因素,本文将讲述两者对接收功率变化的影响,并分析相关的信道传播模型。 2 发送信号与接收信号模型 调制器中的振荡器产生实正弦信号,不是复指数信号,实际上信道只改变了发送信号在不同频率处的幅度和相位,因此接收信号也是实信号。又因为我们采用复数信道建模,所以为了便于分析,我们把发送和接收信号表示成一个复信号的实部。下面分别给出发送和接收信号模型。 2.1 发送信号 发送信号表达式为 2()Re{()}c j f t s t u t e π= (1) 其中u(t)一个复信号,P u 为功率,u(t)称为s(t)的复包络,即u(t)的振幅就是s(t)的振幅。发送信号s(t)的功率P t =P u /2。 2.2 接收信号 接收信号表达式与发送信号类似,只是叠加了噪声: 2()Re{()}()c j f t r t v t e n t π=+ (2) 其中n(t)为信道噪声。v(t)=u(t)*c(t),其中c(t)是信道的冲激响应。 3 路径损耗 路径损耗是由发射功率的辐射扩散及信道的传播特性造成的。显而易见,传播距离越大,辐射扩散越大,路径损耗也越大。假设发送发送信号功率为Pt ,相应的接收信号功率为Pr 。则定义信道的路径损耗(path loss )为

1010log t L r P P dB dB P = (3) 信道只能衰减信号,所以用分贝表示的路径损耗一般都是非负值。下面根据不同的信道传播特性对不同的信号传播模型进行简要介绍。 3.1 自由空间路径损耗 在自由空间路径损耗模型中,信号经过自由空间到达距离d 处的接收机,发射机和接收机之间没有任何障碍物,信号沿直线传播,产生接收信号: 2()Re ()c j f t r t t e π??=????? (4) 2/j d e πλ-是由传播距离d 引起的相移。 由式(4)可得自由空间路径损耗为 ()210102410log 10log t L l l d P P dB P G πλ== (5) 3.2 两径模型 两径模型属于单一的地面反射波在多径效应中起主导作用。如图1所示,其接收信号由两部分组成:1)经自由空间到达接收端的直射分量和2)经地面反射到达接收端的反射分量。 两径模型中接收信号为 22()Re 4c j f t ray r t e πλπ-????=?????????? (6) 其中τ 益乘积,R x 方向上的发送天线和x’方向上的接收天线增益的乘积。

移动无线信道多径衰落的仿真

收稿日期:2004-12-28 作者简介:吴春艳(1965-),女,河南开封人,山东科技大学讲师,主要从事通信工程教学和研究.移动无线信道多径衰落的仿真 吴春艳1,孙 晨2 (1.山东科技大学信电学院,山东青岛 266510;2.山东交通学院信息工程系,山东济南 250023) 摘要:移动无线信道传输特性的仿真对移动通信的研究具有重要意义,其中多径衰落仿真又是其中的重点和 难点。针对多普勒频移和无线信道的随机性,讨论了无线信道的小尺度模型。运用数字信号处理方法,在频 域给出了多普勒滤波仿真信道多径衰落的方法、频率选择性信道的仿真模型和仿真曲线。该方法较好地模拟 了信号载波频率和通信终端移动速度的影响。 关 键 词:无线通信;多径衰落;信道仿真 中图分类号:TN92 文献标认码:A 文章编号:1672-0032(2005)01-0011-03 在通信方案可行性研究以及系统研制等过程中,经常要用计算机仿真验证各种方案或通信信号处理方法的效果,这需要对移动无线信道传输特性进行研究并仿真,其中尤其以多径衰落的仿真为重点[1]。 现代移动通信系统的性能主要受到移动无线信道的制约。无线通信的空间无限性使得发射机与接收机之间的传播路径非常复杂,各种地形地物的影响和移动使得无线信道具有极大的随机性,这与确定性有线信道有很大不同。常用路径损失、阴影衰落和多径衰落3种效应描述大、中、小3种不同尺度范围内信道对传输信号的作用。多径衰落也称快衰落,是由于同一信号沿2个或多个路径传播,以微小的时间差到达接收机时相互干涉引起的,这些波称为多径波。多径波在接收天线处合成一个幅度和相位都急剧变化的信号,其变化程度取决于多径波的强度、传播时间差以及传播信号的带宽,主要表现在3个方面:1)经过短距离或短时间传播后信号强度产生急剧变化;2)在不同路径上,存在着时变多普勒频移引起的随机频率调制;3)多径传播时延引起的扩展[2] 。 假设无线信道中的物体处于静止状态,并且运动只由移动台产生,则衰落只与空间路径有关。此时,当移动台穿过多径区域时,它将信号的空间变化看作瞬时变化,在空间不同点多径波的影响下,高速运动的接收机可能在很短时间内经过若干次衰落。更为严重的是,接收机可能停留在某个特定的衰落很大的位置上,尽管可能由行人或车辆改变场模型,从而打破接收信号长时间处于失效状态的情况,但要维持良好的通信状态仍非常困难。针对种种情况,在移动通信中,可以采取功率控制、基站切换、分集、交织、自适应均衡等各种有效的方法保证通信的质量。在仿真验证这些方法的效果时,常常首先对信道衰落尤其多径衰落进行仿真。图1 多普勒效应示意图 2 多径衰落特性 2.1 多普勒频移 由于移动台与基站的相对运动,每个多径波都经历了明显的频移过 程,这种现象称为多普勒频移,它与移动台的运动速度、运动方向以及接 收机多径波的入射角有关。假设移动台在长度为d 、端点为X 与Y 的路 径上以速率v 运动时,收到来自远端源S 发出的信号,如图1所示。 无线电波在X 与Y 点上分别被接收时所走的路径差为 第13卷 第1期  2005年3月 山东交通学院学报 J OUR NAL OF SH ANDONG JIAOTONG UNIVER SITY Vol .13No .1  Mar .2005

