文档库 最新最全的文档下载
当前位置:文档库 › 太赫兹简介及特点和应用

太赫兹简介及特点和应用

太赫兹简介及特点和应用
太赫兹简介及特点和应用

太赫兹简介及特点和应用

嘉兆科技

THz波(太赫兹波)或成为THz射线(太赫兹射线)是从上个世纪80年代中后期,才被正式命名的,在此以前科学家们将统称为远红外射线。太赫兹波是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。实际上,早在一百年前,就有科学工作者涉及过这一波段。在1896年和1897年,Rubens和Nichols就涉及到这一波段,红外光谱到达9um(0.009mm)和20um (0.02mm),之后又有到达50um的记载。之后的近百年时间,远红外技术取得了许多成果,并且已经产业化。但是涉及太赫兹波段的研究结果和数据非常少,主要是受到有效太赫兹产生源和灵敏探测器的限制,因此这一波段也被称为THz间隙。

随着80年代一系列新技术、新材料的发展,特别是超快技术的发展,使得获得宽带稳定的脉冲THz源成为一种准常规技术,THz技术得以迅速发展,并在实际范围内掀起一股THz研究热潮。2004年,美国政府将THz科技评为“改变未来世界的十大技术”之四,而日本于2005年1月8日更是将THz技术列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。我国政府在2005年11月专门召开了“香山科技会议”,邀请国内多位在THz研究领域有影响的院士专门讨论我国THz事业的发展方向,并制定了我国THz技术的发展规划。另外,美国、欧洲、亚洲、澳大利亚等许多国家和地区政府、机构、企业、大学和研究机构纷纷投入到THz的研发热潮之中。THz研究领域的开拓者之一,美国著名学者张希成博士称:“Next ray,T-Ray !”

目前国内已经有多家研究机构开展太赫兹领域的相关研究,其中首都师范大学,是入手较早,投入较大的一家,并且在毒品和炸药太赫兹光谱、成像和识别方面,利用太赫兹对非极性航天材料内部缺陷进行无损检测方面做出了许多开拓性的工作,同时由于太赫兹射线在安全检查方面的独特优势,首都师范大学太赫兹实验室正集中力量研发能够用于实景测试的安检原型设备。

目前,国际上对太赫兹辐射已达成如下共识,即太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。

它之所以能够引起人们广泛的关注、有如此之多的应用,首先是因为物质的太赫兹光谱(包括透射谱和反射谱)包含着非常丰富的物理和化学信息,所以研究物质在该波段的光谱对于物质结构的探索具有重要意义;其次是因为太赫兹脉冲光源与传统光源相比具有很多独特的性质。

人们关注THz技术的原因是THz射线普遍存在,是人们认识自然界的有效线索和工具。但是相对于其他波段的电磁波比如红外和微波,对它的认识和应用非常匮乏。

THz射线的主要特点:

(1)是THz 脉冲的典型脉宽在皮秒量级,不但可以方便地进行时间分辩的研究,而且通过取样测量技术,能够有效地抑制远红外背景噪声的干扰。目前,脉冲THz 辐射通常只有较低的THz 射线平均功率,但是由于THz 脉冲有很高的峰值功率,并且采用相干探测技术获得的是THz 脉冲的实时功率而不是平均功率,因此有很高的信噪比。目前,在时域光谱系统中的信噪比可达105或更高。

(2)是THz 脉冲源通常只包含若干个周期的电磁振荡,单个脉冲的频带可以覆盖从GHz 直至几十THz 的范围,许多生物大分子的振动和转动能级,电介质、半导体材料、超导材料、薄膜材料等的声子振动能级落在THz 波段范围。因此THz 时域光谱技术作为探测材料在THz 波段信息的一种有效的手段,非常适合于测量材料吸收光谱,可用于进行定性鉴别的工作。

(3) THz 光子的能量低,只有几毫电子伏特,因此不容易破坏被检测物质。

(4) 许多的非金属非极性材料对THz 射线的吸收较小,因此结合相应的技术,使得探测材料内部信息成为可能。例如,陶瓷,硬纸板,塑料制品,泡沫等对THz 电磁辐射是透明的,因此THz 技术可以作为x 射线的非电离和相干的互补辐射源,用于机场、车站等地方的安全监测,比如探查隐藏的走私物品包括枪械、爆炸物、和毒品等,以及用于集成电路焊接情况的检测等。极性物质对THz 电磁辐射的吸收比较强,特别是水,THz 光谱技术中应采取各种措施避免水分的影响,不过在THz 成像技术中,可以利用这一特性分辨生物组织的不同状态,比如动物组织中脂肪和肌肉的分布,诊断人体烧伤部位的损伤程度,及植物叶片组织的水分含量分布等。太赫兹成像技术与其他波段的成像技术相比,它所得到的探测图像的分辨率和景深都有明显的增加(超声、红外、X-射线技术也能提高图像分辨率,但是毫米波技术却没有明显的

提高)。另外太赫兹技术还有许多独特的特性,如在非均匀的物质中有较少的散射,能够探测和测量水汽含量等等。

太赫兹光谱技术不仅信噪比高,能够迅速地对样品组成的细微变化作出分析和鉴别,而且太赫兹光谱技术是一种非接触测量技术,使它能够对半导体、电介质薄膜及体材料的物理信息进行快速准确的测量。THz主要应用领域

太赫兹的独特性能给通信(宽带通信)、雷达、电子对抗、电磁武器、天文学、医学成像(无标记的基因检查、细胞水平的成像)、无损检测、安全检查(生化物的检查)等领域带来了深远的影响。由于太赫兹的频率很高,所以其空间分辨率也很高;又由于它的脉冲很短(皮秒量级)所以具有很高的时间分辨率。太赫兹成像技术和太赫兹波谱技术由此构成了太赫兹应用的两个主要关键技术。同时,由于太赫兹能量很小,不会对物质产生破坏作用,所以与X射线相比更具有优势。另外,由于生物大分子的振动和转动频率的共振频率均在太赫兹波段,因此太赫兹在粮食选种,优良菌种的选择等农业和食品加工行业有着良好的应用前景。太赫兹的应用仍然在不断的开发研究当中,其广袤的科学前景为世界所公认。

(1)THz时域光谱技术。目前已经开始商业化运作,世界范围内已经有多家企业开始生产商用THz时域光谱仪,主要是美国,欧洲和日本的厂家。THz时域光谱技术的基本原理是利用飞秒脉冲产生并探测时间分辨的THz电场,通过傅立叶变换获得被测物品的光谱信息,由于大分子的振动和转动能级大多在THz 波段,而大分子,特别是生物和化学大分子是具有本身物性的物质集团,进而可以通过特征频率对物质结构、物性进行分析和鉴定。一个比较重要的应用可以作为药品质量监管。设想一下制药厂的流水线上安装一台THz时域光谱仪,从药厂出场的每一片药都进行进行光谱测量,并与标准的药物进行光谱对比,合格的将进入下一个环节,否则在流水线上将劣质药片清除掉,避免不同药片或不同批次药片的品质差仪,保证药品的品质。

