文档库 最新最全的文档下载
当前位置:文档库 › 实验四集成运算放大器的基本应用-比较器 (1)

实验四集成运算放大器的基本应用-比较器 (1)

实验四集成运算放大器的基本应用-比较器 (1)
实验四集成运算放大器的基本应用-比较器 (1)

实验十集成运算放大器的应用(二)

信号处理─电压比较器

预习部分

一、实验目的

1. 掌握比较器的电路构成及特点

2. 学会测试比较器的方法

二、实验原理

1. 信号幅度比较就是将一个模拟量的电压信号去和一个参考电压相比较,在二者幅度相等的附近,输出电压将产生跃变。通常用于越限报警,模数转换和波形变换等场合。此时,幅度鉴别的精确性、稳定性以及输出反应的快速性是主要的技术指标。

图2-10-1所示为一最简单的电压比较器,U R为参考电压,加在运放的同相输入端,输入电压u i加在反相输入端。

当u i<U R时,运放输出高电平,U O'=U OM,若输出端采用双向稳压管限幅(R O为限流电阻),输出U O被箝位在稳压管的稳定电压Uz,即:Uo=Uz

当u i>U R时,运放输出低电平,U O'= -U OM ,若输出端采用双向稳压管限幅,输出U O 被箝位在稳压管的稳定电压Uz,即:Uo= -Uz。

因此,以U R为界,当输入电压u i变化时,输出端反映出两种状态:高电位和低电位,u i=U R即为输出状态转换的临界点。当U R =0时,比较器为过零比较器。

表示输出电压与输入电压之间关系的特性曲线,称为传输特性。图2-10-1(b)为(a)图比较器的传输特性。

(a) 电路图(b) 传输特性

图2-10-1 电压比较器

2. 具有滞回特性的电平检测器(施密特触发器)。

比较器在实际工作时,如果ui恰好在等于U R值附近,则由于零点漂移的存在,u o将不断由一个极限值转换到另一个极限值,这在控制系统中,对执行机构将是很不利的。为此,就需要输出特性具有滞回现象。具有滞回特性的电平检测器按其电路结构或传输特性的不同,可分为两类:滞回特性反相电平检测器(如图2-10-2所示)和滞回特性同相电平检测器(如图2-10-3所示)。

1) 图2-10-2为具有滞回特性的反相电平检测器,不难得出:

()

f

Z

H f

Z f

f R

f

Z

f

f R R R R U -U U U R R R U R R R U U R R R U R R R U U +==+-++=+++=22

2122

2222

212 回差电压下限触发电平上限触发电平

2) 图2-10-3为具有滞回特性的同相电平检测器,同理,由叠加原理得出:

f

Z

H R f z

R f z

R R U -U U U R R

U R R U U R R

U R R U U 1

212

11221112 ==--=-=回差电压下限触发电平上限触发电平 三、预习要求

1. 复习教材有关比较器的内容。

(a) 电路图 (b) 传输特性

图2-10-2 具有滞回特性的反相电平检测器

(a) 电路图 (b) 传输特性 图2-10-3 具有滞回特性的同相电平检测器

2. 画出各类比较器的传输特性曲线。

3.试推导具有滞回特性的同相输入电平检测器的U1,U2,U H公式,讨论当R2=m R1,R f=n R1时电路的特点。

实验部分

一、实验设备与器件

二、实验内容

1.电压比较器,实验电路如图2-10-1所示

(1) 接通±12V电源。

(2) 参考电压U R为不同值时,ui接可调直流电源,改变u i幅值,测量Uo电压,测量传输特性曲线。(u i幅值自行选定,在接近临界值附近可多测几点)

(3) ui输入500Hz、幅值为2V的正弦信号,观察ui--uo的波形(在同一坐标下)并记录。

2. 具有滞回特性的反相电平检测器,实验电路如图2-10-2所示。

(1)按图接线,U R=0,ui接可调直流电源,①测出uo由+Uz→-Uz时ui的临界值U1。②测出uo由-Uz→+Uz时ui的临界值U2。③ui接500Hz,峰值为2V的正弦信号,观察并记录ui─uo波形。