室内传播和路径损耗计算与实例(完整版)

室传播和路径损耗计算及实例 RFWaves公司 Adi Shamir 摘要:通过对传播路径损耗的估算来预测无线通信系统在其工作环境下的性能;解释了自由空间传播损耗的计算;电磁波在介质中的发射和反射系数的理论计算是预测反射和发射系数的工具。下面的一些实例和模型是在2.4GHz工作频率时给出的。 ------------------------------------------------------------------------------------------- 1.简介 大多数无线应用设计人员最关心的问题是系统能否正常工作在无线信道的最大距离。最简单的方法是计算和预测:a)系统的动态围;b)电磁波的传播损耗。 动态围对设计者而言是一个重要的系统指标。它决定了传输信道上(收发信机之间)允许的最大功率损耗。决定动态围的主要指标是发射功率和接收灵敏度。例如:某系统有80dB的动态围是指接收机可以检测到比发射功率低80dB的信号电平。传播损耗是指传输路径上损失的能量,传播路径是电磁波传输的路径(从发射机到接收机)。例:如果某路径的传播损耗是50dB,发射机的功率是10dB,那末接收机的接收信号电平是-40dB。 2.自由空间中电磁波的传播 如上所述,当电磁波在自由空间传播时,其路径可认为是连接收发信机的一条射线,可用Ferris公式计算自由空间的电波传播损耗: Pr/Pt= Gt.Gr. (λ/4πR)2 (2.1) 式中Pr是接收功率,Pt是发射功率,Gt和Gr分别是发射和接收天线的增益,R是收发信机之间的距离,功率损耗与收发信机之间的距离R的平方成反比。公式2.1可以对数表示为: PL=-Gr-Gt+20log(4πR/λ)=Gr+Gt+22+20log(R/λ) (2.2) 式中Gr和Gt分别代表接收天线和发射天线增益(dB),R是收发信机之间的距离,λ是波长。 当λ=12.3cm时(f=2.44GHz)可得出: PL2.44=-Gr-Gt+40.2+20log(R) (2.3) R的单位为米。 图2-1表示了信号频率2.44GHz,天线的增益为0dBi时的自由空间的损耗曲线。 注意:在此公式中收发天线的极化要一致(匹配),天线的极化不同会产生另一损耗系数。一般情况下对于理想的线极化天线,极化损耗同两个天线的极化方向的夹角的余弦的平方成正比。例如:两个偶极天线的方向夹角为45°时,极化损耗系数为-3dB左右。

