文档库 最新最全的文档下载
当前位置:文档库 › 大学物理作业七

大学物理作业七

大学物理作业七
大学物理作业七

刚体的定轴转动

一、基本概念理解

转动惯量不仅和总质量有关,还和质量分布有关。

二、转动惯量

1.长为L ,质量为M 的均质棒绕过其一端并垂直于棒的轴的转动惯量为______________。

2.两个均质圆盘A 、B 的密度分别为A ρ和B ρ ,若A ρ大于B ρ,但两圆盘的质量和厚度相同,如两盘对通过盘心并垂直于盘面的转轴的转动惯量各为J A 和J B ,J A ___J B 。(填><=)

三、转动定律

1. 一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始下摆,则初始时刻杆的角加速度为______,杆转过θ角时的角速度为_______。

2.如图所示,质量为m ,半径为R 的飞轮(视为均质圆盘),可绕O 轴转动,边缘绕有轻绳。现一人用恒力F 拉绳子的一端,运动L 米,则飞轮的角加速度β=______;拉力F 做的功___。

四、角动量及角动量守恒

1.花样滑冰运动员绕竖直轴旋转,两臂伸开时转动惯量为J 0,角速度为ω0;收拢两臂时,转动惯量变为J 0/3,则角速度为______。

五、定轴转动的功能关系

1.长为l 、质量为m 的匀质细杆,以角速度ω绕通过杆端点垂直于杆的水平轴转动,杆对转轴的转动惯量为__________;杆绕轴转动的动能为__________;杆对转轴的角动量大小为_____。

2.一均质圆盘,质量为m ,半径为r ,绕过其中心垂直于盘面的固定轴转动,角速度为ω,则该圆盘的转动惯量为_____,转动动能为_____ 。

3.一花样滑冰运动员,开始自转时,其动能为2002

1ωJ E =。然后她将两臂收回,转动惯量减小至原来的1/3,此时她的动能为_____。

4.图(a )为一绳长为l 、质量为m 的单摆,图 (b )为一长度为l 、质量为

m 能绕水平固定轴O 自由转动的均质细棒,现将单摆和细棒同时从与竖直

线成θ 角的位置由静止释放,若运动到竖直位置时,单摆、细棒的角速度

分别以ω1、ω2表示,则_____。

5.一转动惯量为J 的圆盘绕通过盘心的固定轴转动,起初角速度为0ω,设

它所受阻力矩与转动角速度成正比M= - kω(为正常数), 1)它的角速度从0ω变为012

ω所需时间是_____;(2)在上述过程中阻力矩所作的功为_____

6.一转动惯量为J 的圆盘绕一固定轴转动,初始角速度为0ω。设它所受阻力矩与转动角速

度的平方成正比2ωk M -=(k 为正常数)。则它的角速度从0ω变为013ω的过程中所需时间为_____,阻力矩所作的功为_____。

最新大学物理活页作业答案及解析((全套))

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r -+= )(21m j i r += )(242m j i r -= )(3212m j i r r r -=-=? )/(32s m j i t r v -=??= (2))(22SI j t i dt r d v -== )(2SI j dt v d a -== )/(422s m j i v -= )/(222--=s m j a 8.解: t A tdt A adt v t o t o ωω-=ωω-== ?? sin cos 2

t A tdt A A vdt A x t o t o ω=ωω-=+=??cos sin 9.解:(1)设太阳光线对地转动的角速度为ω s rad /1027.73600 *62 /5-?=π= ω s m t h dt ds v /1094.1cos 3 2 -?=ωω== (2)当旗杆与投影等长时,4/π=ωt h s t 0.31008.144=?=ω π = 10.解: ky y v v t y y v t dv a -==== d d d d d d d -k =y v d v / d y ??+=- =-C v ky v v y ky 2 22 121, d d 已知y =y o ,v =v o 则2020 2 121ky v C --= )(22 22y y k v v o o -+=

大物作业标准答案

大物作业答案

————————————————————————————————作者:————————————————————————————————日期: 2

本习题版权归物理与科学技术学院物理系所有,不得用于商业目的 《大学物理》作业 No.5 光的衍射 班级 ________ 学号 ________ 姓名 _________ 成绩 _______ 一、选择题: 1. 在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小。若使单缝宽度a 变为原来的 23,同时使入射的单色光的波长λ 变为原来的3 / 4,则屏幕E 上单缝衍射条纹中央明纹的 宽度?x 将变为原来的 [ ] (A) 3 / 4倍 (B) 2 / 3倍 (C) 9 / 8倍 (D) 1 / 2倍 (E) 2倍 解:单缝衍射中央明纹两侧第一暗纹中心间距离为中央明纹线宽度: θtg 2f x =? 由第一暗纹中心条件: λθ=sin a 即 a λ θ= sin 当θ 小时,有 θθsin tg ≈ ∴ a f x λ 2≈? 已知题意:122 3 a a = , 4/312λλ= ,可得 ()()1112 2 2 2 12212x a f a f x ?=???? ??= =?λλ ∴ a 、λ 改变后的中央明纹宽度(?x )2变为原来宽度(?x )1的1/2 故选D 2. 波长 λ=500nm(1nm=10- 9m)的单色光垂直照射到宽度a =0.25 mm 的单缝上,单缝后面 放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d =12 mm ,则凸透镜的焦距f 为 [ ] (A) 2 m (B) 1 m (C) 0.5 m (D) 0.2 m (E) 0.1 m 解:由单缝衍射第一暗纹中心条件: λθ±=sin a 可得中央明纹线宽度a f x λ 2=? 而其余明纹线宽度a f x λ ='? 故中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离应是其余明纹线宽度 单缝 λa L E f O x y

