文档库 最新最全的文档下载
当前位置:文档库 › HEMO—OXY2010

HEMO—OXY2010

HEMO—OXY2010
HEMO—OXY2010

机械系统动力学

机械系统动力学报告 题目:电梯机械系统的动态特性分析 姓名: 专业: 学号:

电梯机械系统的动态特性分析 一、课题背景介绍 随着社会的快速发展,城市人口密度越来越大,高层建筑不断涌现,因此,现在对电梯的提出了更高的要求,随着科技的进步,在满足客观需求的基础上,电梯向着舒适性,高速,高效的方向发展。在电梯的发展过程中,安全性和功能性一直是电梯公司首要考虑的因素,其中舒适性也要包含在电梯的设计中,避免出现速度或者加速度出现突变,或者电梯运行过程中的振动引起人们的不适。因此,在电梯的设计过程中,对电梯进行动态特性分析是十分必要的。 二、在MATLAB中编程、绘图。 通过同组小伙伴的努力,已经得到了该系统的简化模型与运动方程。因此进行编程: 该系统的微分方程:[][][]{}[]Q x k x c x M= + ? ? ? ? ? ? + ? ? ? ? ? ?? ? ? ,其中矩阵[M]、 [C]、[K]、[Q]都已知。 该系统的微分方程是一个二阶一元微分方程,在MATLAB中,提供有求解常微分方程数值解的函数,其中在MATLAB中常用的求微分方程数值解的有7个:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb 。 ode是MATLAB专门用于解微分方程的功能函数。该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。不同类型有着不同的求解器,其中ode45求解器属于变步长的一种,采用Runge-Kutta

算法;和他采用相同算法的变步长求解器还有ode23。 ode45表示采用四阶,五阶Runge-Kutta单步算法,截断误差为(Δx)^3。解决的是Nonstiff(非刚性)常微分方程。 ode45是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,可换用ode23试试。 Ode45函数调用形式如下:[T,Y]=ode45(odefun,tspan,y0) 相关参数介绍如下: 通过以上的了解,并对该微分方程进行变换与降阶,得出程序。MATLAB程序: (1)建立M函数文件来定义方程组如下: function dy=func(t,y) dy=zeros(10,1); dy(1)=y(2); dy(2)=1/1660*(-0.006*y(2)+0.003*y(4)-0.0006*y(10)-1.27*10^7*y(1)+1.27*10^7*y (3)+2.54*10^6*y(9)); dy(3)=y(4); dy(4)=1/1600*(+0.03*y(2)-0.007*y(4)+0.003*y(6)+1.27*10^7*y(1)-7.274*10^8*y(3 )+1.27*10^7*y(5)); dy(5)=y(6);

由IGBT组成的H桥型直流直流变换器的建模及应用仿真

目录 1.引言 (2) 1.1研究意义 (2) 1.2研究内容 (2) 2.直流-直流变换器的工作原理 (2) 4 H桥DC/DC变换系统的电路仿真模型建立与实现 (6) 5 结论 (11) 心得体会 (12)

1.引言 1.1研究意义 电能是现代工农业、交通运输、通信和人们日常生活不可缺少的能源。电能一般分为直流电和交流电两大类,现代科学技术的发展使人们对电能的要求越来越高,不仅需要将将交流电转变为直流电,直流电转变为交流电,以满足供电能源与用电设备之间的匹配关系,还需要通过对电压、电流、频率、功率因数和谐波等的控制和调节,以提高供电的质量和满足各种各样的用电要求,这些要求在电力电子技术出现之前是不可能实现的,随着现代电力电子技术的发展,各种新型电力电子器件的研究、开发和应用,使人们可以用电力电子变流技术为各种各样的用电要求提供高品质的电源,提高产品的质量和性能,提高生产效率,改善人们的生活环境。 所谓变流就是指交流电和直流电之间的转换,对交直流电压、电流的调节,和对交流电的频率、相数、相位的变换和控制。而电力电子变流电路就是应用电力电子器件实现这些转换的线路,一般这些电路可以分为四大类。 (1)交流—直流变流器。 (2)直流—直流斩波调压器。 (3)直流—交流变流器。 (4)交流—交流变流器。 本课题所要研究的是直流—直流斩波调压。 1.2 研究内容 (1)工作原理分析 (2)系统建模及参数设置 (3)波形分析 2.直流-直流变换器的工作原理 直流—直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。直接直流变流电路也称斩波电路,它的功能是将直流电变为另一固定电压或可调电压的直流电,一般是指直接将直流电变为另一直流电,这种情况下输入与输出之间不隔离。间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此也称为带隔离的直流—直流变流电路或直—交—直电路。直流—直流变流器有多种类型,主要有降压变流器、升压变流器和桥式直流变流器等,这里主要介绍桥式(H型)直流变流器。 电流可逆斩波电路虽可使电动机的电枢电流可逆,实现电动机的两象限运行,但其所能提供的电压极性是单相的。当需要电动机进行正、反转以及可电动又可制动的场合,就必须将两个电流可逆斩波电路组合起来,分别向电动机提供正向和反向电压,即成为桥式可逆斩波电路。