(2)将分压支路电阻R F由100K改为200K,重复步骤(1)。

(3)U R=1V,重复步骤(1)。

3.* 具有滞回特性的同相电平检测器,实验电路如图2-10-3所示。

(1)按图接线,U R=0,ui接可调直流电源,①测出uo由+Uz→-Uz时ui的临界值U2。

②测出uo由-Uz→+Uz时ui的临界值U1。③ui接500Hz,峰值为2V的正弦信号,观察并记录ui─uo波形。

(2)U R=1V,重复步骤(1)。

(3)将分压支路电阻R2由10K改为20K,R F=100K,重复步骤(1)。

(4)将分压支路电阻R F由100K改为200K,R2=10K,重复步骤(1)。

三、实验报告

1. 整理实验数据,绘制各类比较器的传输特性曲线

2. 总结几种比较器的特点,阐明它们的应用。

实验五集成运算放大器的基本应用共7页文档

实验五集成运算放大器的基本应用(I) ─模拟运算电路─ 一、实验目的 1、了解和掌握集成运算放大器的功能、引脚 2、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算 电路的功能。 3、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 开环电压增益A =∞ ud =∞ 输入阻抗r i =0 输出阻抗r o 带宽 f =∞ BW 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性:

(1)输出电压U O 与输入电压之间满足关系式 U O =A ud (U +-U -) 由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 (2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图8-1所示。对于理想运放, 该电路的输出电压与输入电压 之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图8-1 反相比例运算电路 图8-2 反相加法运算电路 2) 反相加法电路 电路如图8-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 // R 2 // R F 3) 同相比例运算电路 图8-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O U R R U - =

集成运算放大器应用实验

《电路与电子学基础》实验报告 实验名称集成运算放大器应用 班级2013211XXX 学号2013211XXX 姓名XXX

实验7.1 反相比例放大器 一、实验目的 1.测量反相比例运算放大器的电压增益,并比较测量值与计算值。 2.测定反响比例放大器输出与输入电压波形之间的相位差。 3.根据运放的输入失调电压计算直流输出失调电压,并比较测量值与计算值。 4.测定不同电平的输入信号对直流输出失调电压的影响。 二、实验器材 LM 741 运算放大器 1个 信号发生器 1台 示波器 1台 电阻:1kΩ 2个,10kΩ 1个,100kΩ 2个 三、实验步骤 1.在EWB平台上建立如图7-1所示的实验电路,仪器按图设置。 单击仿真开关运行动态分析,记录输入峰值电压 V和输出峰值电压 ip V,并记录直流输出失调电压of V及输出与输入正弦电压波形之间的op 相位差。

Vip=4.9791mV Vop=498.9686mV Vof=99.37mV 相位差π 2.根据步骤1的电压测量值,计算放大器的闭环电压增益Av。 Av=-100.2 3.根据电路元件值,计算反相比例运算放大器的闭环电压增益。 Av=-100 4.根据运放的输入失调电压 V和电压增益Av,计算反相比例运放 if 的直流输出失调电压 V。 of Vof=100mV 四、思考与分析 1.步骤3中电压增益的计算值与步骤1,2中的测量值比较,情况如何? 计算值为-100,测量值为-100.2,基本相等,略有误差

2.输出与输入正弦电压波形之间的相位差怎样? 相位差为π 3.步骤1中直流输出失调电压的测量值与步骤4中的计算值比较,情况如何? 测量值为99.37mV,计算值为100mV,基本相等,略有误差 4.步骤1中峰值输出电压占直流输出失调电压的百分之几? 500% 5.反馈电阻 R的变化对放大器的闭环电压增益有何影响? f 在R1一定的条件下,Rf越大,闭环电压增益越大 实验7.2 加法电路 一、实验目的 1.学习运放加法电路的工作原理。 2.分析直流输入加法器。 3.分析交直流输入加法器。 4.分析交流输入加法器。 二、实验器材 LM741 运算放大器 1个直流电源 2个 0~2mA毫安表 4个万用表 1个 信号发生器 1台

集成运算放大器的基本应用

实验十一 集成运算放大器的基本应用 —— 模拟运算电路 一、实验目的 1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验仪器 1、双踪示波器 2、万用表 3、交流毫伏表 4、信号发生器 三、实验原理 在线性应用方面,可组成比例、加法、减法、积分、微分、对数、指数等模拟运算电路。 1、 反相比例运算电路 电路如图11-1所示。对于理想运放,该电路的输出电压与输入电压之间的关系为 i F O U R R U 1 - = (11-1) U i O 图11-1 反相比例运算电路 为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1∥R F ,此处为了简化电路,我们选取R2=10K 。

2、反相加法电路 U O U 图11-2 反相加法运算电路 电路如图11-2所示,输出电压与输入电压之间的关系为 )( 22 11i F i F O U R R U R R U +-= R 3=R 1∥R 2∥R F (11-2) 3、同相比例运算电路 图11-3(a )是同相比例运算电路,它的输出电压与输入电压之间的关系为 i F O U R R U )1(1 + = R 2=R 1∥R F (11-3) 当R1→∞时,U O =U i ,即得到如图11-3(b )所示的电压跟随器。图中R2=R F ,用以减小漂移和起保护作用。一般RF 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。 (a)同相比例运算 (b)电压跟随器 图11-3 同相比例运算电路 4、差动放大电路(减法器) 对于图11-4所示的减法运算电路,当R1=R2,R3=R F 时,有如下关系式: )(1 120i i U U R RF U -= (11-4)

