文档库 最新最全的文档下载
当前位置:文档库 › (教师版)立体几何好题难题集萃

(教师版)立体几何好题难题集萃

(教师版)立体几何好题难题集萃
(教师版)立体几何好题难题集萃

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E B F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC = ,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又 平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴ ……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ? 面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

专题06 立体几何(解答题)(教师版)

专题06 立体几何(解答题) 1.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°, E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离. 【答案】(1)见解析;(2) 17 . 【解析】(1)连结1,B C ME . 因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且11 2 ME B C =. 又因为N 为1A D 的中点,所以11 2 ND A D = . 由题设知11=A B DC ∥,可得11=BC A D ∥,故= ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ?平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H . 由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离, 由已知可得CE =1,C 1C =4,所以1C E 17 CH =.

从而点C 到平面1C DE 的距离为 17 . 【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解. 2.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上, BE ⊥EC 1. (1)证明:BE ⊥平面EB 1C 1; (2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18. 【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ?平面ABB 1A 1, 故11B C BE ⊥.

立体几何练习题及答案

… 数学立体几何练习题 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1.如图,在正方体-A 1B 1C 1D 1中,棱长为a ,M 、N 分别为 A 1 B 和上 的点,A 1M ==,则与平面1C 1C 的位置关系是( ) A .相交 B .平行 C .垂直 D .不能确定 2.将正方形沿对角线折起,使平面⊥平面,E 是中点,则AED ∠的大小为( ) A.45 B.30 C.60 D.90 ] 3.,,是从P 引出的三条射线,每两条的夹角都是60o,则直线 与平面所成的角的余弦值为( ) A .12 B 。 3 C 。 3 D 。 6 4.正方体—A 1B 1C 1D 1中,E 、F 分别是1与1的中点,则直线与D 1F 所成角的余弦值是 A .15 B 。13 C 。12 D 。 3 5. 在棱长为2的正方体1111D C B A ABCD -中,O 是底面的中心,E 、 F 分别是1CC 、的中点,那么异面直线和1FD 所成的角的余弦值等于( ) A . 5 10 B .32 C . 5 5 D . 5 15

6.在正三棱柱1B 1C 1中,若2,A A 1=1,则点A 到平面A 1的距离为( ) A . 4 3 B . 2 3 C . 4 33 D .3 : 7.在正三棱柱1B 1C 1中,若1,则1与C 1B 所成的角的大小为 ( ) o B. 90o o D. 75o 8.设E ,F 是正方体1的棱和D 1C 1的中点,在正方体的12条面对 角线中,与截面A 1成60°角的对角线的数目是( ) A .0 B .2 C .4 D .6 二、填空题:本大题共6小题,每小题5分,共30分. 9.在正方体-A 1B 1C 1D 1中,M 、N 分别为棱1和1的中点,则 〈CM ,1D N 〉的值为. 10.如图,正方体的棱长为1,C 、D 分别是两条棱的中点, A 、B 、M 是顶点, 那么点M 到截面的距离是 . 11.正四棱锥的所有棱长都相等,E 为中点,则直线与截面所成的角为 . 12.已知正三棱柱1B 1C 1的所有棱长都相等,D 是A 1C 1的中点,则 直线与平面B 1所成角的正弦值为 . : 13.已知边长为的正三角形中,E 、F 分别为和的中点,⊥面, 且2,设平面α过且与平行,则与平面α间的距离 A B | D C

高考数学压轴专题最新备战高考《空间向量与立体几何》难题汇编含答案解析

数学《空间向量与立体几何》复习知识点 一、选择题 1.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( ) A.16 9 π B. 8 9 π C. 16 27 π D . 8 27 π 【答案】A 【解析】 【分析】 根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可. 【详解】 解:设圆柱的半径为r,高为x,体积为V, 则由题意可得 3 23 r x - =, 3 3 2 x r ∴=-, ∴圆柱的体积为23 ()(3)(02) 2 V r r r r π =-<<, 则3 333 3 163331616 442 ()(3)() 9442939 r r r V r r r r ππ π ++- =-= g g g g …. 当且仅当 33 3 42 r r =-,即 4 3 r=时等号成立. ∴圆柱的最大体积为 16 9 π , 故选:A. 【点睛】 本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题. 2.在三棱锥P ABC -中,PA⊥平面ABC,且ABC ?为等边三角形,2 AP AB ==,则三棱锥P ABC -的外接球的表面积为()

