文档库 最新最全的文档下载
当前位置:文档库 › 流体输配管网简述

流体输配管网简述

流体输配管网简述
流体输配管网简述

三、简述

1、热水采暖系统间接连接方式的优缺点?

答:优点:采用直接连接,由于热用户系统漏损水量大,造成热源水处理量增大,影响热网的供热能力和经济性。采用间接连接方式,虽然造价增高,但热源的补水率大大减小,同时热网的压力工况和流量工况不受用户的影响,便于热网运行管理。对于小型的热水供热系统,特别是低温水低热系统,直接连接仍是最主要的形式。

缺点:间接连接方式需要在建筑物用户入口处或热力站内设置表面式水—水换热器和采暖系统热用户冻得循环水泵等设备,造价比上述直接连接要高得多。循环水泵需经常维护,并消耗电能,运行费用增加。

2、高层建筑给水系统才去竖向分区的原因?

答:整幢高层建筑若采用同一给水系统,低层管道中的静水压

力很大,必然带来以下弊病:需要采用耐高压管材、附件和配水器材,费用高;启闭龙头、阀门易产生水锤,不但会引起噪声,还可能损坏管道、附件,造成漏水;由于低层配水龙头前压力过大,出流速度过快,出流量过大,不但会产生水流噪声,还浪费水量,影响使用。因此,高层建筑给水系统必须解决低层管道中静水压力过大的问题,为克服低层管道中静水压力过大的弊端,高层建筑给水系统采取竖向分区供水,即在建筑物的垂直方向上分区,分别组成各自的给水系统。

3、凝结水回收系统的分类?

答:1、凝结水回收系统按是否与大气相通,分为开式系统和闭式系统。

2、按凝结水的相态组分,可分为单相流和两相流两大类。

单相流又可分为满管流和非满管流两种流动方式。

3、按驱使凝水的动力不用,可分为重力回水和机械回水

4、余压回水系统的特点?

答:余压回水系统设备简单,根据疏水器的背压大小,系统作用半径一般可达500~1000m,并对地势起伏有较好的适应性。余压回水系统是应用最广泛的一种凝结水回收方式,适用于全厂耗气量较少,用气点分散,用气参数(压力)比较一致的供热系统。

5、流体输配管网的基本组成?

答:1、末端装置:它的作用是按要求从管道获取一定量的流体或将一定量的流体送入管道

2、源和汇:源向管道中输送流体,汇从管道接受流体

3、管道:它是源或汇与末端装置之间输送和分配流体的

通道。

6、流体输配管网水力计算的主要目的?

答:根据要求的流量分配,确定管网的各段管径(断面尺寸)和阻力,求得管网特性曲线,为匹配管网动力设备准备好条件,进而确定动力设备(风机、水泵等)的型号和动力消耗(设计计算);或者根据已定的动力设备,确定保证流量分配的管道尺寸(校核计算)。7、写出孔口送风量的计算公式,并分析实现均匀送风可采取的措

施?

答:L0=3600μ·f0·√(2Pj/ρ)

措施:(1)送风管段面积F和孔口面积f0,管内静压会不断增大,可根据静压变化,在孔口上设置不同的阻体,使不同的孔口具有不同的阻力(即改变流量系数)

(2)孔口面积f0和μ值不变时,可采用锥形风管改变送风管断面积,使管内静压基本保持不变

(3)送风管断面积F及孔口μ值不变时,可根据管内静压变化改变孔口面积f0 8、经济流速?

答:管内的流速对通风、空调系统的经济性有较大的影响,对系统的技术条件也有影响,流速高,风管断面小,占用空间小,材料耗用少,建造费用小;但是系统的阻力大,动力消耗增大,运行费用增加且增加噪声。若气流中含有粉尘等,会增加设备和管道的磨损。反之,流速低,阻力小,动力消耗少;但是风管断面大,材料和建造费用大,风管占用的空间也增大。流速过低会使粉尘沉积而堵塞管道。因此,必须通过全面的技术经济比较选定合理的流速。

52页表2-3-1 53页表2-3-2 表2-3-3

9、如何划分管段?

答:通常按流量和断面变化划分管段,一条管段内流量和管段断面不变,即流量和断面二者之一或二者同时发生变化之处是管段的起点或终点。

10、压损平衡及其一般做法?

答:压损平衡:能量方程表明,只有在设计流量条件下,管路

的计算压力损失等于管理库的作用压力,管网运行时的实际流量才与设计流量相等,因此,在水力计算中,需要通过调整管径、设置调节阀等技术手段,使管路在设计流量下的计算压力损失与其作用压力相等。工程上习惯将此称为“压损平衡”或“平衡压力损失”。

一般做法:由于共用管路的压力损失涉及若干并联管路,在进行某一并联环路(最不利环路除外)的压力损失平衡时,一般是通过调整独用管路的压力损失,使整个环路的计算压力损失与环路资用压力相平衡。

并联环路压力损失平衡常用方法如下:

1)确定该环路总的资用压力△P’

2)确定公用管路的压力损失△PG

3) 计算独用管路的自用压力△P’D

△P’D=△P’—△PG

4)根据△P’D确定独用管路的管径,调节装置等,尽可能

在经济合理的条件下,使独用管路在设计流量下的计算

压力损失△PD与△P’D相等

5)计算压力损失不平衡率,检查是否满足要求

只有当各并联环路的资用压力相等时,“压力损失平衡”才能简化为各并联管路之间的“阻力平衡”。

11、建筑内部给水系统所需压力计算公式?

答:H=H1+H2+ H3+H4

H—建筑给水管网所需水压,kPa

H1—引入管起点至配水最不利点位置高度所要求的静水压,kPa

H2—引入管起点至配水最不利点给水管路的沿程与局部水头损失之和,kPa

H3—水流通过水表时的水头损失,kPa

H4—配水最不利点给水配件(用水器具)所需的流出水头,可从给水排水设计手册中查取,kPa

12、稳定立管压力,增大通水能力的措施

答:当管径一定时,在影响立管压力波动的因素中,可以调

整改变的主要因素是中线流速和水舌阻力系数

1)减小终限流速。在排水立管内采取一些增阻消能的

措施,减小水流下降速度,一方面可以减小立管内的负压,防止水封破坏,另一方面可以增加水膜厚度,增大通水能力,常见的措施有:

A、增加管材内壁粗糙高度Kp ,使水膜与管壁间的界面力增加,减小水流下降速度

B、立管上隔一定距离设已字弯(5~6层)消能,有实验表明可以减小流速50%左右

C、利用横支管与立管连接处的特殊构造,发生溅水现象,使下落水流与空气混合,形成密度小的水沫状水气混合物,减小下降速度

D、由横支管排出的水流沿切线方向进入立管,在重力与离心力的共同作用下,水流旋流而下,其垂直下落速度大幅度降低。

E、对立管内壁作特殊处理,增加水与管内壁间的附着力

2)减小水舌阻力系数。通过改变水舌形状,或向负压区

补充的空气不经过水舌两种途径来实现

A、设置通气立管,常用的有专用通气立管,主通气立管和副通气立管三种,其中,专用通气立管在通气系统中属中级标准。设置通气立管后,向负压区补充的空气不经过水舌,水舌阻力系数趋近于0,立管内负压减小

B、在横支管上设单路进气阀,单路进气阀是用优质塑料和橡胶经过精密加工制成的灵敏度较高、经久耐用的只进气不出气的通气阀。当某一支管排水时,立管内形成负压,其他支管上的进气阀打开补气,不经过水舌,水舌阻力系数趋近于0

C、在排水横管与立管连接处的立管内设置挡板,使横支管排出的冲激流被挡板阻挡,不会射到立管对面形成水舌,使水舌阻力系数减小

D、将排水立管内壁制成有螺旋导流突起,立管内的水流在螺旋线导流下,旋转下落,立管中心形成一个通畅的空气柱,避免形成水舌

E、排水立管轴线与横支管轴线错开半个管径连接,使水流沿切线方向流入立管,形成的水膜密实而稳定,气液界面清晰,管中心形成一个畅通的空气柱,加大了气流断面,减小了水舌阻力系数

F、对于一般建筑,应采用形成水舌面积小,两侧气孔面积大的斜三通或异径三通。

13 排水计算必须满足的基本规定。

答:为保证管网系统有良好的水力条件,稳定管内气压,防止水封破坏,保证良好的室内环境卫生,在哼干管和横支管的设计计算中,须满足下列规定

(1)充满度:建筑内部排水横管按非满流设计,以便使污废水放出的有毒有害气体能自由排除;调节排水管道的系统内的压力;接纳意外的高峰流量。

(2)自净流量:污水中含有固体杂质,如果流速过小,固体物会在管内沉淀,减小过水断面积,造成排水不畅或堵塞管道,为此规定一个最小流速,即自净流速

(3)管道坡度:管道设计坡度与污废水性质、管径和管材有关。

(4)最小管径

14、空调凝结水管路系统的设计要点?

