文档库 最新最全的文档下载
当前位置:文档库 › 变压器局部放电在线监测综述_李书硕

变压器局部放电在线监测综述_李书硕

变压器局部放电在线监测综述_李书硕
变压器局部放电在线监测综述_李书硕

变压器局部放电在线监测综述

Overview on On2line Monit oring Syste m for Transformer Partial D ischarge

李书硕1,金 鑫2,戴 舒3

(1.中电投蒙东能源集团有限责任公司,内蒙古 通辽 028000;

2.东北电力科学研究院有限公司,辽宁 沈阳 110006;

3.沈阳供电公司,辽宁 沈阳 110003)

摘要:论述了变压器局部放电在线监测技术发展状况,介绍了变压器局部放电检测方法。

关键词:变压器;局部放电;在线监测

中图分类号T M406;T M83514文献标识码B文章编号1004-7913(2009)08-0037-04

大型电力变压器是电力系统中重要设备之一,对变压器实施绝缘状态在线监测具有十分重要的意义。据统计,我国110k V及以上电压等级大型变压器事故中50%是匝绝缘事故,而且基本上都是在正常工作电压下损坏。变压器的内绝缘结构主要是油纸绝缘,变压器在工作电压下局部放电是油纸绝缘老化并发展到击穿的主要因素。油纸绝缘中的局部放电往往是从其中的气泡、杂质、导体表面的毛刺及油隙等处开始。变压器绝缘产生气泡的主要原因为变压器绝缘结构和制造工艺缺陷,如在变压器固体结构中由于浸渍不善而残留气泡或局部电场过高,油在高电场作用下析出气体,局部过热使固体和液体分解产生气体等;变压器在长期运行过程中绝缘材料老化、劣化,如绝缘受潮,其中的水分在过热点汽化成气泡或水分,在高电场作用下电解产生气泡。由此可见,局部放电既是变压器绝缘劣化的征兆,又是变压器绝缘劣化的原因。因此,测量局部放电能有效地发现变压器内部绝缘的固有缺陷和因长期运行使绝缘老化而产生的局部隐患。国内外普遍认为测试局部放电是及时发现变压器潜伏故障的重要手段。

1 国内外变压器局部放电在线监测技术发展状况

111 国外局部放电在线监测技术

国外在线监测技术从20世纪50年代开始研究,加拿大、日本等国家已经有相应的产品问世。加拿大的R1Male wsky等在1986年提出用于在线监测变压器局部放电的差动平衡检测系统,并在单相变压器上做试验,获得了较好的抗干扰能力,试验原理图如图1所示

图1 差动平衡法

差动平衡检测系统是利用高频电流传感器在变压器油箱接地线和绕组中性点接地线上分别取信号,变压器内部局部放电信号分别在高频电流传感器上产生2个方向相反的电流脉冲信号,对信号进行适当调整,组成差动系统,即可抑制外部进入的共模干扰信号,使差模的内部局部放电信号增强,提高了信噪比。在线应用时,当输电线路噪声分别由变压器高压套管和低压套管进入时,系统信号调节困难,干扰抑制能力下降。

1975年,B lack提出的脉冲极性鉴别法具有强大的抗干扰能力,系统原理如图2所示。该方法开始用在设备的离线局部放电检测中,要求2个被试试品相同或容量与标准电容接近,并在外施电压下应用。1980年,B lack将极性鉴别法用于强背景噪声下的电机定子导条局部放电测量,重复试验可精确地再现结果。

近年来,国外的一些科研人员开始研究用超宽带(UWB)或超高频(UHF)来检测局部放电。超高频范围内(3003000MHz)提取的局部放电信号基本无外界干扰,可极大地提高局部放电检测(特别是在线检测)的可靠性和灵敏度。变压器绝缘体内的气泡发生放电时,其放电时间很短,

图2 脉冲极性鉴别法

10100ns能激起>1GHz 的超高频电磁信号。

利用特殊制作的超高频天线可以提取油中局部放电辐射的超高频信号。有结果表明,在5001500MHz 频带范围内,天线具有良好的使用特性。但该方法的局限在于对放电量的准确标定困难,而且从实践和理论上也需进一步积累和完善。112 国内局部放电在线监测技术

20世纪80年代,国内在线监测技术得到了迅速发展,相继研制出了不同类型的监测装置。

东北电力科学研究院研究出一种采用脉冲方向鉴别的变压器局部放电在线监测方法,用高频电流传感器分别从变压器外壳接地线和电流互感器末屏接地线上耦合脉冲电流信号,通过判断脉冲电流方向来控制局部电流信号的输出。现场结果表明,能

在106

PC 外部干扰下测出3000PC 变压器内部放电量,但该装置通用性差,而且采用示波器测量,不能实现实时在线监测。

重庆大学孙才新等人提出用多端调节的方法抑制脉冲型干扰,原理如图3所示。该方法分别从高压套管、高压套管末屏接地线、绕组中性点接地线及变压器铁心接地线上取信号,将差动平衡法同多端调节法结合在一起,同时考虑抑制相间干扰和本相干扰。调节电路时,

首先将来自相邻两相的干扰

图3 多端调节差动平衡法原理框图

通过运算电路,仅输出本相的局部放电信号和干扰信号,然后送入差动平衡电路抑制本相干扰。

多端调节法提出了利用多端调节运算电路抑制相间干扰。平衡系统在单相变压器不带电情况下试验,得到9倍的干扰抑制能力,该方法的多端调节电路比较复杂,抑制干扰能力将受到一定的影响,局部放电信号不易提取。

清华大学研制的JFY -3型变压器局部放电在线监测系统能连续监测多台大型变压器的局部放电,系统硬件结构如图4所示。电流传感器采用环形铁心、宽带有源传感器,其带宽为0101112MHz 。利用程控带通滤波器进行滤波,滤波器带宽为50kHz,中心频率从50kHz 到400kHz 共7档。系统采用宽带多通道、大容量、高采样率数据采样,运用各种数字信号处理的方法抑制干扰。该系统利用程控带通滤波电路躲过各种连续的周期性干扰,对消除工频、谐波、载波通信、无线电广播等窄带干扰比较有效,但在变压器在线监测中不够灵活,只适合于某个具体的变电站,针对具体变电站需选择合适的通带。传感器只能获得放电信号中一部分能量,不仅降低了灵敏度,而且造成检测波形畸变,给后续信号的数字化处理带来困难

图4 系统硬件结构

西安交通大学研制了一套基于数字信号处理的电力变压器局部放电在线监测系统。在线监测系统如图5所示。该系统采用模块化设计,硬件单元主要包括传感器、放大器、信号调理、美国N I 公司的高速采集卡、上下位机等。数字信号处理单元利用N I 公司的图形化编程语言Lab V I E W 及虚拟仪器技术,针对现场固定频段的载波进行数字滤波,加上窄带测量、设置门槛电压、相位鉴别等软件处理技术,实现干扰信号与局放信号的分离。该系统只在现场试运行了一段时间,还没有足够的数据证明系统的运行效果