大学物理作业(二)答案

班级___ ___学号____ ____姓名____ _____成绩______________ 一、选择题 1. m 与M 水平桌面间都是光滑接触,为维持m 与M 相对静止,则推动M 的水平力F 为:( B ) (A)(m +M )g ctg θ (B)(m +M )g tg θ (C)mg tg θ (D)Mg tg θ 2. 一质量为m 的质点,自半径为R 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为v ,则质点对该处的压力数值为:( B ) (A)R mv 2 (B)R mv 232 (C)R mv 22 (D)R mv 252 3. 如图,作匀速圆周运动的物体,从A 运动到B 的过程中,物体所受合外力的冲量:( C ) (A) 大小为零 (B ) 大小不等于零,方向与v A 相同 (C) 大小不等于零,方向与v B 相同 (D) 大小不等于零,方向与物体在B 点所受合力相同 二、填空题 1. 已知m A =2kg ,m B =1kg ,m A 、m B 与桌面间的摩擦系数μ=0.5,(1)今用水平力F =10N 推m B ,则m A 与m B 的摩擦力f =_______0______,m A 的加速度a A =_____0_______. (2)今用水平力F =20N 推m B ,则m A 与m B 的摩擦力f =____5N____,m A 的加速度a A =_____1.7____. (g =10m/s 2) 2. 设有三个质量完全相同的物体,在某时刻t 它们的速度分别为v 1、v 2、v 3,并且v 1=v 2=v 3 ,v 1与v 2方向相反,v 3与v 1相垂直,设它们的质量全为m ,试问该时刻三物体组成的系统的总动量为_______m v 3________. 3.两质量分别为m 1、m 2的物体用一倔强系数为K 的轻弹簧相连放在光滑水平桌面上(如图),当两物体相距为x 时,系统由静止释放,已知弹簧的自然长度为x 0,当两物体相距为x 0时,m 1的速度大小为 2 2 121 Km x m m m + . 4. 一弹簧变形量为x 时,其恢复力为F =2ax -3bx 2,现让该弹簧由x =0变形到x =L ,其弹力的功为: 2 3 aL bL - . 5. 如图,质量为m 的小球,拴于不可伸长的轻绳上,在光滑水平桌面上作匀速圆周运动,其半径为R ,角速度为ω,绳的另一端通过光 滑的竖直管用手拉住,如把绳向下拉R /2时角速度ω’为 F m A m B m M F θ A O B R v A v B x m 1 m 2 F m R

大学物理习题及参考答案8

习题8 8-1 质量为10×10- 3 kg 的小球与轻弹簧组成的系统,按20.1cos(8)3 x t π π=+ (SI)的规律做谐振动,求: (1)振动的周期、振幅、初位相及速度与加速度的最大值; (2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)t 2=5 s 与t 1=1 s 两个时刻的位相差. 解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知: 3/2,s 4 1 2,8,m 1.00πφωπ πω=== ∴==T A 又 πω8.0==A v m 1 s m -? 51.2=1 s m -? 2.632==A a m ω2s m -? (2) N 63.0==m m a F J 1016.32 122 -?== m mv E J 1058.121 2-?===E E E k p 当p k E E =时,有p E E 2=, 即 )2 1(212122kA kx ?= ∴ m 20 2 22±=± =A x (3) ππωφ32)15(8)(12=-=-=?t t 8-2 一个沿x 轴做简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表出.如果t =0时质点的状态分别是: (1)x 0=-A ; (2)过平衡位置向正向运动; (3)过2A x = 处向负向运动; (4)过 x =处向正向运动. 试求出相应的初位相,并写出振动方程. 解:因为 ???-==00 0sin cos φωφA v A x 将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有

)2cos(1ππ π φ+==t T A x )23 2cos(2 32πππφ+==t T A x )32cos(3 3π ππ φ+==t T A x )4 5 2cos(4 54πππφ+== t T A x 8-3 一质量为10×10- 3 kg 的物体做谐振动,振幅为2 4 cm ,周期为4.0 s ,当t =0时位移为+24 cm.求: (1)t =0.5 s 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到x =12 cm 处所需的最短时间; (3)在x =12 cm 处物体的总能量. 解:由题已知 s 0.4,m 10242 =?=-T A ∴ 1s rad 5.02-?==ππ ωT 又,0=t 时,0,00=∴+=φA x 故振动方程为 m )5.0cos(10242t x π-?= (1)将s 5.0=t 代入得 0.17m m )5.0cos(102425.0=?=-t x π N 102.417.0)2 (10103 23 2--?-=???-=-=-=π ωx m ma F 方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ, t t =时 3 ,0,20πφ=<+ =t v A x 故且 ∴ s 3 2 2/3==?=ππωφt (3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为 J 101.7)24.0()2(10102121 214223222--?=???=== π ωA m kA E