集成运算放大器实验报告

集成运算放大器实验报告 2.4.1 比例、加减运算电路设计与实验 由运放构成的比例、求和电路,实际是利用运放在线性应用时具有“虚短”、“虚断”的特点,通过调节电路的负反馈深度,实现特定的电路功能。 一、实验目的 1.掌握常用集成运放组成的比例放大电路的基本设计方法; 2.掌握各种求和电路的设计方法; 3.熟悉比例放大电路、求和电路的调试及测量方法。 二、实验仪器及备用元器件 (1)实验仪器 (2)实验备用器件 三、电路原理 集成运算放大器,配备很小的几个外接电阻,可以构成各种比例运算电路和求和电路。 图2.4.3(a )示出了典型的反相比例运算电路。依据负反馈理论和理想运放的“虚短”、“虚断”的概念,不难求出输出输入电压之间的关系为 1 f o i i R A R υυυυ==- 2.4.1 式中的“-”号说明电路具有倒相的功能,即输出输入的相位相反。当1f R R =时,o i υυ=-,电路成为反相器。合理选择1f R R 、的比值,可以获得不同比例的放大功能。反相比例运算电路的共模输入电压很小,带负载能力很强,不足之处是它的输入电阻为1i R R =,其值不够高。为了保证电路的运算精度,除了设计时要选择高精度运放外,还要选择稳定性好的电阻器,而且电阻的取值既不能太大、也不能太小,一般在几十千欧到几百千欧。为了使 电路的结构对称,运放的反相等效输入电阻应等于同相等效输入电阻,R R +-=,图2.4.3(a )中,应为1//P f R R R =, 电阻称之为平衡电阻。

(a) 反相比例运算电路 (b) 同相比例运算电路 图2.4.3 典型的比例运算电路 图2.4.3(b )示出了典型的同相比例运算电路。其输出输入电压之间的关系为 1 (1)f o i i R A R υυυυ==+ 2.4.2 由该式知,当0f R =时,o i υυ=,电路构成了同相电压跟随器。同相比例运算电路的最大特点是输入电阻很大、输出电阻很小,常被作为系统电路的缓冲级或隔离级。同样,为了保证电路的运算精度,要选择高精度运放和稳定性好的电阻器,而且电阻的取值一般在几十千欧到几百千欧。为了使电路的结构对称,同样应满足1//P f R R R =。 图2.4.4(a )为典型的反相求和电路,利用叠加原理和线性运放电路“虚短”、“虚断”的概念可以求得 121 2 ( )f f o i i R R R R υυυ=-+ 2.4.3 当满足12R R R ==时,输出电压为 12()f o i i R R υυυ=- + 2.4.4 实现比例求和功能。当满足12f R R R ==时,,输出电压为 12()o i i υυυ=-+ 2.4.5 实现了两个信号的相加运算。电路同样要求12////P f R R R R =。该电路的性能特点与反相运算电路相同。 (a) 反相求和运算电路 (b) 同相求和运算电路 图2.4.4 典型的求和运算电路 同理,对于图2.4.4(b )所示的同相求和电路,当电路满足12////f R R R R =的条件下,可以得到输出电压为 121 2 f f o i i R R R R υυυ= + 2.4.6

理想运算放大器

理想运算放大器 4.4.1理想运放的技术指标 在分析集成运放的各种应用电路时,常常将其中的集成运放看成是一个理想运算放大器。所谓理想运放就是将集成运放的各项技术指标理想化,即认为集成运放的各项指标为: 开环差模电压增益Aod=∞; 差模输入电阻rid=∞; 输出电阻r。=0; 共模抑制比KCMR=∞; 输入失调电压U10、失调电流I10以及它们的温漂αU10、αI10均为零; 输入偏置电流IIB=0; -3dB带宽?H=∞,等等。 实际的集成运算放大器当然不可能达到上述理想化的技术指标。但是,由于集成运放工艺水平的不断改进,集成运放产品的各项性能指标愈来愈好。因此,一般情况下,在分析估算集成运放的应用电路时,将实际运放视为理想运放所造成的误差,在工程上是允许的。 在分析运放应用电路的工作原理时,运用理想运放的概念,有利于抓住事物的本质,忽略次要因素,简化分析的过程。在随后几章的分析中,如无特别的说明,均将集成运放作为理想运放来考虑。 4.4.2理想运放工作在线性区时的特点 在各咱应用电路中,集成运放的工作范围可能有两种情况:工作在线性区或工作在非线性区。当工作在线性区时,集成运放的输出电压与其两个输入端的电压之间存在着线性放大关系,即 uO=Aod(u+—u-)(4.5.1) 式中uO是集成运放的输出端电压;u+和u-分别是其同相输入端和反相输入端电压;Aod是其开环差模电 压增益。 如果输入端电压的幅度比较大,则集成运放的工作范围将超出线性放大区域而到达非线性区,此时集成运放的输出、输入信号之羊将不满足式(4.5.1)所示的关系式。 当集成运放分别工作在线性区或非线性区时,各自有若干重要的特点,下面分别进行讨论。 理想运放工作在线性区时有两个重要特点:

