文档库 最新最全的文档下载
当前位置:文档库 › 光纤传感技术读书笔记

光纤传感技术读书笔记

光纤传感技术读书笔记
光纤传感技术读书笔记

题目光纤传感技术读书笔记学院(系):

专业班级:

学生姓名:

指导教师:

摘要:主要阐述了光纤传感技术的原理、特点及国内外的发展情况,介绍了在

实际测量中的一些具体应用。提出了我国光纤传感技术存在的问题,指出了今后的发展的方向,为光纤传感技术的深入研究提供了有益的参考

关键词:光纤传感技术;测量精度;光纤传感器

1 前言

自1966年高昆博士提出光纤传输的理论,以及1969年日本平板波利公司制出200dB/KM梯度光纤以来,光纤传感技术取得了飞速发展,而且已经形成了独立的光通讯产业形成。由于它独特的优点,决定了可实现某些特殊条件下的测量工作,比常规检测技术具有诸多优势,是传感技术发展的一个主导方向。光纤传感技术代表了新一代传感器的发展趋势。光纤传感器产业已被国内外公认为最具有发展前途的高新技术产业之一,它以技术含量高、渗透能力强、市场前景广等特点为世人所瞩目。

2 光纤与光纤传感器的原理

光纤的结构由纤芯,包层,涂覆层,护套组成。光缆的结构由12×12的光纤阵列,光纤带,纸,聚乙烯内壳,聚烯烃双绞线,聚乙烯外壳,抗应变的钢索组成。而光纤传感器通常由光源、传感光纤、传感元件或调制区、光检测等部分组成。其传光原理是利用了光的全反射原理,将被测参量转换为光信号参数的变化。众所周知,描述光波特征的参量很多(如光强、波长、振幅、相位、偏振态和模式分布等)。这些参量在光纤传输中都可能会受到外界影响而发生改变,特别是温度、压力、加速度、电压、电流、位移、振动、转动、弯曲、应变以及化学量和生物化学量等对光路产生影响时,都会使这些参量发生相应变化。光纤传感器就是根据这些参量随外界因素的变化关系来检测各相位物理量的大小。

从结构上来讲,光纤传感器与电类传感器对比,光纤传感器的调制参量是振幅,相位。而电类传感器是电阻,电容,电感等。光纤传感器的传输信号为光,而电类传感器的传输信号为电。传输介质也有了很大的不同,光纤传感器的传输介质是光纤,光缆,而电类传感器的介质是电线,电缆。由结构的对比可见,光纤传感器与电类传感器是并行互补的一类新型传感器。

从应用上来讲,光纤传感器与传统传感器相比有其独特的优点,即非接触式测量、抗干扰力强、灵敏度高、体积小、重量轻、柔性好,而且测量对象广泛。因此,在传感器行业中,光纤传感器越来越显示出它的优势。它将替代传统的机械接触式传感器及电容非接触式传感器。机械接触式传感器磨损被测表面,这就限制了测量精度。电容非接触式传感器的抗电磁干扰力差,使得其适用范围受到限制。

3 光纤传感器的调制技术以及光信号的解调技术

光纤传感器的调制技术有四种,(1)强制调制,(2)相位调制,(3)偏振态调制,(4)频率调制。

强制解调有1)利用小的线位移或角位移进行强度调制;2)反射式强度调制;

3)利用微弯产生损耗进行强度调制;4)利用折射率变化进行强度调制。

相位调制是通过被测参量调制光纤中光的相位的原理,称为相位调制。需要注意以下几点:1)光敏器件不能直接测量相位变化,需通过干涉变化后方可测量。

2)光波的相位由光纤波导物理长度、折射率及分、波导模的几何尺寸的参量所决定。3)压力、温度、张力等被测参量可直接改变上述波导参量。

偏振态调制需要注意两点:1)光敏器件不能直接测量光的偏振态,必须通过起偏器和检偏器才能检测其偏振状态。2)偏振态调制主要是利用物质的旋光性、法拉第效应、克尔效应、光弹效应等。

频率调制是指频率为f 的光入射到相对探测器速度为V 的物体上,则有()11V f V s c f f -=≈+?。其中s f 为运动物体反射光频率。

波长调制就是利用被测参量改变光纤中的波长。波长调制不受光强变化影响,但解调技术较复杂。其主要有热-色调制和位移-波长调制。

光纤干涉仪主要则有马赫—曾德尔光纤干涉仪,萨格纳克光纤干涉仪,迈克尔逊光纤干涉仪,法布里—珀罗(F —P )光纤干涉仪。

光信号的解调技术有(1)强度解调,(2)光波相位解调,(3)频率解调,(4)波长(颜色解调),(5)光谱仪解调。

强度解调分为单光路微弱信号解调,双光路弱光信号。

光波相位解调有被动零差法、相位跟踪零差法、外差法。

波长(颜色)解调分为二波长单光路解调、二波长双光路解调。

光谱仪解调则有光纤光栅用于分布式光纤传感系统。

4 国内外光纤传感器的发展概况

由于光纤传感器应用的广泛性及其广阔的市场,其研究和开发在世界范围内引起了高度的重视,各国家更是竞相研究开发并引起激烈的竞争。

美国是研究光纤传感器起步最早、水平最高的国家,在军事和民用领域的应用方面,其进展都十分迅速。在军事应用方面,研究和开发主要包括:水下探测的光纤传感器、用于航空检测的光纤传感器、光纤陀螺、用于核辐射检测的光纤传感器等。这些研究都分别由美国空军、海军、陆军和国家宇航局(NASA)的有关部分负责,并得到许多大公司的资助。美国也是最早将光纤传感器用于民用领域的国家。如运用光纤传感器检测电力系统的电流、电压、温度等重要参数,监测桥梁和重要建筑物的应力变化,检测肉类和食品的细菌和病毒等。日本和西欧各国也高度重视并投入大量经费开展光纤传感器的研究与开发。日本在20世纪80年代便制定了“光控系统应用计划”,该计划旨在将光纤传感器用于大型电厂,以解决强电磁干扰和易燃易爆等恶劣环境中的信息测量、传输和生产过程的控制。20世纪90年代,由东芝、日本电气等15家公司和研究机构,研究开发出12种具有一流水平的民用光纤传感器。西欧各国的大型企业和公司也积极参与了光纤传感器的研发和市场竞争,其中包括英国的标准电讯公司、法国的汤姆逊公司和德国的西门子公司等。

我们在20世纪70年代末就开始了光纤传感器的研究,其起步时间与国际相差不远。目前,已有上百个单位在这一领域开展工作,如清华大学、华中科技大学、武汉理工大学、重庆大学、核工业总公司九院、电子工业部1426所等。他们在光纤传感器、压力计、流量计、液位计、电流计、位移计等领域进行了大量的研究,取得了上百项科研成果,其中相当数量的研究成果具有很高的实用价值,

有的达到世界先进水平。每年发表的论文、申请的专利也不少。但与发达国家相比,我国的研究水平还有不小的差距,主要表现在商品化和产业化方面,大多数品种仍处于实验室研制阶段,不能投入批量生产和工程化应用。