A . 272 π B . 283 π C . 263 π D . 252 π 【答案】B 【解析】 【分析】 计算出ABC ?的外接圆半径r ,利用公式R =可得出外接球的半径,进而可 得出三棱锥P ABC -的外接球的表面积. 【详解】 ABC ? 的外接圆半径为 2sin 3 AB r π = = PA ⊥Q 底面ABC ,所以,三棱锥P ABC - 的外接球半径为 3R ===, 因此,三棱锥P ABC - 的外接球的表面积为2 2 284433R πππ?=?= ?? . 故选:B. 【点睛】 本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,选择合适的公式计算外接球的半径,考查计算能力,属于中等题. 3.已知圆锥SC 的高是底面半径的3倍,且圆锥SC 的底面直径、体积分别与圆柱OM 的底面半径、体积相等,则圆锥SC 与圆柱OM 的侧面积之比为( ). A B .3:1 C .2:1 D 2 【答案】A 【解析】 【分析】 设圆锥SC 的底面半径为r ,可求得圆锥的母线长,根据圆锥侧面积公式求得侧面积;由圆锥体积与圆柱体积相等可构造方程求得圆柱的高,进而根据圆柱侧面积公式求得圆柱侧面积,从而求得比值. 【详解】 设圆锥SC 的底面半径为r ,则高为3r ,∴圆锥SC 的母线长l ==, ∴圆锥SC 的侧面积为2rl r π=; 圆柱OM 的底面半径为2r ,高为h ,

立体几何专题 第2节 与球相关的切、接问题 【教师版】

第二节 与球相关的切、接问题 考法(一) 球与柱体的切、接问题 [典例] (2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1 V 2 的值是________. [解析] 设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43 πR 3=3 2 . [答案] 3 2 考法(二) 球与锥体的切、接问题 [典例] (2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( ) A .123 B .18 3 C .24 3 D .54 3 [解析] 由等边△ABC 的面积为93,可得34 AB 2 =93,所以AB =6,所以等边△ABC 的外接圆的半径为r = 3 3 AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为1 3 ×93×6=18 3. [答案] B [题组训练] 1.(2018·福建第一学期高三期末考试)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( ) A .4π B.16 3π C.323 π D .16π 解析:选D 如图,由题意知圆柱的中心O 为这个球的球心, 于是,球的半径r =OB =OA 2+AB 2= 12+(3)2=2. 故这个球的表面积S =4πr 2=16π.故选D. 2.三棱锥P -ABC 中,AB =BC =15,AC =6,PC ⊥平面ABC ,PC =2,则该三棱锥的外接球表面积为________. 解析:由题可知,△ABC 中AC 边上的高为15-32=6,球心O 在底面ABC 的投影即为△ABC 的外

立体几何三视图教师版

考点24 三视图 考点一:棱长类 1.★(2014西城二模4)某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ) (A ) 2A ,且4A (B A ,且4 A (C ) 2A ,且A (D A A 【答案】D 2.★(2015年北京丰台区高三一模理科)上图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是 (A) 4 (B) 5 (C) (D) 正(主)视图 侧(左)视图 俯视图

【答案】D 考点二:面积类 3.★(2013海淀二模4) 某空间几何体的三视图如右图所示,则该几何体的表面积为( ) A.180 B.240 C.276 D.300 【答案】B 4.★(2012西城一模4) 已知正六棱柱的底面边长和侧棱长相等,体积为33.其三视图中的俯视图如图所示,则其左视图的面积是( ) (A )23(B )2 23(C )28cm (D )2 4cm 【答案】A 6 6 6 5 俯视图

正视图 俯视图 5.★★★(2012朝阳二模8) 有一个棱长为1的正方体,按任意方向正投影, 其投影面积的最大值是( ) A. 1 B. 2 C. D. 【答案】D 6.★★(2010海淀期末理)11.一个几何体的三视图如下图所示,则该几何 体的表面积为__________________. 【答案】2412π+ 考点三:体积类 7.★★(2011丰台期末文)3.若一个螺栓的底面是正六边形,它的正视图和俯视图如图所示,则它的体积是 A . 32225+π B .32 25 π C .3225π D .128 25 π 【答案】C 正视图侧视图 俯视图