(2)THz成像技术。跟其他波段的成像技术一样,THz成像技术也是利用THz射线照射被测物,通过物品的透射或反射获得样品的信息,进而成像。THz成像技术可以分为脉冲和连续两种方式。前者具有THz 时域光谱技术的特点。同时它可以对物质集团进行功能成像,获得物质内部的折射率分布。例如葵花籽可

以和容易获得葵花子的内部信息。图3-4 给出了葵花籽样品的实物照片和相应方法重构的THz 透射图像,能清晰地分辨果壳的轮廓和隐藏在果壳中果仁的形状,这是最希望的。同样,如果样品是人的牙齿,那么牙齿的正常部分与损蛀部分将很容易的区分开,同时不必照射x射线,对人体没有附加伤害。

(3)安全检查,利用安全检查应该说是现阶段最吸引人的THz技术,它的本质原理是THz成像,目前由于目前主要采用连续波THz源,而且又由于它要解决的是目前最受人关注的反恐、缉毒等最让人关注的问题,所以单列出来。目前英国发展的THz安检设备已经进入试用阶段。由于THz射线的穿透性和对金属材料的强反射特性,并且THz的高频率是的成像的分辨率更高,所以可以很容易看到隐藏在衣物、鞋内的刀具、枪械等物品。同时如果结合THz的物质鉴别特性,能够区分你身上是否携带炸药或毒品。首都师范大学THz实验室已经建立了常见的炸药和毒品的数据谱库,可以设想再过几年,可以真正在机场见到真正的THz安检的设备。另外,世界范围内引起社会动荡的自杀式炸弹恐怖袭击,也可以利用THz 安检设备进行防范。因为站岗的可以不再是士兵或保安人员,而是THz安检仪,人们不需要靠近可以分子就可以对其进行检查。

(4)THz雷达。实际上也是成像的一种。鉴于大气中水分对THz射线的强吸收作用,所以近距离雷达是THz射线的优势所在。一个非常让人向往的应用是穿墙雷达和探雷雷达,当然也可以用于抗震救灾中遇难者的搜救,目前还处于研发阶段。这是由于墙壁,木材等材料对THz透过,而人体包含大量水分,不透过THz,因此可以透过墙壁侦查到屋内的人员的分布和活动,将反恐怖反绑架起到深远的影响,同理也可以用于废墟下人体的寻找。而探雷雷达是由于地雷一般在地表或地表附近,而干燥的泥土可以透过THz 射线,而地雷将会把THz射线反射回来,从而可以发现目标。

(5)天文学:在宇宙中,大量的物质在发出THz电磁波。炭(C)、水(H2O)、一氧化碳(CO)、氮(N2)、氧(O2)等大量的分子可以在THz频段进行探测。而这些物质在应用THz技术以前一部分根本无法探测而另一部分只能在海拔很高或者月球表面才可以探测到。

(6)通信技术:THz用于通信可以获得10GB/s的无线传输速度,特别是卫星通信,由于在外太空,近似真空的状态下,不用考虑水分的影响,这比当前的超宽带技术快几百至一千多倍。这就使得THz通信

可以以极高的带宽进行高保密卫星通信。虽然由于缺乏高效的THz发射天线和源,使其还无法在通信领域商业化,但这必将由新型的发射装置和发射源所解决。

此外,太赫兹在半导体材料、高温超导材料的性质研究等领域也有广泛的应用。研究该频段不仅将推动理论研究工作的重大发展,而且对固态电子学和电路技术也将提出重大挑战。

目前,笼统的说THz技术的研究主要围绕三大部分内容展开,THz产生源、THz探测和应用研究。目前最大的困难还是没有高功率便携式连续可调的成本较低的THz发射源,另外也没有能够常温下直接探测太赫兹射线的被动式探测器。

太赫兹的相关产品及介绍说明

TDS 以及FDS 光谱系统的成像光束 我们的太赫兹成像相机是一款测量TDS 以及FDS光速轮廓的完美工具。TERASENSE与 TOPTICA研究者在我们的研发项目中已证实了这款产品的实用性。这个研发项目是继2015 年3月19日-20日在慕尼黑的TOPTICA总部举行的技术会议而产生的。我们对在这次在TDS 以及FDS系统的应用前景相当自信,这次的相互促进合作标志着一个新时代的到来,同时也 是标志TERASENSE成像仪的时代的到来。 太赫兹时域光谱(THz-TDS) 太赫兹时域光谱运用了光谱技术,通过这个技术材料的属性可通过太赫兹辐射短脉冲探测出来。生成和检测方案对样板材料在太赫兹辐射的振幅和相位的效果都是非常敏感的。脉冲太赫兹辐射是由光电导开关产生(GaAs 或者InGaAs/InP)产生的,通过femtosecond 激光照射。最后,事实上傅立叶变换的太赫兹振幅产生的太赫兹频谱的频率范围为0.1 – 5太赫兹。 Test of TeraSense camera operation with TDS system TeraSense相机在TDS系统的检测 50 GHz – 0.7 THz 频率范围 1.5 x 1.5 mm2像素大小 1 nW√Hz噪声等效功率 每秒高达50 帧 16x16, 32x32, 64x64 总像素型号光纤耦合InGaAs光电开关0.1 – 5 THz 带宽 >90 dB动态范围峰值 平均功率25 uW 100 MHz 脉冲重复率 太赫兹频域光谱(THz-FDS) 太赫兹频域光谱运用了光谱技术,通过这个技术材料的属性可用持续波(cw)太赫兹辐射探测出。辐射是通过在高带宽的光电导体中的光外差作用获得的:两个持续波激光的输出转换成太赫兹辐射,正是在不同频率的激光。光电混频器由一个小型金属-半导体-金属结构表示。使用偏压到半导体结构中,然后产生一个振荡在跳动频率的光电流。输出频率范围从50 GHz 高达1.5 THz。 Test of TeraSense camera operation with TDS system TeraSense相机在TDS系统的检测 50 GHz – 0.7 THz 频率范围InGaAs光混频器与蝶形天线