答:(1)风机盘管凝结水盘的泄水支管坡度,不宜小于0.01,其他水平支管,沿水流方向,应保持不小于0.002,且不允许有积水部位。如受制条件限制,无坡度敷设时,管内流速不得小于0.25m/s。

(2)当凝结水盘位于机组内的负压区段时,凝水盘的出水口处必须设置水封,水封的高度应比凝水盘处的负压(相当于水柱高度)大50%左右。水封的出口应与大气相通(3)凝结水管道宜采用聚氯乙烯塑料管或镀锌钢管,不宜采用焊接钢管。

采用聚氯乙烯塑料管是,一般可以不加防二次结露的保温层;采用镀锌钢管

时,应设置保温层

(4)凝结水立管的顶部,应设计通向大气的透气管。

(5)设计和布置凝结水管路时,必须认真考虑定期冲洗的可能性

(6)凝结水管的立管管径,应根据通过凝结水的流量,按水膜流计算确定。也可参照表4-1-9确定

15、蒸汽系统中,减小水击的措施?

答:为了减轻水击现象,(1)水平敷设的供汽管路,必须具

有足够的坡度,并尽可能保持汽、水同向流动。蒸汽干

管汽水同向流动时,坡度i=0.01~0.02。(2)供汽干管向

上拐弯处,必须设置耐水击的疏水装置,定期排出沿途

流来的凝水。(3)当供汽压力低时,也可用水封装置。

在下供式系统的蒸汽立管中,汽水呈逆向流动,蒸汽立

管要采用比较低的流速,以减轻水击现象。

16、蒸汽供暖与热水供暖,由节点压力不平衡而产生水平失调现象的不同点。简述供暖系统水平失调的自调性

答:不同点:蒸汽供暖系统远近立管并联环路节点压力不平衡,由此而产生水平失调的现象与热水供暖系统相比,有不同的地方。

(1)在热水供暖系统中,如不进行调节,责通过远近立管的流量比例是不会发生变化的。(2)在蒸汽供暖系统中,疏水器工作正常的情况下,当近处散热器流量增多后,疏水器阻汽作用使近处散热器内蒸汽压力升高,进入的近处散热器的蒸汽量就自动减少;待近处疏水器正常排水后,进入近处散热器的蒸汽量又再增多。因此,蒸汽供暖系统水平失调具有自调性和周期性的特点

自调性:蒸汽供暖系统中,疏水器正常工作的条件下,当近处疏水器流量正加后,疏水器阻器作用使近处散热器内蒸汽压气升高,进入的近处散热器的蒸汽量就自动减少,待近处疏水器正常排水后,进入的近处散热器的蒸汽量就自动增多。

17、推导当量长度计算公式,并给水定义,分析当量长度的影响因素,总结本书有几处用当量长度计算。

18、气固两相流管道布置应注意的事项?

(1)布置生产工艺时,要为气力输送创造条件,尽量缩小输送距离和提升高度

(2)管路尽量简单,避免支路叉道

(3)减少弯管数量,采用较大的曲率半径

(4)避免管道由水平弯向垂直,

(5)喉管后的直管长度不小于(15~20)D,使物料顺利加速

19.P141的4.4.3~P144的4.4.7重点内容:/4章(自己总结)

答:管网中的动力有压力(静压),惯性力(动压),和重力三种

1.环路中的全压通常有以下几种来源:

(1)由泵、风机等动力机械提供

(2)由上级管网提供

(3)由压力容器提供

(4)由环境流体的动压提供

若全压作用断面在共用管路,所有共用管路的环路所受全压动力相同。

2.重力提供动力大小取决于环路的空间走向和环路中的流体密度分布;开式管网输送与环境流体密度相同流体,或闭式管网内流体密度不变,或在水平流动的管路上,重力作用为零;向上流动的管段内流体密度大于向下流动的管段内流体密度时重力阻碍环路流动,反之重力

推动环路流动;若不同环路的独用管段内流体密度分布不同,其重力形成的环路动力一般不同。

3.稳态流动时任一环路的流体动力与流体阻力相等,当全压待定,则计算出环路流动阻力和算得的重力作用形成的环路流动动力做差,所得即环路需用压力,需用压力与重力作用动力的和为环路的资用动力;选管路长、部件多,重力推动作用小的环路为最不利环路;全压相同各环路资用压力不同。

4.目前工程上通常按长度(或当量长度)平均分配资用动力(压损平均法)。最不利环路约束其他任一环路资用压力分配,任一环路只在独用管路上自由分配资用动力。

5.独用管路压损平衡:设计中通过对管路几何参数的调整,改变管内流速使独用管路在要求流量下,流动阻力等于资用动力以使流量达到要求值。

6.并联管路阻力平衡以动力相等的并联管路为前提,此时其流动阻力也相等。通过调整管路尺寸使各并联管路在各自要求的流量下计算阻力相等,保证各并联管路流量分配满足要求。7.“阻力平衡”只适用于各环路重力作用相等的情况,而“压损平衡”普遍适用。 8.各枝状管网水力计算步骤:

(1)绘制管网轴测图,对各管段进行编号,标明其空间位置(如起点终点的空间坐标)和长度,确定设计流量。

(2)若是开式管网,进行虚拟闭合。

(3)逐一计算各环路中重力作用形成的作用动力。

(4)根据各环路中的重力作用大小和管路长度及复杂程度确定最不利环路

(5)若压力已定,已定压力与最不利环路的重力作用之和即为最不利环路的资用动力。将资用压力分配给最不利环路的每一管段,确定该管段断面尺寸。

(6)计算其他环路独用管路的资用动力。

(7)将资用动力分配给独用管路的每一段。

(8)按所分资用动力和设计流量,根据“压损平衡”,确定独用管路的断面尺寸。 不同流体枝状管网水力计算比摸阻的计算公式及计算图表不同。

20.离心式泵与风机的工作原理150/5

答:当泵或风机叶轮随原动机的轴旋转时,叶轮间的流体也随之高速旋转并受到离心力作用,经叶片出口被甩出叶轮。被甩出的流体挤入机(泵)壳,使机(泵)壳内流体压强增高,最后被导向泵或风机的出口排出。同时叶轮中心由于流体被甩出形成真空,外界流体在大气压作用下,沿泵或风机进口吸入叶轮,如此源源不断输送流体。

离心式泵与风机的工作过程实质上是把电动机高速旋转的机械能转化为被输送流体的动能和势能,并伴随能量损失的过程。

21.写出理想条件下的欧拉方程,简述推导时的基本假设。152/5

答:理想条件下欧拉方程:

推导时的基本假设:

(1)流体是恒定流

(2)流体为不可压缩流体

(3)叶片数目无限多,厚度无限薄

(4)流体在整个叶轮中流动过程为一理想过程(无能量损失)

22.有限多叶片数时泵与风机的理论扬程的两种表达式,并说明其物理意义。P153,P155

答:表达形式1: )(11122T u T T u T T v u v u g

H ?-?=)(11122∞∞∞∞∞?-?=T u T T u T T v u v u g

H

物理意义:(1)用动量矩定理推导基本能量方程时,并未分析流体在叶轮流道中途的运动过程,于是流体所获得的理论扬程HT ∞,仅与流体在叶片进、出口处的速度三角形有关,与流动过程无关。(2)流体所获得的理论扬程HT ∞与被输送流体的种类无关。只要叶片进、出口处的速度三角形相同,都可以得到相同的液柱或气柱高度(扬程)。

表达形式2:

物理意义:第一项是单位重量流体在叶轮旋转时产生的离心力所作的功,使流体自进口到出口产生一个向外的压能(静压水头)增量。

第二项是由于叶片间流道展宽、相对速度降低而获得的压能增量,它代表叶轮中动能转化为压能的份额。由于相对速度变化不大,故其增量较小。

第三项是单位重量流体的动能增量。利用导流器及蜗壳的扩压作用,可取得一部分静压。

23.前向叶型风机效率低的原因?163/5

答:动压头成分大,则流体在扩压器中的流速大,动静压转换损失较大。在其它条件相同时,前向叶型的泵或风机的总的扬程较大,但它们的损失也大,因此前向叶型风机效率较低。

24.几种叶片形式的比较?164/5

答(1)从流体所获得的扬程看,前向叶片最大,径向叶片稍次,后向叶片最小。

(2)从效率观点看,后向叶片最高,径向叶片居中,前向叶片最低。

(3)从结构尺寸看,在流量和转速一定时,达到相同的压力,前向叶轮直径最小,而径向叶轮直径稍次,后向叶轮直径最大。

(4)从工艺观点看,直叶片制造最简单。

25.前向叶轮、后向叶轮性能曲线的特性165/5

答:后向叶轮具有相对平坦的H-Q 曲线,当流量变动很大时能保持基本恒定的扬程。而前向叶轮具有驼峰型H-Q 曲线,当流量自零逐渐增加时,相应的扬程最初上升达到最高值后开始下降,在一定运行条件可能出现不稳定工作,应当避免。

26.简述轴流风机在性能曲线方面的特性177/5

答:轴流风机在性能曲线方面的特点可归纳为如下三点:

1.H-Q 曲线大都是属于陡降型曲线。

2.N-Q 曲线在流量为零时N 最大,当流量增大时,H 下降很快,轴功率N 也有所降低,这样往往使轴流式风机在零流量下启动时轴功率最大。因此,与离心式风机相反,轴流式风机应当在管路畅通下开动。尽管如此,当启动与停机时,总是会经过最低流量的,所以轴流风机所配用的电机要有足够的余量。

3.η-Q 曲线也在最高效率点附近迅速下降,所以轴流式风机最佳工作范围较窄。一般都不设置调节阀门来调节流量。大型轴流风机常用可调节叶片安装角或改变转速方法来达到调节流量的目的。