图5 在线监测系统

该系统采用的数字滤波技术虽然能将干扰降低

到一定水平,但由于局部放电信号很微弱,剩余的百分之几的干扰信号仍将对局部放电信号检测产生很大的影响,从而影响到后续的信号处理。

2 检测方法

随着电力系统的发展和电压等级的提高,局部放电已成为电力变压器绝缘劣化的主要原因之一,因此,局部放电的检测与评价成为变压器绝缘状况检测的重要手段。无论是研究机构、制造厂商,还是电力系统运行部门,都越来越关心局部放电检测技术的发展,并把局部放电检测作为变压器绝缘质量监控的重要指标。由于人们非常关注电力变压器运行的安全,所以,对其局部放电机理和检测方法进行了大量的研究。

局部放电检测以局部放电所产生的各种现象为依据,通过能描述该现象的物理量来表征局部放电的状态。局部放电过程会产生电脉冲、气体生成物、超声波、电磁辐射、光、局部过热及能量损耗等,因此,出现了脉冲电流法、气相色谱检测法、超声波检测法、电磁波检测法、光检测法等多种检测方法。

211 脉冲电流法

脉冲电流法是通过检测阻抗来检测变压器套管末屏接地线、外壳接地线、铁心接地线及绕组局部放电引起的脉冲电流,获得一些局部放电基本量(如视在放电量、放电次数及放电相位)。该方法是研究最早、应用最广泛的一种检测方法,I EC 对此制定了专门的标准。该方法灵敏度高,可以定量测量局部放电的特征参数,还可以与声信号一起通过电—声定位方法确定局部放电的位置。但检测灵敏度随试品电容的增加而下降,实验室内的测量精度极限为1000C (C 为所检测试品的电容)。在测量大容量电容器时,有时会出现灵敏度下降到无法进行检测的程度。由于测试频率低、频带窄,一般频带设置小于1MHz (I EC60270标准,我国国家标准推荐检测频带为数kHz 到数百kHz ),得到的信息量较少,受电磁干扰严重。212 超声波检测法

超声波检测法是用固定在变压器箱壁上的超声波传感器接收变压器内部局部放电产生的超声波,来检测局部放电量的大小和位置。由于超声波检测法受电气干扰小及在局放定位上的广泛应用,人们对超声法的研究较深入。近年来,由于声—电换能器效率的提高和电子放大技术的发展,超声波检测法的灵敏度有了较大提高,尤其是在大容量电容器的局部放电检测方面,其灵敏度甚至高于电脉冲法。该方法具有可以避免电磁干扰的影响、方便定位、在线检测与离线检测结果相同等优点。由于超声波在变压器内部的传播是一个复杂的过程,造成在某些情况下定位试验不成功,目前无法利用超声波信号对局部放电进行模式识别和定量判断,主要作为一种辅助测量方法。213 气相色谱检测法

气相色谱检测法是根据局部放电所产生的分解气体来判断局部放电的程度和模式。该方法已广泛应用于变压器油气分析,在指导变压器的安全运行方面取得了一定的成绩。该方法可以避免电磁干扰的影响,可根据局部放电分解气体的成分和浓度判断局部放电模式。目前已有三比值法、电协研法等判断方法(一些新的判断方法如模糊数学、模糊模式多层聚类、人工神经网络、模糊神经网络等也陆续提出)。但该检测方法存在很大的时延,从局部放电的发生到可检测到特征气体往往需要较长的时间,而且只能作定性分析,无法进行定量判断,气体传感器对所检测的气体敏感,在线提取气体成

分存在一定的困难。

214 超高频检测法

超高频检测法是通过检测变压器局部放电产生的超高频电磁波信号来获得局部放电信息。在变压器局部放电测量时,现场干扰信号的频谱一般小于300MHz,而且在传播过程中衰减很快,若检测局部放电产生的数百MHz以上的电磁波信号,可有效避开电晕等干扰,大大提高信噪比。由于超高频法的特点及变压器箱体的屏蔽效果,使超高频检测法的抗干扰能力优于目前传统局部放电检测法,有利于变压器局部放电的在线监测。但该方法需设计专用的超高频传感器(传感器一般需要预埋或伸进变压器油中)。

215 光检测法

光检测法包括荧光光学检测法和超声—光学检测法。荧光光学检测法通过荧光光纤检测局部放电所产生的荧光来检测局部放电,超声—光学检测法通过提取局部放电超声信号传播到光纤使光纤形变的信号来检测局部放电。光信号不受电磁干扰,灵敏度高,可以方便确定局部放电位置。但由于变压器结构复杂,光纤的埋法复杂,不能记录非透明装置的局部放电,目前光纤传感器的分辨率尚不能满足工程需要,不能进行定量分析与局部放电的模式识别。

传感器灵敏度、数字处理技术水平的提高及各种数学方法的应用,提高了测量的精度与可靠性,使这些方法从实验室或离线应用开始向在线应用转换,但还存在一些问题需要解决。

局部放电检测方法很多,目前主要采用脉冲电流法和超声波测量法。二者除传感器不同外,基本测量原理是相同的。测量原理如图6所示

图6 变压器局部放电检测原理

参考文献:

[1] 王 贤.变压器局部放电测量中抗干扰方法的试验研究

[J].华北电力大学学报,2003.

[2] 李燕青.超声波法检测电力变压器局部放电的研究[J].

华北电力大学学报,2003.

作者简介:

李书硕(1968—),男,本科,工程师,从事电力系统电气管理工作。

(收稿日期 2009-05-25)

(上接第30页)

结果如图2所示。图2中曲线1、曲线2分别为100%和25%负荷下的阶跃响应曲线。结果显示,在100%负荷下,系统输出平缓,超调量较小,控制品质良好;在25%负荷下,系统输出稍有振荡,超调量较大,但仍然稳定。此仿真结果表明改进后的比例切换滑模控制器可以消除系统静差,达到无差调节,并且在工况变化时对主汽压的控制具有良好的鲁棒性,可以满足锅炉主汽压力自动调节的需要。

4 结束语

针对循环流化床锅炉主汽压力控制对象提出了一种并联积分环节的基于比例切换滑模控制器。二阶滑模控制器调整的目标是控制系统位置误差e和速度误差e?的函数s=c

1

e+c2e?=0(此目标是一个滑模面)。与仅仅控制偏差e=0的P I D控制器相比,滑模控制器把系统调整到s(e,e)=0面上,而不仅仅是一个点上,所以其控制目标更容易实现。仿真试验结果表明,控制器具有良好的抗干扰能力和鲁棒性,适合应用于循环流化床锅炉的主汽

压力调节。二阶控制器共有5个参数需要整定。其中c

1

、c

2

用来调整系统滑模面的位置(即系统动态响应时的振荡频率)。比较此滑模控制律表达式

与位置式P I D表达式,可以发现k

1

,k2,k I的作用与P I D控制中的比例系数、微分系数、积分系数的作用类似。在实际应用中,可以按P I D参数的整定

值来估计k

1

,k2,k3,方便热工检修人员维护。二阶控制器结构简单,很容易在DCS或P LC控制系统中实现并加以扩展。对于电厂热工控制中大部分可近似降为二阶的系统均可直接应用此控制器来进行自动调节,其应用前景广阔。

参考文献:

[1] 刘金琨.滑模变结构控制MAT LAB仿真[M].北京:清华

大学出版社,2005.