运算放大器的典型应用

Op Amp Circuit Collection AN-31

Practical Differentiator f c e 1 2q R2C1 f h e 1 2q R1C1 e 1 2q R2C2 f c m f h m f unity gain TL H 7057–9 Integrator V OUT e b 1 R1C1 t2 t1 V IN dt f c e 1 2q R1C1 R1e R2 For minimum offset error due to input bias current TL H 7057–10 Fast Integrator TL H 7057–11Current to Voltage Converter V OUT e l IN R1 For minimum error due to bias current R2e R1 TL H 7057–12 Circuit for Operating the LM101 without a Negative Supply TL H 7057–13Circuit for Generating the Second Positive Voltage TL H 7057–14

Neutralizing Input Capacitance to Optimize Response Time C N s R1 R2 C S TL H 7057–15 Integrator with Bias Current Compensation Adjust for zero integrator drift Current drift typically0 1 n A C over b55 C to125 C temperature range TL H 7057–16 Voltage Comparator for Driving DTL or TTL Integrated Circuits TL H 7057–17 Threshold Detector for Photodiodes TL H 7057–18 Double-Ended Limit Detector V OUT e4 6V for V LT s V IN s V UT V OUT e0V for V IN k V LT or V IN l V UT TL H 7057–19 Multiple Aperture Window Discriminator TL H 7057–20

集成运算放大器的基本应用

第7章集成运算放大器的基本应用 7.1 集成运算放大器的线性应用 7.1.1 比例运算电路 7.1.2 加法运算电路 7.1.3 减法运算电路 7.1.4 积分运算电路 7.1.5 微分运算电路 7.1.6 电压—电流转换电路 7.1.7 电流—电压转换电路 7.1.8 有源滤波器 *7.1.9 精密整流电路 7.2 集成运放的非线性应用 7.2.1 单门限电压比较器 7.2.2 滞回电压比较器 7.3 集成运放的使用常识 7.3.1 合理选用集成运放型号 7.3.2 集成运放的引脚功能 7.3.3 消振和调零 7.3.4 保护 本章重点: 1. 集成运算放大器的线性应用:比例运算电路、加减法运算电路、积分微分运算电路、一阶有源滤波器、二阶有源滤波器 2. 集成运算放大器的非线性应用:单门限电压比较器、滞回比较器 本章难点: 1. 虚断和虚短概念的灵活应用 2. 集成运算放大器的非线性应用 3. 集成运算放大器的组成与调试 集成运算放大器(简称集成运放)在科技领域得到广泛的应用,形成了各种各样的应用电路。从其功能上来分,可分为信号运算电路、信号处理电路和信号产生电路。从本章开始和以后的相关章节分别介绍它们的应用。 7.1 集成运算放大器的线性应用

集成运算放大器的线性应用 7.1.1 比例运算电路 1. 同相比例运算电路 (点击查看大图)反馈方式:电压串联负反馈 因为有负反馈,利用虚短和虚断 虚短: u-= u+= u i

虚断: i +=i i- =0 , i 1 =i f 电压放大倍数: 平衡电阻R=R f//R1 2. 反相比例运算 (点击查看大图)反馈方式:电压并联负反馈 因为有负反馈,利用虚短和虚断 i - =i+= 0(虚断) u + =0,u-=u+=0(虚地) i 1 =i f 电压放大倍数:

集成运放基本应用之一—模拟运算电路

集成运放基本应用之一—模拟运算电路

————————————————————————————————作者:————————————————————————————————日期:

实验十二集成运放基本应用之一——模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性: 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放: 开环电压增益A ud=∞ 输入阻抗r i=∞ 输出阻抗r o=0 带宽f BW=∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U O=A ud(U+-U-) 由于A ud=∞,而U O为有限值,因此,U+-U-≈0。即U+≈U-,称为“虚短”。

(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 // R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F , i 1 F O U R R U -=