综述 齿轮系统动力学的理论体系_王建军

齿轮系统动力学的理论体系 * 王建军 副教授 王建军 李润方 摘要 根据对国内外齿轮系统动力学研究成果的系统总结,阐述齿轮 系统动力学理论的基本结构体系。说明齿轮动力学的发展过程;围绕动态激 励、模型类型、建模和求解方法以及齿轮系统的固有特性、动态响应和动力稳定性等介绍齿轮系统动力学所涉及的基本问题,讨论该理论的主要工程应用的基础上,提出应进一步研究的方向与重点。 关键词 齿轮系统 动力学性能 理论体系 正问题 反问题 中国图书资料分类法分类号 T G132.41 1 齿轮系统动力学基本理论体系 齿轮系统动力学[1]是研究齿轮系统在传递运动和动力过程中的动力学行为的一门科学。它以齿轮系统为对象,以齿轮副啮合过程的动力学特性为核心,以提高和改善齿轮系统的动力学行为为目的,在充分考虑系统各零部件动态特性的基础上,利用振动力学理论和方法,研究齿轮系统在传递动力和运动中振动、冲击、噪声的基本规律, 为设计制造小振动、低噪声、高可靠性、高传动性能的齿轮系统提供理论依据。 齿轮系统是机器最主要的动力和运动传递装置,其力学行为和工作性能对整个机器有重要影响。因此,齿轮系统动力学近百年来一直受到人们的广泛关注,尤其是近20年来,由于相关力学的理论与实验技术的发展,促进了齿轮系统动力学的深入研究。迄今,已经形成了较为完整的齿轮系统动力学的基本理论体系(见图1),系统总结齿 图1齿轮系统动力学的基本理论体系 ?动载系统的计算方法?振动噪声的评价与防治?状态监测与故障诊断 ?系统参数与动态性能的关系?载荷识别与动态设计 齿轮动力学理论的应用 动态响应 (系统的输出)系统模型 (系统的力学、数学描述)动态激励(系统的输入)?稳定性指标?稳定性区域?稳定性性能?系统参数对稳定性的影响 动力稳定性?动载荷系统振动?系统参数的影响 动态响应?固有频率?固有振型?参数对固有特性的影响 固有特性?时变刚度?传递误差?齿侧间隙?支承弹性与间隙?系统阻尼 考虑因素?齿轮副纯扭模型?齿轮传动系统模型 模型类型?集中参数法 ?传递矩阵法 ?有限元法?动态子结构综合法 建模方法?时变啮合刚度?轮齿传递误差?啮入啮出冲击 内部激励?原动机的扭矩 ?负载的反作用力矩 外部激励求解方法 ?时域法 ?频域法?解析法?数值法?实验法 *国家自然科学基金资助项目(59575006),机械传动国家重点实验室开放基金资助项目 收稿日期:1997—01—03 修回日期:1998—11—20 轮系统动力学理论与方法的时机已经成熟。 2 齿轮系统动力学的发展 2.1 分析理论 (1)在本世纪50年代以前,以啮合冲击作为描述和解释齿轮动态激励、动态响应的基础,将齿轮系统简化为单自由度系统,以冲击作用下的单自由度系统的动态响应来表达齿轮系统的动力学行为。 50年代以后,将齿轮系统作为弹性的机械振动系 统,以振动理论为基础,分析在啮合刚度、传递误差和啮合冲击作用下,系统的动力学行为。这一发展奠定了现代齿轮系统动力学的基础。 (2)在振动理论的框架内,齿轮系统动力学经历了由线性振动理论向非线性振动理论的发展。在线性振动理论范畴内,人们以平均啮合刚度替代时变啮合刚度,并由此计算齿轮副的固有频率和振型,利用数值积分法计算系统的动态响应,不考虑因时变啮合刚度引起的动态稳定问题,且避免研究由齿侧间隙引起的非线性以及多对齿轮副、齿轮副 ? 55?齿轮系统动力学的理论体系——王建军 李润方

生活中的高分子材料

生活中的高分子材料 【摘要】 高分子应用在生活中各个地方,塑料便是应用较为广泛。塑料在生活起重大作用,但是也给环境带来了危害。如何解决由塑料制品所造成的白色污染时全人类共同面临的问题。目前,在诸多的解决方案中,开发可降解塑料成为全球瞩目的热点。 【正文】 高分子材料:以高分子化合物为基础的材料,高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。 高分子的分子量从几千到几十万甚至几百万,所含原子数目一般在几万以上,而且这些原子是通过共价键连接起来的。高分子化合物中的原子连接成很长的线状分子时,叫线型高分子(如聚乙烯的分子)。如果高分子化合物中的原子连接成网状时,这种高分子由于一般都不是平面结构而是立体结构,所以也叫体型高分子。 高分子材料的结构特征 高分子材料的高分子链通常是由成千上万个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特征。高分子结构通常分为链结构和聚集态结构两个部分。链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象,也称二级结构。聚集态结构是指高聚物材料整体的内部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。 高分子材料按其来源可分为:天然高分子材料、半合成高分子材料(改性天

直流变换器课程设计样本

直流变换器课程设 计

目录第一章.设计概要 1.1 技术参数 1.2 设计要求 第二章.电路基本概述 第三章. 电力总体设计方案 第三章.电力总体设计方案 3.1 电路的总设计思路 3.2电路的设计总框图 第四章 BUCK 主电路设计 4.1 Buck变换器主电路原理图 4.2 Buck变换器电路工作原理图4.3 主电路保护(过电压保护)4.4 Buck变换器工作模态分析 4.5 主电路参数分析 第五章控制电路 5.1 控制带你撸设计方案选择

5.2 SG3525控制芯片介绍 5.3 SG3525各引脚具体功能 5.4 SG3525内部结构及工作特性 5.5 SG3525构成的控制电路单元电路图第六章驱动电路原理与设计 6.1 驱动电路方案设计与选择 6.2 驱动电路工作分析 第七章附录 第八章设计心得

第一章.设计概要 1.1 技术参数: 输入直流电压Vin=25V,输出电压Vo=10V,输出电流Io=0.5A,最大输出纹波电压 50mV,工作频率 f=30kHz。 1.2 设计要求: (1)设计主电路,建议主电路为:采用 BUCK 变换器,大电容滤波,主功率管用 MOSFET;(2)选择主电路所有图列元件,并给出清单; (3)设计 MOSFET 驱动电路及控制电路; (4)绘制装置总体电路原理图,绘制: MOSFET 驱动电压、 BUCK 电路中各元件的电压、电流以及输出电压波形(波形汇总绘制,注意对应关系); (5)编制设计说明书、设计小结。 第二章.电路基本概述