27.简述广义特性曲线、狭义特性曲线随水泵转数改变时相似规律的特性187/6

答:广义管网特性曲线表明这类管网的阻力由两部分组成,一部分不随流量变化,另一部分与流量的平方成正比。由于这两部分阻力的变化规律不一致,当水泵转数改变时,工况点之间不满足泵的相似规律。而狭义管网特性曲线表明这类管网的全部阻力与流量的平方成正比,当水泵转数改变时遵守相似泵的相似律,流量比值与转速比值成正比,压力比值与转速比值平方成正比,功率比值与转速比值三次方成正比。

28.如何确定泵、风机在管网系统中的工作状态点191/6

答:将泵(风机) 的实际H-Q 性能曲线与其所在管网系统的管网特性曲线,用相同的比例尺、相同的单位绘在同一直角坐标图上,两条曲线的交点,即为该泵(风机)在该管网系统中的g v v g w w g u u H T 222212222212122-+-+-=

工作状态点,或称运行工况点。

29.喘振的防治方法?192/6

答:(1)应尽量避免设备在非稳定区工作;(2)采用旁通或放空法;(3)增速节流法。30.何为稳定工作区和非稳定工作区?191/6

对于具有驼峰形性能曲线的泵(风机),在其压头峰值点的右侧区间运行时,设备的工作状态能保持平衡,稳定工作,成为稳定工作区。而在其压头峰值的左侧区域运行,设备的工作状态不稳定,为非稳定工作区。

31.简述工况调节方法及节能特点?197/6

答:

1.变速调节

用降低转速来调小流量,节能效果非常显著;用增加转速来增大流量,能耗增加剧烈。在理论上可以用增加转数的方法来提高流量,但是转数增加后,使叶轮圆周速度增大,因而可能增大振动和噪声,且可能发生机械强度和电机超载问题,所以一般不采用增速方法来调节工况。

2.进口导流器调节

采用导流器的调节方法,增加了进口的撞击损失,从节能角度看,不如变速调节,但比阀门调节消耗功率小,也是一种比较经济的调节方法。

3切削叶轮调节

切削叶轮的调节方法,不增加额外的能量损失,设备的效率下降的很少,是一种节能的调节方法。

32.泵的吸水管、压水管连接要点。

吸水管:1.不漏气。2.不积气。3.不吸气。

压水管:1.承受高压,要求坚固而不漏水,通常采用钢管,并尽量采用焊接接口,为便于拆装与检修,在适当地点应设法兰接口。

2.避免应力,设置伸缩节或可曲绕的橡胶接头;承受推力,设置专门的支墩或拉杆。

3.不允许液体倒流的管路,设置止回阀。

4.当直径D≥400mm时,闸阀大都采用电动或水力闸阀。

33.风机与管网连接的注意事项。

答:1.风机进口装置:应尽量保证气流均匀地进入叶轮,并使其能够均匀地充满叶轮进口截面。因此,风机入口管以平直管段为佳。对于变径入口管,应尽量采用角度较小的渐扩管,要避免采用突扩管和突缩管,以免气流速度和方向的突然变化。

2.风机出口装置:必须必须避免过分的扩大、突然扩大、限制或束缚气流的断突然转弯或曲率半径很小的弯头。

34.分析风系统空气吸入管内的流动规律。

答:1.风机吸入段的全压和静压均为负值,在风机入口负压最大。

2.在吸入管段中静压绝对值为全压绝对值与动压值之和,即吸入口静压绝对值大于吸入口全压绝对值,这正与压出段相反。

3.风机的风压(全压)等于风机进入口的全压差,或者说是等于风管的阻力及出口动压损失之和。当管网系统中只有吸入管段而无压出管段时,风机的风压等于吸入管网的阻力及出口动压损失之和。

35.分析液体吸入管道压力计算公式的各项含义。

答:液体自由液面上的压头Pa∕γ和泵壳内最低压头Pk∕γ之差,用来提供:把液体提升高度Hss;克服吸入管中压头(Σhs);产生流速压头v12∕、流速压头差值C。-v12∕2g

和供应叶片背面k点的压力下降值λw。2∕2g。公式左边Pa∕λ-Pk∕λ表示吸入管段中的能量余裕值。而Pa一般情况下就是当地的大气压,Pk是个条件值,它不能低于该处流体温度下的饱和压力。公式右边各项,实际上可分为泵壳外与泵壳内两项压头的降落。以真空表为界,真空表所指示的是泵壳进口外部的压力下降值(Hss+v12∕2g+Σhs),它反映了真空表安装点的实际压头下降值Hv,而C。-v12∕2g+λw。2∕2g反映了泵壳进出口内部的压头下降值,它的变化很大,是由泵的构造和工况而定的。

36.热水网路压力状况的基本技术要求。

答:1.在与热水网路直接连接的用户系统内,压力不应超过改用户系统用热设备及其管道构件的承压能力。

2.在高温网路和用户系统内,水温超过100℃的地点,热媒压力应不低于该水温下的汽化压力。

3. 与热水网路直接连接的用户系统,无论在网路循环水泵运转或停止工作时,其用户系统回水管出口处的压力,必须高于用户系统的充水高度,以防系统倒空吸入空气,破坏正常运行和腐蚀管道。

4.网路回水管内任何一点的压力,都应比大气压力至少高出50kPa,以免吸入空气。

5.在热水网路的热力站或用户引入管处,供、回水管的资用压差,应满足热力站或用户所需的作用压头。

37.常用的几种定压方式,总结其特点。

答:1.高位水箱定压方式。2.补给水泵定压方式。(1)补给水泵连续补水定压方式;(2)补给水泵间歇补水定压方式。3.旁通管定压点补水定压方式。4.变频调速泵补水定压。

38.阀权度对调节阀工作特性的影响分析。

答:1.当管道阻抗为零时,Sv=1,管道的总压差全部降落在调节阀上,调节阀的工作特性与理想特性是一致的。

2.随着管道阻抗增大,Sv值减小,管道压力损失增加,使管道的总压差降落在调节阀上的部分减小,调节阀全开时的流量减小。

3.随着Sv值的减小,调节阀的流量特性发生很大的畸变,当以Q/Q100做参比值时,成为一系列向上拱的曲线。

39.流量比χ的变化对管路调节性能的影响。

答:1.χ=1,调节阀的工作流量特性与理想流量特性是一致的。

2.χ减小,即调节阀本身的流量特性没有改变,系统的实际可调比R大大下降。

40.阀权度的特性。

答:理想流量特性为直线特性的调节阀,当权度小于0.3时,其工作流量特性曲线严重畸变,偏离理想流量特性,而近似快开特性。而对于百分比流量特性,当权度小于0.3其工作流量特性虽然也严重偏离理想特性而变成近似直线特性,仍有较好的调节作用

41.提高管网水力稳定性的途径与方法。

答;主要方法是相对的减小网路干管的压降,相对的增大用户系统的压降。

为了减小网路干管的压降,就需要适当增大网路干管的管径,即在进行网路水力计算时,选用较小的比摩阻R值。适当的增大靠近动力的网路干管的直径,对提高网路的水力稳定性效果更为显著。