太赫兹技术及其应用概述

太赫兹技术及其应用概述 来源:互联网 太赫兹技术(T-RAY)是指利用太赫兹波的技术,所谓的太赫兹科学,就是研究电滋波中的某一段,但这段电滋波能“看透”许多东西。100多年前,在红外天文学上人们曾提到太赫兹,但在科研和民用方面很少有人触及。在微波、可见光、红外等技术被广泛应用的情况下,太赫兹发展滞后的主要原因在于缺少探测器和发射源,直到近10几年,随着科研手段的提高,人们在这一领域的研究才有了较大发展。目前人类对太赫兹的研究已发展成为一个新的领域,研究太赫兹的单位也从20年前的3个发展到全世界的200多个。 太赫兹波指的是频率在0.1THz~10.0THz范围的电磁波。它具有很多优异的性质,被美国评为“改变未来世界的十大技术”之一。太赫兹波谱学、太赫兹成像和太赫兹通信是当前研究的三大方向。在安全检查、无损探测、天体物理、生物、医学、大气物理、环境生态以及军事科学等诸多科学领域有着重要的应用。具有极高截止频率的肖特基二极管能够在室温下实现太赫兹波的混频、探测和倍频,是太赫兹核心技术之一;此外,在低损耗的衬底上实现太赫兹电路是太赫兹技术得以实现的基础。 太赫兹波是频率范围在0.1T至10THz(波长在3mm至30um)的电磁频谱,它介于毫米波与远红外光之间,是至今人类尚未充分认知和利用的频谱资源,有望对通信(宽带通信)、雷达、电子对抗、电磁武器、安全检查等领域带来深刻变革。 太赫兹的独特性能给通信(宽带通信)、雷达、电子对抗、电磁武器、天文学、医学成像(无标记的基因检查、细胞水平的成像)、无损检测、安全检查(生化物的检查)等领域带来了深远的影响。由于太赫兹的频率很高,所以其空间分辨率也很高;又由于它的脉冲很短(皮秒量级)所以具有很高的时间分辨率。太赫兹成像技术和太赫兹波谱技术由此构成了太赫兹应用的两个主要关键技术。同时,由于太赫兹能量很小,不会对物质产生破坏作用,所以与X射线相比更具有优势。另外,由于生物大分子的振动和转动频率的共振频率均在太赫兹波段,因此太赫兹在粮食选种,优良菌种的选择等农业和食品加工行业有着良好的应用前景。太赫兹的应用仍然在不断的开发研究当中,其广袤的科学前景为世界所公认。 经过近十几年来的研究,国际科技界公认,THz科学技术是一个非常重要的交叉前沿领域。由于THz的频率很高(波长比微波小1000陪以上),所以其空间分辨率很高。又由于

2019至今美国SBIR太赫兹项目简介-new

2019太赫兹创新项目汇总分析(美国SBIR/STTR项目) 作者:美克锐科技张宇 一、背景介绍 SBIR/STTR就是当今国内遍地开花的政府创业资助的鼻祖。上个世纪80年代(我们晚了30年)开始美国政府就通过SBIR/STTR计划帮助小企业进行技术创新研究和技术转移。 SBIR和STTR项目一般分为三个阶段,第一个阶段(10~15万美元)主要是对小企业所提交的研究设想进行概念论证;第二个阶段(75~200万美元)则是进一步对项目的科学、技术和商业化程度做出评估和支持;第三个阶段的目标自是项目商业化应用孵化。 著名的“好奇者”号火星探测器和大名鼎鼎的E-2鹰眼预警机也都得益于SBIR。 太赫兹领域,当今电子学巨头VDI公司(2008-2017年共17个项目得到资助,金额接近720万美元)和曾经风光一时的Zomega公司(1998-2012年共13个项目得到资助,金额接近420万美元)都多次成为SBIR的座上宾。 二、数据分析

?SBIR/STTR从1993年开始支持太赫兹项目,2009年和2010年支持数量(约40个项目)和金额(约15MUSD/Y)分别达到峰值(和SBIR/STTR周期总体一致) ?2010年太赫兹项目从峰顶跌落经过近5年的低迷,从2015年起有所回暖;但是近两年小幅回升2017/18/19太赫兹获批项目约3M/5M/5M USD ?资助方仍以美国国防部、能源部、宇航局为主 ?受资助方有目前太赫兹领域的大牛如VDI,LongWave公司等,更多的是名不见经传的初创公司。当也有不少受资助公司已经关门大吉,Zomega公司就是其中之一 ?得到资助的项目主题没有太多规律可寻,从太赫兹基础材料到太赫兹应用系统都有出现,电子学光子学两个方向也各有千秋。 太赫兹光源相关项目十年内都在反复获得资助 ?资助的年限上以一年和两年为主,连续资助超过三年的项目非常少见

【2019年整理】太赫兹技术发展展望

太赫兹技术发展展望 1 太赫兹波简介 1.1 太赫兹波发现 按传统的分类形式,电磁波分成无线电波、红外线、可见光、紫外线、α射线、γ射线等。随着对电磁波的深入研究,人们发现在电磁波谱中还有一个很特 殊的位置,如图 1.1所示。 这就是太赫兹波即THz波(太赫兹波)或称为THz射线(太赫兹射线),是从上个世纪80年代中后期,才被正式命名的,在此以前科学家们将统称为远 红外射线。太赫兹波是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。实际上,早在一百年前,就有科学工作者 涉及过这一波段。在1896年和1897年,Rubens和Nichols就涉及到这一波段,红外光谱到达9um(0.009mm)和20um(0.02mm),之后又有到达50um的记载。之后的近百年时间,远红外技术取得了许多成果,并且已经产业化。但是涉及太赫兹波段的研究结果和数据非常少,主要是受到有效太赫兹产生源和灵敏探测器 的限制,因此这一波段也被称为THz间隙。随着80年代一系列新技术、新材料的发展,特别是超快技术的发展,使得获得宽带稳定的脉冲THz源成为一种准常规技术,THz技术得以迅速发展,并在实际范围内掀起一股THz研究热潮。 1.2 太赫兹波的特点 目前,国际上对太赫兹辐射已达成如下共识,即太赫兹是一种新的、有很多

独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。 (1)量子能量和黑体温度很低: Wave number Wavelength Frequency Energy Blackbody Temp. 1cm-110mm30GHz120μeV 1.5K 10cm-11mm300GHz 1.2meV15K 33cm-1300μm1THz 4.1meV48K 100cm-1100μm3THz12meV140K 200cm-150μm6THz25meV290K 670cm-115μm20THz83meV960K (2)许多生物大分子,如有机分子的振动和旋转频率都在THz波段,所以在THz波段表现出很强的吸收和谐振。 (3)THz辐射能以很小的衰减穿透物质如陶瓷、脂肪、碳板、布料、塑料等,因此可用其探测低浓度极化气体,适用于控制污染。THz辐射可无损穿透墙壁、布料,使得其能在某些特殊领域发挥作用。 (4)THz的时域频谱信噪比很高,这使得THz非常适用于成像应用 (5)带宽很宽(0.1—10T)Hz。 (6)很短的THz脉冲却有着非常宽的带宽和不同寻常的特点。 在我国未来的太空研究和探月计划中, THz波也可以提供包括星球表面特性和极区辐射特性的诸多重要信息。综上所述, THz科学不仅是科学技术发展中的重要基础问题,又是国家新一代信息产业、国家安全以及基础科学发展的重 大需求,对国民经济以及国防建设具有重大的意义。与此相适应,世界各国都对THz波的研究给予极大的关注,并部署了多个重大的国家级以及国际合作研究 计划,取得了一些突破性的成果,有些已具有实用价值。另一方面,国内在THz 研究的理论和实验方面也取得了一些重要成果,在国际上产生了一定的影响,为我国THz技术的研究和发展打下了扎实的基础。