高考数学专题复习立体几何专题空间角

立体几何专题:空间角 第一节:异面直线所成的角 一、基础知识 1.定义: 直线a 、b 是异面直线,经过空间一交o ,分别a ?//a ,b ?//b ,相交直线a ?b ?所成的锐角(或直 角)叫做 。 2.范围: ?? ? ??∈2,0πθ 3.方法: 平移法、问量法、三线角公式 (1)平移法:在图中选一个恰当的点(通常是线段端点或中点)作a 、b 的平行线,构造一个三角形,并解三角形求角。 (2)向量法: 可适当选取异面直线上的方向向量,利用公式b a = ><=,cos cos θ 求出来 方法1:利用向量计算。选取一组基向量,分别算出 b a ? 代入上式 方法2:利用向量坐标计算,建系,确定直线上某两点坐标进而求出方向向量 ),,(111z y x a = ),,(222z y x b =2 2 22222 1 2 12 12 12121cos z y x z y x z z y y x x ++++++= ∴θ (3)三线角公式 用于求线面角和线线角 斜线和平面内的直线与斜线的射影所成角的余弦之积等于斜线和平面内的直线所成角的余弦 即:θθθcos cos cos 2 1= 二、例题讲练 例1、(2007年全国高考)如图,正四棱柱 1111ABCD A B C D -中, 12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为 例2、在长方体ABCD-A 1B 1C 1D 1中,已知AB=a ,BC=)(b a b >,AA 1= c ,求异面直线D 1B 和AC 所成 的角的余弦值。 方法一:过B 点作 AC 的平行线(补形平移法) A B 1 B 1 A 1D 1 C C D

(完整word版)高考数学常见难题大盘点:立体几何

转化转化 2013高考数学常见难题大盘点:立体几何 1.如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点,(I)求证:AC⊥BC1;(II)求证:AC 1//平面CDB1; 解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线 面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二 是通过面面平行得到线面平行. 答案:解法一:(I)直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4AB=5, ∴AC⊥BC,且BC1在平面ABC内的射影为BC,∴AC⊥BC1; (II)设CB1与C1B的交点为E,连结DE,∵ D是AB的中点,E是BC1的中点, ∴ DE//AC1,∵ DE?平面C D B1,AC1?平面C D B1, ∴AC1//平面C D B1; 解法二:∵直三棱柱ABC-A1B1C1底面三边长AC=3, BC=4,AB=5,∴AC、BC、C1C两两垂直,如图,以C 为坐标原点,直线CA、CB、C1C分别为x轴、y轴、z轴, 建立空间直角坐标系,则C(0,0,0),A(3,0,0),C1 (0,0,4),B(0,4,0),B1(0,4,4),D( 2 3 ,2,0) (1)∵AC=(-3,0,0), 1 BC=(0,-4,0), ∴AC? 1 BC=0,∴AC⊥BC1. (2)设CB1与C1B的交战为E,则E(0,2,2).∵DE=(- 2 3 ,0,2), 1 AC=(-3,0, 4),∴ 1 2 1 AC DE=,∴DE∥AC1. 点评:2.平行问题的转化: 面面平行线面平行线线平行; 主要依据是有关的定义及判定定理和性质定理. 2.如图所示,四棱锥P—ABCD中,AB⊥AD,CD⊥AD,PA⊥底面ABCD,PA=AD=CD=2AB=2,M 为PC的中点。 (1)求证:BM∥平面PAD; A B C A B C E x y z

立体几何证明题专题(教师版)分析

立体几何证明题 考点1:点线面的位置关系及平面的性质 例1.下列命题: ①空间不同三点确定一个平面; ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形; ⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一直线的两直线平行; ⑦一条直线和两平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 其中正确的命题是__________ . 【解析】由公理3知,不共线的三点才能确定一个平面,所以知命题①错,②中有可能出现 两平面只有一条公共线(当这三个公共点共线时),②错.③空间两两相交的三条直线有三个交点或一个交点,若为三个交点,则这三线共面,若只有一个交点,则可能确定一个平面或三个平面.⑤中平行四边形及梯形由公理2可得必为平面图形,而四边形有可能是空间四边形,如图(1)所示. ABC —A B C D'中,直线BB丄AB, BB丄CB但AB与CB不平行,???⑥错. AB // CD BB n AB= B,但BB与CD不相交,.??⑦错?如图(2)所示,AB= CD BC= AD四边形ABCD不是平行四边形,故⑧也错. I、m外的任意一点,贝U ( A.过点P有且仅有条直线与I、m都平行 B.过点P有且仅有条直线与I、m都垂直 C.过点P有且仅有条直线与I、m都相交 D.过点P有且仅有条直线与I、m都异面 答案 B 解析对于选项A,若过点P有直线n与I , m都平行,则I // m这与I , m异面矛盾. 对于选项B,过点P与I、m都垂直的直线,即过P且与I、m的公垂线段平行的那一条直线. 对于选项C,过点P与I、m都相交的直线有一条或零条. 对于选项D,过点P与I、m都异面的直线可能有无数条.