作者简介:

黄 洋(1977—),男,学士,工程师,主要从事热工调试工作。

(收稿日期 2009-06-09)

变压器铁芯接地电流在线监测装置技术规范

Q/CSG 中国南方电网有限责任公司企业标准 中国南方电网有限责任公司发布

Q/ CSG XXXXX.X-2013 目次 前言...................................................................................................................................................................... II 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 技术要求 (1) 5 试验项目及要求 (2) 6 检验规则 (3) 7 标志、包装、运输、储存 (4) I

Q/ CSG XXXXX.X-2013 II 前言 为规范输变电设备在线监测系统的规划、设计、建设和运行管理,统一技术标准,促进在线监测 技术的应用,提高电网的运行可靠性,特制定本标准。 本标准由中国南方电网有限责任公司生产技术部提出、归口并解释。 本标准起草单位:广东电网公司电力科学研究院。 本标准主要起草人: 本标准由中国南方电网有限责任公司标准化委员会批准。 本标准自XXXX年XX月XX日起实施。 执行中的问题和意见,请及时反馈给南方电网公司生产技术部。

Q/ CSG XXXXX.X-2013 变压器铁芯接地电流在线监测装置技术规范 1范围 本标准规定了变压器铁芯接地电流在线监测装置的范围、术语、使用条件、技术要求、试验、备品备件、标志、包装、运输、贮存要求等,可作为产品的研制、生产、检验和现场测试的依据。 本标准适用于110kV及以上电压等级的变压器铁芯接地电流在线监测装置的生产、检测、使用和维修。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 191 包装储运图示标志 GB/T 2423 电工电子产品环境试验 GB/T 16927.1 高电压试验技术第一部分:一般试验要求 GB/T 16927.2 高电压试验技术第二部分:测量系统 GB/T 17626.1 电磁兼容试验和测量技术抗扰度试验总论 DL 393-2010 输变电设备状态检修试验规程 Q/CSG XXXX 变电设备在线监测系统通用技术规范 3术语和定义 下列术语和定义适用于本标准。 3.1变压器铁芯接地电流在线监测装置 安装在高压设备附近,用于变压器铁芯接地电流特征量连续实时监测的装置。一般由传感器、数据采集和处理模块、通讯控制模块等组成。 4技术要求 4.1通用技术要求 变压器铁芯接地电流在线监测装置的基本功能、绝缘性能、电磁兼容性能、环境性能、机械性能要求、外壳防护性能、连续通电性能、可靠性及外观和结构等通用技术要求应满足《变电设备在线监测装置通用技术规范》。 4.2接入安全性要求 1

主变压器在线监测装置配置分析.

分析主变压器的油色谱、温度(光纤测温)、铁芯接地、局部放电、套管介损等五种在线监测,得出配置主变压器在线监测是安全,可靠、经济的结论。 1.前言 大型电力变压器的安全稳定运行日益受到各界的关注,尤其越来越多的大容量变压器进网运行,一旦造成变压器故障,将影响正常生产和人民的正常生活,而且大型变压器的停运和修复将带来很大的经济损失,在这种情况下实时监测变压器的绝缘数据,使变压器长期在受控状态下运行,避免造成变压器损坏,对变压器安全可靠运行具有一定现实意义。 主变压器在线监测主要包括:油色谱、温度(光纤测温)、铁芯接地、局部放电、套管介损监测。 2.变压器油色谱在线监测 变压器油中溶解气体分析是诊断充油电气设备最有效的方法之一,能够及早发现潜在性故障。由于试验室分析的取样周期较长,且脱气误差较大及耗时较多等问题,因此不能做到实时监测、及时发现潜伏性故障,很难满足安全生产和状态检修的要求。油色谱在线监测采用与实验室相同的气相色谱法。能够对变压器油中溶解故障气体进行实时持续色谱分析,可以监测预报变压器油中七种故障气体,包括氢气(H2),二氧化碳(CO2),一氧化碳(CO),甲烷(CH4),乙烯(C2H4),乙烷(C2H6)和乙炔(C2H2)。 该系统目前已广泛应用于变压器的在线故障诊断中,并且建立起模式识别系统可实现故障的自动识别,是当前在变压器局部放电检测领域非常有效的方法。 3.变压器光纤测温在线监测 变压器寿命的终结能力最主要因素是变压器运行时的绕组温度。传统的绕组温度指示仪(WTI)是利用"热像"原理间接测量绕组温度的仪表,安装在变压器油箱顶部感测顶层油温,WTI指示的温度是基于整个

对电缆局部放电定位方法的探讨与研究

对电缆局部放电定位方法的探讨与研究 发表时间:2016-10-08T13:17:06.183Z 来源:《电力设备》2016年第13期作者:文胜格 [导读] 总结各个方法的特点,并有针对性的提出建设性意见,以促进缆局部放电检测方法的正确选用。 (广州南方电力技术工程有限公司 510000) 摘要:近年来电缆局部放电的测量技术发展较快,方法较多,本文对当下局部放电检测的部分方法进行分析和对比,总结各个方法的特点,并有针对性的提出建设性意见,以促进缆局部放电检测方法的正确选用。 关键词:电缆;局部放电;定位 1 电力电缆局部放电的原因 局部放电指的是在电场发挥作用的情况下,电力设备中只有部分位置出现放电现象,但导体并没有被电压击穿形成放电通道,也就是击穿的情况还没有发生。局部放电出现的主要的原因是电介质的分布不均匀,绝缘体各个部位所处的电场强度不一,一些位置出现的电场强度达到了击穿场强的程度,就会导致放电的情况发生,但其他部分仍然具备绝缘性能。电气产品当中的固、液绝缘体在制作的过程中不可能处于非常致密的状态,其中就会有一些杂质,这些杂质就是一些碎粉、气泡等。制作的过程中造成绝缘老化的现象,而另一些则是在使用的过程就导致了老化的情况出现。这些杂物的电导和介电常数和一般的绝缘物之间存在差异,在外部电压的作用下,就会获得相对更高的场强。在外部电压持续升高到一定程度之后,这些杂物的场强就会比附近的场强高,这个部位就会出现局部放电的情况。 2 电力电缆局部放电定位方法分析 2.1 光学方法 迈克尔逊干涉法是一种使用光学手段处理局部放电的方法。这种检测方法当中主要由光源、光纤绕圈传感器和光纤耦合器等部分组成。整个系统的光源首先发射出两道光,其中一道在信号臂光纤之中运行,另外一道则在参考臂光纤之中运行,超声波对前者光纤的绕圈探头发挥作用,另外一个耦合器就会将两道光实施重复性的耦合,两道光开始互相干扰,随后顺着光纤原路回到光敏元件之中,进而得到电信号,在对信号进行调试之后,对检测得到的外部放电信息进行还原破解。光学传感器作为一种正在研究中的新型局放传感器,具有灵敏度高、传输距离远、无需供电、光性佳、损耗低等优点,是一种很有前途的传感器。问题就是其灵敏度不足、无法抵御来自多个方向的干扰,由于其安装复杂、传输所用的保偏光纤价格高等原因,离实际应用还有一定的距离。具体过程见图1。 图1 迈克尔逊干涉超声—光检测系统 2.2 差分法 差分法是日本最开始研究出的一种方式,其基本原理见下图,使用两块金属箔专用的粘合剂, 将其黏在电缆中部接头两边的金属屏蔽层之上,无需接触电缆或接头内部的任何部件,故不影响原有的绝缘性能,而且安装也很简单,适用于现场及在线监测。金属箔与屏蔽层之间就可以形成差不多2000pF 的等效电容。然后将其个电阻值为50Ω 的电阻放置在两块箔之间,在上述电容的支持下,就可以形成一个检测回路。如果电缆中的某个部分出现放电,电力产生的信号和绝缘层的等效电容就发生耦合效应,回路就会出现电流,电阻就能捕捉相应的信号。可能检测时受到环境因素影响,环境湿度和周围电器的使用都可能对金属箔稳定性产生影响,并且易受外界电磁噪声干扰,所以必须保证检测环境的良好。 图2 差分法检测构成和原理图 2.3 方向耦合 方向耦合传感器在使用和安装的过程中需要将其安装电缆的外半导体层和金属屏蔽层之间,并且在电缆接头两侧都安置方向耦合器。如果电缆中存在局部放电情况,其信号就会在其中存在传输的状况,于是在等效电容和线圈之中就可以检测到脉冲信号。如果只有A 点和C 点检测到脉冲,说明接头左侧有局部放电故障;B 点和C 点检测到脉冲就说明是接头处有局部放电故障;如果B 点和D 点检测到脉冲就说