5 光纤传感器的应用

光纤传感器的应用范围很广,几乎涉及国民经济的所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了许多行业多年来一直存在的技术难题,具有很大的市场需求。主要表现在以下几个方面:

(1)我们使用高温传感器每年要消耗几十亿元,传统使用铅佬丝热电偶来测量高温,寿命短,成本高,而且在工业生产中需要停产来更换热电偶,严重影响了生产。20世纪80年代美国提出使用蓝宝石光纤来制备高温传感器,但价格昂贵,只能应用于特殊场合。因此,研究和开发测量精度高、性能稳定、成本低的光纤高温传感器具有极大的市场需求。

(2)在电力系统中,需要测定温度、电流等参数,如对高压变压器和大型电机的定子、转子内的温度检测等,由于电类传感器易受强电磁场的干扰,无法在这些场合中使用,只能用光纤传感器。目前防雷抗干扰已经成为了我国大坝安全监测自动化中最为棘手的问题。光纤传感器的使用为彻底解决防雷抗干扰的问题创造了条件。尽管光纤传感器在国内水利工程上的应用尚处于起步阶段。但由于具有其他传感器无法比拟的优越性,将使其具有十分广泛的应用潜力。加拿大一公司开发的能用于水利工程的传感器已十余种且逐步系列化,分辨率0.1℃的温度传感器、精度达0.02mm的位移计、0.1%F.S.的压力传感器等已成功应用于水利工程。国内此方面的研究和研制也已起步。

(3)在石油化工系统、矿井、大型电厂等,需要检测氧气、碳氢化合物、CO 等气体,采用电类传感器不但达不到要求的精度,更严重的会引起安全事故。因此,研究和开发高性能的光纤气敏传感器,可以安全有效的实现上述检测。

(4)在环境监测、临床医学检测、食品安全检测等方面,由于其环境复杂,影响因素多,使用其他传感器达不到所需要的精度,并且易受外界因素的干扰,采用光纤传感器可以具有很强的抗干扰能力和较高的精度,可实现对上述各领域的生物量的快速、方便、准确地检测。目前,我国水源的污染情况严重,临床检验、食品安全检测手段比较落后,光纤传感器在这些领域具有极好的市场前景。

武汉理工大学光纤中心在光纤传感技术研究与应用中取得了令人瞩目的成就,在镇海,大连,黄岛,舟山的国家储备油库以及秦岭终南山隧道,章家槽隧道,白岩溪隧道,女娘山隧道都开发了火灾监测报警系统以及感温火灾报警系统。还开发了振动监测,发动机油路安全检测,发动机旋转体安全监测等仪器。

6 我国光纤传感器目前存在的问题

光纤传感技术及其相关技术的迅速发展,满足了各类控制装置及系统对信息的获取与传输提出的更高要求,使得各领域的自动化程度越来越高,作为系统信息获取与传输核心器件的光纤传感器的研究非常重要。但也存在着亟待解决的问题,如光纤传感器的输出信号会受到光源波动,光纤传输损耗变化、探测器老化等因素的影响,组成光纤传感器各部分元件的本身性能对测量精度的影响等。认真研究光纤传感器的各组成部分元器件的性能(有效抑制光源波动、减小光纤传输损耗),特别是进一步改进敏感元件的制作工艺及结构,探索新的敏感机理,充分发挥微处理技术和计算机软件功能以改善和补偿光纤传感器的性能,发展数

字、集成化和自动化、工程化的新型光纤传感器,研制出适合于网络化应用的光纤传感器阵列及特殊测量要求的新型光纤传感器是今后的研究发展趋势。

7 结语

近年来,随着光纤通信技术的迅速发展,特别是光纤与光电器件的理论、工艺水平和性能的不断提高和完善,使光纤技术进入了非通信领域。光纤传感技术自20世纪80年代以来,受到世界各国的极大重视。十几年来,光纤传感器一直被设想为主导传感技术,但至今尚未实现。虽然对各种各样的光纤传感机理进行了大量的研究和开发,但实用化的例子还是有限的。在现代信息社会中,随着相关科学技术的进步和完善,光纤传感技术及其应用将有着越来越重要的低位。“中国2010年远景规划”已将传感器列为重点发展的产业之一,随着我国加入世界贸易组织,传感器的市场需求和发展空间的潜力是非常巨大的。

7 参考文献

【1】姜德生《光纤传感技术及其应用》课程课件武汉理工大学

【2】贺安之《现代传感器原理及应用》北京:宇航出版社,1995.

【3】张毅《反射式光强制型光纤传感器的应用及发展》光电子技术与信息,2002,(3):23-26

传感器与检测技术复习客观题

一、判断题 1.传感器的传感元件通常情况下直接感受被测量;√ 2.对于所有的二阶传感器,总是希望其固有频率越高越好;× 3.一般情况下,设计弹性敏感元件时,若提高灵敏度,则会使其线性变差、固有频率提高; × 4.应变片的基长越长,则应变片的动态特性越好;× 5.变磁阻式电感传感器属于互感型的电感传感器;× 6.压电式传感器不能测量恒定不变的信号;√ 7.惯性式振幅计,在设计时尽量使其固有频率低。√ 8.传感器的重复性误差是属于系统误差;× 9.传感器的敏感元件通常情况下不直接感受被测量;× 10.传感器实现波形测试不失真的条件是:传感器的幅频特性和相频特性均是常数;× 11.传感器弹性敏感元件的固有频率越高,则传感器的灵敏度越低,线性度越差;× 12.应变式传感器采用半桥连接时,若供桥电源波动的误差为2%,则由此引起的电桥信号 输出波动的误差为1% 。× 13.压电片采用并联连接后,更适合于测量快速变化的信号;× 14.圆柱形弹性元件受力产生的应变大小与圆柱的长度无关;√ 15.驱动电缆法实际上是一种等电位屏蔽法;√ 16.差动变压器采用差动整流电路后,次级电压的相位和零点残余电压都不必考虑;√ 17.希望压电传感器的电阻率高,介电常数小;× 18.半导体光吸收型光纤温度传感器是属于传光型光纤传感器;√ 19.传感器的动态灵敏度就是传感器静态特性曲线的斜率;× 20.按照能量关系分类传感器可分为结构型传感器和物性型传感器;× 21.激波管产生激波压力的恒定时间越长,则可标定的下限频率越低;√ 22.压阻效应中由于几何形状改变引起的电阻变化很小;√ 23.光导摄像管是一种固态图像传感器;× 24.热释电型红外传感器必须进行调制。√ 25.传感器的幅频特性为常数,则传感器进行信号的波形测量时就不会失真。× 26.等截面梁的不同部位所产生的应变是不相等的。√ 27.一般来说,螺管型差动变压器的线性范围约为线圈骨架长度的二分之一。× 28.压电常数d32所表示的含义是:沿着z轴方向受力,在垂直于y轴的表面产生电荷;× 29.涡流式电感传感器属于互感型的电感传感器;× 30.金属丝的电阻应变效应中,引起电阻改变的主要原因是电阻率的改变;× 31.压电常数d ij中的下标i表示晶体的极化方向,j表示晶体受力的性质;√