三角函数与立体几何(二)教师版

1.如图,在ABC ?中,点D 在边BC 上, 4 CAD π ∠= , 72AC = , cos 10 ADB ∠=-. (1)求sin C ∠的值; (2)若ABD ?的面积为7,求AB 的长. 【答案】(1) sin C ∠= 4 5 ;(2) AB = 【解析】试题分析:(1)由同角三角函数基本关系式可求sin ADB ∠,由4 C ADB π ∠=∠- ,利用两角差 的正弦函数公式及特殊角的三角函数值即可求值得解;(2)先由正弦定理求AD 的值,再利用三角形面积公式求得BD ,与余弦定理即可得解AB 的长度. 试题解析:(1 )因为cos 10ADB ∠=- ,所以sin 10 ADB ∠=, 又因为4 CAD π ∠= ,所以4 C ADB π ∠=∠- , 所以sin sin 4C ADB π? ? ∠=∠- ?? ? sin cos cos sin 4 4 ADB ADB π π =∠-∠ 4 1021025 = +?=. (2)在ADC ?中,由正弦定理 sin sin AD AC C ADC =∠∠, 故( )74sin sin sin sin sin sin AC C AC C AC C AD ADC ADB ADB π? ?∠?∠?∠==== ∠-∠∠ = 又11sin 72210 ABD S AD AB ADB BD ?= ???∠=??=,解得5BD =. 在ADB ?中,由余弦定理得 2 2 2 2cos AB AD BD AD BD ADB =+-??∠ 8252537AB ?=+-??=?= ?? 2.在ABC ?中,内角A,B,C,所对应的边为,,a b c 且b c ≠,且 22sin sin cos cos C B B B C C -=

山东高考文科数学立体几何大题及答案汇编

2008年-2014年山东高考文科数学立体几何大题及答案 (08年)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,245AB DC == (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. (09年)如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB 11111 (10年)(本小题满分12分) 在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==. (I )求证:平面EFG ⊥平面PDC ; (II )求三棱锥P MAB -与四棱锥P ABCD -的体积之比. (11年)(本小题满分12分) 如图,在四棱台 1111 ABCD A B C D -中, 1D D ABCD ⊥平面,底面 ABCD 是平行四边形, 112,,60AB AD AD A B BAD ==∠= (Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:11//CC A BD 平面. A B C M P D E A B C F E1 A1 B1 C1 D1 D D B1 D1 C1 C B A A1

(12年) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点, 求证:DM ∥平面BEC . (13年)(本小题满分12分) 如图,四棱锥P —ABCD 中,AB ⊥AC , AB ⊥PA ,AB ∥CD ,AB=2CD ,E ,F ,G , M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点。 (Ⅰ)求证,CE ∥平面PAD; (Ⅱ)求证,平面EFG ⊥平面EMN 。 (14年)(本小题满分12分) 如图,四棱锥P ABCD -中,,//,BC AD PCD AP 平面⊥AD BC AB 2 1 = =,F E ,分别为线段PC AD ,的中点。 (Ⅰ)求证:BEF AP 平面// (Ⅱ)求证:PAC BE 平面⊥ P A C D E

数学竞赛之立体几何专题精讲(例题+练习)