变压器局部放电试验

变压器局部放电试验内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

变压器局部放电试验 试验及标准 国家标准GB1094-85《电力变压器》中规定的变压器局部放电试验的加压时间步骤,如图5所示。其试验步骤为:首先试验电压升到U 2下进行测量,保持5min ;然后试验电压升到U 1,保持5s ;最后电压降到U 2下再进行测量,保持30min 。U 1、 U 2的电压值规定及允许的放电量为 U U 2153=.m 电压下允许放电量Q <500pC 或 U U 213 3=.m 电压下允许放电量Q <300pC 式中 U m ——设备最高工作电压。 试验前,记录所有测量电路上的背景噪声水平,其值应低于规定的视在放电量的50%。 测量应在所有分级绝缘绕组的线端进行。对于自耦连接的一对较高电压、较低电压绕组的线端,也应同时测量,并分别用校准方波进行校准。 在电压升至U 2及由U 2再下降的过程中,应记下起始、熄灭放电电压。 在整个试验时间内应连续观察放电波形,并按一定的时间间隔记录放电量Q 。放电量的读取,以相对稳定的最高重复脉冲为准,偶尔发生的较高的脉冲可忽略,但应作好记录备查。整个试验期间试品不发生击穿;在U 2的第二阶段的30min 内,所有测量端子测得的放电量Q ,连续地维持在允许的限值内,并无明显地、不断地向允许的限值内增长的趋势,则试品合格。 如果放电量曾超出允许限值,但之后又下降并低于允许的限值,则试验应继续进行,直到此后30min 的期间内局部放电量不超过允许的限值,试品才合格。利用变压器套管电容作为耦合电容C k ,并在其末屏端子对地串接测量阻抗Z k 。

智能变压器状态在线监测技术方案

智能变压器状态监测系统技术方案 一、智能变压器状态监测系统 智能变压器作为智能变电站的核心组成部分,其建设获得了越来越多的关注。根据现行的标准,智能变电站是指采用先进、可靠、集成、低碳、环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能,实现与相邻变电站互动的变电站。智能变压器在线监测系统是保证变压器正常工作并预估设备的损耗以建立合理的检修计划,智能变压器在线监测系统是实现智能变电站的基础设备之一。 变压器是电力系统中重要的也是昂贵的关键设备,它承担着电压变换,电能分配和转移的重任,变压器的正常运行是电力系统安全、可靠地经济运行和供用电的重要保证,因此,必须最大限度地防止和减少变压嚣故障或事故的发生。但由于变压器在长期运行中,故障和事故是不可能完全避免的。引发变压器故障和事故的原因繁多,如外部的破坏和影响,不可抗拒的自然灾害,安装、检修、维护中存在的问题和制造过程中留下的设备缺陷等事故隐患,特别是电力变压器长期运行后造成的绝缘老化、材质劣化等等,已成为故障发生的主要因素。同时,客观上存在的部分工作人员素质不高、技术水平不够或违章作业等,也会造成变压器损坏而造成事故或导致事故的扩大,从而危及电力系统的安全运行。 正因为变压器故障的不可完全避免,对故障的正确诊断和及早预测,就具有更迫切的实用性和重要性。但是,变压器的故障诊断是个非常复杂的问题,许多因素如变压器容量、电压等级、绝缘性能、工作环境、运行历史甚至不同厂家的产品等等均会对诊断结果产生影响。 智能变压器状态监测系统构架如图1-1所示:

变压器局部放电故障定位几种方法的应用比较

变压器局部放电故障定位几种方法的应用比 较 宋友(国网电力科学研究院武汉南瑞有限责任公司) 摘要: 介绍了几种变压器局部放电故障定位常用的技术手段,并结合实际现场试验中几种方法的应用情况,对其进行比较。为各种变压器局部放电故障定位方法在现场的有效应用提供参考。 关键字: 变压器局部放电、UHF、超声波、电气定位 引言 目前,对于变压器局部放电故障的确定,已有多种方法可以有效做到。随着近年来计算机技术、数字信号处理技术的迅速发展,检测手段也越来越多,检测设备也越来越检测迅速、使用方便、功能强大。 对于制造厂家和现场试验、运行人员来说,仅仅确定局放故障是否存在是不够的,往往还要确定故障的位置,以便有的放矢的排除或者处理故障。在出厂试验、交接验收试验、预试及运行中迅速查明变压器的内部放电故障位置,对迅速修复故障、保证设备制造质量及安全运行有重要意义,并可以节约大量人力、物力、时间,也是目前国网公司一次设备带电检测的重要组成内容。 局部放电的检测和定位都是根据放电过程中的声、光、电、热和化学现象来进行的,故障定位方法有超声波定位、电气定位、光定位、热定位和DGA定位等。目前,国内外应用比较广泛的是超声波定位法和电气定位法,近几年,一些新的定位方法如UHF定位法也在国内外有较多的研究和应用。本文拟对超声波定位法、电气定位法、UHF定位法进行应用比较,并就实际应用中存在的问题和今后的发展趋势进行探讨。 超声波定位方法 当变压器内部发生局部放电故障时,会产生相应频率和波形特征的超声波信号,放电源成为声发射源。超声波信号在油箱内部经过不同介质传播到达固定在油箱壁上的超声波传感器。对应每一次放电,都会有相应的超声波产生;对应同一次放电,每一个超声波传感器接收到的相应超声波信号之间会表现出合理的、有规律的时差关系。根据到达超声波传感器的相对时差,通过相关的定位算法,就可以计算出局部放电故障点。 局部放电产生的超声波信号到达不同传感器的有规律时差现象分为两种,一种为局部放电电脉冲信号与各超声波传感器收到的声波信号之间的时差,称为电-声时差。第二种为同一次放电各超声波传感器收到的相应超声波信号之间的时差,称为声-声时差。利用两种时差现象可确立两种超声波定位技术:电声定位法(俗称球面定位)和声声定位法(俗称双曲面定位)。 电声定位方法