集成运算放大器的基本应用

实验名称 集成运算放大器的基本应用 一.实验目的 1.掌握集成运算放大器的正确使用方法。 2.掌握用集成运算放大器构成各种基本运算电路的方法。 3.学习正确使用示波器交流输入方式和直流输入方式观察波形的方法,重点掌握积分输入,输出波形的测量和描绘方法。 二.实验元器件 集成运算放大器 LM324 1片 电位器 1k Ω 1只 电阻 100k Ω 2只;10k Ω 3只;5.1k Ω 1只;9k Ω 1只 电容 0.01μf 1只 三、预习要求 1.复习由运算放大器组成的反相比例、反相加法、减法、比例积分运算电路的工作原理。 2.写出上述四种运算电路的vi 、vo 关系表达式。 3.实验前计算好实验内容中得有关理论值,以便与实验测量结果作比较。 4.自拟实验数据表格。 四.实验原理及参考电路 本实验采用LM324集成运算放大器和外接电阻、电容等构成基本运算电路。 1. 反向比例运算 反向比例运算电路如图1所示,设组件LM324为理想器件,则 11 0υυR R f -=

R f 100k R 1 10k A 10k R L v o v 1 R 9k 图1 其输入电阻1R R if ≈,图中1//R R R f ='。 由上式可知,改变电阻f R 和1R 的比值,就改变了运算放大器的闭环增益vf A 。 在选择电路参数是应考虑: ○ 1根据增益,确定f R 与1R 的比值,因为 1 R R A f vf - = 所以,在具体确定f R 和1R 的比值时应考虑;若f R 太大,则1R 亦大,这样容易引起较大的失调温漂;若f R 太小,则1R 亦小,输入电阻if R 也小,可能满足不了高输入阻抗的要求,故一般取f R 为几十千欧至几百千欧。 若对放大器输入电阻有要求,则可根据1R R i =先确定1R ,再求f R 。 ○ 2运算放大器同相输入端外接电阻R '是直流补偿电阻,可减小运算放大器偏执电流产生的不良影响,一般取1//R R R f =',由于反向比例运算电路属于电压并联负反馈,其输入、输出阻抗均较低。 本次试验中所选用电阻在电路图中已给出。 2. 反向比例加法运算 反向比例加法运算电路如图2所示,当运算放大器开环增益足够大时,其输入端为“虚地”,11v 和12v 均可通过1R 、2R 转换成电流,实现代数相加,其输出电压 ??? ??+-=122111 v R R v R R v f f o 当R R R ==21时 ()1211v v R R v f o +- = 为保证运算精度,除尽量选用精度高的集成运算放大器外,还应精心挑选精度高、稳定性好的电阻。f R 与R 的取值范围可参照反比例运算电路的选取范围。 同理,图中的21////R R R R f ='。

运算放大器的工作原理

运算放大器的工作原理 放大器的作用:1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 图1-1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正

实验二 集成运算放大器的基本应用(I)

实验二 集成运算放大器的基本应用(I) ─ 模拟运算电路 ─ 一 实验目的 1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2. 了解运算放大器在实际应用时应考虑的一些问题。 二 实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 集成运算放大器配接不同的外围元件可以方便灵活地实现各种不同的运算电路(线性放大和非线性电路)。用运算放大器组成的运算电路(也叫运算器),可以实现输入信号和输出信号之间的数学运算和函数关系,是运算放大器的基本用途之一,这些运算器包括比例器、加法器、减法器、对数运算器、积分器、微分器、模拟乘法器等各种模拟运算功能电路。 (1) 反相比例运算电路 电路如图1所示。对于理想运放, 该电路的输出电压与输入电压之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 i U 10-=- =i 1 F O U R R U

图1 反相比例运算电路 (2) 同相比例运算电路 图2是同相比例运算电路,它的输出电压与输入电压之间的关系为 i U 11=+ =i 1 F O )U R R (1U R 2=R 1 // R F 图2 同相比例运算电路 三 实验设备与器件 1. ±12V 直流电源 2. 函数信号发生器 3. 交流毫伏表 4. 直流电压表 5. 集成运算放大器OP07×1 9.1K Ω、10 K Ω、100 K Ω电阻各1个,导线若干。 2 3 6 7 4 1 8 2 3 1 8 4 6 7

运算放大器基本应用

东南大学电工电子实验中心 实验报告 课程名称:电子电路实验 第一次实验 实验名称:运算放大器的基本应用 院(系):吴健雄学院专业:电类强化 姓名:周晓慧学号:61010212 实验室: 105实验组别: 同组人员:无实验时间:2012年03月23日评定成绩:审阅教师:

实验一运算放大器的基本应用 一、实验目的: 1、熟练掌握反相比例、同相比例、加法、减法、积分、微分等电路的设计方法; 2、熟练掌握运算放大电路的故障检查和排除方法,以及增益、幅频特性、传输特性曲线、 带宽的测量方法; 3、了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度 漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念; 4、了解运放调零和相位补偿的基本概念; 5、掌握利用运算放大器设计各种运算功能电路的方法及实验测量技能。 二、预习思考: 1、查阅741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释 参数含义。

2、 设计一个反相比例放大器,要求:|A V |=10,Ri>10K Ω,将设计过程记录在预习报告上; (1) 仿真原理图 (2) 参数选择计算 因为要求|A v |=10,即|V 0/V i |= |-R f /R 1|=10,故取R f =10R 1,.又电阻应尽量大些,故取:R 1=10k Ω,Rk=100 k Ω, R L =10 k Ω (3) 仿真结果 图中红色波形表示输入,另一波形为输出,通过仿真可知|V 0/V i |=9.77≈10,仿真正确。 3、 设计一个电路满足运算关系U O = -2U i1 + 3U i2

集成运放组成的基本运算电路实验报告

实验报告课程名称:电路与电子技术实验指导老师: 成绩: 实验名称:集成运放组成的基本运算电路实验实验类型:同组学生:一、实验目的和要求(必填)二、实验容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.研究集成运放组成的比例、加法和积分等基本运算电路的功能; 2.掌握集成运算放大电路的三种输入方式。 3.了解集成运算放大器在实际应用时应考虑的一些问题; 4.理解在放大电路中引入负反馈的方法和负反馈对放大电路各项性能指标的影响; 5.学会用集成运算放大器实现波形变换 二、实验容和原理 1.实现两个信号的反相加法运算 2.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值 3.实现单一信号同相比例运算(选做) 4.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值,测量闭环传输特性:Vo = f (Vs) 5.实现两个信号的减法(差分)运算 6.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值 7.实现积分运算(选做) 8.设置输出初态电压等于零;输入接固定直流电压,断开K2,进入积分;用示波器观察输出变化(如何设轴,Y轴和触发方式) 9.波形转换—方波转换成三角波 10.设:Tp为方波半个周期时间;τ=R2C 11.在T p<<τ、T p ≈τ、T p>>τ三种情况下加入方波信号,用示波器观察输出和输入波形,记录线性 三、主要仪器设备 1.集成运算电路实验板;通用运算放大器μA741、电阻电容等元器件; 2.MS8200G型数字多用表;XJ4318型双踪示波器;XJ1631数字函数信号发生器;DF2172B型交流电压表; 型可调式直流稳压稳流电源。

运算放大器详细的应用电路(很详细)

§8.1 比 例运算电 路 8.1.1 反相比例电路 1. 基本电路 电压并联负反馈输入端虚短、虚断 特点: 反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低 输出电阻小,带负载能力强 要求放大倍数较大时,反馈电阻阻值高,稳定性差。 如果要求放大倍数100,R1=100K,Rf=10M 2. T型反馈网络(T型反馈网络的优点是什么?) 虚短、虚断

8.1.2 同相比例电路 1. 基本电路:电压串联负反馈 输入端虚短、虚断 特点: 输入电阻高,输出电阻小,带负载能力强 V-=V+=V i,所以共模输入等于输入信号,对运放的共模抑制比要求高 2. 电压跟随器 输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§8.2 加减运算电路 8.2.1 求和电路 1.反相求和电路 2.

虚短、虚断 特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系 3.同相求和电路 4. 虚短、虚断 8.2.2 单运放和差电路

8.2.3 双运放和差电路 例1:设计一加减运算电路 设计一加减运算电路,使 V o=2Vi1+5Vi2-10Vi3 解:用双运放实现

如果选Rf1=Rf2=100K,且R4= 100K 则:R1=50K R2=20K R5=10K 平衡电阻 R3= R1// R2// Rf1=12.5K R6=R4//R5//Rf2= 8.3K 例2:如图电路,求A vf,Ri 解: §8.3 积分电路和微分电路 8.3.1 积分电路 电容两端电压与电流的关系:

积分实验电路 积分电路的用途 将方波变为三角波(Vi:方波,频率500Hz,幅度1V)

实验 集成运算放大器的基本应用

实验集成运算放大器的基本应用(Ⅱ)——有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 (a)低通(b)高通 (c) 带通(d)带阻 图9-1 四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图9-1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。 1、低通滤波器(LPF) 低通滤波器是用来通过低频信号衰减或抑制高频信号。 如图9-2(a)所示,为典型的二阶有源低通滤波器。它由两级RC滤波环节与同相比例运算电路组成,其中第一级电容C接至输出端,引入适量的正反馈,以改善幅频特性。 图9-2(b)为二阶低通滤波器幅频特性曲线。