大学物理大作业

荷兰物理学家安德烈·吉姆(Andre Geim)曾经做过一个有关磁悬浮的著名实验,将一只活的青蛙悬浮在 空中的技术 迈纳斯效应—完全抗磁性 零电阻是超导体的一个基本特性,但超导体的完全抗磁性更为基本。是否 转变为超导态,必须综合这两种测量结果,才能予以确定。 如果将一超导体样品放入磁场中,由于样品的磁通量发生了变化,样品的 表面产生感生电流,这电流将在样品内部产生磁场,完全抵消掉内部的外磁场, 使超导体内部的磁场为零。根据公式和,由于超导体=-1,所以超导体具有完全抗磁性。 内部B=0,故 m 超导体与理想导体在抗磁性上是不同的。若在临界温度以上把超导样品放 入磁场中,这时样品处于正常态,样品中有磁场存在。当维持磁场不变而降低 温度,使其处于超导状态时,在超导体表面也产生电流,这电流在样品内部产 生的磁场抵消了原来的磁场,使导体内部的磁感应强度为零。超导体内部的磁 场总为零,这一现象称为迈纳斯效应。 超导体的抗磁性可用下面的动画来演示,小球是用超导态的材料制成的, 由于小球的抗磁性,小球被悬浮于空中,这就是所说的磁悬浮。 下图是小磁铁悬浮在Ba-La-Cu-O超导体圆片(浸在液氮中)上方的照片。

零电阻是超导体的一个基本特性,但超导体的完全抗磁性更为基本。是否转变为超导态,必须综合这两种测量结果,才能予以确定。 如果将一超导体样品放入磁场中,由于样品的磁通量发生了变化,样品的表面产生感生电流,这电流将在样品内部产生磁场,完全抵消掉内部的外磁场,使超导体内部的磁场为零。根据公式和,由于超导体内部B=0,故cm=-1,所以超导体具有完全抗磁性。 超导材料必须在一定的温度以下才会产生超导现象,这一温度称为临界温度。

大学物理作业(1-5)

1—4 一质点的运动学方程为2t x =,()2 1-=t y (S1)。试求: (1)质点的轨迹方程:(2) 在2=t s 时,质点的速度和加速度。 [解] (1) 由质点的运动方程 2t x = (1) ()2 1-=t y (2) 消去参数t ,可得质点的轨迹方程 21)y = (2) 由(1)、(2)对时间t 求一阶导数和二阶导数可得任一时刻质点的速度和加速度 t dt dx v x 2== ()12-==t dt dy v y 所以 ()221x y v v t t =+=+-v i j i j (3) 222==dt x d a x 222==dt y d a y 所以 22=+a i j (4) 把t =2s 代入式(3)、(4),可得该时刻质点的速度和加速度。 42=+v i j 22=+a i j 1—6 质点的运动学方程为() 2 22t t =++r i j (S1),试求:(1)质点的轨道方程;(2)t =2s 时质点的速度和加速度。 [解] (1) 由质点的运动方程,可得 2 2,2x t y t ==+ 消去参数t ,可得轨道方程 2124 y x =+ (2) 由速度、加速度定义式,有 d /d 22t t ==+v r i j 22d /d 2t ==a r j 将t=2s 代入上两式,得 24=+v i j , 2=a j 1—10 在重力和空气阻力的作用下,某物体下落的加速度为Bv g a -=,g 为重力加速度,B 为与物体的质量、形状及媒质有关的常数。设t =0时物体的初速度为零。(1)试求物体的速度随时间变化的关系式;(2)当加速度为零时的速度(称为收尾速度)值为多大? [解] (1) 由dt dv a /=得 dt Bv g dv =-

大学物理8章作业

第八章波动光学 (一) 光的干涉 答案在最后 一. 选择题 1. 波长为λ的单色平行光垂直照射在薄膜上,经上下两表面 反射的两束光发生干涉,如图所示,若薄膜的厚度为e,且 ,则两束反射光的光程差为 (A) (B) (C) (D) 2. 如图示,波长为λ的单色光,垂直入射到双缝,若P点是 在中央明纹上方第二次出现的明纹,则光程差为 (A) 0 (B) λ (C) 3λ/2 (D) 2 λ 3. 在双缝干涉实验中,屏幕上的P点处是明条纹,若将缝 盖住,并在连线的垂直平分面处放一高折射率介质反射面 M,如图示,则此时 (A) P点处仍为明条纹 (B) P点处为暗条纹 (C) 不能确定P点处是明条纹还是暗条纹 (D) 无干涉条纹 4. 双缝干涉中,若使屏上干涉条纹间距变大,可以采取 (A) 使屏更靠近双缝 (B) 使两缝间距变小 (C) 把两个缝的宽度稍稍调窄 (D) 用波长更短的单色光入射 5. 波长为λ的单色光垂直入射到折射率为n的透明薄膜上,薄膜放在空气中,要使反射光干涉加强,薄膜厚度至少为