谈变压器的局部放电

谈变压器的局部放电 (1) 2009-01-21 09:26:10 来源:输配电产品应用变压器及仪器仪表卷总第77期浏览次数:306 介绍了变压器局部放电的基本原理及产生的原因和危害,并提出了降低局部放电产生的措施。 关键字:变压器;局部放电;预防措施 1 前言 对变压器局部放电试验,我国在初期阶段是对220kV级及以上变压器执行。 后来新IEC标准规定,当设备最高工作电压Um≥126kV时,就要做变压器局部放电测量。国家标准也做了相应的规定,对设备最高工作电压Um≥72.5kV,额定容量P≥10000kVA的变压器,如无其他协议,均应进行变压器局部放电测量。 局部放电试验方法按GB1094.3-2003中规定执行,局部放电量标准规定应不大于500pC。但用户经常要求小于等于300pC或小于等于100pC,这种技术协议要求,就是企业的产品技术标准。 我国在大量生产500kV级变压器后,对750kV、1000kV级超高压变压器及超高压换流变压器的生产正在快速发展,并跻身于世界发达国家行列。因此,电力部门对变压器产品局部放电的要求也越来越高,局部放电引起了生产企业的高度重视。为进一步提高变压器的产品质量,笔者对油浸式变压器在生产企业经常出现的局部放电问题进行了探讨,并对降低变压器局部放电量提出了具体措施。 2 局部放电及其原理 局部放电又称游离,也就是静电荷流动的意思。在一定的外施电压作用下,在电场较强的区域,静电荷在绝缘较弱的位置首先发生静电游离,但并不形成绝缘击穿。这种静电荷流动的现象称为局部放电。对于被气体包围的导体附近发生的局部放电,称为电晕。 变压器油内存在着大量的正、负离子和极性分子。因正、负离子的数量相等,故在油中不显电性。由于绝缘纸板对油中的负离子和极性分子有吸附作用,使油中电荷产生了定向移动。 在强油导向冷却系统中,当开动油泵后,在器身内部流速较快的区域,油中的正离子被流动的油带走,使正、负离子产生分离。这样就产生了油带正电,固体绝缘材料带负电,其带有电量相等、符号相反的电荷。 电荷分离之后,可能沿着导电通路向大地泄漏,也可能与异性离子复合成中性分子。这种使电荷减少的过程,电荷松弛,但电荷松弛的速度远远慢于电荷积累的速度。 在相同条件下,油中含水量少,电荷密度会增加;而含水量多,电荷密度则

变压器局部放电的原因分析

变压器局部放电的原因分析 其一,由于变压器中的绝缘体、金属体等常会带有一些尖角、毛刺,致使电荷在电场强度的作用下,会集中于尖角或毛刺的位置上,从而导致变压器局部放电;其二,变压器绝缘体中一般情况下都存在空气间隙,变压器油中也有微量气泡,通常气泡的介电系数要比绝缘体低很多,从而导致了绝缘体中气泡所承受的电场强度要远远高于和其相邻的绝缘材料,很容易达到被击穿的程度,使气泡先发生放电;其三,如果导电体相互之间电气连接不良也容易产生放电情况,该种情况在金属悬浮电位中最为严重。 局部放电的危害及主要放电形式 2.1 局部放电的危害 局部放电对绝缘设备的破坏要经过长期、缓慢的发展过程才能显现。通常情况下局部放电是不会造成绝缘体穿透性击穿的,但是却有可能使机电介质的局部发生损坏。如果局部放电存在的时间过长,在特定的情况下会导致绝缘装置的电气强度下降,对于高压电气设备来讲是一种隐患。 2.2 局部放电的表现形式 局部放电的表现形式可分为三类:第一类是火花放电,属于脉冲型放电,主要包括似流注火花放电和汤逊型火花放电;第二类是辉光放电,属于非脉冲型放电;第三类为亚辉光放电,具有离散脉冲,但幅度比较微小,属于前两类的过渡形式。 3 变压器局部放电检测方法 变压器局部放电的检测方法主要是以局部放电时所产生的各种现象为依据,产生局部放电的过程中经常会出现电脉冲、超声波、电磁辐射、气体生成物、光和热能等,根据上述的这些现象也相应的出现了多种检测方法,下面介绍几种目前比较常见的局部放电检测方法。 3.1 脉冲电流检测法 这种方法是目前国内使用较为广泛的变压器局部放电检测方法,其主要是通过电流传感器检测变压器各接地线以及绕组中产生局部放电时引起的脉冲电流,并以此获得视在放电量。电流传感器一般由罗氏线圈制成。主要优点是检测灵敏度较高、抗电磁干扰能力强、脉冲分辨率高等;缺点是测试频率较低、信息量少。 3.2 化学检测法 化学检测法又被称为气相色谱法。变压器出现局部放电时,会导致绝缘材料被分解破坏,在这一过程中会出现新的生成物,通过对这些生成物的成分和浓度进行检测,能够有效的判断出局部放电的状态。这种方法的优点是抗电磁干扰较强,基本上能够达到不受电磁干扰的程度,也比较经济便捷,还具有自动识别功能;但该检测方法也存在一些缺点:由于生成物的产生过程时间较长,故此延长了检测周期,只能发现早期故障,无法检测突发故障,并且该