太赫兹科学技术的军事应用

太赫兹(Terahertz,缩写为THz)是频率单位, 1太赫兹等于1012赫兹。太赫兹波是指频率0.1~10太赫兹、介于毫米波和红外线之间的电磁波。太赫兹科学技术泛指直接研究和应用太赫兹波本身,以及利用太赫兹波研究开发的所有理论和应用,是一个非常重要、尚未开发的前沿领域。 太赫兹技术之所以具有特别的吸引力,是由于太赫兹辐射的如下特点:约50%的宇宙空间光子能量、大量星际分子的特征谱线在太赫兹范围内;大量有机分子转动和振动跃迁、半导体的子带和微带能量在太赫兹范围内;太赫兹辐射能穿透非金属和非极性材料,穿透烟雾和浮尘;太赫兹光子能量小,不会引起生物组织的光致电离。因此,太赫兹技术在物体成像、环境监测、医疗诊断、射线天文、宽带通信、雷达等领域具有重大的科学价值和广阔的应用前景。 在世界范围,太赫兹辐射物理及其应用研究方兴未艾。包括美国国防部、航空航天局在内,全世界已有100多个机构在从事相关研究,例如,日本政府把太赫兹技术确立为“国家支柱技术十大重点战略目标之首”予以支持。由于信息化武器装备的工作频段逐步从微波及可见光区域向太赫兹波段延伸,太赫兹科学技术在军事上的重要性不言而喻。谁优先掌握这一重要频段的相关技术,谁就有可能在军事上领先一个时代。我们应该抓住太赫兹科学技术刚刚起步的机遇,不失时机地加速开展太赫兹领域的理 太赫兹科学技术的军事应用 张振伟 牧凯军 张存林 论与应用研究,为我国的经济发展和国防建设做出贡献。 太赫兹波在军事上的优势 太赫兹波的频率介于微波与红外之间,因此太 赫兹系统兼顾电子学系统和光学系统的优势。作为 美国能源部的宣传页,从中可以一窥太赫兹技术的概貌。 电磁波谱图,注意太赫兹波段的位置。

射电天文及太赫兹技术的应用与发展

射电天文及太赫兹技术的应用与发展 目录: 1. 射电天文学的介绍; 2. 太赫兹波段的特点; 3. 太赫兹科学技术与应用发展; 4. 高度灵敏探测技术和超导技术的发展; 5. SMA及ALMA计划,后端频谱处理技术,南极天文台太赫兹望远镜计划介绍。 摘要:射电天文学理论认为由于地球大气的阻拦,从天体来的无线电波只有波长约1毫米到30米左右的才能到达地面,绝大部分的射电天文研究都是在这个波段内进行的。射电天文学以无线电接收技术为观测手段,观测的对象遍及所有天体:从近处的太阳系天体到银河系中的各种对象,直到极其遥远的银河系以外的目标。在宇宙中,大量的物质在发出THz电磁波。炭(C)、水(H2O)、一氧化碳(CO)、氮 (N2)、氧(O2)等大量的分子可以在THz频段进行探测。而这些物质在应用THz 技术以前一部分根本无法探测而另一部分只能在海拔很高或者月球表面才可以探测到。 关键词:射电天文太赫兹超导 正文: 一:射电天文: 对于研究射电天体来说,测到它的无线电波只是一个最基本的要求。人们还可以应用颇为简单的原理,制造出射电频谱仪和射电偏振计,用以测量天体的射电频谱和偏振。研究射电天体的进一步的要求是精测它的位置和描绘它的图像。一般说来,只有把射电天体的位置测准到几角秒,才能够较好地在光学照片上认出它所对应的天体,从而深入了解它的性质。为此,就必须把射电望远镜造得很大,比如说,大到好几公里。这必然会带来机械制造上很大的困难。因此,人们曾认为射电天文在测位和成像上难以与光学天文相比。可是,五十年代以后,射电望远镜的发展,特别是射电干涉仪(由两面射电望远镜放在一定距离上组成的系统)的发展,使测量射电天体位置的精度稳步提高。五十年代到六十年代前期,在英国剑桥,利用许多具射电干涉仪构成了“综合孔径”,系统,并且用这种系统首次有效地描绘了天体的精细射电图像。接着,荷兰、美国、澳大利亚等国也相继发展了这种设备。到七十年代后期,工作在短厘米波段的综合孔径系统所取得的天体射电图像细节精度已达2″,可与地面上的光学望远镜拍摄的照片媲美。射电干涉仪的应用还导致了六十年代末甚长基线干涉仪的发明。这种干涉仪的两面射电望远镜之间,距离长达几千公里,乃至上万公里。用它测量射电天体的位置,已能达到千分之几角秒的精度。七十年代中,在美国完成了多具甚长基线干涉仪的组合观测,不断取得重要的结果。

不同频率的电磁波及太赫兹的简介

不同频率的电磁波及太赫兹的简介 一.电磁波介绍 不同频率的电磁波电与磁可以说是一体两面,变化的电场会产生磁场(即电流会产生磁场),变化的磁场则会产生电场。变化的电场和变化的磁场构成了一个不可分离的统一的场[1],这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。电磁波能有效的传递能量和动量。电磁波是电磁场的一种运动形态。 从科学的角度来说,电磁波是能量的一种,凡是高于绝对零度的物体,都会释出电磁波。 当电磁波频率低时,主要藉由有形的导电体才能传递;当频率渐提高时,电磁波就会外溢到导体之外,不需要介质也能向外传递能量,这就是一种辐射。举例来说,太阳与地球之间的距离非常遥远,但在户外时,我们仍然能感受到和煦阳光的光与热,这就好比是「电磁辐射即由辐射现象传递能量」的原理一样。 在高频电磁振荡的情况下,部分能量以辐射方式从空间传播出去所形成的电波与磁波的总称叫做“电磁波”。在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部返回原电路而没有能量辐射出去。然而,在高频率的电振荡中,磁电互变甚快,能量不可能全部返回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去。 电磁波为横波。电磁波的磁场、电场及其行进方向三者互相垂直。振幅沿传播方向的垂直方向作周期性交变,其强度与距离的平方成反比,波本身带动能量,任何位臵之能量功率与振幅的平方成正比。其速度等于光速(每秒3×1010厘米)。光波就是电磁波。在空间传播的电磁波,距离最近的电场(磁场)强度

方向相同和量值最大两点之间的距离,就是电磁波的波长。 无线电波3000米~0.3毫米。 红外线0.3毫米~0.75微米 可见光0.7微米~0.4微米。 紫外线0.4微米~10毫微米 X射线10毫微米~0.1毫微米 γ射线0.1毫微米~0.001毫微米 宇宙射线小于0.001毫微米 传真(电视)用的波长是3~6米;雷达用的波长更短,3米到几毫米。 电磁波在传播中携有能量,可以作为信息的载体。这就为无线电通信、广播、电视、遥感等技术开阔了道路。 电磁波的能量大小由坡印廷矢量决定,即S=E×H,其中s为坡印庭矢量,E 为电场强度,H为磁场强度。E、H、S彼此垂直构成右手螺旋关系;即由S代表单位时间流过与之垂直的单位面积的电磁能。 电磁波具有能量,电磁波是一种物质。 二.太赫兹简介 1.简介 太赫兹电磁脉冲或称为THz波(太赫兹波)或称为T射线(太赫兹射线)是从上个世纪80年代中后期,才被正式命名的,在此以前科学家们将统称为远红外射线。太赫兹波是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,这一波段的电磁辐射具有很强的透视能力,可以作为一种特殊的