小尺度衰落信道解读

156 第六章小尺度衰落信道 前面已经介绍无线信道的传播模型可分为大尺度(Large-Scale)传播模型和小尺度(Small-Scale)衰落两种[2],三、四、五章已经介绍了大尺度传播。所谓小尺度是描述短距离(几个波长)或短时间(秒级)内接收信号强度快速变化的;而移动无线信道的主要特征是多径,由于这些多径使得接收信号的幅度急剧变化,产生了衰落,因此,本章将介绍小尺度衰落信道,这对我们移动通信研究中传输技术的选择和数字接收机的设计尤为重要。 本章将先介绍小尺度的衰落和多径的物理模型和数学模型,使读者从概念上清楚地认识移动无线信道的主要特点,并建立一个统一的数学模型,为以后讨论各种模型奠定基础;接着将介绍移动多径信道的三组色散参数——时间色散参数(时延扩展,相关带宽)、频率色散参数(多普勒扩展,相关时间)、角度色散参数(角度扩展,相关距离),为之后的信道分类奠定了基础;接下来介绍衰落信道的一阶包络统计特性、二阶统计特性,大量的实测数据表明,在没有直达路径的情况下(如市区),信道的包络服从瑞利分布,在有直达路径的情况下(如郊区),信号包络服从莱斯分布,因此,一阶包络统计特性主要介绍瑞利衰落分布和莱斯衰落分布,二阶统计特性主要介绍一组对偶参数——时间电平交叉率和平均衰落持续时间,简要介绍其他两组对偶参数——频域电平交叉率和平均衰落持续带宽,空间电平交叉率和平均衰落持续距离;在已经介绍了多径信道的三组色散参数之后,将介绍小尺度衰落信道相对应的不同分类。 6.1 衰落和多径 6.1.1 衰落和多径的物理模型 陆地移动信道的主要特征是多径传播。传播过程中会遇到很多建筑物,树木以及起伏的地形,会引起能量的吸收和穿透以及电波的反射,散射及绕射等,这样,移动信道是充满了反射波的传播环境。到达移动台天线的信号不是单一路径来的,而是许多路径来的众多反射波的合成。由于电波通过各个路径的距离不同,因而各路径来的反射波到达时间不同,相位也就不同。不同相位的多个信号在接收端迭加,有时同相迭加而加强,有时反向迭加而减弱。这样,接收信号的幅度将急剧变化,即产生了衰落。这种衰落是由多径引起的,所以称为多径衰落。 移动信道的多径环境所引起的信号多径衰落,可以从时间和空间两个方面来描述和测试。从空间角度来看,沿移动台移动方向,接收信号的幅度随着距离变动而衰减。其中,本地反射物所引起的多径效应呈现较快的幅度变化,其局部均值为随距离增加而起伏的下降的曲线,反映了地形起伏所引起的衰落以及空间扩散损耗。 从时域角度来看,各个路径的长度不同,因而信号到达的时间就不同。这样,如从基站发送一个脉冲信号,则接收信号中不仅包含该脉冲,而且还包含它的各个时延信号。这种由于多径效应引起的接收信号中脉冲的宽度扩展的现象,称为时延扩展。扩展的时间可以用第

路径损耗和阴影衰落

路径损耗和阴影衰落

路径损耗和阴影衰落 1 概述 无线通信是要实现信息准确可靠且高速地传输,然而这个目标的实现存在着严峻的挑战。因为无线信道易受噪声、干扰和其他信道因素影响,而且由于用户的移动和信道的动态变化,这些因素还在随时间随机变化。其中路径损耗和阴影衰落是两个影响接收信号功率非常重要的因素,本文将讲述两者对接收功率变化的影响,并分析相关的信道传播模型。 2 发送信号与接收信号模型 调制器中的振荡器产生实正弦信号,不是复指数信号,实际上信道只改变了发送信号在不同频率处的幅度和相位,因此接收信号也是实信号。又因为我们采用复数信道建模,所以为了便于分析,我们把发送和接收信号表示成一个复信号的实部。下面分别给出发送和接收信号模型。 2.1 发送信号 发送信号表达式为 2()Re{()}c j f t s t u t e π= (1) 其中u(t)一个复信号,P u 为功率,u(t)称为s(t)的复包络,即u(t)的振幅就是s(t)的振幅。发送信号s(t)的功率P t =P u /2。 2.2 接收信号 接收信号表达式与发送信号类似,只是叠加了噪声: 2()Re{()}()c j f t r t v t e n t π=+ (2) 其中n(t)为信道噪声。v(t)=u(t)*c(t),其中c(t)是信道的冲激响应。 3 路径损耗 路径损耗是由发射功率的辐射扩散及信道的传播特性造成的。显而易见,传播距离越大,辐射扩散越大,路径损耗也越大。假设发送发送信号功率为Pt ,相应的接收信号功率为Pr 。则定义信道的路径损耗(path loss )为