光纤传感技术

光纤传感器技术的概况及其特点 常见光纤温度传感器基本原理 1. 荧光式温度光纤传感器 1.1 基本原理 荧光式温度传感探头具有抗电磁干扰、稳定可靠、微小尺寸、长寿命及绝缘性好等特点,光纤温度传感器是利用物质的荧光辐射现象设计的。通常设在光纤的一端固结着微量稀土磷化合物,受紫外光照射后,激励其发出荧光。此荧光强度或余辉时间长度会随温度变化而变化,成为温度的函数,从而计算出被测温度。 1.2荧光式温度传感原理 荧光式温度传感探头是由普通多模光纤和在其顶部安装的荧光物质体(膜)组成。荧光物质接受一定波长(受激谱)的光激励后,受激辐射出荧光能量。激励消失后,荧光发光的持续性取决于荧光物质特性、环境因素,以及激发状态的寿命。这种受激发荧光通常是按指数方式衰减的,称衰减的时间常数为荧光寿命或荧光衰落时间(ns)。因为在不同的环境温度下,荧光寿命也不同. 因此通过测量荧光寿命的长短,就可以得知当时的环境温度。 2. 光纤法布里-彼罗特(Fabry – Perot)传感器 2.1 法布里-彼罗特(Fabry – Perot)腔 法布里-彼罗特(Fabry –Perot)腔是一个常见的光学器件。它是光纤法布里-彼罗特传感器的核心,同时也被应用到光纤光栅传感器当中。了解它的原理和特点将有助于理解以上两种传感器的工作原理和不同应用。 在讨论技术细节之前,读者需要明确以下两点: 1.光在任何界面都会发生反射,在大多数情况下会发生折射。比如光会在水面反射,再比如当光线穿过一块玻璃的时候,会分别在一块玻璃的上下表面同时发生反射。 2.光具有波粒二象性。也就是说光拥有波长λ,相位θ等表征物理量。光在真空中所经过的路程叫做光程 L,当光经过介质,比如玻璃时,光程变为L=n*d。 n 为介质的折射率(均大于1), d 为光线经历的几何长度。同一单一光源发出的两束光(具有同样起始相位,且频率相同)如果再相遇,将发生干涉。如果他们的光程差是波长的整数倍,意味着他们的相位相等,则干涉的结果是强度增大(最大值)。如果他们的光程差是波长的整数倍+半波长,则干涉的结果是强度减弱(最小值)。对于其余情况,干涉后的强度在最大值与最小值之间。如果同样的干涉发生多次,最终一个均匀的宽频光,在绝大多数波长范围内的光强将变成0,而主要的强度将集中在光程差为整数倍的波长范围内。 所谓法布里-彼罗特(Fabry – Perot)腔就是一个两端为光反射界面的空腔。入射光在两个界面分别发生反射,这两束反射光的光程差就是 L=2Lc*n.? Lc是空腔的长度。由此可见,空腔长度决定光程差,光程差决定相位差,相位差又决定是干涉加强还是干涉减弱。当空腔长度变化的时候,对于同样波长的光,原先的相位差将改变。原先干涉加强极大的两束光将不再达到干涉极大。相反的,波长与原先不同的另外两束光将满足相位差是波长整数倍的条件,因而产生干涉极大。如果能够探测出前后两个干涉极大相应的波长差Δλ,便可计算出空腔长度的变化,从而实现传感。同时,如果两个界面的反射系数很高,也就是说光线在腔内将发生多次干涉,最终只有满足相干极大条件的波长分量得以不为0,其余分量都将