直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流-直流变换器(DC/DC Converter)。直流斩波电路一般是指直接将直流电变为另一直流电的情况,输入与输出不之间不隔离。直流斩波电路的种类较多,包括 6 种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk 斩波电路,Sepic 斩波电路和 Zeta 斩波电路。Buck 电路作为一种最基本的 DC/ DC 拓扑,结构比较简单,输出电压小于输入电压,广泛用于各种电源产品中。根据对输出电压平均值进行调制的方式不同,斩波电路能够分为脉冲宽度调试、频率调制和混合型三种控制方式,Buck 电路的研究对电子产品的发展有着重要的意义。 MOSFET 特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于 GTR,但其电流容量小,耐压低,一般只适用于功率不超过 10kW 的电力电子装置。功率MOSFET 的种类:按导电沟道可分为P 沟道和 N 沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于 N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率 MOSFET 主要是 N 沟道增强型。 第三章.电力总体设计方案 3.1 电路的总设计思路

齿轮传动系统的动力学仿真分析

齿轮传动系统的动力学仿真分析 摘要:本文对建立好的整体机械系统的虚拟样机模型进行运动学和动力学的仿真分析,通过仿真分析,可以方便地得出齿轮传动系统在特定负载和特定工况下的转矩,速度,加速度,接触力等,仿真分析后,可以确定各个齿轮之间传递的力和力矩,为零件的有限元分析提供基础。 关键词:传动系统动力学仿真 adams 虚拟样机 中图分类号:th132 文献标识码:a 文章编号: 1007-9416(2011)12-0207-01 随着计算机图形学技术的迅速发展,系统仿真方法论和计算机仿真软件设计技术在交互性、生动性、直观性等方面取得了较大进展,它是以计算机和仿真系统软件为工具,对现实系统或未来系统进行动态实验仿真研究的理论和方法。 运动学仿真就是对已经添加了拓扑关系的运动系统,定义其驱动方式和驱动参数的数值,分析其系统其他零部件在驱动条件下的运动参数,如速度,加速度,角速度,角加速度等。对仿真结果进行分析的基础上,验证所建立模型的正确性,并得出结论。 本文中所用的动力学仿真软件是adams软件。adams软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。adams

软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。虚拟样机就是在adams软件中建的样机模型。 1、运动参数的设置 先在造型软件ug中将齿轮传动系统造型好,如下图所示。在已经设置好运动副的齿轮传动系统的第一级齿轮轴上绕地的旋转副上 给传动系统添加一个角速度驱动。然后进行仿真。在进行仿真的过程中,单位时间内仿真步数越多,步长越短,越能真实反映系统的真实结果,但缺点是仿真时间也随之变长,占用的系统空间也就越大。所以应该在兼顾仿真真实性与所需物理资源和仿真时间的基础上,选择一个合适的仿真时间和仿真的步长。 在仿真之前先设置系统所用到的物理量的单位,在工程实际中,角速度一般使用的单位是r/min,所以在系统的基本单位中把时间的单位设为min,角度的单位设成rad,而在adams中转速单位为 rad/min。本过程仿真的运动过程为:系统从加速运动到额定转速,平稳运动一段时间后,再减速运动直到停止。运动过程用函数来模拟,输入的角速度驱动的函数表达式为: step( time ,0 ,0 ,2.5 ,9168.8)+ step(time ,7.5 ,0 ,10 ,-9168.8),此函数表达式的含义为:系统从开始加速运动一直到2.5s时达到了系统的额定转速 9168.8rad/min(1460r/min),从2.5s到7.5s的时间段内,系统以额定转速运动,在7.5s到10s的时间段内,系统从额定转速减速

眩晕中医临床路径

眩晕中医临床路径 路径说明:本路径适合于以眩晕为主症的患者。 一、眩晕中医临床路径标准住院流程 (一)适用对象 中医诊断:第一诊断为眩晕(TCD 编码:BNG070)。 (二)诊断依据 1.疾病诊断 (1)中医诊断标准:参照中华中医药学会发布的《中医内科常见病诊疗指南--中 (王永炎、严世芸主编,第二版,上海科医病证部分》 (2008 年),及《实用中医内科学》 。 学技术出版社,2009 年) (粟秀初,黄如训主编,第四军医大学出版社,第(2)西医诊断标准:参照《眩晕》 。 二版,2008 年) 2.证候诊断参照“国家中医药管理局‘十一五’重点专科协作组眩晕 诊疗方案”。眩晕临床常见证候: 风痰上扰证 阴虚阳亢证 肝火上炎证 痰瘀阻窍证 气血亏虚证 肾精不足证 (三)治疗方案的选择参照“国家中医药管理局‘十一五’重点专科协作组眩晕诊疗方案”及中华中医药 学会《中医内科常见病诊疗指南》 (ZYYXH/T18-2008)。 1.诊断明确,第一诊断为眩晕。 2.患者适合并接受中医治疗。 (四)标准住院日为≤14 天。 (五)进入路径标准 1.第一诊断必须符合眩晕(TCD 编码: BNG070)的患者。 2.患者同时具有其他疾病,若在治疗期间不需特殊处理,也不影响第一诊断的临