变压器绕组的局部放电定位研究_罗旖旎

试 验 研 究 变压器绕组的局部放电定位研究 罗旖旎1,黄超2 (1.长沙电力职业技术学院,湖南长沙410000;2.长沙理工大学电气与信息工程学院, 湖南长沙410076) 摘要:通过ATP-Draw建立了变压器单绕组模型,模拟了局部放电脉冲在绕组中的传播过程,并介绍了基于分段绕组传递函数的局部放电定位方法。 关键词:变压器;绕组;局部放电;传递函数 中图分类号:TM406文献标识码:B文章编号:1001-8425(2009)03-0043-04 Research on Partial Discharge Location in Transformer Winding LUO Yi-ni1,HUANG Chao2 (1.Changsha Vocational&Technical College of Electricity,Changsha410000,China; 2.Changsha University of Science&Technology,Changsha410076,China)Abstract:The model of single phase transformer winding is established by ATP-Draw.The propagation process of partial discharge pulses along the windings is simulated.The method of partial discharge location based on the theory of sectional winding transfer functions is introduced. Key words:Transformer;Winding;Partial discharge;Transfer function 1引言 变压器的绝缘状况是影响电力系统安全稳定运行的重要因素,而变压器内部产生的局部放电又是导致绝缘劣化的重要原因,因此,局部放电监测对于变压器的安全运行来说是十分必要的。 笔者通过ATP-Draw建立单绕组模型,模拟了局部放电脉冲的传播,分析了局部放电脉冲的传播特性,如信号能量和幅值衰减、波形畸变和延时等。通过MATLAB程序计算了这些特性与变压器绕组和绝缘结构、脉冲传播的路径和距离存在的关系,并在此基础上进行了研究分析,介绍了基于分段传递函数这一电气定位方法,实现了对变压器单个点局部放电的精确定位。 2仿真分析 随着计算机技术的发展,仿真受到了更多学者们的青睐。由于许多试验是破坏性的、不可逆转的或者是根本无法模拟的,因此无法在现实中进行,而仿真则弥补了这些缺陷。它具有灵活、适应 性强、经济、省时而且能重复进行的特点。为了对变压器局部放电源进行电气定位,需要了解在不同位置发生的放电脉冲沿绕组传播至测量点的变化规律,探求放电位置不同时脉冲传播的差异,利用ATP-Draw仿真软件结合MATLAB能很好地对此进行研究。 2.1建立单绕组模型 变压器绕组实质上是由类似均匀传输线的导线绕制而成,传播局部放电信号的变压器绕组可认为是一个分布参数网络。在ATP-Draw中变压器单绕组模型如图1所示,其中R、L、C、K分别是绕组单位长度的电阻、主电感、对地电容和纵向电容。从图1中可见,该模型由N个相同结构的段落组成,并在 0123N-1 N-2N R L K C y1 y2 x x 图1变压器绕组模型 Fig.1Model of transformer winding 第46卷第3期 2009年3月TRANSFORMER Vol.46 March No.3 2009

变压器局部放电定位技术及新兴UHF方法的关键问题_唐志国

文章编号:1674-0629(2008)01-0036-05 中图分类号:TM761 文献标志码:A 变压器局部放电定位技术及新兴UHF方法 的关键问题* 唐志国,李成榕,常文治,王彩雄,盛康 (电力系统保护与动态安全监控教育部重点实验室,华北电力大学,北京 102206) The Partial Discharge Location Technology of Power Transformer and the Key Issues of Newly Developed UHF Method TANG Zhi-guo, LI Cheng-rong, CHANG Wen-zhi, WANG Cai-xiong, SHENG Kang (Key Laboratory of Power System Protection and Dynamic Security Monitoring and Control, Ministry of Education, North China Electric Power University, Beijing 102206, China) Abstract:As an effective resort of finding potential insulation defects of power transformer in its early stage, the partial discharge (PD) detection technology has gained great breakthrough on the issue of anti-interference with the introduction of UHF method. This paper summarized the present status and characteristics of several important PD detection and location methods, pointing out some key problems of PD location using the newly developed UHF approaches in its current circumstances of development. Key words:power transformer; partial discharge; detection; location; UHF method 摘要:局部放电检测作为一种发现潜在绝缘缺陷的 早期预警技术,近年来由于UHF方法的引入而在抗 干扰方面取得了一定的突破。本文概述了几种主要 的电力变压器局部放电检测和定位方法的现状和特点,并针对新兴的UHF局放检测和定位技术的发展 情况,指出了该方法应重点解决的关键技术问题。 关键词:电力变压器;局部放电;检测;定位;UHF方法 大量故障统计表明,在电气设备故障中绝缘故障一直占有较高的比重[1-4]。发生绝缘故障的原因主要是绝缘薄弱处的局部放电引起的绝缘老化和失效,并最终导致绝缘击穿[5]。局部放电检测能够提前反映变压器的绝缘状况,及时发现设备内部的绝缘缺陷,从而预防潜伏性和突发性事故的发生。20世纪70年代,IEC为此制定了专门的标准,并做了多次更新[6,7],发展电力设备的状态维修已经成为一种必然趋势[8-10]。 准确地局部放电定位是实现状态维修的重要前提之一。探索更加有效的定位方法是当今电力工业的当务之急。 1 变压器局部放电检测方法综述 对变压器局部放电有脉冲电流法、超声波法、射频检测法、特高频法、光测法、化学检测法以及红外检测法等多种检测方法[11,12]。 (1)脉冲电流法。局部放电造成电荷的移动并在外围测量回路中产生脉冲电流,通过检测该脉冲电流便可实现对局部放电的测量。该方法一般是检测脉冲电流信号的低频部分,通常为数kHz至数百kHz(至多数MHz)。目前,脉冲电流法广泛用于变压器型式试验、预防和交接试验、变压器局部放电实验研究等,其特点是测量灵敏度高、放电量可以标定等。 (2)射频检测法。射频检测法属于高频局部放 * 长江学者和创新团队发展计划资助。

变压器局部放电试验方案

变压器局部放电试验方案批准:日期: 技术审核:日期: 安监审核:日期: 项目部审核:日期: 编写:日期: 2017年4月

1概述 变压器注油后已静置48小时以上并释放残余气体,且电气交接试验、油试验项目都已完成,并确认达到合格标准。 2试验地点 三明110kV双江变电站 3试验性质:交接试验 4试验依据 DL/T417-2006《电力设备局部放电现场测量导则》 GB1094.3-2003《电力变压器第三部分:绝缘水平绝缘试验和外绝缘空气间隙》GB50150-2006《电气装置安装工程电气设备交接试验标准》 DL/T596-1996《电力设备预防性试验规程》 Q/FJG 10029.1-2004《电力设备交接和预防性试验规程》 合同及技术协议 5试验仪器仪表 6、人员组织 6.1、项目经理: 6.2、技术负责: 6.3、现场试验负责人及数据记录:黄诗钟 6.4二次负责人: 6.5、试验设备接线及实际加压操作负责人: 6.6、专责安全员: 6.7、工器具管理员: 6.8、试验技术人员共4人,辅助工若干人 6.9、外部协助人员:现场安装人员,监理,厂家及业主代表等人员

7试验过程 7.1试验接线图(根据现场实际情况采用不同的试验原理图) 7.2试验加压时序 图2中,当施加试验电压时,接通电压并增加至 U3,,持续5min ,读取放电量值;无异常则增加电压至U2,持续5min ,读取放电量值;无异常再增加电压至U1,进行耐压试验,耐压时间为(120×50/?)s ;然后,立即将电压从U1降低至U2,保持30min (330kV 以上变压器为60min ),进行局部放电观测,在此过程中,每5min 记录一次放电量值;30min 满,则降电压至U 3,持续5min 记录放电量值;降电压,当 图1变压器局部放电试验原理图 图2 局部放电试验加压时序图