太赫兹技术及其在研究领域的应用

太赫兹技术及其在研究领域的应用 摘要:简要介绍了太赫兹技术的国内外发展状况,由于太赫兹波在电磁波谱中的特殊位置,其表现出优越的特性,太赫兹科学技术已成为本世纪最为重要的科技问题之一。通过对太赫兹基础研究领域的分析,阐明了太赫兹波的作用机理及相关器件的发展。太赫兹技术在成像、通讯、航空及生物医药等领域有着广阔的应用前景。随着技术理论的不断发展及成熟,太赫兹技术必将对国民经济和国家安全产生重大影响。 关键词:太赫兹;太赫兹技术;基础研究;太赫兹应用 Terahertz technology and its applications in research field Abstract:The development of Terahertz technology at home and abroad is briefly summarized, and the special position of THz wave in electromagnetic spectrum, it shows the superior characteristic. So Terahertz Science and technology has become one of the most important scientific and technological problems in this century. Through the analysis of the THz basic research field, the mechanism of THz wave and the development of the related devices are elucidated. THz technology has broad application in imaging, communications, aviation and biomedical and other fields. With the development of technology theory, THz technology will have a great impact on national economy and national security. Key words:Terahertz; Terahertz technology; basic research; Terahertz application 0 引言 随着现代科学技术的迅猛发展、各国之间科技竞争的加剧及社会信息化进程的不断加快,高新技术越来越成为各个国家之间竞争力水平的标志。太赫兹技术由于其一系列的优点及其广泛的应用价值成为世界各国研究机构关注的焦点,太赫兹技术也成为本世纪重大新兴科学技术领域之一[1]。太赫兹波是指频率范围为0.1~10.0THz的电磁波,波长范围为0.03~3.00mm,介于微波频段与红外之间,兼具二者的优点[2](如图1所示)。它的长波段与毫米波(亚毫米波)相重合,其发主要依靠电子学科学技术;在短波段与红外线相重合,主要依靠光子学科技术发展,可见太赫兹波是宏观电子学向微观电子学过渡的频段,在电子波频谱中占有很特殊的位置,表现出一系列不同于其他电磁辐射的特殊性能。但长期以来由于缺乏有效的太赫兹辐射产生和检测方法,导致太赫兹频段的电磁波未得到充分的研究和应用,被称为电磁波谱中的“太赫兹空隙(THz gap)”。从过去二十多年前开始,随着太赫兹辐射源和太赫兹探测器的相继问世,太赫兹技术的研究和应用才有了较快发展,在医疗诊断、雷达通讯、物体成像、宽带移动通信、军事航空等领域显示了重大的科学价值及实用前景,与此同时,其他方面的工程应用潜力也受到关注。

太赫兹简介及特点和应用

太赫兹简介及特点和应用 嘉兆科技 THz波(太赫兹波)或成为THz射线(太赫兹射线)是从上个世纪80年代中后期,才被正式命名的,在此以前科学家们将统称为远红外射线。太赫兹波是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。实际上,早在一百年前,就有科学工作者涉及过这一波段。在1896年和1897年,Rubens和Nichols就涉及到这一波段,红外光谱到达9um(0.009mm)和20um (0.02mm),之后又有到达50um的记载。之后的近百年时间,远红外技术取得了许多成果,并且已经产业化。但是涉及太赫兹波段的研究结果和数据非常少,主要是受到有效太赫兹产生源和灵敏探测器的限制,因此这一波段也被称为THz间隙。 随着80年代一系列新技术、新材料的发展,特别是超快技术的发展,使得获得宽带稳定的脉冲THz源成为一种准常规技术,THz技术得以迅速发展,并在实际范围内掀起一股THz研究热潮。2004年,美国政府将THz科技评为“改变未来世界的十大技术”之四,而日本于2005年1月8日更是将THz技术列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。我国政府在2005年11月专门召开了“香山科技会议”,邀请国内多位在THz研究领域有影响的院士专门讨论我国THz事业的发展方向,并制定了我国THz技术的发展规划。另外,美国、欧洲、亚洲、澳大利亚等许多国家和地区政府、机构、企业、大学和研究机构纷纷投入到THz的研发热潮之中。THz研究领域的开拓者之一,美国著名学者张希成博士称:“Next ray,T-Ray !” 目前国内已经有多家研究机构开展太赫兹领域的相关研究,其中首都师范大学,是入手较早,投入较大的一家,并且在毒品和炸药太赫兹光谱、成像和识别方面,利用太赫兹对非极性航天材料内部缺陷进行无损检测方面做出了许多开拓性的工作,同时由于太赫兹射线在安全检查方面的独特优势,首都师范大学太赫兹实验室正集中力量研发能够用于实景测试的安检原型设备。 目前,国际上对太赫兹辐射已达成如下共识,即太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。

太赫兹技术各种应用

太赫兹技术各种应用 “Terahcrtz”一词是弗莱明(Fletning)于1974年首次提出的,用来描述迈克尔逊干涉仪的光谱线频率范围。太赫兹频段是指频率从十分之几到十几太赫兹,介于毫米波与红外光之间相当宽范围的电磁辐射区域,THz波又被称为T-射线,在频域上处于宏观经典理论向微观量子理论的过渡区,在电子学向光子学的过渡区域,长期以来由于缺乏有效的THz辐射产生和检测方法,对于该波段的了解有限,使得THz成为电磁波谱中最后一个未被全面研究的频率窗口,被称为电磁波谱中的“太赫兹空隙(THzGap)” THz波具有很多独特的性质,从频谱上看,THz辐射在电磁波谱中介于微波与红外辐射之间;在电子学领域,THz辐射被称为毫米波或亚毫米波;在光学领域,它又被称为远红外射线,从能量上看,THz波段的能量介于电子和光子之间。THz的特殊电磁波谱位置赋予它很多优越的特性,有非常重要的学术价值和应用价值,得到了全世界各国研究人员的极大关注,美国、欧洲和日本尤为重视。2004年美国技术评论(TechonlogyReview)评选“改变未来世界十大技术”时,将THz技术作为其中的紧迫技术之一。2005年日本政府公布了国家10大支柱技术发展战略规划,THz位列首位。 一、THz波的特性 THz波的频率范围处于电子学与光子学的交叉区域.在长波方向,它与毫米波有重叠;在短波方向,它与红外线有重叠;在频域上,THz处于宏观经典理论向微观量子理论的过渡区。由于其所处的特殊位置,THz波表现出一系列不同于其他电磁辐射的特殊性质: 1、THz脉冲的典型脉宽在亚皮秒量级,不但可以方便地对各种材料进行亚皮秒、飞秒时间分辨的瞬态光谱研究,而且通过取样测量技术 能够有效地抑制背景辐射噪音的干扰,得到具有很高信噪比(大于)THz电磁波时域谱,并且具有对黑体辐射或者热背景不敏感的优点; 2、THz脉冲通常只包含若干个周期的电磁振荡,单个脉冲的频带可以覆盖从CHz至几十THz的范围,便于在大范围里分析物质的光谱性质; 3、THz波的相干性源于其产生机制,它是由相干电流驱动的偶极子振荡产生,或是由相干的激光脉冲通过非线性光学差频效应产生。THz波的时域光谱技术(THz-TDS)直接测量THz波的时域电场,通过傅立叶变换给出THz波的振幅和相位。因此,无需使用Kramers-Kronig 色散关系,就可以提供介电常数的实部和虚部。这使测得的与THz波相互作用的介质折射率和吸收系数变得更精确; 4、THz波的光子能量较低,1THz频率处的光子能量大约只有4mV https://www.wendangku.net/doc/3710582997.html, 光子能量,比X射线的光子能量弱107--108倍。因此,THz波不会对生物组织产生导致电离和破坏的有害光,特别适合于对生物组织进行活体检查; 5、THz光子能量约为可见光,用THz做信息载体比用可见光和近中红外光能量效率高得多;