床路径流程实施时,可以进入本路径。 3.由肿瘤、脑外伤、脑梗死、脑出血等引起的眩晕患者不进入本路径。 (六)中医证候学观察四诊合参,收集该病种不同证候的主症、次症、舌、脉特点。 注意证候的动态变化。 (七)入院检查项目 1.必需的检查项目 (1)血常规、尿常规、便常规 (2)肝功能、肾功能 (3)心电图 (4)经颅多普勒超声检查(TCD) (BAEP) 、颈动脉 脑干听觉诱发电位 如颈椎X 线片、 2. 可选择的检查项目:根据病情需要而定, 血管超声、头颅影像学检查、前庭功能检查等。 (八)治疗方法 1.辨证选择口服中药汤剂 (1)风痰上扰证:祛风化痰,健脾和胃。 (2)阴虚阳亢证:镇肝息风,滋阴潜阳。 (3)肝火上炎证:平肝潜阳,清火息风。 (4)痰瘀阻窍证:活血化痰,通络开窍。 (5)气血亏虚证:补益气血,健运脾胃。 (6)肾精不足证:补肾填精,充养脑髓。 2. 辨证选择静脉滴注中药注射液。 3.针灸治疗:急重期配合体针和耳穴治疗。 4.其他疗法:根据患者情况,可选用耳尖放血疗法等。 5.护理:辨证施护。 (九)出院标准 1.眩晕症状明显改善,基本痊愈。 2.病情稳定,没有需要住院治疗的并发症。 (十)有无变异及原因分析 1.病情加重,需要延长住院时间,增加住院费用。 2.合并有心血管疾病、内分泌疾病等其他系统疾病者,住院期间病情加重,需要特殊处理,导致住院时间延长、费用增加。 3.治疗过程中发生了病情变化,出现严重并发症,退出本路径。 4. 因患者及其家属意愿而影响本路径的执行,退出本路径。

汽车变速器齿轮系统动力学行为分析

1’5[ 爿n02『 . 葺》.魁。, 无量纲位移j。 m-=1.2 图3 无量纠位移m ∞=1.8 激励频率改变时系统庞加莱映射无量纲位移,, F=0.5 0.4r 墓0.2} 霎4.. ■ 瞅.o.2h ‘ -0AI-?--—---—??-----?--------—----——-I------—?-—?-一 -2 .1.5 一1 .o.5 无量纲位移& F—1.0 的变化 无量纲托移J mm2 0 图4载荷比改变时系统庞加莱映射的变化 结构的变化情况,相关方法和结论对于更好地掌握变速器齿轮动态特性,以及更好地对变速器进行NVH控制有指导意义。 参考文献 I 卢剑伟.沈博.钱立军.基于非线性动力学的变速器异响 分析[J】.汽车1:程,2007.29(6):533-536. 2李润方,王建军.齿轮系统动力学——振动、冲击、噪声 [M】.北京:科学jij版杜,1997. 3李骊强非线性振动系统的定性理论与定量方法[M].天津:天津科学}l{版社.1997. 4刘延柱.陈立群.非线性振动[M】.北京:高等教育出版社.2004. 5陈予恕.非线性振动[M】.北京:高等教育出版社.2002. 上海汽车2011.Ol 无量纲位移5 F=I.5 6刘梦军.单对齿轮系统间隙非线性动力学研究:【学位论文】西安:西北丁业大学.2002. 7薛定宇.基于MATLAB/SIMULINK的系统仿真技术与应用[M】.北京:清华大学出版杜.2002. ?3l? 营嘲j睁 蛐限

汽车变速器齿轮系统动力学行为分析 作者:钱锋, Qian Feng 作者单位:泛亚汽车技术中心有限公司,上海,201201 刊名: 上海汽车 英文刊名:SHANGHAI AUTO 年,卷(期):2011(1) 参考文献(14条) 1.薛定宇基于MATLAB/SIMULINK的系统仿真技术与应用 2002 2.卢剑伟.沈博.钱立军基于齿轮非线性动力学的变速器异响分析 2007(6) 3.刘梦军单对齿轮系统间隙非线性动力学研究 2002 4.李润方.王建军齿轮系统动力学--振动、冲击、噪声 1997 5.陈予恕非线性振动 2002 6.李骊强非线性振动系统的定性理论与定量方法 1997 7.刘延柱;陈立群非线性振动 2004 8.刘延柱.陈立群非线性振动 2004 9.李骊强非线性振动系统的定性理论与定量方法 1997 10.陈予恕非线性振动 2002 11.李润方;王建军齿轮系统动力学--振动、冲击、噪声 1997 12.刘梦军单对齿轮系统间隙非线性动力学研究 2002 13.卢剑伟;沈博;钱立军基于非线性动力学的变速器异响分析[期刊论文]-汽车工程 2007(06) 14.薛定宇基于MATLAB/SIMULINK的系统仿真技术与应用 2002 本文链接:https://www.wendangku.net/doc/308411662.html,/Periodical_shqc201101008.aspx

直流变换器开题报告汇总

开题报告 一背景 直流变换器是一种将模拟量转变为数字量的半导体元件。按功能可分为:升压变换器、降压变换器和升降压变换器。在燃料电池汽车中主要采用升压变换器。变换器首先通过电力电子器件将直流电源转变成交流电(AC),一般称作逆变,然后通过变压器(升压比为1∶n)升压,最后通过整流、滤波电路产生变压后的直流电,以供负载使用. 直流转换器与一般的变换器相比,具有抗干扰能力强、可靠性高、输出功率大、品种齐全等特点,用途广泛,输入输出完全隔离,输出多路不限,极性任选。宽范围输入变换器是专为满足输入电压变化范围较大场合需要而开发的一种直流稳压电源,其输入直流电压可以在DC100V-375V宽范围内变动而保证输出电压的稳定性.此外,这种电源体积小,重量轻、保护功能完善,具有良好的电磁兼容性。本身具有过流、过热、短路保护。多档输出的变换器,它不仅提供电源而且有振铃和报警功能。该变换器分为军用、工业及商业三个品级,在诸如通信机房、舰船等蓄电池供电的场合极为适用。直流—直流变换器(DC/DC Converter)早在10年前就做成了元器件式样,在系统中损坏 时可以卸下更换。目前,它正从低技术、元器件型转向高技术、插件(Building black)型发展。系统设计师在开始方案设计阶段就要考虑系统究竟需要什么样的电源输入、输出?DC/DC变换器作为子系统的一个部件,应该更仔细地规定它的指标以及要付出多少费用。有趣的是,全球声称可供给军用DC/DC变换器的厂家超过300家,但却没有两