数学竞赛中的立体几何问题 立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考查内容.解法灵活而备受人们的青睐,竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的内容常会涉及角、距离、体积等计算.解决这些问题常会用到转化、分割与补形等重要的数学思想方法. 一、求角度 这类题常以多面体或旋转体为依托,考查立体几何中的异面直线所成角、直线与平面所成角或二面角的大小 解决这类题的关键是 ,根据已知条件准确地找出或作出要求的角. 立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种.其中两条异面直线所成的角通过作两条异面直线的平行线找到表示异面直线所成角的相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的办法得到,其角度范围是[]0,90??;二面角在求解的过程当中一般要先找到二面角的平面角,三种方法:①作棱的垂面和两个半平面相交;②过棱上任意一点分别于两个半平面内引棱的垂线;③根据三垂线定理或逆定理.另外还可以根据面积射影定理cos S S θ'=?得到.式中S '表示射影多边形的面积,S 表示原多边形的面积,θ即为所求二面角. 例1 直线OA 和平面α斜交于一点O ,OB 是OA 在α内的射影,OC 是平面α内过O 点的任一直线,设,,.AOC AOB BOC αβγ∠=∠=∠=,求证:cos cos cos αβγ=?. 分析:如图,设射线OA 任意一点A ,过A 作 AB α⊥于点B ,又作BC OC ⊥于点C ,连 接AC .有: cos ,cos ,cos ;OC OB OC OA OA OB αβγ=== 所以,cos cos cos αβγ=?. 评注:①上述结论经常会结合以下课本例题一起使用.过平面内一个角的顶点作平面的一条斜线,如果斜线和角的两边所成的角相等,那么这条斜线在平面内的射影一定会落在这个角的角平分线上.利用全等三角形即可证明结论成立. ②从上述等式的三项可以看出cos α值最小,于是可得结论:平面的一条斜线和平面内经过斜足的所有直线所成的角中,斜线与它的射影所成的角最小. 例、(1997年全国联赛一试)如图,正四面体ABCD 中,E 在棱AB 上, α O C B A E A

专题07 立体几何初步(重难点突破)教师版

专题07 立体几何初步 【重难点知识点网络】: 一、空间几何体的有关概念 1.空间几何体 对于空间中的物体,如果我们只考虑其形状和大小,而不考虑其他因素,那么由这些物体抽象出来的就叫做空间几何体.例如,一个正方体形包装箱,占有的空间部分就是一个几何体,这个几何体就是我们熟悉的正方体. 2.多面体 (1)多面体:一般地,我们把由若干个围成的几何体叫做多面体. (2)多面体的面:围成多面体的各个多边形叫做多面体的面,如图中面ABB′A′,面BCC ′B′等. (3)多面体的棱:相邻两个面的公共边叫做多面体的棱, 如图中棱AA′,棱BB′等. (4)多面体的顶点:棱与棱的公共点叫做多面体的顶点, 如图中顶点A,B,C等. 3.旋转体 (1)旋转体:由一个平面图形绕它所在平面内的一条定直线所形成的封闭几何体.如图所示为一个旋转体,它可以看作由矩形OBB′O′绕其边OO′所在的直线旋转而形成. (2)旋转体的轴:平面图形旋转时所围绕的定直线.如图中直线OO′是该旋转体的轴.

二、几种最基本的空间几何体 1.棱柱的结构特征 ①用表示底面的各顶点字母来表示棱柱.如图所示的六棱柱可以表示为棱柱 ABCDEF?A′B′C′D′E′F′. ②用棱柱的对角线表示棱柱.如图,(1)可表示为四棱柱AC1或四棱柱BD1等;(2)可表示 为六棱柱AD1或六棱柱AE1等;(3)可表示为五棱柱AC1或五棱柱AD1等.这种记法要说明棱柱是几棱柱. ①棱柱的底面:棱柱中,两个互相的面叫做棱柱的底面,简称底. ③棱柱的侧棱:相邻侧面的公共边叫做棱柱的侧棱.

①底面互相 . ②侧面都是 . 2.棱锥的结构特征

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA丄矩形ABCD所在平面,M、N分别为AB、PC的中点; ⑴求证: 2Q.证明江1〉取FD的中点AE,NE t 丁Nft PC 的中点.A NEX^CD . 又四边形ABCU为矩形且M星BA中点' MN :* 寺CD垒MA , £ :■ NEXMA.KP四边形MAEN是平行四也形, 昇 MN〃AE* 由于AEU罕面PAD,MN(Z^ffi PAD? A MN"平廊PAD, (2>V FA 丄平ABCD,ZPDA-45\ 代APAD是等 B?三肃形?桩AE」PH 由题意,CD丄AD,CD丄叭 :.CD丄平面PAD. 从而AE_LCD, 代AE丄平面PCD,故VIN丄平而PCH . Ml、If :< 1)「1 {' 的方程为(x —a)* + (y 一h J —pf (2a+ b?0* ... IQ* V ■ ■ ■ V ■] ... 12* ……r ABC PA PC ABC 90 PEF PBC EF Q E F AC BC EF // AB....2 分又EF 平面PAB,AB 平面PAB, EF //平面PAB. ? (5) (2)Q PA PC,E为AC的中点, PE AC (6) P ABC E,F AC, BC EF // PAB PAC 又Q平面PAC 平面ABC PE 面ABC ................. 8 分 PE BC ............... 9 分 又因为F为BC的中点, Q ABC 900, BC EF .................... 10 分BC 面PEF ............... 11 分 又Q BC 面PBC 面PBC 面PEF ............... 12分 3.如图,在直三棱柱ABC-ABQ中,AC=BC点D是AB的中点