太赫兹波的特点

太赫兹波的特点 ?(1)高透射性:太赫兹对许多介电材料和非极性物质具有良好的穿透性,可对不透明物体进行透视成像,是X 射线成像和超声波成像技术的有效互补,可用于安检或质检过程中的无损检测。 (2)低能量性:太赫兹光子能量为4.1meV(毫电子伏特),只是X 射线光子能量的108 分之一。太赫兹辐射不会导致光致电离而破坏被检物质,非常适用于针对人体或其他生物样品的活体检查。进而能方便地提取样品的折射率和吸收系数等信息。 (3)吸水性:水对太赫兹辐射有极强的吸收性,因为肿瘤组织中水分含量与正常组织明显不同,所以可通过分析组织中的水分含量来确定肿瘤的位置。 (4)瞬态性:太赫兹脉冲的典型脉宽在皮秒数量级,可以方便地对各种材料包括液体、气体、半导体、高温超导体、铁磁体等进行时间分辨光谱的研究,而且通过取样测量技术,能够有效地抑制背景辐射噪声的干扰。 (5)相干性:太赫兹的相干性源于其相干产生机制。太赫兹相干测量技术能够直接测量电场的振幅和相位,从而方便地提取样品的折射率、吸收系数、消光系数、介电常数等光学参数。 (6)指纹光谱:太赫兹波段包含了丰富的物理和化学信息。大多数极性分子和生物大分子的振动和转能级跃迁都处在太赫兹波段,所以根据这些指纹谱,太赫兹光谱成像技术能够分辨物体的形貌,分析物体的物理化学性质,为缉毒、反恐、排爆等提供相关的理论依据和探测技术。 太赫兹波的产生 ?(1)通过FTIR(Fourier Transform Infrared Spectrometer)使用热辐射源产生,如汞灯和SiC棒; (2)是通过非线性光混频产生; (3)是通过电子振荡辐射产生,如反波管、耿式振荡器及肖特基二极管产生; (4)是通过气体激光器、半导体激光器、自由电子激光器等THz激光器直接产生。目前产生THz脉冲常用的方法有光导天线法、光整流法、THz参量振荡器法、空气等离子体法等,其中空气等离子体能产生相对较高强度的THz波而备受关注,此外,还可以用半导体表面产生THz波。 太赫兹波的研究现状 ?太赫兹波现象其实早已为人们所发现,然而早期因缺乏有效的太赫兹波产生和探测技术,使得相关研究进展极其缓慢[2]。进入20世纪80年代后,激光技术的迅速发展为研究有效太赫兹波的产生和探测技术孕育了基础。据文献报道,1983年 D.H.Anston[3]首次利用光学技术,通过超短激光脉冲激发光电导天线产生了相干脉 冲宽带THz辐射。鉴于D.H.Auston做出的巨大贡献,光导天线后来常被称为“Auston switeh”。紧接着,D.Grischkowsky和D.H.Auston等又开发出了基于超短激光脉冲激发光电导天线的THz时域光谱探测技术。这种基于基于超短激光脉冲激发光电导天线的太赫兹波产生和探测技术至今仍然是实验设备应用的主流。1990-1992年,X.C.zhang和D.H.Auston[4]等又提出了原理上完全不同的太赫兹波产生与探测方法一基于瞬态电光取样及其逆过程的THz产生与探测技术。 至此,太赫兹波的产生与探测技术虽然还不成熟,但已经能够用于相关仪器的制造与生产,为科研人员研究太赫兹波与物质相互作用提供了必备的实验手段。太赫兹科学和技术有极大的应用潜力,但目前还受太赫兹辐射源的限制,比如:产生的太赫兹辐射强度不高、带宽不够宽、能量转化效率低等因素,所以太赫兹领域的发展还需更大的努力。

太赫兹应用及其产生方法

太赫兹及其产生方法 摘要:太赫兹技术是20世纪80年代末产生的一种高新技术,近年来颇受关注。它在基础研究、生物科学等众多领域都有非常重要的应用前景。THz波具有很多的优越性,具有重要的研究价值。本文简要的介绍了THz波及其在公共安全、环境探测、生物医学、天文观测、军事及通信方面的应用,然后深入的阐述了THz波的产生方法。 关键词:THz波的应用THz波产生方法 1.引言 随着现代科学技术的发展、国际竞争的加剧以及社会信息化进程不断加快,各种各样的新技术、新思想大量涌现出来。从云计算到物联网,从激光到太赫兹技术的出现都给了我们很大的机遇,同时也存在一定的挑战。为在国际竞争中立于不败之地,我们国家在“十二五”战略新兴产业发展重点中提出了应大力发展信息产业、生物产业、航空航天产业、新能源产业、新材料产业、节能环保产业、新能源汽车产等新型产业,另外国家还确定了五项科技领域,而太赫兹技术在这些领域的探索及应用中起着举足轻重的作用。 2.太赫兹简介及其应用 2.1太赫兹简介 太赫兹通常是指频率在0.1~10THz的电磁波,是上个世纪八十年代中后期才被正式命名的,在此之前科学家们称其为远红外射线。实际上早在一百年前,就有科学工作者涉及过这一波段。随着80年代一系列新技术、新材料的发展,特别是超快技术的发展,使得获得宽带稳定的脉冲THz源成为一种准常规技术,THz技术得以迅速发展,并在实际范围内掀起一股THz研究热潮。2004年,美国政府将THz科技评为“改变未来世界的十大技术”之一,而日本于2005年1月8日更是将THz技术列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。我国政府在2005年11月专门召开了“香山科技会议”,邀请国内多位在THz研究领域有影响的院士专门讨论我国THz事业的发展方向,并制定了我国THz技术的发展规划。另外,美国、欧洲、亚洲、澳大利亚等许多国家和地区政府、机构、企业、大学和研究机构纷纷投入到THz的研发热潮之中。 2.2 THz的应用 由于太赫兹的频率很高,所以其空间分辨率也很,又由于它的脉冲很短,所以具有很高的时间分辨率。由此,太赫兹成像技术和太赫兹波谱技术构成了太赫兹应用的两个主要关键技术。太赫兹的独特性能给公共安全、环境探测、生物医学、天文观测、军事及通信等领域带来了深远的影响。