(a)电路图 (b)频率特性 图9-2 二阶低通滤波器 电路性能参数 1 f uP R R 1A + = 二阶低通滤波器的通带增益 RC 2π1 f O = 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 uP A 31 Q -= 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形状。 2、高通滤波器(HPF ) 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图9-2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图9-3(a)所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH 分析方法,不难求得HPF 的幅频特性。 (a) 电路图 (b) 幅频特性 图9-3 二阶高通滤波器 电路性能参数A uP 、f O 、Q 各量的函义同二阶低通滤波器。 图9-3(b )为二阶高通滤波器的幅频特性曲线,可见,它与二阶低通滤波器的幅频特性曲线有“镜像”关系。 3、 带通滤波器(BPF )

实验四集成运算放大器的基本应用

实验四集成运算放大器 的基本应用 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

实验四 集成运算放大器的基本应用 ――― 模拟运算电路 一、实验目的 1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 1.理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 开环电压增益 A ud =∞ 输入阻抗 r i =∞ 输出阻抗 r o =0 带宽 f BW =∞ 失调与漂移均为零等。 2.理想运放在线性应用时的两个重要特性 (1)输出电压U O 与输入电压之间满足关系式 U O =A ud (U +-U -) 由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 (2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 3.基本运算电路 (1) 反相比例运算电路 电路如图7-1所示。对于理想运放, 该电路的输出电压与输入电压之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 (2) 反相加法电路 电路如图7-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 // R 2 // R F i 1 F O U R R U -=

含有理想运放的电路

第四部分 含有理想运放的电路 (一)基本概念和基本定理 1、运算放大器的电路模型 (1)运算放大器是一种高增益、高输入电阻、低输出电阻的放大器。 (2)运算放大器的符号 有两个输入端,u + 为同相输入 端, 即从该端输入信号,输出与输入同相; _u 为反相输入端,即 从该端输入信号,输出与输入反相。 0u 为输出端。u u +--为净 输入信号,也称控制端。 (3)运放的电路模型相当于一个含有受控源的二端口网络。上图中i R 为输入电阻,0 R 为输出电阻,A 为 放大倍数。 2、理想运放的基本特征 (1)输入电阻i R =∞,输出电阻0 0R =,开环放大倍 数A =∞。 (2)“虚短路”,由于输出0 u 为有限值,开环放大 倍数A =∞,则0u u + --=,即u u +-=

(3)“虚断路”,由于输入电阻i R =∞,则0i i + -==。 3、几种基本运算电路 (1)反相比例电路 电阻2 R 为反馈电阻,电路工 作在闭环工作状态。 2 01 i R u u R =- (2)反相加法电路 01231 2 3 f f f R R R u u u u R R R =- - - (3)同相比例电路 2 01 (1)i R u u R =+ (4)电压跟随器 0i u u = (5)减法电路

对于减法电路(两端输入),一般应用叠加原理计算,设2 0u =,这是一个反相比例电路;设10u =,计算 出u + 后,为一同相比例电路。 (6)积分电路 将反相比例电路中的反馈电阻换成电容,即为反相积分电路。 01i u u dt RC =-? (7)微分电路 将积分电路中的RC 位置互换,即为微分电路。 4、含有运放电路的计算 一般是一个一个运放的看,是什么运放电路,写出输出与输入的关系,化简后能得到最后结果。 (二)典型例题解题方法分析 例题1:电路如图所示,试求电压传输比0 V i u K u = 。 解:由于u u + -= a b u u = 由于 0i i + -== 1 (1)2a i i R u u u R K R K = =+-- 对于b 点有(结点法) 011 ( )c b u u u R R R R +=+ 00222c b i u u u u u K =-=--

运算放大器详细的应用电路(很详细)

§8.1比 例运算电 路 8.1.1反相比例电路 1.基本电路 电压并联负反馈输入端虚短、虚断 特点: 反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低 输出电阻小,带负载能力强 要求放大倍数较大时,反馈电阻阻值高,稳定性差。 如果要求放大倍数100,R1=100K,Rf=10M 2. T型反馈网络(T型反馈网络的优点是什么?) 虚短、虚断

8.1.2同相比例电路 1.基本电路:电压串联负反馈 输入端虚短、虚断 特点: 输入电阻高,输出电阻小,带负载能力强 V-=V+=Vi,所以共模输入等于输入信号,对运放的共模抑制比要求高 2.电压跟随器 输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§8.2加减运算电路 8.2.1求和电路 1.反相求和电路 2.