种产品是相同的,这给系统设计师选用该产品时造成困难。设计师们考虑的最重要的事是:对产品的性能价格比进行综合平衡,决定取舍。需求和市场决定制造厂的发展战略目前,对制造厂家而言,面临着要求降低噪声、减小尺寸以及提高功率和效率的挑战和市场竞争。现扼要介绍几家公司的做法。当今,在任何一个计算机系统中,各种电源都是以插件形式出现的。供应厂商均按用户的要求作相应改动以适应需求。DC/DC直流变换器的军品市场占很大比重,但增长缓慢。分析家们预测:到1996年,DC/DC变换器最大市场将是计算机和通信领域。 美国InterPoint公司的研究开发战略是:针对军用及宇航系统应用,提供一种更便宜、功率更大、性能更好的产品,它们比现有DC/DC 变换器有全面改进。预计今后几年的实际问题仍是产品价格。采用模块化方法可以降低成本,同时提高DC/DC变换器输出功率。一些应用系统要求功率高达2KW,如果采用200W的产品去构建系统,至少要10~12个产品,既麻烦也影响系统可靠性。该公司认为必须研制出功率比200W大2~3倍的大功率电源,而且单件成本控制在1.3~1.7倍才合适。 模块化方法,可以通过消除非重复工程成本(NRE)使系统成本降低。这种模块化的器件也是分布式供电系统的基本构件。鉴于分布式供电比集中供电系统有更多优点,而绝大多数应用系统要求在母线级上直流电压要分别供给不同逻辑电路各种电压,例如+5V、+12V、+3.3V 等等。一些厂家利用板级(on-Card)DC/DC变换器来实现,另一些供应商则把几种输出合在一起,把电源放在靠近需要供电的电路板上。

《中医内科学》_第三节眩晕_中医世家.docx

《中医内科学》_第三节眩晕_中医世家 第三节眩晕眩晕是由于情志、饮食内伤、体虚久病、失血 劳倦及外伤、手术等病因,引起风、火、痰、瘀上扰清空或精亏 血少,清窍失养为基本病机,以头晕、眼花为主要临床表现的一 类病证。眩即眼花,晕是头晕,两者常同时并见,故统称为“眩晕”,其轻者闭目可止,重者如坐车船,旋转不定,不能站立, 或伴有恶心、呕吐、汗出、面色苍白等症状。眩晕为临床常见病证,多见于中老年人,亦可发于青年人。本病可反复发作,妨碍 正常工作及生活,严重者可发展为中风、厥证或脱证而危及生命。临床上用中医中药防治眩晕,对控制眩晕的发生、发展具有较好 疗效。眩晕病证,历代医籍记载颇多。《内经》对其涉及脏腑、病性归属方面均有记述,如《素问·至真要大论》认为:“诸风 掉眩,皆属于肝”,指出眩晕与肝关系密切。《灵枢,卫气》 认为“上虚则眩”《,灵枢·口问》说:“上气不足,脑为之不满,耳为之苦鸣, 头为之苦倾,目为之眩”,《灵枢·海论》认为“脑为髓海”,而“髓海不足,则脑转耳鸣”,认为眩晕一病以虚为主。汉代张仲景认为痰饮是眩晕发病的原因之一,为后世“无痰不作眩”的论 述提供了理论基础,并且用泽泻汤及小半夏加茯苓汤治疗眩晕。 宋代以后,进一步丰富了对眩晕的认识。严用和《重订严氏济 生方·眩晕门》中指出:“所谓眩晕者,眼花屋转,起

眩倒是也,由此之,六淫外感,七情内,皆能致”,第一次提 出外感六淫和七情内致眩,前人之未,但外感、寒、暑、湿致眩,外感病的一个症状,而非 主要候。元代朱丹溪倡痰火致眩学,《丹溪心法· 眩》:“ 眩,痰挟气虚并火,治痰主,挟气及降火。 无痰不作眩,痰因火,又有湿痰者,有火痰者。”明代景岳在《内》“上虚眩”的理基上,下虚致眩作了尽述,他在《景岳全·眩》中:“ 眩属上虚,然不能无涉于下。盖上虚者,阳中之 阳虚也;下虚者,阴中之阳虚也。阳中之阳虚者,宜治其气,如 四君子、??脾、中益气,??。阴中之阳虚者,宜其精,如?? 左、右、四物之是也。然伐下者必枯其上,滋苗者必灌其根。所以凡治上虚者,犹当以兼气血最,如大元煎、十全大阴 阳等,俱当酌宜用之。” 氏从阴阳互根及人体是一有机整体的点,与治眩,是能可,并眩的病因病机“虚者居其八九, 而兼火兼痰者,不十中一二耳”。述了倦度、失宜、呕吐上、泄泻下、大汗亡阳、晌目惊心、焦思不、被殴被辱气等皆阳中之阳,吐血、衄血、便血、 欲、崩淋等皆阴中之阳而致眩。秦景明在《症因脉治,眩》中 阳气虚是本病病的主要病理。徐春 甫《古今医·眩宜三虚》:“肥人眩运,气虚有痰;

直流变换器课程设计

目录第一章.设计概要 1.1 技术参数 1.2 设计要求 第二章.电路基本概述 第三章.电力总体设计方案 第三章.电力总体设计方案 3.1 电路的总设计思路 3.2电路的设计总框图 第四章BUCK 主电路设计 4.1 Buck变换器主电路原理图 4.2 Buck变换器电路工作原理图 4.3 主电路保护(过电压保护) 4.4 Buck变换器工作模态分析 4.5 主电路参数分析 第五章控制电路 5.1 控制带你撸设计方案选择 5.2 SG3525控制芯片介绍 5.3 SG3525各引脚具体功能 5.4 SG3525部结构及工作特性 5.5 SG3525构成的控制电路单元电路图 第六章驱动电路原理与设计 6.1 驱动电路方案设计与选择 6.2 驱动电路工作分析 第七章附录 第八章设计心得