立体几何解题技巧及高考类型题—老师专用

立体几何解题技巧及高考类型题—老师专用 【命题分析】高考中立体几何命题特点: 1.线面位置关系突出平行和垂直,将侧重于垂直关系. 2.空间“角”与“距离”的计算常在解答题中综合出现. 3.多面体及简单多面体的概念、性质多在选择题,填空题出现. 4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点. 此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考点分析】掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. 【高考考查的重难点】空间距离和角 “六个距离”: 1、两点间距离 221221221)()()(d z z y y x x -+-+-=; 2、点P 到线l 的距离d = (Q 是直线l 上任意一点,u 为过点P 的直线l 法向量); 3 、两异面直线的距离d = (P 、Q 分别是两直线上任意两点,u 为两直线公共法向量); 4、点P 到平面的距离 d =Q 是平面上任意一点,u 为平面法向量); 5 、直线与平面的距离d =(P 为直线上的任意一点、Q 为平面上任意一点,u 为平面法向量); 6 、平行平面间的距离d = (P 、Q 分别是两平面上任意两点,u 为两平面公共法向量 );

“三个角度”: 1、异面直线角[0,2π],cos θ=2 121v v v v ;【辨】直线倾斜角范围[0,π); 2、线面角 [0,2π] ,sin θ=n v vn n v =,cos 或者解三角形; 3、二面角 [0,π],cos 212 1n n n n ±=θ 或者找垂直线,解三角形。 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,证是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。其中,利用空间向量求空间距离和角的套路与格式固定,是解决立体几何问题这套强有力的工具时,使得高考题具有很强的套路性。 【例题解析】 考点1 点到平面的距离 求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 典型例题1、(福建卷)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 考查目的:本小题主要考查直线与平面的位置关系,二面角的大小, 点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力. 解:解法一:(Ⅰ)取BC 中点O ,连结AO .

高考数学统考一轮复习第7章立体几何第1节空间几何体的结构及其表面积体积教师用书教案理新人教版

第7章立体几何 全国卷五年考情图解高考命题规律把握 1.考查形式 高考在本章一般命制2道小题、1 道解答题,分值约占22分. 2.考查内容 (1)小题主要考查三视图、几何体 体积与表面积计算,此类问题属于 中档题目;对于球与棱柱、棱锥的 切接问题,知识点较整合,难度稍 大. (2)解答题一般位于第18题或第19 题的位置,常设计两问:第(1)问 重点考查线面位置关系的证明;第 (2)问重点考查空间角,尤其是二 面角、线面角的计算.属于中档题 目. 空间几何体的结构及其表面积、体积 [考试要求] 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. 2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图. 3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. 4.了解球、棱柱、棱锥、台体的表面积和体积的计算公式.

1.多面体的结构特征 名称棱柱棱锥棱台 图形 底面互相平行且全等多边形互相平行且相似侧棱互相平行且相等相交于一点,但不一定相等延长线交于一点 侧面形状平行四边形三角形梯形 (1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形. (2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体. 3.旋转体的结构特征 名称圆柱圆锥圆台球 图形 母线互相平行且相 等,垂直 于底面 长度相等且相交 于一点 延长线交于一点 轴截面全等的矩形全等的等腰三角 形 全等的等腰梯形圆 侧面展开图矩形扇形扇环 旋转图形矩形直角三角形直角梯形半圆三视图画法规则:长对正、高平齐、宽相等 直观图斜二测画法: (1)原图形中x轴、y轴、z轴两两垂直,直观图中x′轴、y′轴的夹角为45°(或

高考立体几何大题及答案理

1.如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面 ABCD ,2AD =,2DC SD ==,点M 在侧棱SC 上, ∠ABM=60 。 (I )证明:M 是侧棱SC 的中点; ()II 求二面角S AM B --的大小。 2.如图,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB =AC (Ⅱ)设二面角A -BD -C 为60°,求B 1C 与平面BCD 所成的角的大小 3.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ; (II )求 AD 与平面ABE 所成角的正弦值. 4.如图,四棱锥P ABCD -的底面是正方形, PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB =且E 为PB 的中 点 时,求AE 与平面PDB 所成的角的大小. 5.如图,在四棱锥P ABCD -中,底面ABCD 是矩形, PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . B C D E O A P B M