为了增大用户系统的压降,可选用阻抗较大的用户末端装置,也可以采用水喷射器、调压板、安装高阻力小管径阀门等措施。

流体输配管网考试重点 第三版

第一章 通风工程的主要任务:控制室内空气污染物,保证良好的室内空气品质,并保护大气环境。 通风工程的风管系统分类:排风系统:、送风系统: 空调工程的主要任务:控制空气污染物,保证空气品质,保护大气环境; 舒适性,或使室内热环境满足生产工艺的要求。 空调系统的两个功能:控制室内空气污染物浓度和热环境质量。 供暖空调冷热水管网型式: 一.按循环动力分:重力(自然)循环系统、机械循环系统 二.按水流路径:同程系统、异程系统 同程式系统除了供回水管路以外,还有一根同程管。由于各并联环路的管路总厂度基本相等,阻抗差异较小,则流量分配以满足要求。 异程式水系统管路简单,不需采用同程管,系统投资较少,但当并联环路阻抗相差较大时,水量分配、调节较难。 三.按流量变化分为:定流量系统、变流量系统 四.按水泵设置分为:单式泵系统、复式泵系统 单式泵水系统的冷(热)源侧和负荷侧用同一组循环水泵,因为要保证冷(热)源对水流量的要求,这种水系统不能完全按负荷变化调节水泵流量,不利于节省水泵输送能量。 复式泵水系统的冷(热)源侧和负荷侧分别设置循环水泵,可以实现负荷侧的水泵变流量运行,能节省输送耗能,并能适应供水分区不同压降的需要,系统总压低。 五.按与大气接触情况分为:开式系统、闭式系统 闭式系统:与外界只有能量交换而没有质量交换的系统。 热水集中供热管网型式:枝状管网、环状管网(要求画图说明,课本P13 图1-2-6) 重点图:热水集中供热管网用户连接方式与装置(图1-2-8)重点图:蒸汽供热管网与热用户的连接方式(图 1-3-4) 第二章 气体管流水力特征(计算题)P45 流体输配管网水力计算的目的:根据要求的流量分配确定管网的管径或阻力;求得管网特性曲线,为匹配管网动力设备准备条件,进而确定动力设备;或者根据已定的动力设备,确定管道尺寸。 流体输配管网水力计算的理论依据:流体力学一元流体流动连续性方程和能量方程及串、并联管路流动规律。动力设备提供的压力等于管网总阻力,串联管路总阻力等于各段管路阻力之和。 管段中的流动阻力包括沿程阻力和局部阻力。 常用的水力计算方法的定义、步骤(课本P51): 1、假定流速法先按技术经济要求选定管内流速(经济流速),再结合所输送的流量,确定管道断面尺寸,进而计算管道阻力,得出需要的动力。 计算前,完成管网布置,确定流量分配 绘草图,编号 确定流速 确定管径 计算各管段阻力 平衡并联管路 计算总阻力,计算管网特性曲线 根据管网特性曲线,选择动力设备 2、压损平均法将已定的总资用动力,按干管长度平均分给每一管段,以此确定管段阻力,再根据每一管段的流量确定管道端面尺寸。 计算前,完成管网布置,确定流量分配 绘系统图,编号,标管段L和Q,定最不利环路。 根据资用动力,计算其平均Rm。 根据Rm和各管段Q,确定其各管段管径。 确定各并联支路的资用动力,计算其Rm 。 根据各并联支路Rm和各管段Q,确定其管径。 3、静压复得法通过改变管道断面尺寸,降低流速,克服管段阻力,维持所需的要管道内静压。 计算前,完成管网布置 确定管道上各孔口的出流速度。 计算各孔口处的管内静压Pj和流量。 顺流向定第一孔口处管内流速、全压和管道尺寸。 计算第一孔口到第二孔口的阻力P1·2。 计算第二孔口处的动压Pd2。 计算第二孔口处的管内流速,确定该处的管道尺寸。 以此类推,直到确定最后一个孔口处的管道断面尺寸。 均匀送风管道设计 设计原理 静压产生的流速为: 空气在风管内的流速为: 空气从孔口出流时的流速为: 如图所示:出流角为α: 第三章 课本P75(图3-1-1),要求类似的图会计算 课本P79,例题3-1 P94,例题3-3 第四章 汽液两相流管网水力特征: ?状态参数变化大,伴随相变,压降导致饱和温度降低, 凝水管“二次汽化” ?会产生“水塞”、“水击” ?减轻“水击”的方法: 1、蒸汽管路有足够坡度,汽、 水同相;2、设置疏水装置;3、防止立管“水击”,下 供式立管流速要低; ρ j j p v 2 = ρ D D p v 2 = α sin j v v= D j D j P P v v tg= = α

《流体输配管网》复习题及答案A

一.26. 什么是风机的喘振现象?如何有效防止喘振现象的发生? 答:当风机在非稳定工作区运行时,出现一会儿由风机输出流体,一会儿流体由管网中向风机内部倒流的现象,专业中称之为“喘振”。当风机的性能曲线呈驼峰形状,峰值左侧较陡,运行工况点离峰值较远时,易发生喘振。喘振的防治方法有:①应尽量避免设备在非稳定区工作;②采用旁通或放空法。当用户需要小流量而使设备工况点移至非稳定区时,可通过在设备出口设置的旁通管(风系统可设放空阀门),让设备在较大流量下的稳定工作区运行,而将需要的流量送入工作区。此法最简单,但最不经济;③增速节流法。此法为通过提高风机的转数并配合进口节流措施而改变风机的性能曲线,使之工作状态点进入稳定工作区来避免喘振。 二.(填空题(每空2分,共30分) 1.流体管网应包括(管道系统)、(动力系统)、( 调节装置)、(末端装置)及保证管网正常工作的其他附属装置。 2.要保证流体流动过程力学相似必须同时满足(几何相似)、(运动相似)、(动力相似)。3.流体流动阻力有两种:摩擦阻力也称沿程阻力,及局部阻力。 其中(沿程)阻力随水力半径的增大而(减少)。 4.当各环路的(重力作用相等)时,并联管段的总阻抗S b与各 并联管段的阻抗S I有如下关系 i n i b S S 1 1 ∑ = = 5.管道中某点的测压管水头高度,就是该点的距基准面的位置高度与该点的(测压管水柱高度)之和。 6.膨胀水箱的膨胀管,在重力循环中应接在(供水总立管的顶端);在机械循环系统中,一般接在(循环水泵吸入口)。7.常用的风机有离心风机、(轴流风机)、斜流风机、(惯流风机)。 三.简答题(每题8分,共40分) 1.简述流体输配管网水力计算的主要目的。 答:根据要求的流量分配,确定管网的各管段管径和阻力,(4分)求得管网特性曲线,为匹配管网动力设备准备好条件。(4分)2.现场测得水泵得扬程和流量低于厂家给出的样本性能,能否断定该水泵为不合格产品?为什么? 答:不能断定该水泵为不合格产品。(3分) 因为水泵接入管网时会产生系统效应,即由于生产厂家在设备性能测试时进出口接管方式形成的流体能量损失小于实际进出口接管方式形成的流体能量损失。(5分) ’.

流体输配管网复习要点答案最新版1..

一、简答题(每小题5分,共计25分) 1.设水泵和水箱的给水管网在什么条件下应用? 答:设水泵和水箱的给水方式宜在室外给水管网压力低于或经常不能满足建筑室内给水管 网所需的水压,且室内用水不均匀时采用。 2、同程式水系统和异程式水系统各有什么特点? 答:同程式水系统除了供回水管路外,还有一根同程管,由于各并联环路的管路总长度基 本相同,阻抗差异较小,流量分配容易满足。异程式水系统管路简单,系统投资小,但当 并联环路阻抗相差太大时,水量分配、调节较难。 3.高层建筑供暖空调冷热水管网常采用的几种分区形式是什么? 答;1、对于裙房和塔楼组成的高层建筑,将裙房划为下区、塔楼划为上区。 2、以中间技术设备层为界进行竖向分区,为上、下区服务的冷热源、水泵等主要设备都集 中布置在设备层内,分别与上、下区管道组成相互独立的管网。 3、冷热源、水泵等设备均布置在地下室,为上区服务的用承压能力强的加强型设备,为下 区服务的用普通设备。 4、冷热源、水泵等设备仍布置在地下室,在中间技术设备层内布置水-水式换热器和上区循环水泵。 4、膨胀水箱在冷、热水管路中起什么作用?是如何进行设计的。 答:膨胀水箱的作用是用来储存冷热水系统水温上升时的膨胀水量,在重力循环上供下回 式系统中,他还起着排气作用,另一作用是恒定水系统压力。膨胀水箱的容积由下式确定 Vp max t Vc 5、.减少排水管中终限流速的措施有哪些? 答:1、增加管材内壁粗糙高度Kp,使水膜与管壁的界面力增加,减小水流下降速度 2、立管上每隔一段距离设乙字弯消能, 3、利用横支管与立管连接处的特殊构造,发生溅水现象,使下落水流与空气混合,形成密 度小的水沫状水气混合物,减小下降速度。 4、由横直管排出的水流沿切线方向进入立管,在重力与离心力共同作用下,水流旋流而下,其垂直下落速度大幅度降低。 5、对立管内壁做特殊处理,增加水与管壁间的附着力。

(完整版)流体输配管网简答题

1-4 试比较气相、液相、多相流这三类管网的异同点。答:相同点:各类管网构造上一般都包括管道系统、动力系统、调节装作的其它附属设备。不同点:①各类管网的流动介质不同;②管网具体型式、布置方式等不同;③各类管网中动力装置、调节装置及末端装置、附属设施等有些不同。 1-5比较开式管网与闭式管网、枝状管网与环状管网的不同点。 答:开式管网:管网内流动的流体介质直接与大气相接触,开式液体管网水泵需要克服高度引起的静水压头,耗能较多。开式液体管网内因与大气直接接触,氧化腐蚀性比闭式管网严重。闭式管网:管网内流动的流体介质不直接与大气相通,闭式液体管网水泵一般不需要考虑高度引起的静水压头,比同规模的开式管网耗能少。闭式液体管网内因与大气隔离,腐蚀性主要是结垢,氧化腐蚀比开式管网轻微。枝状管网:管网内任意管段内流体介质的流向都是唯一确定的;管网结构比较简单,初投资比较节省;但管网某处发生故障而停运检修时,该点以后所有用户都将停运而受影响。环状管网:管网某管段内流体介质的流向不确定,可能根据实际工况发生改变;管网结构比较复杂,初投资较节枝状管网大;但当管网某处发生故障停运检修时,该点以后用户可通过令一方向供应流体,因而事故影响范围小,管网可靠性比枝状管网高。 2-1 某工程中的空调送风管网,在计算时可否忽略位压的作用?为什么?(提示:估计位压作用的大小,与阻力损失进行比较。) 答:民用建筑空调送风温度可取在15~35℃(夏季~冬季)之间,室内温度可取在25~20℃(夏季~冬季)之间。取20℃空气密度为1.204kg/m 因此: 夏季空调送风与室内空气的密度差为1.225-1.184=0.041kg/m3 冬季空调送风与室内空气的密度差为1.204-1.145=0.059kg/m3 空调送风管网送风高差通常为楼层层高,可取H=3m,g=9.807 N/m.s则 夏季空调送风位压=9.807×0.041×3=1.2 Pa 冬季空调送风位压=9.807×0.059×3=1.7 Pa 空调送风系统末端风口的阻力通常为15~25Pa,整个空调送风系统总阻力通常也在100~300 Pa之间。可见送风位压的作用与系统阻力相比是完全可以忽略的。但是有的空调系统送风集中处理,送风高差不是楼层高度,而是整个建筑高度,此时H 可达50米以上。这种情况送风位压应该考虑。 2-3如图2-2 ,图中居室内为什么冬季白天感觉较舒适而夜间感觉不舒适? 答:白天太阳辐射使阳台区空气温度上升,致使阳台区空气密度比居室内空气密 度小,因此空气从上通风口流入居室内,从下通风口流出居室,形成循环。提高了居室内温度,床处于回风区附近,风速不明显,感觉舒适;夜晚阳台区温度低于居室内温度,空气流动方向反向,冷空气从下通风口流入,床位于送风区,床上的人有比较明显的吹冷风感,因此感觉不舒适。 2-4 如图2-3 是某高层建筑卫生间通风示意图。试分析冬夏季机械动力和热压之间的作用关系。 答:冬季室外空气温度低于通风井内空气温度,热压使通风井内空气向上运动,有利于气体的排除,此时热压增加了机械动力的通风能力;夏季室外空气温度比通风竖井内空气温度高,热压使用通风井内空气向下流动,削弱了机械动力的通风能力,不利于卫生间排气。 2-5 简述实现均匀送风的条件。怎样实现这些条件? 答:根据教材推导式(2-3-21)式中从该表达式可以看出,要实现均匀送风,可以有以下多种方式:(1)保持送风管断面积F和各送风口面积f0不变,调整各送风口流量系数μ,使之适应Pj 的变化,维持L0 不变;(2)保持送风各送风口面积f0 和各送风口流量系数μ不变,调整送风管的面积F,使管内静压Pj 基本不变,维持L0 不变;(3)保持送风管的面积F 和各送风口流量系数μ不变,根据管内静压Pj 的变化,调整各送风口孔口面积f0 ,维持L0不变;(4)增大送风管面积F,使管内静压Pj 增大,同时减小送风口孔口面积f0 ,二者的综合效果是维持L0 不变。