光纤传感技术的应用现状

2009.No364 摘要:介绍了提高光纤传输效率的两个途径,指出目前利用光纤通信来进行继电保护的三种方式:光纤纵联差动保护,分相允许式光纤纵联保护,过电压或失灵启动远跳。并简要介绍光纤测温技术的工作原理及其在变压器上的应用。 关键词:光纤维 继电保护 测温技术 由于光纤传感技术的传感与传输信号都是光学信号,而不是传统的电信号,因而具有许多独特的优点,对电绝缘,抗电磁干扰,适合高电压场所;精度高,能远距离传输信号;尺寸小、重量轻,有利于微型化;寿命长、长期可靠性好,适合大型工程长期安全监测等。因此,光纤传感技术得到了高度重视和快速发展,成为国家重大工程、重大装备、武器系统等国民经济诸多领域急需的关键技术之一。 一、提高光纤传输效率的两个途径 (一)40Gbit/s 传输系统的发展、挑战与应用。准同步传输体系(PDH)利用光纤的单一波长传输速率从8Mbit/s、4Mbit/s140bit/s,同步传输体系(SDH)利用光纤的单一波长传输速率从155Mbit/s、622Mbit/s、2.5Gbit/s 到10Gbit/s。从实际应用来看,40Gbit/s 传输系统必须采用外调制器,目前具备足够输出电压能够驱动外调制器的驱动集成电路还不成熟;沿用多年的NRZ调制方式能否有效、可靠地工作于40Gbit/s 系统还不确定,可能需要转向性能更好的普通归零(RZ)码乃至调制效率更高的其他调制方式。除了技术因素外,经济上是否可行也是必须考虑的关键因素。尽管目前我国干线网络的波道利用率已经超过70%,但是光纤利用率不到30%,SDH 电路利用率不到50%,因此只需在波分复用层面上扩容即可,光缆网的总体容量依然有余,并不需要立即全面升级到40Gbit/s速率。另需认真考虑的因素是光缆的极化模色散特性。对于短距离传输,无须色散补偿、光放大器和外调制器,40Gbit/s传输系统具有很低的单位比特成本,上述问题不是障碍。因此,40Gbit/s传输系统完全可以由短距离互连应用开始,包括端局内路由器、交换机和传输设备间的互连,乃至扩展至城域网范围和短距离长途应用。 (二)粗波分复用系统(CWDM)技术的发展与应用。随着技术和业务的发展,利用光纤的多个波长进行复用就是WDM 技术。目前,160波系统已经成熟商用。它正从长途传输领域向城域网领域扩展,作为进一步提高光纤传输效率的另一个主要途径。尽管城域WDM 系统的建设成本明显低于长途网WDM 系统,但是目前的绝对成本仍然较高,特别是需要使用光纤放大器的长距离应用成本较高。此外,当前在网络边缘需要整个波长带宽的用户和应用毕竟很少,WDM 多业务平台主要适用于核心层,特别是扩容需求较大、距离较长的应用场合。为了进一步降低城域WDM 多业务平台的成本,出现了CWDM 粗波分复用系统(Coarse Wave Di-vision Multiplexer)。这种系统的典型波长组合有4、8和16三种,波长通路间隔达20nm,允许波长漂移±6.5nm,大大降低了对激光器的要求,成本也大为降低。此外,由于CWDM 系统对激光器的波长精度要求较低,无需制冷器和波长锁定器,不仅功耗低、尺寸小,而且封装可以采用简单的同轴结构,比传统碟型封装成本低,激光器模块的总成本可以减少2/3。从滤波器角度看,典型的100GHz 间隔的介质薄膜滤波器需要150层镀膜,而20nm 间隔的CWDM 滤波器只需要50层镀膜,其成品率和成本都可以获得有效改善。 二、光纤通信在继电保护中的应用 继电保护装置信号的物理传输通道有光纤、微波、电力线载 波等,微波和电力线载波易受气候变化影响,传输质量较差,而光纤通道不怕超高压与电磁干扰,传输容量大,绝缘性能好,衰耗低,可靠性高,在继电保护领域中得到了日益广泛的应用。 (一)光纤通信来进行继电保护。当被保护的线路长度较长时,为了补偿光功率损耗,把RCS-931系列光纤纵差保护装置的光信号传入MUX-2M继电保护信号数字复接接口装置,再转化为电信号通过75Ω的同轴电缆连接通讯SDH设备的2048k bit/ s口传到对侧,如图1中的( b)。SDH环网采用的是155M以上速率的传输设备,传输容量大,具有强大的保护恢复能力。当被保护线路发生故障时,装置根据对两侧电流的幅值和相位比较启动光纤纵联差动保护动作使两侧跳闸,所有装置都处理后动作时间一般在30ms以内,能够快速切除故障,有效保护线路全长。 假设线路发生A相区内故障时,本侧RCS-902C系列分相允许式纵联保护装置发出“A相允许跳闸”电信号开入到FOX-41A型继电保护光纤通信接口装置, FOX-41A内部把此电信号转为光信号传输到对侧的FOX-41A,本侧与对侧之间光纤传输根据线路长度不同有两种传输方式。 对侧的FOX-41A光电转换后再把“A相允许跳闸”电信号开入到对侧的RCS-902C,对侧的RCS-902C保护装置已判断是A相区内故障并收到对侧“A相允许跳闸”信号则保护动作跳对侧A相断路器。同理,对侧发允许跳闸信号到本侧过程也是一样,B或C相故障也与A相故障分析过程一样。所有装置都处理后保护动作时间一般在30ms左右,快速有效,如图2所示。 当被保护线路本侧过电压保护跳闸并启动对侧断路器跳闸时,可以把远跳信号通过FOX-41A传输到对侧;当被保护线路本侧保护跳闸但是断路器失灵没有跳开时,为了避免故障发展扩大,也可以把失灵信号通过FOX- 41A传输到对侧启动对侧断路器跳闸,如图3所示。 (二)工程中实际应用问题。1、通道故障检测。光纤纵差保护安全可靠,在使用和运行当中主要是光纤通道的维护。如果光纤通道告警,可以进行逐段自检来确认装置和通道是否正常,另外需仔细观察与光电通道相关的告警指示灯和装置控制字,还可以用光功率计测试光收发功率与光衰耗。部分厂家提供的SDH设备也可以实现实时的光功率在线检测,为网络的维护提供了极大的便利性。2、光纤纵差保护旁路切换。目前通信速率一般是2048kbit/s,也有少部分是64kbit/s,这给光纤纵差保护的旁路代线路切换运行来了一定问题,根据现在通信的发展情况,通信速率可以都统一到2048kbit/s。与电力线载波高频保护的旁路代线路切换运行需要切换高频载波电缆通道一样,光纤纵差保护的旁路代线路切换运行需要切换光纤通道。 三、光纤测温技术在变压器上的应用 使用光纤探头测量绕组温度时, 将其嵌入垫块或直接附在需要温度监测的导线上,这种使用方式, 首先必须拆开局部导线绝缘, 并在安装光纤测温探头后再恢复导线绝缘。更普遍的方法是 光纤传感技术的应 用现状 ◇ 刘云圣

光纤传感技术

光纤传感器的应用与发展趋势 学生:王超 学号:1049721103105 专业:物理电子学 光在传输过程中,光纤易受到外界环境的影响,如温度、压力等,从而导致传输光的强度、相位、频率、偏振态等光波量发生变化,通过监测这些量的变化可以获得相应的物理量,这就是光纤传感技术。该技术是随着光纤及通信技术的发展而逐步发展起来的一门崭新技术。密集波分复用D W D M 技术、掺铒光纤放大器EDFA 技术和光时分复用OTDR 技术的不断发展成熟,使得光纤传感技术以其在抗电磁干扰、轻巧、灵敏度等方面独一无二的优势,获得了飞速的发展,各种光纤传感器系统层出不穷。 光纤传感器系统的原理 由于光纤不仅作为光波的传播介质,而且光波在光纤中传播时,光波的特征参量( 振幅、相位、偏振、波长等) 会因外界因素(温度、压力、应变、电场、位移等)间接或直接的发生变化,从而可将光纤用作传感元件探测物理量。根据光纤在传感器中的作用,光纤传感器可分为功能型、非功能型、拾光型三大类。 1、功能型光纤传感器中光纤不仅作为导光介质也是敏感元件,光在光纤内受到被测量物理量的调制。它的特点是结构紧凑、灵敏度高,但它须用特殊光纤和先进的检测技术,因此成本高。光纤陀螺即是典型的功能型光纤传感器。 2、非功能型光纤传感器中光纤仅起导光作用,光照到非光纤型敏感元件上受被测量物理量调制。因其无需特殊光纤及特殊技术,易实现、成本低,但灵敏度也相应较低,常用于灵敏度要求不太高的场合。目前的光纤传感器大多是该类型的。 3、拾光型光纤传感器中光纤作为探头,接收由被测对象辐射的光或被其反射、 散射的光。如光纤激光多普勒速度计、辐射式光纤温度传感器等。 光纤传感器的特点 由光纤传感器的原理我们可以很容易理解它有如下几个特点: (1 )光纤具有宽波长范围、低衰减的特性,光源、检测器和光学元件的选择余地大,可以适用于不同的应用场合。