(1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 6.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠=(I )求证:EF BCE ⊥平面; (II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。 7.如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =AD =a ,点E 是SD 上的点,且DE =λa (0<λ≦1). (Ⅰ)求证:对任意的λ∈(0、1), 都有AC ⊥BE : (Ⅱ)若二面角C -AE -D 的大小为600C ,求λ的值。 8.如图3,在正三棱柱111ABC A B C -中,AB =4, 17AA =,点D 是BC 的中点,点E 在AC 上,且DE ⊥1A E .(Ⅰ)证明:平面1A DE ⊥平面 11ACC A ;(Ⅱ)求直线AD 和平面1A DE 所成角的正弦值。 9.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠= (I )求证:EF BCE ⊥平面;

立体几何经典难题汇编

1 / 6 立体几何难题汇编1 1. 在正方体的顶点中任意选择4个顶点,对于由这4个顶点构成的各种几何形体的以下判断中,所有正确的结论个数是( ) ①能构成矩形; ②能构成不是矩形的平行四边形; ③能构成每个面都是等边三角形的四面体; ④能构成每个面都是直角三角形的四面体; ⑤能构成三个面为全等的等腰直角三角形,一个面为等边三角形的四面体. A .2 B .3 C .4 D .5 【考点】命题的真假判断与应用. 【专题】证明题. 【分析】画出图形,分类找出所有情况即可. 【解答】解:作出正方体: 在正方体的顶点中任意选择4个顶点,对于由这4个顶点构成的各种几何形体z 只能有以下四种情况: ①任意一个侧面和对角面皆为矩形,所以正确; ③四面体A 1-BC 1D 是每个面都是等边三角形的四面体,所以正确; ④四面体B 1-ABD 的每个面都是直角三角形,所以正确; ⑤四面体A 1-ABD 的三个面都是等腰直角三角形,第四个面A 1BD 是等边三角 形. 由以上可知:不能构成不是矩形的平行四边形,故②不正确. 综上可知:正确的结论个数是4. 故选C . 【点评】全面了解正方体中的任意四个顶点构成的四面体和平面四边形是解题的关键. 2. 一个半径为1的小球在一个棱长为的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是____________ . 【考点】棱锥的结构特征. 【专题】计算题;压轴题. 【分析】小球与正四面体的一个面相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,正四面体的棱长为 4626 46

2 / 6 ,故小三角形的边长为,做出面积相减,得到结果. 【解答】解:考虑小球与正四面体的一个面相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,正四面体的棱长为 故小三角形的边长为 小球与一个面不能接触到的部分的面积为 ,∴几何体中的四个面小球永远不可能接触到的容器内壁的面积是 4×18 =72 故答案为:72 【点评】本题考查棱柱的结构特征,本题解题的关键是看出小球的运动轨迹是什么,看出是一个正三角形,这样题目做起来就方向明确. 3.(2012?上海)如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2,若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是 ______________. 【考点】棱柱、棱锥、棱台的体积. 【专题】计算题;压轴题. 【分析】作BE ⊥AD 于E ,连接CE ,说明B 与C 都是在以AD 为焦距的椭球上,且BE 、CE 都垂直于焦距AD ,BE=CE .取BC 中点F ,推出四面体 ABCD 的体积的最大值,当△ABD 是等腰直角三角形时几何体的体积最大,求解即可. 【解答】 解:作BE ⊥AD 于E ,连接CE ,则AD ⊥平面BEC ,所以CE ⊥AD ,由题设,B 与C 都是在以AD 为焦点的椭圆上, 且BE 、CE 都垂直于焦距AD , AB+BD=AC+CD=2a ,显然△ABD ≌△ACD ,所以BE=CE .取BC 中点F ,∴EF ⊥BC ,EF ⊥AD ,要求四面体ABCD 的体积的最大值, 46 26 131346*46**26*26*183,2222-=33 3 22.a c -