流体输配管网第三版重点课后习题及答案

1- 4试比较气相、液相、多相流这三类管网的异同点。 答:相同点:各类管网构造上一般都包括管道系统、动力系统、调节装置、末端装置以及保证管网正常工作的其它附属设备。 不同点:①各类管网的流动介质不同; ②管网具体型式、布置方式等不同; ③各类管网中动力装置、调节装置及末端装置、附属设施等有些不同。 [说明]随着课程的进一步深入,还可以总结其它异同点,如: 相同点:各类管网中工质的流动都遵循流动能量方程; 各类管网水力计算思路基本相同; 各类管网特性曲线都可以表示成△ P=S(Q+F St ;各类管网中流动阻力之和都等于动力之和,等等。 不同点:不同管网中介质的流速不同; 不同管网中水力计算的具体要求和方法可能不同; 不同管网系统用计算机分析时其基础数据输入不同,等等。 1-5比较开式管网与闭式管网、枝状管网与环状管网的不同点。 答:开式管网:管网内流动的流体介质直接与大气相接触,开式液体管网水泵需要克服高度引起的静水压头,耗能较多。开式液体管网内因与大气直接接触,氧化腐蚀性比闭式管网严重。 闭式管网:管网内流动的流体介质不直接与大气相通,闭式液体管网水泵一般不需要考虑高 度引起的静水压头,比同规模的开式管网耗能少。闭式液体管网内因与大气隔离,腐蚀性主要是结垢,氧化腐蚀比开式管网轻微。 枝状管网:管网内任意管段内流体介质的流向都是唯一确定的;管网结构比较简单,初投资 比较节省;但管网某处发生故障而停运检修时,该点以后所有用户都将停运而受影响。 环状管网:管网某管段内流体介质的流向不确定,可能根据实际工况发生改变;管网结构比较复杂,初投资较节枝状管网大;但当管网某处发生故障停运检修时,该点以后用户可通过令一方向供应流体,因而事故影响范围小,管网可靠性比枝状管网高。 1-6按以下方面对建筑环境与设备工程领域的流体输配管网进行分类。对每种类型的管网,给出一个在工程中应用的实例。 (1)管内流动的介质; (2)动力的性质; (3)管内流体与管外环境的关系; (4)管道中流体流动方向的确定性; (5)上下级管网之间的水力相关性。 答:流体输配管网分类如下表: 问题编号类型及工程应用例子 (1)按流体介质气体输配管网:如燃气输配管网液体输 配管网:如空调冷热水输配管网汽-液两 相流管网:如蒸汽采暖管网液-气两相流 管网:如建筑排水管网气-固两相流管 网:如气力输送管网 (2)按动力性质重力循环管网:自然通风系统机械循环管 网:机械通风系统 (3)按管内流体与管外环开式管网:建筑排水管网 境的关系闭式管网:热水采暖管网

西科大,流体输配管网,考试试题

一、判断题- 1、所有管网的并联管路阻力都应该相等(错) 2、同程式管网各并联环路阻抗相等,异程式不相等(对) 3、管路最长和部件多的环路为最不利环路(对) 4、环状管网与枝状的最根本区别在于是否连成环状(对) 5、双管系统与单管系统的垂直失调是基于不相同原理() 6、调节阀的阀权度越大越好(错) 7、高层建筑的排气竖井,由于位压的影响,冬季排气能力比夏季强(对) 8、在吸入式风机管路中,管外气体渗入管内可能会发生在风机的吸入和压出段(对) 9、当泵的工况沿广义管网特性曲线变化时,工况点之间满足相似工况。(对) 10、闭式管网特性曲线大多是狭义管网特性曲线(对) 11、静压复得法适用于均匀送风管道设计(对) 12、双管闭式热水供热系统是我国目前最广泛应用的热水供热系统(对) 13、调节阀在并联管道中实际可调比的下降比串联管路管道更严重(对) 14、高层建筑的排气竖井,由于位压的影响,冬季排气能力不如夏季强(错) 15、供暖管网中由于各层作用压力不同,单、双管系统均出现垂直失调(错) 16、只要满足节点流量的平衡,环状干线各管段的流量可以任意分配(错) 17、环状管网各管段之间的串并联关系式全部确定的。(错) 18、气体管网系统的性能调节适用吸入管路调节方法(对) 19、水泵的最大安装高度等于其吸上真空高度(错) 二、简答题 1、高层建筑竖向液体输配管网为什么要竖向分区?画出1个竖向分区管网的示意图。 高层建筑高度大,底层管道中的静水压力较大。为了克服静水压力过大的弊病,保证管网正常运行和设备可靠性,对高层建筑竖向流体输配管网进行分区。以高层建筑给水为例,竖向按串联式分为高、中、低三区,如图3。水箱1、2、3分别向低、中、高三区供水,各区管网中的静水压力都适中,系统耐压要求降低,费用减小,启停时产生水锤的危险性减小,水流噪音小,运行稳定可靠

流体输配管网课程教学大纲

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持 流体输配管网》课程教学大纲 课程编号:05 课程名称:流体输配管网 英文名称:Fluid Transfer Nets 课程类型:专业基础必修课 总学时:32 讲课学时:28实验学时:4 学分:2 适用对象:四年制本科建筑环境与设备工程专业 先修课程:流体力学、工程热力学、传热学、建筑环境学 一、课程性质、目的和任务流体输配管网是动力工程系暖通专业的专业必修课。其目的是使学生掌握流体输配管网的型式、装置、特征、水力计算、工况分析;掌握管网动力源:泵与风机的基本原理以及选用方法;能运用基本原理、基本公式进行管网的设计、计算,熟悉泵与风机的选用和安装。培养学生分析问题与解决问题的能力,培养学生一定的动手能力,为进一步学习及毕业后从事专业工作打下必要的基础。 二、教学基本要求学生通过本课程的学习,应达到下列基本要求:1.掌握流体输配管网的型式与装置。 2.掌握流体(气体、液体、多相流)输配管网的特征、水力计算。3.掌握管网系统的工况分析。 4.能正确选择泵与风机,并与管网匹配。 5.了解流体输配管网的计算机计算方法。 三、教学内容及要求 1. 流体输配管网的型式与装置熟悉气体输配管网的型式与装置;熟悉液体输配管网的型式与装置泵。 2. 气体输配管网的水力特征与水力计算熟悉气体管流的水力特征;掌握流体输配管网水力计算的基本原理和方法; 掌握气体输配管网的水力计算。 3.液体输配管网的水力特征与水力计算掌握液体管网的水力特征与水力计算;掌握开式液体管网的水力特征与水力计算。 4. 多相流管网的水力特征与水力计算掌握液气两相流管网的水力特征与水力计算;掌握汽液两相流管网的水力特征与水力计算;熟悉气固两相流管网的水力特征与水力计算。 5.泵与风机的理论基础熟悉离心式泵与风机的基本结构;掌握离心式泵与风机的工作原理与性能参数;掌握离心式泵与风机的基本方程式;熟悉泵与风机的损失与效率;熟悉相似定律与比转数;了解其他常用的泵与风机。 6.管网系统的水力工况分析 掌握管网系统的水力特征;掌握管网系统的压力分布;掌握调节阀的应用及特点;掌握管网系统的水力工况分析与调整。 7 ?泵、风机与管网系统的匹配 熟悉泵、风机运行曲线与工作点;熟悉泵、风机的工况调节;熟悉泵、风机的选用;熟悉泵与风机的安装位置。 8?流体输配管网的计算机分析 熟悉流体输配管网的网路图及其矩阵表示;熟悉管网系统的特性方程组;掌握流体输配管网水力工况的计算机分析;了解流体输配管网的调节概要。