(A) λ /2 (B) λ /2n (C) λ /4 (D) λ /4n 6. 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射,若上面的平玻璃慢慢向上平移,则干涉条纹 (A) 向棱边方向平移,条纹间距变小 (B) 向棱边方向平移,条纹间距变大 (C) 向棱边方向平移,条纹间距不变 (D) 向远离棱边方向平移,条纹间距不变 (E) 向远离棱边方向平移,条纹间距变小 7. 在图示三种透明材料构成的牛顿环装置中,用单色光垂直 照射,再反射光中看到干涉条纹,则在接触点处形成的圆斑为 (A) 全明 (B) 全暗 (C) 右半边明,左半边暗 (D) 右半边暗,左半边明 8. 在迈克耳逊干涉仪的一条光路中放入折射率为n的透明薄膜后,观察到条纹移动6条,则薄膜的厚度是 (A) 3λ (B) 3λ /n (C) 3λ /(n-1) (D) 6λ /n 二. 填空题 9. 有两种获得相干光的基本方法,它们是__________________和___________________. 10. 两同相位相干点光源、,发出波长为λ的光,A是它们连线中垂线上的一点,在 与A间插入厚度为e折射率为n的薄玻璃片,两光源发出的光到达A点时光程差为______________,相位差为____________________. 11. 杨氏双缝干涉实验中,双缝间距为d,屏距双缝的间距为D(D >>d),测得中央明条纹与第三级明条纹间距为x,则入射光的波长为_____________________. 12. 一双缝干涉装置,在空气中观察时干涉条纹间距为1mm,若将整个装置放入水中,干涉条纹的间距变为_________________mm.(设水的折射率为4/3) 13. 波长为λ的单色光垂直照射到两块平玻璃片构成的劈尖上,测得相邻明条纹间距为l,

大学物理实验报告答案大全(实验数据)

U 2 I 2 大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的 (1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 实验方法原理 根据欧姆定律, R = U ,如测得 U 和 I 则可计算出 R 。值得注意的是,本实验待测电阻有两只, 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置 待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一 只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。 实验步骤 本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学 生参照第 2 章中的第 2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录 U 值和 I 值。对每一个电阻测量 3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理 (1) 由 U = U max ? 1.5% ,得到 U 1 = 0.15V , U 2 = 0.075V ; (2) 由 I = I max ? 1.5% ,得到 I 1 = 0.075mA , I 2 = 0.75mA ; (3) 再由 u R = R ( 3V ) + ( 3I ) ,求得 u R 1 = 9 ? 101 &, u R 2 = 1& ; (4) 结果表示 R 1 = (2.92 ± 0.09) ?10 3 &, R 2 = (44 ± 1)& 光栅衍射 实验目的 (1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。 (3) 观测汞灯在可见光范围内几条光谱线的波长 实验方法原理

大学物理-作业与答案

《大学物理》课后作业题 专业班级: 姓名: 学号: 作业要求:题目可打印,答案要求手写,该课程考试时交作业。 第一章 质点力学 1、质点的运动函数为: 5 4;22 +==t y t x , 式中的量均采用SI 单位制。求:(1)质点运动的轨道方程;(2)s 11=t 和s 22=t 时,质点的位置、速度和加速度。 1、用消元法 t=x/2 轨迹方程为 y=x2+5 2、运动的合成 x 方向上的速度为x'=2, y 方向上的速度为y'=8t+5 将t 带入分别求出x 和y 方向上的速度 然后合成 x 方向上的加速度为x''=0 y 方向上的加速度为y''=8 所以加速度为8 2、如图所示,把质量为m 的小球悬挂在以恒加速度水平运动的小车上,悬线与竖直方向的夹角为θ,求小车的加速度和绳的张力。 绳子的拉力F ,将其水平和竖直正交分解为 Fsinα 和 Fcosα 竖直:Fcosα=mg 水平:Fsinα=ma a=gtanα 方向水平向右 3、一质量为0.10kg 的质点由静止开始运动,运动函数为j i 23 53 += t r (SI 单位) 求在t=0到t=2s 时间内,作用在该质点上的合力所做的功。 质点的速度就是 V =dr / dt =5* t^2 i +0 j 即质点是做直线运动,在 t =0时速度为V0=0;在 t =2秒时,速度为 V1=5*2^2=20 m/s 由动能定理得所求合力做的功是 W 合=(m*V1^2 / 2)-(m*V0^2 / 2)= m*V1^2 / 2=0.1*20^2 / 2=20 焦耳 第二章 刚体力学 T 1