[高中数学]立体几何.球专题讲义,附练习题、

E B C D A 立体几何-球-专题学案 ? 双基练习 1.下列四个命题中错误.. 的个数是 ( ) ①经过球面上任意两点,可以作且只可以作一个球的大圆 ②球面积是它大圆面积的四倍 ③球面上两点的球面距离,是这两点所在截面圆上以这两点为端点的劣弧的长 A.0 B.1 C.2 D.3 2.一平面截一球得到直径为6 cm 的圆面,球心到这个平面的距离是4 cm ,则该球的体积是 A.3π100 cm 3 B.3π208 cm 3 C.3π500 cm 3 D.3 π34161 cm 3 3.某地球仪上北纬30°纬线的长度为12π cm ,该地球仪的半径是_____________cm ,表面积是_____________cm 2. ? 知识预备 1. 球心到截面的距离d 与球半径R 及截面的半径r 有以下关系: . 2. 球面被经过球心的平面截得的圆叫 .被不经过球心的平面截得的圆叫 . 3. 在球面上两点之间的最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧长,这个弧长 叫 . 4. 球的表面积表面积S = ;球的体积V = . 5. 球面距离计算公式:__________ ? 典例剖析 (1)球面距离,截面圆问题 例1.球面上有3个点,其中任意两点的球面距离都等于大圆周长的 61,经过这3个点的小圆的周长为4π,那么这个球的半径为 A.43 B.23 C.2 D. 3 练习: 球面上有三点A 、B 、C ,A 和B 及A 和C 之间的球面距离是大圆周长的41,B 和C 之间的球面距离是大圆周长的61,且球心到截面ABC 的距离是7 21,求球的体积. 例2. 如图,四棱锥A -BCDE 中,BCDE AD 底面⊥,且AC ⊥BC ,AE ⊥BE . (1) 求证:A 、B 、C 、D 、E 五点都在以AB 为直径的同一球面上; (2) 若,1,3,90===∠AD CE CBE 求B 、D 两点间的球面距离.

9.6立体几何大题1(教师版)

A B C D 1 A 1 C 1B E 科 目 数学 年级 高三 备课人 高三数学组 第 课时 9.2立体几何大题1 1、(2013新课标)如图,直棱柱111ABC A B C -中,,D E 分别是1,AB BB 的 中点,12 2 AA AC CB AB === . (Ⅰ)证明:1//BC 平面1A CD ; (Ⅱ)求二面角1D A C E --的正弦值. 【答案】 2、(2013湖南)如图5,在直棱柱 1111//ABCD A BC D AD BC -中,,90,,1BAD AC BD BC ∠=⊥=, 13AD AA ==. (I)证明:1AC B D ⊥; (II)求直线111B C ACD 与平面所成角的正弦值. 【答案】 解(Ⅰ) AC BB ABCD BD ABCD BB D C B A ABCD ⊥??⊥∴-111111,面且面是直棱柱 D B AC BDB D B BDB AC B BB BD BD AC 11 111,,⊥∴?⊥∴=?⊥,面。面且又 . (证毕)

(Ⅱ) 。 的夹角与平面的夹角即直线与平面直线θ111111,////ACD AD ACD C B AD BC C B ∴ 轴正半轴。 为轴正半轴,为点,量解题。设原点在建立直角坐标系,用向X AD Y AB A ()BD AC y BD y AC y C y B D D A ⊥-== ),0,,3(),0,,1()0,,1(),0,,0(),3,0,3(),0,0,3(,00,01,则,设 ). 3,0,3(),0,3,1(.30,003012==∴=?>=+-?=?AD AC y y y BD AC ) ,,(),,(的一个法向量平面则的法向量为设平面303,313-.0 ,111==??????=?=?AD n ACD AD n AC n n ACD 721 3 733|,cos |sin 003,313-1=?= ><=?==∴AD n AD n ACD θ),,(),,(的一个法向量平面 7 21 11夹角的正弦值为 与平面所以ACD BD . 3、(2013 北京)如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB=3,BC=5. (Ⅰ)求证:AA 1⊥平面ABC ; (Ⅱ)求二面角A 1-BC 1-B 1的余弦值; (Ⅲ)证明:在线段BC 1存在点D,使得AD ⊥A 1B ,并求 1 BD BC 的值. 【答案】解: (I)因为AA 1C 1C 为正方形,所以AA 1 ⊥AC. 因为平面ABC⊥平面AA 1C 1C,且AA 1垂直于这两个平面的交线AC,所以AA 1⊥平面ABC. (II)由(I)知AA 1 ⊥AC,AA 1 ⊥AB. 由题知AB=3,BC=5,AC=4,所以AB⊥AC. 如图,以A 为原点建立空间直角坐标系A-xyz ,则B(0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),

相关文档
相关文档 最新文档