流体输配管网期末考试复习题及参考答案-高起本

《流体输配管网》复习题 一、填空题 1、燃气储配站有三个功能:、和。 2、供热管网主干线水力计算时,采用的平均比摩阻越大,需要的管径越,运行费用越,水力稳定性越。 3、热水供暖系统水压曲线的位置,取决于和。 4、泵或风机的最佳工作区一般为的区域。 5、最不利环路应选最大的环路。 6、空调水系统冷冻水泵全部采用变速泵,两种压差控制方式中的方法更加节能。 7、通风空调空气输送管网,沿流动方向风道内的全压,静压。 8、在建筑排水系统中,随着排水流量的不断增加,立管中水流状态依次经历、 . 、等三种流动状态。 9、离心式的泵或风机的损失主要有、、 和 . 。 10、离心式泵与风机的损失大致可分 为:、、、 . 等,其中引起泵与风机扬程和全压的降低, 引起泵与风机流量的减少,和则引起耗功增多。11、泵的入口与管网系统的连接有三个基本要

求:、、。 12、离心式风机的出口安装角β2是前向型叶片,β2是后向型叶片。 13、切削叶轮调节的第一切削定律的性能关系 为:,, . ,泵与风机性能调节的另两种主要调节方式 是:、。 14、举出管网系统的三种定压式:、、气体定压。 二、选择题 1、异程式热水采暖系统的水平失调是有下列哪个原因造成的? A、热压作用 B、自然循环作用压力不同 C、并联环路的阻力相差较大 D、散热器在立管中的连接方式不同 2、机械循环热水采暖系统的重力循环作用压力与下列哪个因素无关? A、供回水温度 B、供回水密度 C、散热器距热源的距离 D、系统作用半径 3、当外网的静压线低于用户的充水高度时,用户与外网可考虑下列哪种连接方式? A、直接连接 B、间接连接 C、直接连接,回水管设加压泵 D、加混合水泵的直接连接 4、某热水供热系统有5个采暖热用户,若关闭其中任何一个用户,下列哪个说法是错误的? A、其他四个用户流量按同一比例变化 B、其他四个用户流量均增加 C、系统的总阻力增大,总流量减小 D、其他四个用户的室温均升高 5、热水供热系统某用户阀门关闭后,该用户处供回水管的资用压差的情况如何? A、减小 B、增大 C、等于零 D、不变 6、当空调冷冻水系统中某阀门关小时,循环水泵的工作点在性能曲线图中的情况如何? A、向左上方移动 B、向右下方移动 C、不变 D、向左下方移动 7、如图所示,某空调冷冻水系统为异程式,共连接5个相同的空气处理机组,每个机

流体输配管网试题及答案

重庆大学《流体输配管网》课程试题(B 卷) 一、什么是枝状管网?什么是环状管网?分别画一个枝状管网和一个环状管网的示意图,说明其主要区别。(10分) 二、高层建筑竖向液体输配管网为什么要竖向分区?画出1个竖向分区的示意 图,说明其作用。(5分) 三、说明公式l R P m ml ?=的使用条件。为什么不同的管网,λ的计算公式可能会 不相同?(5分) 四、简述均匀送风管道设计的原理和主要步骤。(10分) 五、影响建筑排水管网的排水能力的主要因素有哪些?怎样提高排水能力? (10分) 六、以气力输配管网为例,描述气—固两相流管网的水力特征。气—固两相流管 网水力计算的主要特点是什么?(10分) 七、写出比转数s n 的数学表达式。比转数s n 有什么应用价值?高比转数泵与风 机和低比转数泵与风机有什么主要区别?(10分) 八、某空调冷冻水管网的循环水泵转速2900min r ,所配电机功率2.2KW 。流 管网在设计工况下运行时,流量为15h m 3,扬程为18.5m 。 (1) 画出设计工况下水泵的性能曲线和管网特性曲线,并标出工况点。 (2) 在部分负荷时,只需流量7.5h m 3。有哪些方法可将管网流量调节到 7.5m 3? (3) 哪种方法最节能?为什么? (20分) 九、如图所示通风系统,各管段的设计流速和计算阻力如下表。 (1) 系统风机的全压和风量应为多少? (2) 各设计风量能否实现?若运行时,测得1#排风口的风量为4000h m 3,2#、 3#排风口的风量是多少? (3) 若运行中需要增加1#排风口的风量,应怎样调节? (20分)

《流体输配管网》课程试题(B 卷)参考答案 一、枝状管网:管网有起点和终点、主管和支管,如图1; 环状管网:管网起点和终点重合,构成闭合回路,如图2; 图1 图2 区别: 枝状管网:系统简单,运行管理方便,但管网后备性差,管网某处发生故障 时,该点后面管网部分将受影响而不能正常工作; 环状管网:管网系统比较复杂,管网后备性好;某处发生故障时,流体可以通过环状管网从另一个方向流动,因此故障影响范围小。 二、高层建筑高度大,底层管道中的静水压力较大。为了克服静水压力过大的弊 病,保证管网正常运行和设备可靠性,对高层建筑竖向流体输配管网进行分区。以高层建筑给水为例,竖向按串联式分为高、中、低三区,如图3。水箱1、2、3分别向低、中、高三区供水,各区管网中的静水压力都适中,系统耐压要求降低,费用减小,启停时产生水锤的危险性减小,水流噪音小,运行稳定可靠。 图3 三、公式l R P m ml ?=的使用条件为:管网特性(如:管道材料、断面尺寸、连接 方式等)不变,并且流体密度和流速也不随流程变化。 从流体力学知识知:λ是雷诺数和相对粗糙度的函数,即:()d K f Re,=λ,在不同的流态下,λ的计算式不同。实际工程中各种流体输配管网的流态有明显差别,雷诺数范围不相同,造成了不同管网λ的计算式可能不同。 四、均匀送风管道设计的原理:保证各送风口流量系数相等,并且使各送风口处

流体输配管网知识点(龚光彩版)汇总培训讲学

流体输配管网知识点(龚光彩版)汇总

流体输配管网知识点 第1部分流体输配管网基础知识 基本要求: ?掌握流体输配管网的基本功能与组成; ?了解流体输配管网的分类方法,重点熟悉按照管内流动状态、动力、流体与外界环境关系、流动路径的确定性的分类; ?了解典型流体输配管网类型、构成和特点。比如:绘制一个自己熟悉的流体输配管网,说明该管网中各组件的名称和作用。 流体输配管网概念 将流体输送并分配到各相关设备或空间,或者从各接收点将流体收集起来输送到指定点的管道系统称为流体输配管网。 流体输配管网基本功能 是将从“源”取得的流体,通过管道输送,按照流量要求,分配给末端装置;或者按流量要求从各末端装置收集流体,通过管道输送到“汇”。 流体输配管网基本组成 (1)末端装置 其作用是按要求从管道获取一定量的流体或将一定量的流体送入管道。如:排风管网的排风罩、送风管网的送风口、燃气管网的用气设备、卫生器具、配水龙头等。 (2)源和汇

源是指为管道中输送流体的来源;汇是指接受从管道汇集的流体。比如,室外空气是送风管网的源,却是排风管网的汇;市政给水管是建筑给水管网的源,市政排水管是建筑排水管网的汇;上一级燃气管网是下一级燃气管网的源;热水锅炉既是供热管网的源,也是供热管网的汇。 (3)管道 管道是源或汇与末端装置之间输送和分配流体的必备通道。(4)动力 实际流体的流动总是存在阻力,因此必须提供动力,才能实现流体输配管网的基本功能。 流体输配管网的流动存在不同来源,主要可分为三种来源。一是来源于“源”,如锅炉;储气罐的压力;上级管网的压力。例如多数建筑给水管网中水的流动动力来自于市政给水管内的压力;建筑燃气管网中的燃气流动动力来自于小区燃气管道内的压力;供热管网中的热水或蒸汽的流动动力来自于供热锅炉的压力。二是来源于重力,如自然循环热水采暖;建筑排水管网中污水的流动是靠流体的自身重力实现的。三是来源于机械动力(风机、水泵),如通风管网中空气的流动动力由风机来提供,建筑给水管网中水的流动可以由水泵来提供。 要实现合理、定量、安全输送和分配流体,流体输配管网除了具有基本组成部分外,还需要其他一些装置,主要包括:1)调控设备,如阀门,2)特殊管网辅助装置,如蒸汽管网中的疏水

流体输配管网习题答案(老龚版)

《流体输配管网》习题集及部分参考答案部分习题、作业参考答案 第1章(略) 第2章 2-1 已知4—72—No6C型风机在转速为1250 r/min 时的实测参数如下表所列,求: 各测点的全效率;绘制性能曲线图;定出该风机的铭牌参数(即最高效率点的性能参数); 2-2 根据题2-1中已知数据,试求4-72-11系列风机的无因次量,从而绘制该系列风机的无因次性能