太赫兹技术及其应用研究

太赫兹技术及其应用研究 姓名:王结库 学号:0710940414 专业班级:电科074 指导老师:于莉媛

太赫兹技术及其应用研究 摘要:太赫兹技术是一个具有广泛应用前景的新兴学科,近10年来,太赫兹技术理论研究的蓬勃发展带动了太赫兹波应用研究的迅速扩大。作为一种新型的相干光源,太赫兹辐射在物理化学、信息和生物学等基础研究领域,以及材料、国防、医学等技术领域具有重大的科学价值和广泛的应用前景。文章简要介绍了太赫兹波的重要特性集、太赫兹技术的研究现状及应用前景,重点介绍了太赫兹技术的特性、及在国防领域的应用。 关键词:太赫兹;特性;太赫兹波成像;应用 1 引言 太赫兹(Terahertz,简称THz)辐射是对一个特定波段的电磁辐射的统称,通常它是指频率在0.1THz一10 THz(波长在3um~3 mm)之间的电磁波,在某些特定场合,指0.3 THz一3 THz之间的电磁波,还有一种更广泛的定义,其频率范围高达100THz.直到上世纪80年代中期以前,人们对这个频段的电磁波特性知之甚少,形成了远红外线和毫米波之间所谓的“太赫兹空隙”(Teraheaz Gap),对太赫兹波段广泛的研究兴趣还是在20世纪80年代中期以超快光电子学为基础的脉冲太赫兹技术产生以后.近20年来,随着低尺度半导体技术、超快激光技术以及超快光电子技术的飞速发展,太赫兹技术表现出了极大的应用潜力.作为一种新型的相干光源,太赫兹辐射在物理、化学、信息和生物学等基础研究领域。以及材料、国防、医学等技术领域具有重大的科学价值和广泛的应用前景.本文将对太赫兹辐射的特性进行介绍,并在介绍太赫兹技术的常见应用基础上,着重对太赫兹技术在有关国防领域的潜在应用进行介绍. 2 特性 太赫兹波之所以引起科学界浓厚的研究兴趣,并不仅仅因为它是一类广泛存在而并不为人所熟悉的电磁辐射,更重要的原因是它具有很多独特的性质,正是这些性质赋予太赫兹波广泛的应用前景.从频谱上看,太赫兹辐射在电磁波谱中介于微波与红外辐射之间;在电子学领域。太赫兹辐射被称为毫米波或亚毫米波;在光学领域,它又被称为远红外射线;从能量上看,太赫兹波段的能量介于电子和光子之间. 2.1 波粒二相性 太赫兹辐射是电磁波,因此它具有电磁波的所有特性.太赫兹波具有干涉、衍射等波动特性;在与物质互相作用时,太赫兹波还显示出粒子特性. 2.2 穿透性

太赫兹技术及其应用详解

太赫兹技术及其应用详解 太赫兹研究主要集中在0.1-10 THz 频段。这是一个覆盖很广泛并且很特殊的一个频谱区域。起初,这一频段被称为THz Gap (太赫兹鸿沟),原因是这一频段夹在两个发展相对成熟的频,即电子学频谱和光学频谱之间。其低频段与电子学领域的毫米波频段有重叠,高频段与光学领域的远红外频段(波长0.03-1.0 mm)有重叠。由于这一领域的特殊性,形成了早期研究的空白区。但随着研究的开展,太赫兹频谱与技术对物理、化学、生物、电子、射电天文等领域的重要性逐渐显现,其应用也开始渗透到社会经济以及国家安全的很多方面,如生物成像、THz 波谱快速检测、高速通信、穿墙雷达等。太赫兹之所以具有良好的应用前景,主要得益于其光谱分辨力、安全性、透视性、瞬态性和宽带等特性。例如:自然界中许多生物大分子的振动和旋转频率都处在太赫兹频段,这对检测生物信息提供了一种有效的手段; 太赫兹频段光子能量较低,不会对探测体造成损坏,可以实现无损检测; 太赫兹波对介质材料有着良好的穿透能力,从而可作为探测隐蔽物体的手段; 太赫兹脉冲的典型脉宽在皮秒量级,可以得到高信噪比的太赫兹时域谱,易于对各种材料进行光谱分析; 此外,太赫兹频段的带宽很宽,从0.1-10 THz可为超高速通信提供丰富的频谱资源。 相对于毫米波技术,太赫兹技术的研究还处在探索阶段。太赫兹技术主要包括太赫兹波源、太赫兹传输和太赫兹检测等,其关键部件可以分为无源元件和有源器件。无源元件包括太赫兹传输线、滤波器、耦合器、天线等,而有源器件包括太赫兹混频器、倍频器、检波器、放大器、振荡器等。 1、太赫兹源伴随着太赫兹波生成技术的发展,太赫兹源的研究已有很多有价值的新进展。研发低成本、高功率、室温稳定的太赫兹源是发展太赫兹技术的基础。太赫兹源的分类多种多样,按照产生机理,可以分为基于光学效应和基于电子学的太赫兹源。按照源类型可以分成3 类:非相干热辐射源、宽带太赫兹辐射源以及窄带太赫兹连续波源。

第一届全国太赫兹科学技术学术年会会议手册

第一届全国太赫兹科学技术学术年会 会议手册 2015.3.25-27四川成都 主办单位:太赫兹科学协同创新中心,中国电子学会太赫兹分会 承办单位:自然科学基金-中科院太赫兹科学技术前沿发展战略研究基地,863-12专家组,中国电子科技集团公司第十三研究所专用集成电路 国家级重点实验室,电子科技大学物理电子学院 金牌赞助商:成都至上兴邦科技有限公司

第一届全国太赫兹科学技术学术年会 会议组织机构 大会主席:刘盛纲院士 大会委员会: 高级顾问:陈佳洱院士、周炳琨院士 主席团:刘盛纲院士、吴培亨院士、姚建铨院士、庄松林院士、范滇元院士、杨国桢院士、褚君浩院士、龚知本院士、樊明武院士、刘永坦院士、雷啸霖院士、吴一戎院士、李树深院士、金亚秋院士、许宁生院士、牛憨笨院士、彭堃墀院士、王育竹院士、朱中梁院士、涂铭旌院士、林祥棣院士、姜文汉院士、郭光灿院士、李言荣院士、龚克教授、谢维信教授 委员:陈健、罗先刚、刘濮鲲、蒋亚东、曹俊诚、张存林、崔铁军、冯志红、汪力、张伟力、唐传祥、金飚兵、王华兵、常胜江、盛政明、施卫、秦华、刘峰奇、刘伟伟、朱亦鸣、王金淑、姜万顺、杨梓强、鄢扬 会议执行主席:喻胜 会议秘书长:张雅鑫 副秘书长:钟任斌

第一届全国太赫兹科学技术学术年会 会议安排 会议时间:2015年3月25日-27日 时间安排: ●3月25日报道 ●3月26-27日会议 会议地点:电子科技大学沙河校区一教 会议报告形式: ●4份大会特邀报告(报告时间35分钟,提问时间5分钟) ●23份主题报告(报告时间20分钟,提问时间5分钟) ●20份口头报告(报告时间12分钟,提问时间3分钟) ●63份张贴报告 参展公司: 金牌赞助:成都至上兴邦科技有限公司 会议赞助:上海铭剑科技有限公司 (按笔画排名)中国电子科技集团公司第四十一研究所 北京先锋科技有限公司 成都美克锐科技有限公司