光纤传感技术在物联网中的应用_叶宇光

信息安全与技术·2013年1月1引言 物联网是通过射频识别技术(RFID )、红外感应器、全球定位系统、激光扫描器等信息传感设备按照约定的协议把一些有联系的实体通过互联网相互连接到一起进行信息的传输和传递,可以实现智能化识别、定位、跟踪、监控和管理的一种网络实现概念。这种概念是在互 联网的概念基础上发展起来的,是将用户端延伸并扩展到任何物品与物品之间进行通信和信息交换的网络概念。近年来,随着光纤通信技术的不断发展,进而出现了光纤传感技术。 自光纤传感技术开始发展以来,光纤传感器因具有多种优点而得到了快速发展,例如体积偏小、灵敏度非常高、抗干扰能力强等,现如今,已经被广泛应用到很多 叶宇光 (福建省泉州师范学院数学与计算机科学学院 福建泉州362000) 【摘 要】现如今,物联网已经发展成为了一个研究热点,而光纤传感技术在物联网的发展中也得到了广泛的应用, 并引起了广泛的关注。物联网的核心部件为传感器,特别是光纤传感器,它和其它的类型的传感器所不具有的优势,而物联网主要有四个技术构层,它们是应用接口、数据处理技术、数据传输网络和传输网络,在物联网中我们将会看到有大量的各种各样的传感器的存在,这些传感器可以用来感知不同的环境参数,比如温度、重力、光电、声音、震动和位移,这些传感器为物联网提供最原始的数据信息。当前,光纤传感技术在物联网中的应用引起社会各界的高度关注。本文主要对物联网的界定、构成以及光纤传感器的原理和发展现状进行了深入的探讨和分析,并且重点是对光纤传感技术在物联网中的应用加以详细阐述。希望可以通过本文的论述,能够对今后光纤传感技术在物联网中的应用产生一些积极影响。 【关键词】光纤传感技术; 物联网;原理与现状;应用;传感网络O ptical Fiber S ensing Technology in the A pplication of the Internet of Things Ye Yu-guang (Fujian Province,Quanzhou Normal University Mathematics and Computer Science FujianQuanzhou 362000) 【A bstract 】N ow adays,Internet has becom e a research hotspot,and optical fiber sensing technology in the developm ent of Internet of things have been w idely used,and has aroused w ide concern.N etw orking core com ponents as sensor,particularly for optical fiber sensor,it and other types of sensors have m any advantages,but the Internet has four m ain technical structure layer,w hich is the application of interface,data processing,data transm ission netw ork and transm ission netw ork,the joint netw ork w e w ill see a large num ber of a variety of sensors,the sensor can be used to perceive different environm ental param eters,such as tem perature,gravity,photoelectric,sound,vibration and displacem ent,these sensors for netw orking w ith the original data inform ation.C urrent,optical fiber sensing technology in netw orking application causes the height of social all circles pay close attention to.This paper focuses on the Internet of things,w hich define and fiber-optic sensor principle and developm ent present situation has carried on the thorough discussion and analysis,and thefocusis ontheoptical fiber sensing technology in netw orking applications to elaborate.H ope that through this paper,to the future of optical fiber sensing technology innetw orkingapplications havesom epositiveeffects. 【K e ywords 】optical fiber sensingtechnology;netw orking;principleandstatus;application;sensor netw ork 光纤传感技术在物联网中的应用 物联网·技术应用·TechnologyApplication 65··

传感器课程测试试题汇总

传感器课程试题汇总

————————————————————————————————作者:————————————————————————————————日期: 2

传感器与自动检测技术仿真试题一 一、单项选择题(本大题共10小题,每小题2分,共20 分) 在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。错选、多选和未选均不得分。 1、下列不属于按传感器的工作原理进行分类的传感器是( B )。 A. 应变式传感器 B. 化学型传感器 C. 压电式传感器 D. 热电式传感器 2、传感器的下列指标全部属于静态特性的是( C ) A.线性度、灵敏度、阻尼系数 B.幅频特性、相频特性、稳态误差 C.迟滞、重复性、漂移 D.精度、时间常数、重复性 3、测量者在处理误差时,下列哪一种做法是无法实现的( A ) A.消除随机误差 B.减小或消除系统误差 C.修正系统误差 D.剔除粗大误差 4、电感式传感器采用变压器式交流电桥测量电路时,下列说法不正确的 是( C )。 A. 衔铁上、下移动时,输出电压相位相反 B. 衔铁上、下移动时,输出电压随衔铁的位移而变化 C. 根据输出的指示可以判断位移的方向 D. 当衔铁位于中间位置时,电桥处于平衡状态 5、关于压电式传感器中压电元件的连接,以下说法正确的是( A ) A.与单片相比,并联时电荷量增加1倍、电容量增加1倍、输出电 压不变 B. 与单片相比,串联时电荷量增加1倍、电容量增加1倍、输出电 压增大1倍 第 1 页共 34 页

C.与单片相比,并联时电荷量不变、电容量减半、输出电压增大1倍 D. 与单片相比,串联时电荷量不变、电容量减半、输出电压不变 6、在红外技术中,一般将红外辐射分为四个区域,即近红外区、中红外 区、远红外区和( D )。这里所说的“远近”是相对红外辐射在电磁 波谱中与可见光的距离而言。 A.微波区 B.微红外区 C.X射线区 D.极远红外区 7、下列关于微波传感器的说法中错误的是( A ) A.可用普通电子管与晶体管构成微波振荡器 B.天线具有特殊结构使发射的微波具有尖锐的方向性 C.用电流—电压特性呈非线性的电子元件做探测微波的敏感探头 D.可分为反射式和遮断式两类 8、若已知超声波传感器垂直安装在被测介质底部,超声波在被测介质中 的传播速度为1480m/s,测量时间间隔为200us,则物位高度为( B )A.296mm B.148mm C.74mm D.条件不足,无法求出 9、现有一个采用4位循环码码盘的光电式编码器,码盘的起始位置对应 的编码是0011,终止位置对应的编码是0101,则该码盘转动的角度可 能会是( C ) A.45° B.60° C.90° D.120° 10、用N型材料SnO2制成的气敏电阻在空气中经加热处于稳定状态后, 与氧气接触后(B ) A.电阻值变小 B.电阻值变大 C.电阻值不变 D.不确定 二、简答题(本大题共5小题,每小题6分,共30分) 1、什么是传感器?传感器的共性是什么? 答:传感器是能够感受被测量并按照一定规律转换成可用输出信号的器件或装置。传感器是实现传感功能的基本部件。 传感器的共性就是利用物理定律和物质的物理、化学或生物特性,将非 第 2 页共 34 页

传感器与检测技术期末考试试卷及答案

传感器与自动检测技术 一、填空题(每题3分) 1、传感器通常由直接响应于被测量的敏感元件、产生可用信号输出的转换元件、以及相应的信号调节转换电路组成。 2、金属材料的应变效应是指金属材料在受到外力作用时,产生机械变形,导致其阻值发生变化的现象叫金属材料的应变效应。 3、半导体材料的压阻效应是半导体材料在受到应力作用后,其电阻率发生明显变化,这种现象称为压阻效应。 4、金属丝应变片和半导体应变片比较其相同点是它们都是在外界力作用下产生机械变形,从而导致材料的电阻发生变化。 5、金属丝应变片和半导体应变片比较其不同点是金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的相对变化为主,而机械形变为辅。 6、金属应变片的灵敏度系数是指金属应变片单位应变引起的应变片电阻的相对变化叫金属应变片的灵敏度系数。 7、固体受到作用力后电阻率要发生变化,这种现象称压阻效应。 8、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器。 9、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器。 10、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器,传感器由在弹性元件上粘贴电阻敏感元件构成,弹性元件用来感知应变,电阻敏感元件用来将应变的转换为电阻的变化。 11、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器,传感器由在弹性元件上粘贴电阻敏感元件构成,弹性元件用来感知应变,电阻敏感元件用来将应变的转换为电阻的变化。 12、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器,传感器由在弹性元件上粘贴电阻敏感元件构成,弹性元件用来感知应变,电阻敏感元件用来将应变的转换为电阻的变化。 13、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器,传感器由在弹性元件上粘贴电阻敏感元件构成,弹性元件用来感知应变,电阻敏感元件用