第一章.设计概要 1.1 技术参数: 输入直流电压Vin=25V,输出电压Vo=10V,输出电流Io=0.5A,最大输出纹波电压50mV,工作频率f=30kHz。 1.2 设计要求: (1)设计主电路,建议主电路为:采用BUCK 变换器,大电容滤波,主功率管用MOSFET;(2)选择主电路所有图列元件,并给出清单; (3)设计MOSFET 驱动电路及控制电路; (4)绘制装置总体电路原理图,绘制:MOSFET 驱动电压、BUCK 电路中各元件的电压、电流以及输出电压波形(波形汇总绘制,注意对应关系); (5)编制设计说明书、设计小结。 第二章.电路基本概述 直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流-直流变换器(DC/DC Converter)。直流斩波电路一般是指直接将直流电变为另一直流电的情况,输入与输出不之间不隔离。直流斩波电路的种类较多,包括6 种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk 斩波电路,Sepic 斩波电路和Zeta 斩波电路。Buck 电路作为一种最基本的DC/ DC 拓扑,结构比较简单,输出电压小于输入电压,广泛用于各种电源产品中。根据对输出电压平均值进行调制的方式不同,斩波电路可以分为脉冲宽度调试、频率调制和混合型三种控制方式,Buck 电路的研究对电子产品的发展有着重要的意义。MOSFET 特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW 的电力电子装置。功率MOSFET 的种类:按导电沟道可分为P沟道和N 沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET 主要是N 沟道增强型。 第三章.电力总体设计方案 3.1 电路的总设计思路 Buck 变换器电路可分为三个部分电路块。分别为主电路模块,控制电路模块和驱动电路模块。主电路模块,由MOSFET 的开通与关断的时间占空比来决定输出电压u。的大小。控制电路模块,可用SG3525 来控制MOSFET 的开通与关断。驱动电路模块,用来驱动MOSFET。 3.2 电路设计总框图 电力电子器件在实际应用中,一般是有控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。有信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断,来完成整个系统的功能。因此,一个完整的降压斩波电路也应该包括主电路,控制电路,驱动电路和保护电路致环节。根据降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路,设计出降压斩波电路的结构框图如下图所示。

研究生《机械系统动力学》试卷及答案

太原理工大学研究生试题 姓名: 学号: 专业班级: 机械工程2014级 课程名称: 《机械系统动力学》 考试时间: 120分钟 考试日期: 题号 一 二 三 四 五 六 七 八 总分 分数 1 圆柱型仪表悬浮在液体中,如图1所示。仪表质量为m ,液体的比重为ρ,液体的粘性阻尼系数为r ,试导出仪表在液体中竖直方向自由振动方程式,并求固有频率。(10分) 2 系统如图2所示,试计算系统微幅摆动的固有频率,假定OA 是均质刚性杆,质量为m 。(10分) 3 图3所示的悬臂梁,单位长度质量为ρ,试用雷利法计算横向振动的周期。假定梁的 变形曲线为?? ? ?? -=x L y y M 2cos 1π(y M 为自由端的挠度)。(10分) 4 如图4所示的系统,试推导质量m 微幅振动的方程式并求解θ(t)。(10分) 5 一简支梁如图5所示,在跨中央有重量W 为4900N 电机,在W 的作用下,梁的静挠度δst=,粘性阻尼使自由振动10周后振幅减小为初始值的一半,电机n=600rpm 时,转子不平衡质量产生的离心惯性力Q=1960N ,梁的分布质量略去不计,试求系统稳态受迫振动的振幅。(15分) 6 如图6所示的扭转摆,弹簧杆的刚度系数为K ,圆盘的转动惯量为J ,试求系统的固有频率。(15分) 7如图7一提升机,通过刚度系数m N K /1057823?=的钢丝绳和天轮(定滑轮)提升货载。货载重量N W 147000=,以s m v /025.0=的速度等速下降。求提升机突然制动时的钢丝绳最大张力。(15分) 8某振动系统如图8所示,试用拉个朗日法写出动能、势能和能量散失函数。(15分) 太原理工大学研究生试题纸