太赫兹波

太赫兹检测技术 1 太赫兹波简介 电磁波(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量和动量。电磁辐射可以按照频率分类,从低频率到高频率,包括有无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等等。 太赫兹波(Terahert或称太赫兹辐射、T-射线、亚毫米波、远红外,简称THz) 通常指频率在0.1~10THz (1THz=1012Hz)范围内的电磁辐射。若以应用频率范围的载体为坐标,则太赫兹波位于“雷达”与“人”之间。是电磁波谱上由电子学向光子学过渡的特殊区域,也是宏观经典理论向微观量子理论的过渡区域。 图1 电磁波谱图 Fig1 Electromagnetic spectrum THz波在无线电物理领域称为亚毫米波,在光学领域则习惯称之为远红外辐射;从能量辐射上看,其大小在电子和光子之间。在电磁频谱上,THz波段两侧的红外和微波技术已经很成熟,但是THz技术还不完善。究其原因是因为此频段既不完全适和用光学理论来处理,也不完全适合用微波理论来研究,缺乏有效的产生和检测THz波的手段,从而形成了所说的“THz空隙”。 2 THz辐射研究的发展历史与现状 上世纪九十年代以后,超快激光技术的迅速发展,为太赫兹脉冲的产生提供了稳定、可靠的激发光源。太赫兹波段各种技术的研究才蓬勃发展起来。与此同时,半导体物理的研究和材料加工工艺的改进也日趋完善,人们在选择与太赫兹辐射研究相关的半导体材料过程中发现半导体材料有着尤为重要的研究价值,且它们都是常用的半导体材料;同时通过掺杂工艺,改善半导体材料的性质,如载流子迁移率、寿命和阻抗都可以控制调整以适应光电器件的要求,这些半导体制作工艺上的发展促进了相关科学技术的发展。 2.1 THz辐射的特点 THz技术之所以引起人们广泛的关注,主要是由于太赫兹电磁波独有的特点,各种物质

太赫兹技术的军事应用前景

太赫兹技术的军事应用前景 太赫兹(THz)波是电磁波谱家族中的一员,它的频率范围为0.1—10THz,相应的波长范围为3mm—30μm,介于微波和红外线之间,是人类目前尚未完全开发的波谱“空隙”区。20世纪80年代中期以前,由于缺乏有效产生和检测太赫兹波的方法,人们对该频段电磁辐射性质的了解非常有限,因此其发展受到很大限制,应用潜能也未能得到充分发挥。近十几年,由于超快激光技术以及一系列的新技术、新材料的发展和应用,极大地促进了对太赫兹辐射机理、检测、成像和应用技术的研发,使其迅速成为一门新的极具活力的前沿领域。太赫兹波所具有的一些特性在军事领域中的应用正在逐步被开发出来。 一、太赫兹波的特点“透析” 太赫兹波频率范围是处于电子学和光子学的交叉区域,相对于其它波段的电磁波,如微波和x射线等,具有非常强的互补特征。 1.特别的穿透能力 THz辐射能以很小的衰减穿透如陶瓷、脂肪、碳板、布料、塑料等物质,还可无损穿透墙壁、沙尘烟雾,使得其能在某些特殊领域发挥作用。如太赫兹探测器可直接发射太赫兹波透过墙壁,于室外对室内进行探测,免去需将探测设施置于室内的麻烦。这特别适于防暴警察与室内歹徒对峙时,可从墙外掌握室内情况,如歹徒位置、武器配置等,极大的确保警方安全。 2.较高的探测安全性 由于太赫兹波的光子能量很低,只有几个毫电子伏特,当它穿透过物质时,不易发生电离,因而可用来进行安全的无损检测。太赫兹的光子能量很低,只有毫电子伏特,因此不容易破坏被检测物质。如果用太赫兹检测物质,就可以发现内部瑕疵而又不损害该物质。不同于X射线,太赫兹射线是一种不电离的射线,所以,太赫兹波适合于对生物组织进行活体检查。它们还可以穿透衣服、包装,甚至于渗透人体几毫米深,因此,太赫兹波也是安全检查和医学应用的理想工具。例如,用于人体成像的X光的光子能量高,对人体所造成非常大的伤害,而应用太赫兹技术制成的成像设备,则能将这种照射对人体的伤害降低100万倍。 3.较强的识别物质和成像能力 研究表明大量有机分子、半导体能量特征在太赫兹范围,每种材料的太赫兹频谱特征是不同的。只要建立了这些物质的太赫兹频谱特征数据库,就可以采取“指纹”识别的方法来进行检测。太赫兹波除了识别物质外,还可以通过反射波的测量得到物质的图像。利用成像系统把成像样品振幅或相位信息进行处理和分析,就可以得到样品的THz图像。太赫兹波成像的一个显著特点是信息量大,可准确显示物质的内外部信息。目前太赫兹显微成像的分辨率已达到几十微米。 4.大容量、高保密的宽带信息载体 太赫兹波的频带宽、测量信噪比高,适合于大容量与高保密的数据传输,而且太赫兹波处于高载波频率范围,是目前手机通信频率的1000倍左右,可提供10 GB/s的无线传输速

太赫兹光学器件介绍和国产化历程

太赫兹光学器件国产化现状 汇睿光电王冬 从首都师范大学张存林老师带领的团队第一次开始对太赫兹毫米波研究至今,国内对太赫兹方面的理论和应用研究已经有了近15年的时间,对太赫兹光学器件的需求从完全依赖进口到现在可以完全国产化,也只用了不到10年的时间。本文主要介绍一下太赫兹光学器件的种类和功能,以及国产化工艺发展。一、太赫兹透镜、窗口 太赫兹透过率比较好的材料主要有高分子材料和高阻硅,其中高阻硅的折射率高,更适合做透镜材料。高分子材料中TPX透太赫兹的性能最好,但光学级别的TPX材料由于压注成型时收缩比高,型材成品率低,导致价格昂贵。目前太赫兹窗口材料一般选用聚四氟乙烯、高密度聚乙烯、TPX、高阻硅,这几种材料同时也是太赫兹透镜的主要材料。 太赫兹透镜种类很多,常见的主要有平凸非球面透镜(目前德国Menlosystem 的大部分透镜都是这种)、锥透镜(用来产生贝塞尔光束)、螺旋相位板、柱透镜、 多半球透镜、为了减小厚度的菲涅尔透镜等。太赫兹透镜在太赫兹光谱仪和成像

仪中起的作用一般为准直聚焦作用,或者逆向使用。 国内目前做的比较好的公司有汇睿光电和明阳光学,加工工艺主要是单点金刚石车床车削工艺,高阻硅透镜也可以用传统光学冷加工工艺加工。从科研配套逐步发展为货架产品,所有品类透镜和窗口均已实现国产,且价格相对于进口产品有一定优势。 二、太赫兹反射镜 太赫兹反射镜最常用的要数太赫兹光谱仪中的离轴抛物面镜了,功能就是对太赫兹平行光束反射聚焦,也可逆向使用,一般为铝合金基底,传统机械加工毛坯,然后用单点金刚石车床车削反射面,镀保护金膜能够实现对太赫兹波段95%以上的反射率。汇睿光电是国内唯一一家生产经营离轴抛物面镜货架产品的公司,产品覆盖几十种规格,库存近千片,产品参数可匹配索雷博和EO光电等

相关文档