2-3 得用上题得到的无因次性能曲线 求4-72-11No5A 型风机在n=2900 r/min 时的最佳效率点各参数 什,并计算该机的比转数值。计算时D2=0.5m 。 解: 查无因次曲线表得:P = Q = N = 222 2 222222 2 3 322/60 3.14*0.5*2900/6075.9/3.14*0.536003600*75.9**0.20310886 44 1.205*75.9*0.42829713.14*0.5/1000*1.025*75.9*0.095/10009.8244 u D n m s D Q u Q P u P D N u N kW ππρπρ========== == 2-4 某一单吸单级泵,流量Q=45m/s ,扬程H=33.5m ,转速n=2900r/min ,试求其比转数为多少如该泵为双吸式,应以Q/2作为比转数中的流量计算,则其比转数应为多少,当该泵 设计成八级泵,应以H/8作为比转数中的扬和计算值,则比转数为多少

'"3.65853.6560.13.65404.3 sp sp n n =========sp 双吸式:n 八级式: 2-5 某一单吸单级离心泵,Q=(m3/s) ,H=14.65m ,用电机由皮带拖动,测得n=1420r/min,N=; 后因改为电机 直接联动,n 增大为1450r/min ,试求此时泵的工作参数为多少 解: 设增大后的泵的参数用Q ’ H ’ N ’来表示 '''3''22 ''33 1450 1.02 1.020.075/1420 1450()() 1.04 1.0415.2414201450()() 1.065 1.065 3.51420Q n Q Q m s Q n H n H m H n N n N kW N n ===============''解得解得H 解得N 2-6 在n=2000的条件下实测一离心泵的结果为Q=0.17m/s,H=104m,N=184kW.如有一几何相似的水泵, 其叶轮比上述泵的叶轮大一倍,在1500r/min 之下运行,试求在相同的工况点的流量,扬程及效率各为多少 '''33 '3'''22 '''35 1500()*266 1.02/2000 ()() 2.25234()()13.52484Q n D Q Q m s Q n D H n D m H n D N n D kW N n D ===========''解得解得H 解得N 2-7 有一转速为1480r/min 的水泵,理论流量Q=0.0833m/s ,叶轮外径D=360mm ,叶轮出中有效面积A=㎡,叶片出口安装角β=30°,试做出口速度三角形。假设流体进入叶片前没有预旋运动,即Vu=0,试计算此泵的理论压头Ht ∞.设涡流修正系数k=,理论压HT 这多少 解: 2222222220.0833/0.023 3.62/1480**0.3627.88 260 27.88 3.62*3021.6111*27.88*21.6161.59.8 0.77*61.547.4r u r T u T T Q v m s A D u v u v ctg ctg H u v m g H kH m πωβ∞∞= ======-=-== =====o 如图所示: 2-8 有一台多级锅 炉给水泵,要求满足扬程H=176m ,流量 Q=81.6m 3/h ,试求该泵所需的级数和轴

流体输配管网试卷B及答案

学院领导 B卷 审批并签名 广州大学2008-2009学年第 1 学期考试卷 课程流体输配管网考试形式(闭卷,考试) 一.判断题(每题2分,共20分;正确的在()内打√,错误的打×) 1.异程式水系统管路简单,不需要同程管,系统投资较少,因而常在水系统规模较大时采用。(×) 2.夏季时某卫生间排气竖井内气体密度大于室外,若无排气风机,竖井内气体将向下流动,倒灌进底层的卫生间。(√) 3.为便于进行并联管路阻力平衡,在统计局部阻力时,对于三通和四通管件的局部阻力系数,应列在流量较小的管段上。(√) 4.在空调冷热水管网中,膨胀水箱的主要作用是给水系统加压。(×) 与无限多叶片数的理论扬程5.叶轮对流体做功时,有限多叶片数的理论扬程H T 的比值小于1,这是由于流体具有惯性的缘故。(√) H T 6.两台风机(或水泵)并联时,其总流量Q能等于各机单独工作时所提供的流量q1和q2之和。(×) 7.提高管网水力稳定性的主要方法是相对地减少网路干管的压降,或相对地增大用户系统的压降。(√) 8.通风机的风压是指风机进出口的动压差。(×) 1

2 9.对于有串联管路的调节阀,阀权度越大越好。(×) 10.欧拉方程的特点是流体经泵或风机所获得的理论扬程与被输送流体的种类有关。(×) 二.简答题(30分) 1.下图为空调冷却水系统简图,请说明该管网系统分别按以下方面进行分类时各属于何种类型?(4分) (1)管内流动的介质; (2)动力的性质; (3)管内流体与管外流体的关系; (4)管道中流体流动方向的确定性。 (1)单相流(2)机械循环 (3)开式系统(4)枝状管网 2.为什么要通过全面的技术经济比较来选定流体输配管网合理的管内流速?(5 分) 管内的流速对通风、空调系统的经济性有较大的影响,对系统的技术条件也有影响。流速高,风管断面小,占用的空间小,材料耗用少,建造费用小;但是系统的阻力大.动力消耗增大,运行费用增加,且增加噪声。若气流中含有粉尘等,会增加设备和管道的磨损。反之,流速低,阻力小,动力消耗少;但是风管断面大,材料和建造费用大,风管占用的空间也增大。流速过低会使粉尘沉积而堵塞管道。因此,必须通过全面的技术经济比较选定合理的流速。 3.请确定如图所示的重力循环采暖系统的最不利环路。并简要说明确定最不利环路应考虑哪些因素?(5分) 最不利环路: 1-5,17,18,19,20,10-16,1 确定最不利环路应根据各环路中重力作用的大小和管路长度、复杂程度。

流体输配管网知识点(龚光彩版)汇总

流体输配管网知识点 第1部分流体输配管网基础知识 基本要求: 掌握流体输配管网的基本功能与组成; 了解流体输配管网的分类方法,重点熟悉按照管内流动状态、动力、流体与外界环境关系、流动路径的确定性的分类; 了解典型流体输配管网类型、构成和特点。比如:绘制一个自己熟悉的流体输配管网,说明该管网中各组件的名称和作用。 流体输配管网概念 将流体输送并分配到各相关设备或空间,或者从各接收点将流体收集起来输送到指定点的管道系统称为流体输配管网。 流体输配管网基本功能 是将从“源”取得的流体,通过管道输送,按照流量要求,分配给末端装置;或者按流量要求从各末端装置收集流体,通过管道输送到“汇”。流体输配管网基本组成 (1)末端装置 其作用是按要求从管道获取一定量的流体或将一定量的流体送 入管道。如:排风管网的排风罩、送风管网的送风口、燃气管 网的用气设备、卫生器具、配水龙头等。 (2)源和汇 源是指为管道中输送流体的来源;汇是指接受从管道汇集的流体。比如,室外空气是送风管网的源,却是排风管网的汇;市政给水

管是建筑给水管网的源,市政排水管是建筑排水管网的汇;上一级燃气管网是下一级燃气管网的源;热水锅炉既是供热管网的源,也是供热管网的汇。 (3)管道 管道是源或汇与末端装置之间输送和分配流体的必备通道。(4)动力 实际流体的流动总是存在阻力,因此必须提供动力,才能实现流体输配管网的基本功能。 流体输配管网的流动存在不同来源,主要可分为三种来源。一是来源于“源”,如锅炉;储气罐的压力;上级管网的压力。例如多数建筑给水管网中水的流动动力来自于市政给水管内的压力;建筑燃气管网中的燃气流动动力来自于小区燃气管道内的压力;供热管网中的热水或蒸汽的流动动力来自于供热锅炉的压力。二是来源于重力,如自然循环热水采暖;建筑排水管网中污水的流动是靠流体的自身重力实现的。三是来源于机械动力(风机、水泵),如通风管网中空气的流动动力由风机来提供,建筑给水管网中水的流动可以由水泵来提供。 要实现合理、定量、安全输送和分配流体,流体输配管网除了具有基本组成部分外,还需要其他一些装置,主要包括:1)调控设备,如阀门,2)特殊管网辅助装置,如蒸汽管网中的疏水器,液体管网中排气装置等;3)安全及计量装置,如安全阀,压力表,流量计和温度计等。

流体输配管网课后习题解答

第一章 1-1 认真观察1~3个不同类型的流体输配管网,绘制出管网系统轴测图。结合第1章学习的知识,回答以下问题: (2)该管网中流动的流体就是液体还就是气体?还就是水蒸气?就是单一的一种流体还就是两种流体共同流动?或者就是在某些地方就是单一流体,而其她地方有两种流体共同流动的情况?如果有两种流体,请说明管网不同位置的流体种类、哪种流体就是主要的。 (3)该管网中工作的流体就是在管网中周而复始地循环工作,还就是从某个(某些)地方进入该管网,又从其她地方流出管网? (4)该管网中的流体与大气相通不?在什么位置相通? (5)该管网中的哪些位置设有阀门?它们各起什么作用? (6)该管网中设有风机(或水泵)不?有几台?它们的作用就是什么?如果有多台,请分析它们之间就是一种什么样的工作关系(并联还就是串联)?为什么要让它们按照这种关系共同工作? (7)该管网与您所了解的其她管网(或其她同学绘制的管网)之间有哪些共同点?哪些不同点? 答:选取教材中3个系统图分析如下表: 答:参考给水及排水系统图如图1-6、1-7所示。

图1-6 学生宿舍给水系统图(参考)