光纤传感技术读书笔记

题目光纤传感技术读书笔记学院(系): 专业班级: 学生姓名: 指导教师:

摘要:主要阐述了光纤传感技术的原理、特点及国内外的发展情况,介绍了在 实际测量中的一些具体应用。提出了我国光纤传感技术存在的问题,指出了今后的发展的方向,为光纤传感技术的深入研究提供了有益的参考 关键词:光纤传感技术;测量精度;光纤传感器 1 前言 自1966年高昆博士提出光纤传输的理论,以及1969年日本平板波利公司制出200dB/KM梯度光纤以来,光纤传感技术取得了飞速发展,而且已经形成了独立的光通讯产业形成。由于它独特的优点,决定了可实现某些特殊条件下的测量工作,比常规检测技术具有诸多优势,是传感技术发展的一个主导方向。光纤传感技术代表了新一代传感器的发展趋势。光纤传感器产业已被国内外公认为最具有发展前途的高新技术产业之一,它以技术含量高、渗透能力强、市场前景广等特点为世人所瞩目。 2 光纤与光纤传感器的原理 光纤的结构由纤芯,包层,涂覆层,护套组成。光缆的结构由12×12的光纤阵列,光纤带,纸,聚乙烯内壳,聚烯烃双绞线,聚乙烯外壳,抗应变的钢索组成。而光纤传感器通常由光源、传感光纤、传感元件或调制区、光检测等部分组成。其传光原理是利用了光的全反射原理,将被测参量转换为光信号参数的变化。众所周知,描述光波特征的参量很多(如光强、波长、振幅、相位、偏振态和模式分布等)。这些参量在光纤传输中都可能会受到外界影响而发生改变,特别是温度、压力、加速度、电压、电流、位移、振动、转动、弯曲、应变以及化学量和生物化学量等对光路产生影响时,都会使这些参量发生相应变化。光纤传感器就是根据这些参量随外界因素的变化关系来检测各相位物理量的大小。 从结构上来讲,光纤传感器与电类传感器对比,光纤传感器的调制参量是振幅,相位。而电类传感器是电阻,电容,电感等。光纤传感器的传输信号为光,而电类传感器的传输信号为电。传输介质也有了很大的不同,光纤传感器的传输介质是光纤,光缆,而电类传感器的介质是电线,电缆。由结构的对比可见,光纤传感器与电类传感器是并行互补的一类新型传感器。 从应用上来讲,光纤传感器与传统传感器相比有其独特的优点,即非接触式测量、抗干扰力强、灵敏度高、体积小、重量轻、柔性好,而且测量对象广泛。因此,在传感器行业中,光纤传感器越来越显示出它的优势。它将替代传统的机械接触式传感器及电容非接触式传感器。机械接触式传感器磨损被测表面,这就限制了测量精度。电容非接触式传感器的抗电磁干扰力差,使得其适用范围受到限制。 3 光纤传感器的调制技术以及光信号的解调技术 光纤传感器的调制技术有四种,(1)强制调制,(2)相位调制,(3)偏振态调制,(4)频率调制。 强制解调有1)利用小的线位移或角位移进行强度调制;2)反射式强度调制;

最新光纤传感器的应用研究

光纤传感器的应用研 究

光纤传感器的应用研究 孙义才 2011301510103 电科三班 摘要:光纤传感技术是一门新的科学技术,也是信息社会的一个重要技术基础,在当代高科技中占有十分重要的位置。该技术是测量技术、半导体技术、计算机技术、信息处理技术、微电子学、光学、声学、精密机械、仿生学、材料科学等众多学科相互交叉的综合性高新技术和密集型前沿技术。本课题主要了解光纤导光的基本原理及其在传感技术上应用的物理基础,重点研究光纤传感器敏感的物理量、光纤传感器的基本类型及其相关应用。 关键词:传感器;光纤通信;禁带宽度;光纤传感温度计;光纤传感压强计。 1.序言 光纤传感技术是二十世纪七十年代左右随着光纤通信技术的萌芽而迅速建立起来的,通过以光波这一载体并光纤这一媒质,起到具有感知与信号传输的新型传感技术。作为被测量信号载体的光波和作为光波传播媒质的光纤,具有一系列独特的、其他载体和媒质难以相比的优点。传感技术是近几年热门的应用技术,传感器在朝着灵敏、精确、适应性强、小巧和智慧化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。 现阶段,光纤传感领域在世界中的发展大致分为两大方面:应用开发与相关原理性研究。 2.1光纤传感器的结构原理 以电为基础的传统传感器是一种把测量的状态转变为可测的电信号的装置。它的电源、敏感元件、信号接收和处理系统以及信息传输均用金属导线连接,见图(a)。光纤传感器则是一种把被测量的状态转变为可测的光信号的装置。由光发送器、敏感元件(光纤或非光纤的)、光接收器、信号处理系统以及光纤构成由光发送器发出的光经源光纤引导至敏感元件。这时,光的某一性质受到被测量的调制,已调光经接收光纤耦合到光接收器,使光信号变为电信号,最后经信号处理得到所期待的被测量。 可见,光纤传感器与以电为基础的传统传感器相比较,在测量原理上有本质的差别。传统传感器是以机—电测量为基础,而光纤传感器则以光学测量为基础。