浅谈对高分子材料的认识

浅谈对高分子材料的认识 214——马欢欢

高分子材料,顾名思义,是指以高分子化合物为基本组成,加入适当助剂,经过一定的加工制成的材料。高分子材料与我们的生活息息相关。我们身边天然的高分子材料,例如棉花、毛、蚕丝和木材中的纤维素等,是我们生活中重要的一部分。随着社会的发展,开始出现了改性天然高分子材料和合成高分子材料,例如塑料、树脂等,极大地改善了我们的生活条件,推动了社会进步。下面我就简单谈一下我对于高分子材料的认识,主要是高分子材料的分类和应用。 高分子材料有很多种类。从来源来分,可以分为天然高分子材料、改性天然高分子材料和合成高分子材料。举例来说,蛋白质、天然橡胶、纤维素等属于天然高分子材料,改性淀粉、硝化纤维等为改性天然高分子材料,有机玻璃、涤纶、尼龙等为合成高分子材料。 如果根据使用性质来分,可以将高分子材料分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。 塑料是用途最广泛的合成高分子。人们常用的塑料是以合成树脂为基础,再加入塑料辅助剂(如填料、增韧剂、稳定剂、交联剂等)制得的。通常,按塑料的受热行为和是否具备反复成型加工性,可以将塑料分为热塑性塑料和热固性塑料。热塑性塑料受热时熔融,可进行各种成型加工,冷却时硬化。再受热,又可熔融、加工,即具有多次重复加工性。如,PE,PET等。热固性塑料受热熔化成型的同时发生交联固化反应,形成立体网状结构,再受热不熔融,在溶剂中也不溶解,当温度超过分解温度时将被分解破坏,即不具备重复加工性。如果按照用途来分,可分为通用塑料、工程塑料和特种塑料。通用塑料一般指产量大、用途广、成型性好、价格便宜、力学性能一般,主要作为非结构材料使用的塑料,如PE、PP、PVC、PS等。工程塑料具有较高的力学性能,能够经受较宽的温度变化范围和较苛刻的环境条件,并且在此条件下能够长时间使用,且可作为结构材料。如PC、PPO、PPS等。特种塑料一般指具有特种功能,可用于航空航天等特殊应用领域的塑料,如氟塑料、有机硅等。 早期的橡胶是取自橡胶树、橡胶草等植物的胶乳,加工后制成的具有弹性、绝缘性、不透水和空气的材料,是一种高弹性的高分子化合物。橡胶按照来源可以分为天然橡胶和合成橡胶两大类。天然橡胶是从橡胶树、橡胶草等植物中提取胶质后加工制成;合成橡胶是由人工合成方法而制得的,采用不同的原料(单体)可以合成出不同种类的橡胶。合成橡胶又分为通用合成橡胶和特种合成橡胶。通用合成橡胶是指部分或全部代替天然橡胶使用的胶种,如丁苯橡胶、顺丁橡胶、异戊橡胶等,主要用于制造轮胎和一般工业橡胶制品。通用橡胶的需求量大,是合成橡胶的主要品种。

中医内科学题

的病证。 2.内伤咳嗽是指因脏腑功能失调影响到肺的宜肃功能;肺气上逆而致的咳嗽。 3.外邪袭肺,治不及时,邪不外达,外邪未解,·使风寒化热,称之为“客寒包火”。 五、简答题 1.咳嗽虽为肺失宣降而产生,但临床上其他脏腑的功能失调,只要影响到肺失宣肃,肺气 上逆,皆可咳嗽,如肝火犯肺,脾湿生痰,肾水上泛及肾阴不足的“子盗母气”,都能影 响肺之宣降而咳嗽。 2.(1)辨痰色:色白属风寒、湿;色黄属热;色灰属痰浊; (2)辨痰质:稀薄属风寒,虚寒;痰浊厚为湿痰;痰稠属热、燥、阴虚。 (3)辨痰量:量少属燥,阴虚;量多为湿、为饮; (4)辨痰味:热腥气或腥臭气为痰热;味甜属脾;味咸属肾;味苦属肝。 3.咳嗽的治疗应分清邪正虚实事辨别标本缓急。外感咳嗽应祛邪宣肺,用药宜轻清上扬,因势利导,使邪去正安;内伤咳嗽多虚实夹杂,发作时标实为主,当化痰止咳以治其标,缓解时当扶正补虚以治本;久咳之纯虚无邪者可用收涩之品如粟壳、诃子之类,但早期咳嗽,咯痰多者切忌使用,以免闭门留寇。 4.外感咳嗽与感冒均可能有表证与咳嗽,而感冒则表证明显,咳嗽较轻,咳嗽则表证较 轻而咳嗽较重。 5.肺痨的病因为感染痨虫,并具备咳嗽,咯血,潮热,盗汗,消瘦为特征,而咳嗽仅以 咳嗽和咯痰为主,可兼表证,且肺痨有传染性可资鉴别。 第四节喘证 二、名词解释 1.喘证 2.喘脱 五、问答题: 1.喘证的辨证要点是什么? 2.为什么说实喘在肺,重在祛邪利气,虚喘在肺肾,重在培补摄纳? 3.喘证的诊断依据是什么? 4.试述肺气郁的主证、治法及方药。 二、名词解释 1.喘证是以气息迫促,呼吸困难,甚至张口抬肩,鼻翼煽动,难以平卧为主要临床表现的 一种病证。 2.喘促持续不解,烦躁不安,面唇青紫,肢冷,汗出如珠,脉浮大无根者谓之喘脱。 五、简答题 1.辨病位.凡外邪、痰浊、肝郁气逆等致邪壅肺气,宣降不利而喘者病位在肺;久病劳欲, 肺肾出纳失常,呼多吸少,其病位在肺肾。而因情志诱发者涉及到肝,伴心悸者,涉及 到心。 2.实喘主要是邪气郁痹于肺,如风寒、风热、痰浊、痰热及肺气致使肺气不利所致;而虚喘则是肺自主气无力及肾失摄纳所致,故实喘在肺,重在祛邪利气。虚喘在肺肾,以扶正为要,采用补肺、固肾、益气养阴、温阳培补摄纳之法。 3.以喘促气短,呼吸困难,甚至张口抬肩,鼻翼煽动,不能平卧,口唇发绀为特征,平素有慢性咳嗽,哮病,肺痨,心悸等病史.结合体检和X胸片等,有助于明确诊断。 4.(1)主证:喘急气促,胸胁闷胀,精神抑郁或易怒,喘多由情志因素而发。 (2)治法:舒肝解郁,降气平喘. (3)方药:五磨饮子加减。沉香、木香、枳实、乌药、槟榔等。