1010log t L r P P dB dB P = (3) 信道只能衰减信号,所以用分贝表示的路径损耗一般都是非负值。下面根据不同的信道传播特性对不同的信号传播模型进行简要介绍。 3.1 自由空间路径损耗 在自由空间路径损耗模型中,信号经过自由空间到达距离d 处的接收机,发射机和接收机之间没有任何障碍物,信号沿直线传播,产生接收信号: 2/2()Re ()c j d l j f t G e r t t e πλπλ-??=????? (4) l G 2/j d e πλ-是由传播距离d 引起的相移。 由式(4)可得自由空间路径损耗为 ()2 10102410log 10log t L l l d P P dB P G πλ== (5) 3.2 两径模型 两径模型属于单一的地面反射波在多径效应中起主导作用。如图1所示,其接收信号由两部分组成:1)经自由空间到达接收端的直射分量和2)经地面反射到达接收端的反射分量。 两径模型中接收信号为 2/2(')/22()()()Re 4c j l j x x l j f t r ray G u t e R G u t e r t e πλπλπτλπ --+-???-??=+??????????? (6) 其中τ是反射波相对于直射波的时延,l G 益乘积,R 是地面反射系数,r G x 方向上的发送天线和x ’方向上的接收天线增益的乘积。

多径衰落信道仿真与分析

多径衰落信道仿真与分析 移动通信是当前最主流的通信方式,而无线信道是移动通信中传输信号的媒介,只有深刻掌握和了解移动无线信道的特征,我们才能提出解决各种干扰的措施。移动无线信道传输特性的仿真对移动通信的研究具有重要意义,其中多径衰落仿真又是其中的重点和难点。 移动通信的特点是传播的开放性、接收环境的复杂性和通信用户的随机移动性。在无线通信信道中,大气的反射或折射、建筑物和其他物体的反射导致了发送和接收天线之间通常存在多于一条的信号传播路径。由多径引起的信号衰落是影响通信性能的一个主要因素,所以在通信方案可行性研究以及系统设计、优化等过程中,经常要考虑到多径衰落及相关的解决方案。本次设计用MATLAB对信号在多径信道中的传输进行了仿真。 移动通信的传输媒介即大气空间就是无线道,信道很复杂的特性并就是无线道,信有很复杂的特性并就是无线道,信有很复杂的特性并且其特性会不断变化,各种地形物的影响和用户终端的移动使得无线信道具有极大的随机性。一般用路径损失、阴影衰落和多三种效应描述路径损失、阴影衰落和多三种效应描述大、中小大、中小大、中小 3种不同尺度范围内信道对传输号的作用。多径衰落也称快种不同尺度范围内信道对传输号的作用。多径衰落也称快,是由于同一信号沿两个或多路径传播,以微小的时间差到达接收机相互干涉引起。而这些波称为多径。在接收天线处合成一个幅度和相位都急剧变化的信这些波称为多径。在接收天线处合成一个幅度和相位都急剧变化的信这些波称为多径。在接收天线处合成一个幅度和相位都急剧变化的信这些波称为多径。在接收天线处合成一个幅度和相位都急剧变化的信这些波称为多径。在接收天线处合成一个幅度和相位都急剧变化的信号,其变化程度取决于多径波的强、传播时间差以及信号带宽其变化程度取决于多径波的强、传播时间差以及信号带宽。 主要表现在 3个方面: 1)经过短距离或时间传播后信号强度产生急剧变化; 2) 在不同路径上,存在着时变多普勒频移引起的随机率调制; 3) 多径传播时延引起的扩展。 常用的改善方法: 针对种种情况,在移动通信中,可以采取功率控制、基站切换、分集、交织、自适应均衡等各种有效的方法保证通信的质量。在仿真验证这些方法的效果时,常常首先对信道衰落尤其多径衰落进行仿真。 下面就从移动台距离基站的远近、基站发射信号的不同频率以及移动台的不同速度下(考虑有反射信号存在的两径信号)的几个方面来对多径信道的仿真与分析。 移动台靠近基站和移动台远离基站(靠近反射面)所接收的合成信号会不会有差别呢?到底对合成信号有什么影响呢?其与我们所学的理论知识有没有差别呢?下面我们就带着这些问题来进行仿真与分析。

相关文档