光纤传感技术与应用复习提纲66

第二章 多传感器的光网络技术 2.2.1 网络损耗的主要来源 1.弯曲引起的光纤损耗(弯曲损耗) 弯曲损耗: 宏弯损耗 微弯损耗 1)光纤的宏弯损耗:曲率半径在一个临界值 c R ,c R R >时附加损耗可以忽略不计;否则, 弯曲损耗指数增加。确定R 值是很重要的。多模光纤cm R 1≥时,附加损耗可以忽略不计。 2)光纤的微弯损耗(1)多模光纤的微弯损耗多模光纤在微弯时,主要是相邻模之间发生耦合 弯波矢量 c k k ='(微弯周期c l l =)时,损耗最大。 c l l =处的主衰减峰的谱宽为L l c /22, 主衰减峰两侧还有次极大出现。③损耗与微弯振幅2 d A (平方)成正比(这一点可以加以利 用)。④损耗与微弯总长度L 成正比。 (2)单模光纤的微弯损耗 模斑半径越小,损耗越小。 2.光纤和光源的耦合损耗 1)半导体激光器和光纤的耦合损耗 半导体激光器发出的光不是圆的光班,其发散角在互为垂直的方向上也不一样大。 ()()?? ?????? ????????? ???? ? ??+???? ?? -=2 2 2exp ,,y x y x z A z y x I ωω 其中 x z x 0πωλω= , y z y 0πωλω= (1)直接耦合的损耗 直接耦合:将光纤端面直接指向激光器发光面(点)。 举例:光纤NA=0.14,其孔径角 c θ2约为16°半导体激光管发散角//2θ(平行于PN 结) 仅为5°~6°,距离很近时,可以全部耦合;⊥θ2大于c θ2,不能保证全部的光都能进入光纤。 耦合效率的计算: ()()() ∞=?? ????? ? ????????????? ? ??+??? ? ??-==? ??? ∞ ∞ ∞ ∞ Berf dxdy y x s A dxdy z y x I P y x 002 2 0002exp 2,,2ωω ()?∞???????????? ??-???? ??=022exp 22dx x s A b x y ωωπ ()? ???? ??-???? ??=A y dt t A erf 022exp 22ωπ 误差函数y y t ω2= , y dy dt ω= 在 s z =平面内,B 为常数。显然,包含在光纤孔径角// 2θ 内的光功率是 ()?? ???????=???? ??-???? ? ? =?? ? ??????????????????? ??+???? ??-=πλθπωλθωπωω202 02 2tan 22exp tan 222exp 20 c oy c oy x y y x berf dt t B dxdy y x s A P 估算,光纤端面损5%, 则 ()[] []%95/tan 2%950max ?∞=?=erf erf P P c oy λθπωη m oy μω05.0=,m μλ85.0=的激光和14.0=NA (?=8c θ)的直接耦合,max η约为 20%。 (2)透镜耦合的损耗 ①光纤端面磨成球面的耦合 ②柱透镜耦合 ③凸透镜耦合(也可用自聚焦透镜代替) ④圆锥表透镜耦合 2)半导体发光二极管和光纤的耦合损耗 发光管不同于激光器,其发光相当于余弦发光体。后者相光强分布相当于高斯形。用朗伯发光面(见固体光电子学),半球空间发出的总功率为 ?==20 02cos sin 22π πθθθπE E BA d BA P E A ——发光 面积,B ——光源亮度(单位面积向某方向单位立体角发出的光功率); 通常,半导体二极管发光点的面积比光纤端面积小。 Ω=d BA dP E θcos ?==c c E E BA d BA P θθπθθθπ0 2sin 2cos sin 22 直接耦合时的最 大效率为 ()2 20 m a x s i n NA P P c == θη 举例:当14.0=NA 时,效率为2%,功率为5mW 的发光二极管,耦合入光纤的功率仅为 几十微瓦。采用透镜耦合,与激光管类似。 3.光纤和光纤的直接耦合损耗 1)多模光纤和多模光纤的直接耦合损耗 (1)轴偏离对耦合损耗的影响 (2)两光纤端面之间的间隙对耦合损耗的影响 (3)两光纤轴之间的倾斜对耦合损耗的影响 (4)光纤端面的不完整性对耦合损耗的影响 ①端面倾斜 ②端面弯曲 (5)光纤种类不同对耦合损耗的影响 ①芯径不同 ②折射率不同: 2)单模光纤和单模光纤直接耦合的损耗 (1)离轴和轴倾斜引起的损耗 (2)两光纤端面间的间隙引起的耦合损耗 (3)不同种类光纤引起的耦合损耗 2.2.2 光网络常用无源及有源光纤器件 属于有损耗器件:光连接器、光耦合器、光开关、光衰减器、光隔离器、光滤波器、波分复 用/解复用器等。1.熔锥型单模光纤光分/合路连接器2.磨抛型单模光纤定向耦合 3.光开关 1)机械式光开关(1)微光机电系统光开关微光机电系统MEMOS (2)金属薄膜光开关 2)电光效应光开关 4.掺杂光纤激光器与放大器(略) 5.光纤放大器(略) 2.3 光网络技术 2.3.2 成网技术 复用技术:光波分复用(OWDM )、光时分复用技术(OTDM )、光码分复用技术(OCDMA )、 光频分复用技术(OFDM )、光空分复用技术)OSDM )、光副载波复用技术(OSCM )。名词的英文全称。1.光纤时分复用网络 时分复用(time domain multiplexing )——依时间顺序依次访问一系列传感器。 2.光纤频分复用网络 频域复用:调制频域复用(modulation frequency domain multiplexing, MFDM ) 波分复用(wavelength division multiplexing, WDM ) 1)调制频域复用 2)波分复用 3.光纤空分复用网络 如同打电话方式,一对电缆只供一对电话使用。长距离上用一对电缆同时供许多人通话——复用。如10芯×组×10带光缆 =5120芯,每缆可传1000Tb/s 2.4 光传感网实例——光纤光栅在传感中的应用 光纤光栅在使用中的问题: ① 波长微小位移检测(设备昂贵) ②宽光谱、高功率光源(不易获得)③光检测器波长分辩率的提高(直接关系到光纤光栅灵敏度的发挥) ④交叉敏感的消除(被测量和非被测量之间的相互影响) ⑤光纤光栅的封装(写光栅时去除了保护层,机械强度变差)⑥光纤光栅的可靠性(机械和光学特性抗拉、抗弯、反射率、透射率规定时间内无变化) ⑦光纤光栅的寿命(光栅在高温下会发生退火) 2.4.2 光纤光栅的传感网络 1.光纤光栅的波分复用 2.光纤光栅的时分复用 3.光纤光栅的时分复用和空分复用(略) 4.光纤光栅的空分复用和波分复用(略) 5.光纤光栅的空分、波分和时分复用的组合布 局 第三章 光电传感器中的光纤技 3.4 光纤的损耗 3.5 光纤的色散 (1)多模色散(群速不同) (2)波导色散(模的群速随波长变化) (3)材料色散(材料本身的色散)4)偏振(模)色散(轴不对称HE11x 模与HE11y 正交,光纤的轴不对称,两模群延迟不同。 3.6 光纤的耦合技术(略) 3.7 光纤中光波的控制技术 3.7.1 光纤偏振器 1.光纤偏振控制器 光纤中可利用光弹效应改变偏振态。光纤弯曲时,由应力作用引起折射率的变化 2 133.0? ? ? ??-=?-?=R a n n n y x δ 快轴——弯曲平面内 慢轴——垂直于弯曲平面。 当 m NR n λ πδ= 2|| ( 、、、321=m ),为 m /λ波片。例:m μλ63.0=的红 光, m a μ5.62=的光纤绕成mm R 6.20=的一个圈时,成为4/λ波片,两圈时,成为2/λ波片。 2.保偏光纤偏振器

传感器与测试技术复习题与答案

传感器与测试技术习题及答案 1.什么是传感器?它由哪几个部分组成?分别起到什么作用? 2.传感器技术的发展动向表现在哪几个方面? 3.传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意义?动态参数有那些?应如何选择? 4.某位移传感器,在输入量变化5 mm 时,输出电压变化为300 mV ,求其灵敏度。 5. 某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为: S1=0.2mV/℃、S2=2.0V/mV 、S3=5.0mm/V ,求系统的总的灵敏度。 6.什么是应变效应?什么是压阻效应?什么是横向效应? 7、试说明金属应变片与半导体应变片的相同和不同之处。 8、 应变片产生温度误差的原因及减小或补偿温度误差的方法是什么? 9、钢材上粘贴的应变片的电阻变化率为0.1%,钢材的应力为10kg/mm 2 。试求 10、如图所示为等强度梁测力系统,1R 为电阻应变片,应变片灵敏度系数 05.2=k ,未受应变时Ω=1201R ,当试件受力F 时,应变片承受平均应变4108-?=ε,求 (1)应变片电阻变化量1R ?和电阻相对变化量11/R R ?。 (2)将电阻应变片置于单臂测量电桥,电桥电源电压为直流3V ,求电桥 输出电压是多少。 (a ) (b ) 图等强度梁测力系统