1、在图示系统中,滑轮可视为半径为R、质量为m0的匀质圆盘。设绳与滑轮之间无滑动, 水平面光滑,并且m1=50kg,m2=200kg,m0=15kg,R=0.10m,求物体的加速度及绳中的张力。 解将体系隔离为 1 m, m, 2 m三个部分,对 1 m和 2 m分别列牛顿方程,有 a m T g m 2 2 2 = - a m T 1 1 = β2 1 22 1 MR R T R T= - 因滑轮与绳子间无滑动,则有运动学条件 R aβ = 联立求解由以上四式,可得 R M m m g m ? ? ? ? ? + + = 2 1 2 1 2 β 由此得物体的加速度和绳中的张力为 2 2 1 262 .7 15 5.0 200 50 81 .9 200 2 1 - ? = ? + + ? = + + = =s m M m m g m R aβ N a m T381 62 .7 50 1 1 = ? = =N a g m T438 ) 62 .7 81 .9( 200 ) ( 2 2 = - ? = - = 第四章静止电荷的电场 1、如图所示:一半径为R的半圆环上均匀分布电 荷Q(>0),求环心处的电场强度。 解:由上述分析,点O的电场强度 由几何关系θd d R l=,统一积分变量后,有 y x O

2016西南交大大学物理A1第八次作业答案

《大学物理AI 》作业No.08导体介质中的静电场班级________ 学号________ 姓名_________ 成绩_______ 一、判断题:(用“T ”和“F ”表示)[ F ] 1.达到静电平衡的导体,电场强度处处为零。 解:达到静电平衡的导体,内部场强处处为0,表面场强处处垂直于表面。 [ F ] 2.负电荷沿导体表面运动时,电场力做正功。 解:达到静电平衡的导体,表面场强与表面处处垂直,所以电场力做功为 0。 也可以这样理解:达到静电平衡的导体是个等势体,导体表面是个等势面,那么当电荷在导体表面运动时,电场力不做功(因为电场力做功数值上等于电势能增量的负值)。 [ F ] 3. 导体接地时,导体上的电荷为零。 解:导体接地,仅意味着导体同大地等电势。导体上的电荷是全部入地还是部分入地就要据实际情况而定了。[ F ] 4.电介质中的电场是由极化电荷产生的。 解:电介质中的电场是总场,是自由电荷和极化电荷共同产生的。[ T ] 5.将电介质从已断开电源的电容器极板之间拉出来时,电场力做负功。 解:拔出电介质,电容器的电容减少,而电容器已与电源断开,那么极板上的电量不变,电源不做功。此时,电容器储能变化为: 0222 ' 2 C Q C Q W ,即电容器储能是增加的, 而电场力做功等于电势能增量的负值,那么电场力应该做负功。 二、选择题: 1.把A ,B 两块不带电的导体放在一带正电导体的电场中,如图所示。设无限远处为电 势零点,A 的电势为U A ,B 的电势为U B ,则[ D ] (A) U B > U A ≠0(B) U B > U A = 0 (C)U B =U A (D) U B < U A 解:电力线如图所示,电力线指向电势降低的方向,所以U B < U A 。 2.半径分别为R 和r 的两个金属球,相距很远。用一根细长导线将两球连接在一起并使它们带电。在忽略导线的影响下,两球表面的电荷面密度之比为[ D ] (A) R/r (B)R 2 /r 2 (C) r 2/ R 2 (D) r/R 解:两个金属球用导线相接意味着它们的电势相等, 设它们各自带电为 21q q 、,选无穷远处为电势 0点,那么有: r q R q 0 2 14 4 ,我们对这个等式变下形

西工大大学物理 大作业参考答案-真空中的静电场2009

第九章 真空中的静电场 一、选择题 ⒈ C ; ⒉B ;⒊ C ; ⒋ B ; ⒌ B ; 6.C ; 7.E ; 8.A,D ; 9.B ;10. B,D 二、填空题 ⒈ 2 3 08qb R πε,缺口。 ⒉ 0 q ε,< ; ⒊ 半径为R 的均匀带电球面(或带电导体球); ⒋ 12 21 E E h h ε--; 2.21?10-12C/m 3; ⒌ 100N/C ;-8.85×10-9C/m 2 ; ⒍ -135V ; 45V ; ⒎ 006q Q R πε;0;006q Q R πε- ;006q Q R πε ; ⒏ 1 2 22 04() q x R πε+; 32 22 04() qx x R πε+ ; 2 R ;432.5 V/m ; 9.有源场;无旋场 (注意不能答作“保守场”,保守场是针对保守力做功讲的)。 三、 问答题 1. 答: 电场强度0E F q =r r 是从力的角度对电场分布进行的描述,它给出了一个矢量场分布的图像;而电势V =W /q 是从能量和功的角度对电场分布进行的描述,它给出了一个标量场分布的图像。 空间任意一点的电场强度和该点的电势之间并没有一对一的关系。二者的关系是: "0"p d grad ,d d P V E V V E l n =-=-=??r r r 。即空间任一点的场强和该点附近电势的空间变化率相联 系;空间任一点的电势和该点到电势零点的整个空间的场强分布相联系。 由于电场强度是矢量,利用场叠加原理计算时,应先将各电荷元产生的电场按方向进行分解,最后再合成,即: d d d d ;x y z E E i E j E k =++r r r r , d ,d ,d x x y y z z E E E E E E ===??? 而电势是标量可以直接叠加,即:V dV =?。但用这种方法求电势时,应注意电势零点的选择。