图1-7 学生宿舍排水系统图(参考) 1-3 流体输配管网有哪些基本组成部分?各有什么作用? 答:流体输配管网的基本组成部分及各自作用如下表所示。一个具体的流体输配管网不一定要具备表中所有的组成部分。 组成管道动力装置调节装置末端装置附属设备 作用为流体流动提 供流动空间为流体流动提 供需要的动力 调节流量,开启/ 关闭管段内流体 的流动 直接使用流体,就 是流体输配管网 内流体介质的服 务对象 为管网正常、安 全、高效地工作 提供服务。 1-4 试比较气相、液相、多相流这三类管网的异同点。 答:相同点:各类管网构造上一般都包括管道系统、动力系统、调节装置、末端装置以及保证管网正常工作的其它附属设备。 不同点:①各类管网的流动介质不同; ②管网具体型式、布置方式等不同; ③各类管网中动力装置、调节装置及末端装置、附属设施等有些不同。

流体输配管网试题库

1、什么是开式管网?什么是闭式管网?试分别举出两个工程应用实例。 2、蒸汽供暖系统中疏水器起什么作用?它通常设置在系统的什么位置? 3、管网中流体流动受到的摩擦阻力受哪些因素的影响?怎样计算摩擦阻力? 4、假定流速法和压损平均法这两种水力计算方法各自的基本特点是什么?各适 用于什么样的情况? 5、燃气管网为什么要按输气压力分级?不同压力等级的管网之间应怎样进行连 接? 6、为什么说管内流速是流体输配管网的重要参数?怎样合理确定管内的流速? 7、通风空调的风管系统和燃气输配管网,有哪些共同处?有哪些区别? 8、建筑热水供暖管网系统与空调冷冻水管网系统的共同点是什么?不同点是什 么? 9、建筑排水管网内是液体单相流还是液——气两相流?建筑排水管网的流动障 碍主要是什么?克服障碍、增强管网排水能力的关键技术措施是什么? 10、假定某建筑的热水采暖系统和给水系统的管径、管网高度相同,管内流 速也相同,两系统所需的水泵扬程是否相同?为什么? 11、为什么供暖空调冷热水管网要设排气装置?排气装置设在什么地方?为 什么建筑给水管网不设排气装置? 12、确定图中管网的最不利环路。 13、泵与风机的理论扬程方程为:。请回答:在 什么条件下理论扬程方程可简化为:,这有何指导意义? 14、说明公式的使用条件。为什么不同的管网,的计算公式 可能会不相同? 15、简述均匀送风管道设计的原理和主要步骤。 16、影响建筑排水管网的排水能力的主要因素有哪些?怎样提高排水能力? 17、写出比转数的数学表达式。比转数有什么应用价值?高比转数泵 与风机和低比转数泵与风机有什么主要区别? 18、图中所示,( a )( b )( c )( d )( e )( f )( g )( h )

流体输配管网试题及答案

一、什么是枝状管网?什么是环状管网?分别画一个枝状管网和一个环状管网的示意图,说明其主要区别。(10分) 二、高层建筑竖向液体输配管网为什么要竖向分区?画出1个竖向分区的示意 图,说明其作用。(5分) 三、说明公式l R P m ml ?=的使用条件。为什么不同的管网,λ的计算公式可能会 不相同?(5分) 四、简述均匀送风管道设计的原理和主要步骤。(10分) 五、影响建筑排水管网的排水能力的主要因素有哪些?怎样提高排水能力? 六、以气力输配管网为例,描述气—固两相流管网的水力特征。气—固两相流管 网水力计算的主要特点是什么?(10分) 七、写出比转数s n 的数学表达式。比转数s n 有什么应用价值?高比转数泵与风 机和低比转数泵与风机有什么主要区别?(10分) 八、某空调冷冻水管网的循环水泵转速2900min r ,所配电机功率2.2KW 。流 管网在设计工况下运行时,流量为15h m 3,扬程为18.5m 。 (1) 画出设计工况下水泵的性能曲线和管网特性曲线,并标出工况点。 (2) 在部分负荷时,只需流量7.5h m 3。有哪些方法可将管网流量调节到 7.5m 3? (3) 哪种方法最节能?为什么? 九、如图所示通风系统,各管段的设计流速和计算阻力如下表。 (1) 系统风机的全压和风量应为多少? (2) 各设计风量能否实现?若运行时,测得1#排风口的风量为4000h m 3,2#、 3#排风口的风量是多少? (3) 若运行中需要增加1#排风口的风量,应怎样调节?

一、枝状管网:管网有起点和终点、主管和支管,如图1; 环状管网:管网起点和终点重合,构成闭合回路,如图2; 图1 图2 区别:枝状管网:系统简单,运行管理方便,但管网后备性差,管网某处发生故障时,该点后面管网部分将受影响而不能正常工作; 环状管网:管网系统比较复杂,管网后备性好;某处发生故障时,流体可以 通过环状管网从另一个方向流动,因此故障影响范围小。 二、高层建筑高度大,底层管道中的静水压力较大。为了克服静水压力过大的弊 病,保证管网正常运行和设备可靠性,对高层建筑竖向流体输配管网进行分区。以高层建筑给水为例,竖向按串联式分为高、中、低三区,如图3。水箱1、2、3分别向低、中、高三区供水,各区管网中的静水压力都适中,系统耐压要求降低,费用减小,启停时产生水锤的危险性减小,水流噪音小,运行稳定可靠。 三、公式l R P m ml ?=的使用条件为:管网特性(如:管道材料、断面尺寸、连接 方式等)不变,并且流体密度和流速也不随流程变化。 从流体力学知识知:λ是雷诺数和相对粗糙度的函数,即:()K f Re,=λ,在不同的流态下,λ的计算式不同。实际工程中各种流体输配管网的流态有明显差别,雷诺数范围不相同,造成了不同管网λ的计算式可能不同。

流体输配管网习题集第六章

第6章泵、风机与管网系统的匹配 6-1 什么是管网特性曲线管网特性曲线与管网的阻力特性有何区别与联系 答:枝状管网中流体流动所需的能量与流量之间的关系为,反映了外界环境对管网流动的影响,包含重力作用及管内流体与外界环境交界面的压力作用,当管网处于稳定运行工况时,与流量变化无关。为管网的总阻抗。将这一关系在以流量为横坐标、压力为纵坐标的直角坐标图中描绘成曲线,即为管网特性曲线,见习题6-1图。而管网的阻力特性则反映了管网中流体的流动阻力与流量之间的关系,可用表示。当时,管网特性曲线为“狭义管网特性曲线”,与阻力特性曲线重合。 (a)广义管网特性曲线(b)狭义管网特性曲线与阻力特性曲线 习题6-1图管网特性曲线与阻力特性曲线 6-2 广义管网特性曲线与狭义管网特性曲线有何区别 答:广义管网特性曲线与狭义管网特性曲线分别如习题6-1图所示。广义管网特性曲线,反映在Y轴上有一截距,反映了外界环境对管网流动的影响,包含重力作用及管内流体与外界环境交界面的压力作用,管网处于稳定运行工况时,与流量变化无关。时,需要提供压力能量克服其影响;当时,它可以为管网流动提供能量。管网流动所需能量的另一部分用来克服流体沿管网流动产生的阻力,与流量的平方成正比。当泵或风机的工况沿广义管网特性曲线变化时(如调节泵或风机的转速,不改变管网特性曲线),工况点之间不满足泵或风机的相似律。而具有狭义管网特性曲线的管网,流动所需的全部能量为流体沿管网流动产生的阻力,与流量的平方成正比,当泵或风机的工况沿管网特性曲线变化时遵守相似泵或风机的相似律。 6-3 分析影响管网特性曲线的因素。

答:影响管网特性曲线的形状的决定因素是管网的阻抗S。S值越大,曲线越陡。当流量采用体积流量单位时,管段阻抗S的计算式为: kg/m7 根据S的计算式可知,影响S值的参数有:摩擦阻力系数、管段长度、直径(或当量直径)、局部阻力系数、流体密度。其中取决于流态。由流体力学知,当流动处于阻力平方区时,仅与(管段的相对粗糙度)有关。在给定管路条件下,若值可视为常数,则有。由此可知,当管网系统安装完毕,管长、管径、局部阻力系数在不改变阀门开度的情况下,都为定数,即S为定值,对某一具体的管网,其管网特性就被确定。反之,改变式中的任一参数值,都将改变管网特性。由于S正比于、,反比于,所以当管网系统较长、管径较小、局部阻力(弯头、三通、阀门等)部件较多、阀门开度较小、管内壁粗糙度较大、流体密度较大都会使S 值增加,管网特性曲线变陡;反之则使S值减小,管网特性曲线变缓。在管网系统设计和运行中,都常常通过调整管路布置、改变管径大小或调节阀门的开度等手段来达到改变管网特性,使之适应用户对流量或压力分布的需要。 外界环境对管网流动的影响反映在项上,包含重力作用及管内流体与外界环境交界面的压力作用,在管网特性曲线图上反映在Y轴上有一截距,管网处于稳定运行工况时,与流量变化无关。重力或管内流体与外界环境交界面的压力作用与流体流动方向一致时,推动流体流动,反之则阻碍流体流动。 6-4 什么是系统效应如何减小系统效应 答:由于泵(风机)是在特定管网中工作,其出入口与管网的连接状况一般与性能试验时不一致,将导致泵(风机)的性能发生改变(一般会下降)。例如,入口的连接方式不同于标准试验状态时,则进入泵、风机的流体流向和速度分布与标准实验有很大的不同,因而导致其内部能量损失增加,泵、风机的性能下降。由于泵、风机进出口与管网系统的连接方式对泵、风机的性能特性产生的影响,导致泵(风机)的性能下降被称为“系统效应”。

相关文档
相关文档 最新文档