11、单臂电桥存在非线性误差,试说明解决方法。 12、某传感器为一阶系统,当受阶跃函数作用时,在t=0时,输出为10mV;t →∞时,输出为100mV;在t=5s 时,输出为50mV,试求该传感器的时间常数。 13. 交流电桥的平衡条件是什么? 14.涡流的形成范围和渗透深度与哪些因素有关?被测体对涡流传感器的灵敏度有何影 响? 15.涡流式传感器的主要优点是什么? 16.电涡流传感器除了能测量位移外,还能测量哪些非电量? 17.某电容传感器(平行极板电容器)的圆形极板半径)(4mm r =,工作初始极板间距离)(3.00mm =δ,介质为空气。问: (1)如果极板间距离变化量)(1m μδ±=?,电容的变化量C ?是多少? (2)如果测量电路的灵敏度)(1001pF mV k =,读数仪表的灵敏度52=k (格/mV )在)(1m μδ±=?时,读数仪表的变化量为多少? 18.寄生电容与电容传感器相关联影响传感器的灵敏度,它的变化为虚假信号影响传感器的精度。试阐述消除和减小寄生电容影响的几种方法和原理。 19.简述电容式传感器的优缺点。 20.电容式传感器测量电路的作用是什么? 21.简述正、逆压电效应。 22.压电材料的主要特性参数有哪些? 23.简述电压放大器和电荷放大器的优缺点。 24.能否用压电传感器测量静态压力?为什么? 25.说明霍尔效应的原理? 26.磁电式传感器与电感式传感器有何不同? 27.霍尔元件在一定电流的控制下,其霍尔电势与哪些因素有关? 28.说明热电偶测温的原理及热电偶的基本定律。 29.将一只灵敏度为0.08mv/℃ 的热电偶与毫伏表相连,已知接线端温度为50℃,毫伏表的输出为60 mv, 求热电偶热端的温度为多少? 30.试比较热电阻与热敏电阻的异同。 31.什么是光电效应,依其表现形式如何分类,并予以解释。

光纤传感器的基本原理及在医学上的应用

2008年9月中国医学物理学杂志Sep .,2008 第25卷第5期 ChineseJournalofMedicalPhysics Vol.25.No.5 光纤传感器的基本原理及在医学上的应用 孙素梅1,陈洪耀2,3,尹国盛2(1.漯河医学高等专科学校,河南漯河462000;2.河南大学物理与电子学院,河南开封 475004;3.中国科学院安徽光学精密机械研究所,安徽合肥230031) 摘要:目的:本文的目的简要介绍光纤传感器的基本原理和简单分类,重点阐述传光型光纤传感器在医学的压力、流速、pH值等五方面的应用。方法:光纤传感器基本原理是将光源发出的光经光纤送入调制区,在调制区内,外界被测参数与进入调制区的光相互作用,使光的强度、频率、相位、偏振等发生变化成为被调制的信号光,再经光纤送入光探测器、解调器而获得被测物理量。光纤传感器按其传感原理可分为两大类:一类是传光型传感器,另一类是传感型传感器。结果:目前在医学上应用的主要是传光型光纤传感器。光纤传感器主要优点:小巧、绝缘、不受射频和微波干扰、测量精度高。医疗上的图象传输是传输型光纤传感器应用中很有特色的一部分。只需将许多光纤组成光纤束,就可以做成能有效地使图象空间量子化的传感器。自从光导纤维引入到内窥镜以后,扩大了内窥镜的应用范围。光导纤维柔软、自由度大、传输图象失真小、直径细等优点使得各种内窥镜检查人体的各个部位几乎都是可行的,且操作中不会引起病人的痛苦与不适。其中光纤血管镜已应用于人类的心导管检查中。在进行激光血管成形术时,血管镜可提供很多重要的信息,用以引导激光辐射的方向,选择激光的能量和持续时间,并可了解在成形术后的治疗效果。光纤内窥镜不仅用于诊断,也正进入治疗领域中,例如用于做息肉切除手术等。微波加温治疗技术是当前治疗癌症的有效途径,但微波加温治疗癌症技术的温度难以控制,而光纤温度传感器恰可以对微波加温治疗癌症的有效温度进行监测,从而使温度不致于过高杀死人体的正常细胞,也不会过低达不到治疗目的,使癌细胞进一步扩散。光纤温度传感器在癌症治疗方面的研究和开发正日益兴起。结论:光纤传感器作为一种优势明显的新型传感器在医学领域得到应用,为治疗疾病提供了一种崭新的方法。可以预见随着制作技术的日益成熟和器件性能的不断提高,不久的将来光纤传感器必将会进一步推动医学的飞速发展。 关键词:光纤传感器;测量;医学;应用中图分类号:R312 文献标识码:A 文章编号:1005-202X (2008)05-0846-05 The Basic Principle and Applications on Medical of Fiber Optic Sensors SUNSu-mei1,CHENHong-yao2,3,YINGuo-sheng2 (1.LuoheMedicalCollege,LuoheHe'nan462000,China;2.ChinaPhysicsandElectronicsCollege,He'nanUniversity,KaifengHe'nan475004,China;3.TheAn'huiInstituteofOpticsandPrecisionMechanics,TheChineseAcademyofSciences,HefeiAnhui230031,China) Abstract:Objective:Thisarticlesimplyintroducedthebasicprincipleoffiberopticsensoranditsapplicationespeciallyonmedicalinbloodpressure,thespeedofflow,thepHvalueetc.Method:Thefiberopticsensorbasicprincipleisthelightwhichsendsoutthephotosourcesendsinafterthefiberopticthemodulationarea,inthemodulationarea,theoutsidewasmeasuredtheparameterwithentersthemodulationareathelighttoaffectmutually,causesthelighttheintensity,thefrequency,thephase,thepolarizationtooccurchangesintothesignallightwhichmodulates,againpassesthroughthefiberoptictosendinthelightdetector,thedemodulatorobtainsismeasuredthephysicalquantity.Thefiberopticsensormaydivideintotwokindsaccordingtoitssensingprinciple:onekindisthelight-passingsensor;theotheristhesensingsensor.Result:Atpresent,themainapplicationinthemedicineisthelight-passingfiberopticsensor.Themainadvantagesoffiberoptic sensorare:exquisite,insulation,notinfluencedbytheradiofrequencyandthemicrowave.Themeasuringaccuracyish igh.Theimagetransmissioninmedicalisthespecialpartof theapplicationonthetransmissionmodesfiberopticsensor.Onlytieaplentyoffiberoptictocompositionfiberoptics,wecouldmakethesensorwhichcancausetheimagespace 收稿日期:2008-03-10 作者简介:孙素梅(1954-),女,漯河医学高等专科学校物理教研室 副教授。Tel :0395-296452713939575106;E -mail : sunsumei2007@https://www.wendangku.net/doc/3715300306.html, 。 846--

相关文档
相关文档 最新文档