虚短、虚断 特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系 3.同相求和电路 4. 虚短、虚断 8.2.2单运放和差电路

8.2.3双运放和差电路 例1:设计一加减运算电路 设计一加减运算电路,使Vo=2Vi1+5Vi2-10Vi3 解:用双运放实现

如果选Rf1=Rf2=100K,且R4= 100K 则:R1=50K R2=20K R5=10K 平衡电阻R3= R1// R2// Rf1=12.5K R6=R4//R5//Rf2= 8.3K 例2:如图电路,求Avf,Ri 解: §8.3积分电路和微分电路 8.3.1积分电路 电容两端电压与电流的关系:

积分实验电路 积分电路的用途 将方波变为三角波(Vi:方波,频率500Hz,幅度1V)

集成运算放大器的基本应用

江西省电子信息技师学院 实验一:集成运算放大器的基本应用 一、实验目的 1、学习软件ISIS的使用方法。 2、学习集成运算放大器的基本应用设计。 二、软件使用有关说明 1、运行ISIS软件 2、界面熟悉 3、软件操作: (1)原理图放大和缩小:使用工具栏中的放大、缩小按钮;或采用鼠标滚轮来操作。

(2)删除一个元件或者连线:鼠标右键连续点两次目标。 (3)添加一个元件到原理图:选择DEVICE栏上的“P”按钮,找到元件作在的库,双击目标(object)内的元件名字,则可加入到待选栏里面。以后选择元件就在待选栏中鼠标左键单击一个元件名,在原理图区中鼠标左键单击则可加一个元件到原理图上。 (4)连线:如果要将两个元件连接起来,按如下操作 (5)添加节点: (6)修改元件参数:右键单击一个元件,变成红色后,左键单击即可出现属性框以修改相应属性。 三、实验原理 集成运算放大器可以作为一个器件构成各种基本功能的电路。这些基本电路又可以作为单元电路组成电子应用电路。 1.反相放大器 反相放大器是最基本的电路,如下图所示。

其闭环电压增益为: 输入电阻R i= R1 输出电阻R o≈ 0 平衡电阻R p = R1∥R F 反馈电阻R F值不能太大,否则会产生较大的噪声及漂移。取值应远大于信号源V i的内阻。若R F= R1则为反相器,可作为信号的极性转换电路。 2、同相放大器 同相放大器也是最基本的电路.如下图所示。 其闭环电压增益为: 输入电阻R i=R IC 式中,R IC——运放本身同相端对地的共模输入电阻.一般为108Ω。 输出电阻R o≈ 0 平衡电阻R p = R1∥R F 同相放大器具有输入阻抗非常高,输出阻抗很低的特点.广泛用于前置放大级。 若R F= 0,R1≈∞ (开路),则为电压跟随器。与晶体管电压跟随器(射极输出器)相比.集成运放的电压跟随器的输入阻抗更高.几乎不从信号源吸取电流;输出阻抗更小,可视作电压源,是较理想的阻抗变换器(跟随器)。 3.加法器 基本的加法器电路如下图所示。

运算放大器实验报告

竭诚为您提供优质文档/双击可除运算放大器实验报告 篇一:5集成运放电路实验报告 实验报告 姓名:学号: 日期:成绩: 一、实验目的 1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的

各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 开环电压增益Aud=∞输入阻抗ri=∞输出阻抗ro=0带宽fbw=∞失调与漂移均为零等。 理想运放在线性应用时的两个重要特性:(1)输出电压uo与输入电压之间满足关系式 uo=Aud(u+-u-) 由于Aud=∞,而uo为有限值,因此,u+-u-≈0。即u+≈u-,称为“虚短”。 (2)由于ri=∞,故流进运放两个输入端的电流可视为零,即IIb=0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路1)反相比例运算电路 电路如图6-1所示。对于理想运放,该电路的输出电压与输入电压之间的关系为 uo?? RF uiR1 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1//RF。

图6-1反相比例运算电路图6-2反相加法运算电路 2)反相加法电路 电路如图6-2所示,输出电压与输入电压之间的关系为 uo??( RFR ui1?Fui2)R3=R1//R2//RFR1R2 3)同相比例运算电路 图6-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 uo?(1? RF )uiR2=R1//RFR1 当R1→∞时,uo=ui,即得到如图6-3(b)所示的电压跟随器。图中R2=RF,用以减小漂移和起保护作用。一般RF取10KΩ,RF太小起不到保护作用,太大则影响跟随性。 (a)同相比例运算电路(b)电压跟随器 图6-3同相比例运算电路 4)差动放大电路(减法器) 对于图6-4所示的减法运算电路,当R1=R2,R3=RF 时,有如下关系式uo? RF

相关文档
相关文档 最新文档