配电变压器的在线监测技术

配电变压器的在线监测技术 方案,提出了基于全球移动通信系统GSM (Global System for Mobile communication)短信技术的配电变压器在线监测系统的设计方案。 关键词:配电变压器;在线监测;GSM;DSP 配电变压器在线监测系统是一个信息集中管理系统,信息采集点是配电变压器,采集对象为配电变压器各项运行数据。系统主要组成为现场终端、通信信道和主站中心平台。以下将对配电变压器监测终端、信道传输及功能进行系统的阐述,并对本系统的功能做一个详细的归纳。其中信道传输作为重点研究对象。 一、配电变压器监测终端 监测终端部分的硬件系统由数据采集和信号处理两部分组成。 1.1数据采集部分 数据采集部分由信号转换与调理电路、采样同步控制电路、A/D转换电路组成。采集模式为220V三相交流电压,5A三相交流电流共六路通道同步采集,A/D采样并行输出。采用同步锁相系统控制采样频率,使采样频率和信号基波频率同步变化,可消除频率泄漏。 首先系统通过电流互感器和电压互感器采集配电变压器运行中实时电流信号和电压信号,然后经过放大,低通滤波等信号调理模块送人A/D转换器,把模拟量转换为数字信号送入数字信号处理器(DSP)。如图1所示: 图一 A/D转换器电路以及型号选择: A/D转换器选用ADS7864。ADS7864具有6个输入通道,每个通道都带有一个采样保持

器,内部与两个独立的逐次比较转换器,可以同时进行2个通道的转换。输出具有FIF0,为二进制补码。 1.2数据的处理部分 本设计的DSP芯片选用VC5409作为监测终端数据处理部分的核心。该芯片属于美国TI 公司生产的54XX系列DSP中的一款,这一系列的芯片具有相同的内核结构,只是配置了不同的片内存储器和片上外围设备。 数据信号处理器(DSP)的优点 DSP控制器具有用于高速信号处理和数字控制功能所必要的结构特点,同时还具有单片电机控制应用所需的外设功能.DSP内核具有高性能的运算能力,使得其芯片可以对复杂的控制算法进行实时运算。 二、信道传输 2.1传输方式的选择 我国的通信系统主要有以下几种通信方式:电力载波通信、光纤通信、微波通信、电话拨号、普通电台无线通信等。其各自的特点见下表: 图2 配电网通信方式性能比较 所以根据以上的分析,以及我国通信系统的现状,利用全球移动通信系统GSM公众无线通信网的SMS服务传输远程数据具有一次投入少、运营成本低、可靠性高、免维护的特点,可以作为有配电网在线监测系统的主要通信方式。 系统网络如图3所示,主要由终端检测设备、终端设备通信模块、GSM通信网络、通信管理器、管理工作站组成。 2.2数据的发送 众所周知现有的GSM网络技术十分的稳定,现在的GSM系统能提供多种不同类型的业务,

局部放电测试方法

局部放电测试方法 随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。局部放电检测作为一种非破坏性试验,越来越得到人们的重视。 虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。对电力设备进行局部放电测试是一项重要预防性试验。 根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产生分解物等,可以有很多测量局部放电的方法。总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。 一、电测法 局部放电最直接的现象即引起电极间的电荷移动。每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。局部放电电检测法即是基于这两个原理。常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。 1.脉冲电流法 脉冲电流法是一种应用最为广泛的局部放电测试方法。脉冲电流法的基本测量回路见图 3-5 。图中C x 代表试品电容,Z m (Z' m )代表测量阻抗,C k代表耦合电容,它的作用是为 C x与Z m之间提供一个低阻抗的通道。Z代表接在电源与测量回路间的低通滤波器,Z可以让工频电压作用到试品上,但阻止被测的高频脉冲或电源中的高频分量通过。 图3-5(a)为并联测量回路,试验电压U经Z施加于试品C x,测量回路由C k与Z m串联而成,并与C x并联,因此称为并联测量回路。试品上的局部放电脉冲经C k耦合到Z m上,经放大器A送到测量仪器M。这种测量回路适合于试品一端接地的情况,在实际工作中应用较多。 图3-5(b)为串联测量回路,测量阻抗Z m串联接在试品C x低压端与地之间,并经由C k形成放电回路。因此,试品的低压端必须与地绝缘。 图3-5(c)为桥式测量回路,又称平衡测量回路。试品C x与耦合电容C k均与地绝缘,测量阻抗Z m与Z m分别接在C x与C k的低压端与地之间。测量仪器M测量Z m与Z m’上的电压差。

电力变压器局部放电试验目的及基本方法

一变压器局部放电分类及试验目的 电力变压器是电力系统中很重要的设备,通过局部放电测量判断变压器的绝缘状况是相当有效的,并且已作为衡量电力变压器质量的重要检测手段之一。 高压电力变压器主要采用油一纸屏障绝缘,这种绝缘由电工纸层和绝缘油交错组成。由于大型变压器结构复杂、绝缘很不均匀。当设计不当,造成局部场强过高、工艺不良或外界原因等因素造成内部缺陷时,在变压器内必然会产生局部放电,并逐渐发展,后造成变压器损坏。电力变压器内部局部放电主要以下面几种情况出现: (1)绕组中部油一纸屏障绝缘中油通道击穿; (2)绕组端部油通道击穿; (3)紧靠着绝缘导线和电工纸(引线绝缘、搭接绝缘,相间绝缘)的油间隙击穿; (4)线圈间(匝间、饼闻)纵绝缘油通道击穿; (5)绝缘纸板围屏等的树枝放电; (6)其他固体绝缘的爬电; (7)绝缘中渗入的其他金属异物放电等。 因此,对已出厂的变压器,有以下几种情况须进行局部放电试验: (1)新变压器投运前进行局部放电试验,检查变压器出厂后在运输、安装过程中有无绝缘损伤。 (2)对大修或改造后的变压器进行局放试验,以判断修理后的绝缘状况。 (3)对运行中怀疑有绝缘故障的变压器作进一步的定性诊断,例如油中气体色谱分析有放电性故障,以及涉及到绝缘其他异常情况。

二测量回路接线及基本方法 1、外接耦合电容接线方式 对于高压端子引出套管没有尾端抽压端或末屏的变压器可按图1所示回路连接。 图1:变压器局部放电测试仪外接耦合电容测量方式110kV以上的电力变压器一般均为半绝缘结构,且试验电压较高,进行局部放电测量时,高压端子的耦合电容都用套管代替,测量时将套管尾端的末屏接地打开,然后串入检测阻抗后接地。测量接线回路见图2或图3。 图2:变压器局部放电测试中性点接地方式接线