机械系统动力学试题

机械系统动力学试题 一、 简答题: 1.机械振动系统的固有频率与哪些因素有关?关系如何? 2.简述机械振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。 3.简述无阻尼单自由度系统共振的能量集聚过程。 4. 简述线性多自由度系统动力响应分析方法。 5. 如何设计参数,使减振器效果最佳? 二、 计算题: 1、 单自由度系统质量Kg m 10=, m s N c /20?=, m N k /4000=, m x 01.00=, 00=? x ,根据下列条件求系统的总响应。 (a ) 作用在系统的外激励为t F t F ωcos )(0=,其中N F 1000=, s rad /10=ω。 (b ) 0)(=t F 时的自由振动。 2、 质量为m 的发电转子,它的转动惯量J 0的确定采用试验方法:在转子径向R 1的地方附加一小质量m 1。试验装置如图2所示,记录其振动周期。 a )求发电机转子J 0。 b )并证明R 的微小变化在R 1=(m/m 1+1)·R 时有最小影响。 3、 如图3所示扭转振动系统,忽略阻尼的影响 J J J J ===321,K K K ==21 (1)写出其刚度矩阵; (2)写出系统自由振动运动微分方程; (2)求出系统的固有频率; (3)在图示运动平面上,绘出与固有频率对应的振型图。 1 θ(图2)

(图3) 4、求汽车俯仰振动(角运动)和跳振(上下垂直振动)的频率以及振 动中心(节点)的位置(如图4)。参数如下:质量m=1000kg,回转半径r=0.9m,前轴距重心的距离l1=0.1m,后轴距重心的距离l2=1.5m,前弹簧刚度k1=18kN/m,后弹簧刚度k2=22kN/m (图4) 5、如5图所示锻锤作用在工件上的冲击力可以近似为矩形脉冲。已知 工件,铁锤与框架的质量为m1=200 Mg,基础质量为m2=250Mg,弹簧垫的刚度为k1=150MN/m,土壤的刚度为k2=75MN/m.假定各质量的初始位移与速度均为零,求系统的振动规律。

齿轮动力学国内外研究现状

1.2.1 齿轮系统动力学研究 从齿轮动力学的研究发展来看,先后进行了基于解析方法的非线性齿轮动力学研究、基于数值方法的齿轮非线性动力学研究、基于实验方法的齿轮系统的非线性动力学研究和考虑齿面摩擦及齿轮故障的齿轮系统的非线性动力学研究。其中,解析方法包括谐波平衡法、分段技术法和增量谐波平衡法等;数值方法则不胜枚举,包括Ritz法、Parametric Continuation Technique方法等。[1]齿轮系统间隙非线性动力学的研究起始于1967年K.Nakamura的研究。[2]在1987年,H. Nevzat ?zgüven等人对齿轮系统动力学的数学建模方法进行了详细的总结。他分别从简化的动力学因子模型、轮齿柔性模型、齿轮动力学模型、扭转振动模型等几个方面分类,详细总述了齿轮动力学的发展进程。[3]1990年,A. Kaharman等人分析了一对含间隙直齿轮副的非线性动态特性,考虑了啮合刚度、齿侧间隙和静态传递误差等内部激励的影响,考察了啮合刚度与齿侧间隙对动力学的共同影响。[4] 1997年,Kaharaman和Blankenship对具有时变啮合刚度、齿侧间隙和外部激励的齿轮系统进行了实验研究,利用时域图、频域图、相位图和彭家莱曲线等揭示了齿轮系统的各种非线性现象。[5]同年,M. Amabili和A. Rivola研究了低重合度单自由度的直齿轮系统的稳态响应及其系统的稳定性。 [6]2004年,A. Al-shyyab等人用集中质量参数法建立了含齿侧间隙的直齿齿轮副的非线性动力学模型,利用谐波平衡阀求解了方程组的稳态响应,并研究了啮合刚度、啮合阻尼、静态力矩和啮合频率对齿轮系统振动的影响。[7]2008年,Lassaad Walha等人建立了两级齿轮系统的非线性动力学模型,考虑了时变刚度、齿侧间隙和轴承刚度对动力学的影响。对非线性系统分段线性化并用Newmark迭代法进行求解,研究了齿轮脱啮造成的齿轮运动的不连续性。[8]2010年,T. Osman 和Ph. Velex在齿轮轻微磨损的情况下,建立了动力学模型,通过数值模拟揭示了齿轮磨损的非对称性。[9]2011年,Marcello Faggioni等人通过分析直齿轮的非线性动力学特性及其响应,建立了以齿轮振动幅值的目标函数,利用Random–Simplex优化算法优化了齿廓形状。[10]2013年,Omar D. Mohammed等人对时变啮合刚度的齿轮系统动力学进行了研究,对于裂纹过长所带来的有限元误差问题,提出了一种新的时变啮合刚度模型。通过时域方面的故障诊断数据和FEM结果对比,证明了新模型能够更好地解长裂纹问题。[11] 国内研究齿轮系统动力学也进行了大量的研究。2001年,李润芳等人建立了具有误差激励和时变刚度激励的齿轮系统非线性微分方程,利用有限元法求得齿轮的时变啮合刚度和啮合冲击力,研究了齿轮系统在激励作用下的动态响应。 [12]2006年,杨绍普等人研究了考虑时变刚度、齿轮侧隙、啮合阻尼和静态传递误差影响下的直齿轮副的非线性动力学特性,利用增量谐波平衡法对系统方程进行了求解,研究了系统的分岔特性以及阻尼比和外激励大小对系统幅频曲线的影响。[13]2010年,刘国华等人建立了考虑齿轮轴的弹性、齿侧间隙、油膜挤压刚度和时变啮合刚度等因素的多体弹性非线性动力学模型,研究了齿廓修形和轴的扭转刚度对动力学特性的影响。[14] 2013年,王晓笋,巫世晶等人建立了含有非线性齿侧间隙、内部误差激励和含磨损故障的时变啮合刚度的三自由度齿轮传动系统平移—扭转耦合动力学方程。采用变步长Gill积分、GRAM—SCHMIDT方法,得到了系统对应的分岔图和李雅普诺夫指数谱,研究发现了系统内部丰富的非线性现象,而系统进入混沌运动的途径也是多样的。[15]

相关文档