济南大学大学物理大作业完整答案

济南大学 大学物理大作业答案完整版

第1章 质点运动学 §1.3 用直角坐标表示位移、速度和加速度 一.选择题和填空题 1. (B) 2. (B) 3. 8 m 10 m 4. ()[] t t A t ωβωωωββsin 2cos e 22 +-- ()ωπ/122 1 +n (n = 0, 1, 2,…) 5. h 1v /(h 1-h 2) 二.计算题 1解: (1) 5.0/-==??t x v m/s (2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m 2解: =a d v /d t 4=t , d v 4=t d t ? ?=v v 0 0d 4d t t t v=2t 2 v=dx/dt=2t 2 t t x t x x d 2d 0 20 ?? = x 2=t 3 /3+x 0 (SI) §1.5 圆周运动的角量描述 角量与线量的关系 一.选择题和填空题 1. (D) 2. (C) 3. 16R t 2 4rad /s 2 4. -c (b -ct )2/R 二.计算题 1. 解: ct b t S +==d /d v c t a t ==d /d v ()R ct b a n /2 += 根据题意: a t = a n 即 ()R ct b c /2 += 解得 c b c R t -=

§1.6 不同参考系中的速度和加速度变换定理简介 一.选择题和填空题 1. (C) 2. (B) 3. (A) 4.0321=++v v v 二.计算题 1.解:选取如图所示的坐标系,以V 表示质点的对地速度,其x 、y 方向投影为: u gy u V x x +=+=αcos 2v , αsin 2gy V y y = =v 当y =h 时,V 的大小为: () 2cos 2222 2 2αgh u gh u y x ++= +=V V V V 的方向与x 轴夹角为γ, u gh gh x y +==--ααγcos 2sin 2tg tg 1 1 V V 第2章 牛顿定律 §2.3 牛顿运动定律的应用 一.选择题和填空题 1. (C) 2. (C) 3. (E) 4. l/cos 2 θ 5. θcos /mg θ θ cos sin gl 二.计算题 1. 解:质量为M 的物块作圆周运动的向心力,由它与平台间的摩擦力f 和质量为m 的物块 对它的拉力F 的合力提供.当M 物块有离心趋势时,f 和F 的方向相同,而当M 物块有 向心运动趋势时,二者的方向相反.因M 物块相对于转台静止,故有 F + f max =M r max ω2 2分 F - f max =M r min ω2 2分 m 物块是静止的,因而 F = m g 1分 又 f max =μs M g 1分 故 2.372 max =+= ωμM Mg mg r s mm 2分 4.122 min =-=ωμM Mg mg r s mm 2分 γ v

大学物理7-8章作业解

7-3.在体积为2.0×10-3m 3 的容器中,有内能为 6.75×102J 的刚性双原子分子理想气体。求: (1)气体的压强;(2)设分子总数为 5.4×1022 个,则分子的平均平动动能及气体的温度。 [解] (1)理想气体的内能 kT i N E 2 ? = (1) 理想气体的压强 kT V N nkT p == (2) 由(1)、(2)两式可得 53 2 1035.110 251075.6252?=????==-V E p Pa (2)由 kT i N E 2 ?= 则 362104.51038.151075.625222232=??????==-kN E T K 又 2123105.73621038.12 3 23--?=???==kT w J 7-4.容器内储有氧气,其压强为 p = 1.01×10 5 Pa ,温度为 t = 27℃。试求: (1)单位体积内的分子数; (2)分子的平均平动动能。 解:(1)由nkT p = 525-323 1.0110 2.4410m 1.3810300 p n kT -?===??? (2)J 1021.63001038.12 32321 23--?=???==kT w 7-5.容器内某理想气体的温度T =273K ,压强p =1.00 ×10-3atm ,密度为31.25g m ρ-=?,求:(1)气体的摩尔质量;(2)气体分子运动的方均根速率;(3)气体分子的平均平动动能和转动动能;(4)单位体积内气体分子的总平动动能;(5)0.3mol 该气体的内能。 [解] (1)由 RT pV ν= 所以 49310 25.110013.11000.13333 5 32 =?????===--ρp m kT v m (2) 气体的摩尔质量 p kT N m N M ρ0 0mol == mol kg 028.010 013.11000.12731038.11025.110 02.65 323323 =?????????=--- 所以该气体是2N 或CO (3)气体分子的平均平动动能 J 1065.52731038.12 32 32123--?=???==kT ε 气体分子的转动动能 J 1077.32731038.12 221232--?=??==kT ε