变压器局部放电试验基础与原理

变压器试验基础与原理 1.概述 随着电力系统电压等级的不断提高,为使输变电设备和输电线路的建设和使用更加经济可靠,就必须改进限制过电压的措施,从而降低系统中过电压(雷电冲击电压和操作冲击电压)的水平。这样,长期工作电压对设备绝缘的影响相对地显得越来越重要。 电力产品出厂时进行的高电压绝缘试验(如:工频电压、雷电冲击电压、操作冲击电压等试验),其所施加的试验电压值,只是考核了产品能否经受住长期运行中所可能受到的各种过电压的作用。但是,考虑这种过电压值的试验与运行中长期工作电压的作用之间并没有固定的关系,特别对于超高电压系统,工作电压的影响更加突出。所以,经受住了过电压试验的产品能否在长期工作电压作用下保证安全运行就成为一个问题。为了解决这个问题,即为了考核产品绝缘长期运行的性能,就要有新的检验方法。带有局部放电测量的感应耐压试验(ACSD 和ACLD)就是用于这个目的的一种试验。 2.局部放电的产生 对于电气设备的某一绝缘结构,其中多少可能存在着一些绝缘弱点,它在-定的外施电压作用下会首先发生放电,但并不随即形成整个绝缘贯穿性的击穿。这种导体间绝缘仅被局部桥接的电气放电被称为局部放电。这种放电可以在导体附近发生也可以不在导体附近发生(GB/T 7354-2003《局部放电测量》)。 注1:局放一般是由于绝缘体内部或绝缘表面局部电场特别集中而引起的。通常这种放电表现为持续时间小于1微秒的脉冲。 注2:“电晕”是局放的一种形式,她通常发生在远离固体或液体绝缘的导体周围的气体中。 注3:局部放电的过程除了伴随着电荷的转移和电能的损耗之外,还会产生电磁辐射、超声、发光、发热以及出现新的生成物等。 高压电气设备的绝缘内部常存在着气隙。另外,变压器油中可能存在着微量的水份及杂质。在电场的作用下,杂质会形成小桥,泄漏电流的通过会使该处发热严重,促使水份汽化形成气泡;同时也会使该处的油发生裂解产生气体。绝缘内部存在的这些气隙(气泡),其介电常数比绝缘材料的介电常数要小,故气隙上承受的电场强度比邻近的绝缘材料上的电场强度要高。另外,气体(特别是空气)的绝缘强度却比绝缘材料低。这样,当外施电压达到某一数值时,绝缘内部

变压器油色谱在线监测系统原理及应用效果

变压器油色谱在线监测系统原理及应用效果 【摘要】变压器故障诊断要综合各种检测手段和方法,在变压器故障和诊断中单靠电气试验方法往往很难发现某些特殊局部部位的故障和发热隐患,色谱分析已成为检测变压器等充油设备故障的重要手段,这种方法能弥补电气试验方法的不足之处。本文论述了变压器故障诊断及色谱分析诊断的原理,阐述了MGA2000—6系统的工作原理和技术特点及应用情况。 【关键词】在线监测变压器绝缘油色谱分析 1引言 在现代电气设备的运行和维护中,变压器是电力系统的主要设备之一,因结构复杂,影响安全运行的因素较多。变压器在线监测系统通过油色谱分析、微水分析、温度的热效应等综合信息来分析判断变压器的绝缘状况,较好地解决了这些问题。 与预防性试验相比,在线监测系统采用更高灵敏度的传感器采集运行中设备的劣化信息,信息量的处理和识别依靠有丰富软件支持的计算机网络,不仅可以把某些预试项目在线化,还可以引进一些新的能更真实反应设备运行状态的特征量,从而实现对设备运行状态的综合诊断,促进电力设备由定期试验向状态检修过渡。 2变压器故障诊断 变压器故障诊断要综合各种检测手段和方法,对检测结果进行综合分析和评判,根据DL/T596—2005《电力设备预防性试验规程》规定的试验项目,各种介质损耗因数的测量作为作为设备状态诊断和检测项目的关键具有重要意义。 目前,电力系统中采用了大量的充油电气设备,采用电气试验的方法对电气设备的绝缘情况进行检测是一个有效的方法。由于有一些设备的早期潜伏或局部故障,如变压器铁心多点接地,变压器内部线圈轻微匝间短路和比较轻微的放电等故障,受试验条件所限,采用电气试验的方法常常检测不出来,但是,如果采用色谱分析方法,对这些设备的绝缘油中溶解的气体进行检测分析,就可以检测出设备故障的所在。

变压器局部放电在线监测装置检验规范-(终稿)

变压器局部放电在线监测装置检验规范 1 范围 本规范规定了变压器局部放电在线监测装置的专项检测项目、检验条件、检验内容及要求和检验结果处理。 本规范适用于变压器局部放电在线监测装置的型式试验、出厂试验、交接试验和运行中试验。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 16927 高电压试验技术 GB 7354-2003 局部放电测量 DL/T 356-2010 局部放电测量仪校准规范 3 检验项目 变压器局部放电在线监测装置专项试验项目包括一致性测试、通用技术条件试验、传感器频响特性检验、系统灵敏度检验、系统有效性检验和抗干扰性能试验。 4 检验条件 除环境影响试验和抗谐波干扰试验之外,其它试验项目应在如下试验环境中进行: a)环境温度:+15?C~+35?C; b)相对湿度:45%~75%; c)大气压力:80kPa~110kPa; d)电源电压:单相220×(1±10%)V; e)电源频率:50Hz±0.1Hz; f)电源波形:正弦波,波形失真度不大于5%; g)标准信号源:标准波形脉冲上升沿(10%~90%上升时间)约为1ns,半波时间为50ns, 幅值稳定度±5%,脉冲重复频率为50-200Hz可调。 对于高压检验试验,还应该满足以下试验条件: 1

a)试品的温度与环境温度应无显著差异; b)试验场所不得有显著的交流或直流外来磁场影响; c)试验场地必须具有单独工作接地和保护接地,设置保护栅栏; d)试品与接地体或邻近物体的距离,应大于试品高压部分与接地部分的最小空气距离 的1.5倍; e)构建吉赫兹横电磁波测量小室(GTEM测量小室)。 5 检验内容及要求 5.1一致性测试 5.1.1通信模型检测 a)检验模型配置文件与IEC 61850标准的变电站配置语言SCL的符合性; b)检验逻辑设备、逻辑节点、数据、数据属性的命名规则及描述与《变压器局部放电 在线监测装置技术规范》中附录A在线监测装置数据通信要求的符合性; c)检验数据集、报告控制块、日志控制块、定值组控制块等的命名规则、描述、定义 位置及数量与《变压器局部放电在线监测装置技术规范》中附录A在线监测装置数据通信要求的符合性。 5.1.2数据传送功能检测 a)通过报告服务,装置应实现遥信、遥测数据的告警、召唤、周期上传; b)通过日志服务,装置应响应综合处理单元查询遥信、遥测数据; c)通过文件服务,装置应实现谱图文件的上传; d)所有遥信、遥测数据应具备品质、时标等信息; e)装置内部的通信网络连接出现中断,应正确报出通信中断。 5.1.3谱图文件格式检测 装置生成的谱图文件应符合《变压器局部放电在线监测装置技术规范》的谱图文件格式要求。 5.1.4时间同步检测 a)装置应采用SNTP协议实现网络对时; b)用于事件时标的时钟同步准确度应为±1ms。 5.1.5通信自恢复能力检测 装置具备通信恢复能力,当物理故障消除后,网络通信应能自动恢复正常,信息传送正

相关文档
相关文档 最新文档