大学物理作业(一)答案

大学物理作业(一)答 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

班级___ ___学号____ ____姓名____ _____成绩______________ 一. 填空: 1. 已知质点的运动方程:22,2t y t x -== (SI 制),则(1) t =1s 时质点的位置矢量 2i j +,速度 22i j -,加速度___2j -_________,(2) 第1s 末到第2s 秒末质点的位移____23i j -___ ___,平均速度___23i j -_______. 2. 一人从田径运动场的A 点出发沿400米的跑道跑了一圈回A 点,用了1分钟的时间,则在上述时间内其平均速度为_____0_________. 3. 一质点沿线x 轴运动,其加速度为t a 4=(SI 制),当t =0时,物体静止于x =10m 处,则t 时刻质点的速度______22t _____,位置____32103 t +_____________. 4. 一质点的运动方程为j i r 232t t +=(SI 制),任意时刻t 的切向加速度为 ,法向加速度为 . 二. 选择: 1. 以下说法错误的是:( ABC ) (A) 运动物体的加速度越大,物体的速度也越大. (B) 物体在直线前进时,如果物体向前的加速度减小了,物体前进的速度也减小. (C) 物体的加速度值很大,而物体的速度值可以不变,是不可能的. (D) 在直线运动中且运动方向不发生变化时,位移的量值与路程相等. 2. 下面叙述哪一种正确: ( B ) (A)速度为零,加速度一定为零. (B)当速度和加速度方向一致,但加速度量值减小时,速度的值一定增加. (C)速度很大加速度也一定很大. 3. 如图河中有一小船,人在离河面一定高度的岸上通过 绳子以匀速度0v 拉船靠岸,则船在图示位置处的速率 为:( C ) (A)0v (B)θcos 0v (C) θcos /0v (D) θtan 0v 4. 以初速度0v ,仰角θ抛出小球,当小球运动到最高点时,其轨道曲率半径为(不计空气 阻力): ( D )

大学物理第八章习题及答案

V 第八章 热力学基础 8-1如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是:(B ) (A) b1a 过程放热,作负功;b2a 过程放热,作负功 (B) b1a 过程吸热,作负功;b2a 过程放热,作负功 (C) b1a 过程吸热,作正功;b2a 过程吸热,作负功 (D) b1a 过程放热,作正功;b2a 过程吸热,作正功 8-2 如图,一定量的理想气体由平衡态A 变到平衡态B ,且它们的压强相等,则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( B ) (A)对外作正功 (B)内能增加 (C)从外界吸热 (D)向外界放热 8-3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强温度都相同,现将3J 热量传给氦气,使之升高到一定温度,若使氢气也升高同样温度,则应向氢气传递热量为( C ) (A) 6 J (B) 3 J (C) 5J (D) 10 J 8-4 有人想象了如题图四个理想气体的循环过程,则在理论上可以实现的为 ( ) (A) (B)

(C) (D) 8-5一台工作于温度分别为327o C和27o C的高温热源和低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功( B ) (A) 2 000 J (B) 1 000 J (C) 4 000 J (D) 500 J 8-6 根据热力学第二定律( A ) (A) 自然界中的一切自发过程都是不可逆的 (B) 不可逆过程就是不能向相反方向进行的过程 (C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体 (D)任何过程总是沿着熵增加的方向进行 8-7 一定质量的气体,在被压缩的过程中外界对气体做功300J,但这一过程中气体的内能减少了300J,问气体在此过程中是吸热还是放热?吸收或放出的热量是多少? 解:由于外界对气体做功,所以:300J = W - 由于气体的内能减少,所以:J ?E = 300 - 根据热力学第一定律,得:J ? + =W = E Q 300- 600 300 = - -

大学物理作业答案(下)

65. 如图所示,几种载流导线在平面内分布,电流均为I ,求:它们在O 点的磁感应强度。 1 R I B 80μ= 方向 垂直纸面向外 2 R I R I B πμμ2200- = 方向 垂直纸面向里 3 R I R I B 4200μπμ+ = 方向 垂直纸面向外 66. 一半径为R 的均匀带电无限长直圆筒,电荷面密度为σ,该筒以角速度ω绕其轴线匀速旋转。试求圆筒内部的磁感应强度。 解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密度i , σωσωR R i =ππ=)2/(2 作矩形有向闭合环路如图中所示.从电流分布的对称性分析可知,在ab 上各点B 的 大小和方向均相同,而且B 的方向平行于ab ,在bc 和fa 上各点B 的方向与线元垂直, 在de , cd fe ,上各点0=B .应用安培环路定理 ∑??=I l B 0d μ 可得 ab i ab B 0μ= σωμμR i B 00== 圆筒内部为均匀磁场,磁感强度的大小为σωμR B 0=,方向平行于轴线朝右.

67.在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a (如图)。今在此导体内通以电流I ,电流在截面上均匀分布,求:空心部分轴线上O ' 点的磁感应强度的大小。 解:) (22r R I J -= π 1012 1 r J B ?= μ 2022 1 r k J B ?-=μ j Ja O O k J r r J B B 021******** 21)(2 1 μμμ=?=-?= += r R Ia ) (22 2 0-= πμ 68.一无限长圆柱形铜导体,半径为R ,通以均匀分布的I 今取一矩形平面S (长为L ,宽为2R ),位置如图,求:通过该矩形平面的磁通量。

大学物理习题与作业答案

大学物理习题与作业答 案 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

理想气体 状 态方程 5-1一容器内储有氧气,其压强为105 Pa ,温度为270 C ,求:(1)气体分子的数密度;(2)氧气的质量密度;(3)氧分子的质量;(4)分子间的平均距离(设分子均匀等距分布)。 解:(1)nkT p =,32523 5 /m 1044.2) 27273(1038.11001.1?=+???==-kT p n (2)R M m T pV mol = ,335mol kg/m 30.1)27273(31.810321001.1=+????== =∴-RT pM V m ρ (3)n m O 2 =ρ , kg 1033.510 44.230.126 25 2-?=?= = ∴n m O ρ (4)m 1045.31044.2119 325 3 -?=?==n d 5-2在容积为V 的容器中的气体,其压强为p 1,称得重量为G 1。然后放掉一部分气体,气体的压强降至p 2,再称得重量为G 2。问在压强p 3下,气体的质量密度多大 解:设容器的质量为m ,即放气前容器中气体质量为m g G m -=1 1,放气后容器中气体质量为m g G m -= 2 2。 由理想气体状态方程有 RT M m g G RT M m V p mol 1mol 11-==, RT M m g G RT M m V p mol 2 mol 22-==

上面两式相减得 V p p G G g M RT )()(1212mol -=-,)(1 21 2mol p p G G gV RT M --= 当压强为3p 时,1 21 2 33mol 3p p G G gV p RT p M V m --?=== ρ 压强、温度的微观意义 5-3将10-2kg 的氢气装在10-3m 2的容器中,压强为105Pa ,则氢分子的平均平动动能为多少 解:RT M m pV mol = ,mR pV M T mol =∴ 5-4体积33m 10-=V ,压强Pa 105=p 的气体分子平均平动动能的总和为多少 解:kT N t 2 3=∑ε,其中N 为总分子数。kT V N nkT p = = ,kT pV N = 5-5温度为0℃和100℃时理想气体分子的平均平动动能各为多少欲使分子的平均 平动动能等于1eV ,气体的温度需多高(1eV=10-19J ) 解:C 0?时,J 1065.52731038.12 32321230--=?=???==kT t ε C 100?时,J 1072.73731038.12 3 232123100--=?=???== kT t ε J 106.1eV 119-?= ,∴分子具有1eV 平均动能时,气体温度为 能量均分、理想气体内能

大学物理(下)no.8作业解析

《大学物理》作业 量子力学基础 一、选择题 1. 如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 [ A ] (A) 动量相同。 (B) 能量相同。 (C) 速度相同。 (D) 动能相同。 解: 由德布罗意关系λh p =可知,粒子波长相同,动量必然相同。由于粒子质量不 同,所以,粒子速度、动能和能量将不同。 2. 若 粒子在磁感应强度为B 的均匀磁场中沿半径为R 的圆形轨道运动,则粒子的德布罗意波长是 [ A ] (A) eRB h 2 (B) eRB h (C) eRB 21 (D) eRBh 1 解:半径eB mv qB mv R 2==,所以德布罗意波长eBR h mv h 2==λ。 3. 设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图 [ A ] 解:由不确定关系 ≥???x p x 可知,x ?大,x p ?小,图(A)x ?最大,所以x p ?最小,确定粒子动量的精确度最高。 4. 关于不确定关系?? ? ??=≥???π2h p x x 有以下几种理解: (1) 粒子的动量不可能确定。 (2) 粒子的坐标不可能确定。 (3) 粒子的动量和坐标不可能同时确定。 (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子。 其中正确的是: [ C ] (A) (1)、(2) (B) (2)、(4) (C) (3)、(4) (D) (4)、 (1) ()D x x x ()A ()B ()C

5. 已知粒子在一维矩形无限深势阱中运动,其波函数为: ()()a x a a x a x ≤≤-?= 23cos 1πψ 那么粒子在65a x = 处出现的概率密度为 [ A ] (A) a 21 (B) a 1 (C) a 21 (D) a 1 解:概率密度()a x a x 23cos 122πψ=,将6/5a x =代入,得 ()a a a a x 216523cos 122=?=πψ 二、填空题 1. 若中子的德布罗意波长为2?,则它的动能为J 1029.321-?。 (普朗克常量s J 10 63.634??=-h ,中子质量kg 1067.127-?=m ) 解: λh p =, 由经典动能公式得动能 ()()()()J 1029.31021067.121063.6222121210272 34222----?=?????====m h m p mv E k λ 2. 低速运动的质子P 和α粒子,若它们的德布罗意波长相同,则它们的动量之比 αp p :p = 1:1 ;动能之比αE E :p = 4:1 。 解:由λh p =,二者λ相同,所以1:1:p =αp p 。 由经典关系,动能m p E 22 =,所以1:4::p p ==m m E E αα 3. 静质量为e m 的电子,经电势差为12U 的静电场加速后,若不考虑相对论效应,电子的德布罗意波长λ=122eU m h e 。 解:电子的动能2122 1v m eU E e k ==,动量122eU m v m p e e ==,德布罗意波长

相关文档
相关文档 最新文档