文档库 最新最全的文档下载
当前位置:文档库 › 高考数学空间向量与立体几何备考复习教案

高考数学空间向量与立体几何备考复习教案

高考数学空间向量与立体几何备考复习教案
高考数学空间向量与立体几何备考复习教案

2012届高考数学空间向量与立体几何备考复习教案

专题四:立体几何第三讲空间向量与立体几何

【最新考纲透析】 1.空间向量及其运算(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的线性运算及其坐标表示。(2)掌握空间向量的线性运算及其坐标表示。(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 2.空间向量的应用(1)理解直线的方向向量与平面的法向量。(2)能用向量语言表述直线与直线,直线与平面,平面与平面的垂直、平行关系。(3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理)。(4)能用向量方法解决直

线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用。

【核心要点突破】要点考向1:利用空间向量证明空间位置关系考情聚焦:1.平行与垂直是空间关系中最重要的位置关系,也是每年

的必考内容,利用空间向量判断空间位置关系更是近几年高考题的新亮点。 2.题型灵活多样,难度为中档题,且常考常新。考向链接:1.空间中线面的平行与垂直是立体几何中经常考查的一个重要内容,一方面考查学生的空间想象能力和逻辑推理能力;另一个方面考查“向量法”的应用。 2.空间中线面的平行与垂直的证明有两个思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量来论证。例1:(2010?安徽高考理科?T18)如图,在多面体中,四边

形是正方形,∥ ,,,,,为的中点。 (1)求证:∥平面;

(2)求证:平面; (3)求二面角的大小。【命题立意】本题主要

考查了空间几何体的线面平行、线面垂直的证明、二面角的求解的

问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。【思路点拨】可以采用综合法证明,亦可采用向量法证明。【规范

解答】 (1) (2) (3) 【方法技巧】1、证明线面平行通常转化为证明直线与平面内的一条直线平行; 2、证明线面垂直通常转化为证明直线与平面内的两条相交直线垂直; 3、确定二面角的大小,可以先构造二面角的平面角,然后转化到一个合适的三角形中进行求解。 4、以上立体几何中的常见问题,也可以采用向量法建立空间直角坐标系,

转化为向量问题进行求解证明。应用向量法解题,思路简单,易于操作,推荐使用。要点考向2:利用空间向量求线线角、线面角考情聚焦:1.线线角、线面角是高考命题的重点内容,几乎每年都考。 2.在各类题型中均可出现,特别以解答题为主,属于低、中档题。考向

链接:1.利用空间向量求两异面直线所成的角,直线与平面所成的角的方法及公式为: (1)异面直线所成角设分别为异面直线的方向向量,则(2)线面角设是直线的方向向量,是平面的法向量,则 2.运用空间向量坐标运算求空间角的一般步骤为:(1)建立恰当的空间直角坐标。(2)求出相关点的坐标。(3)写出向量坐标。(4)结合公式进行论证、计算。(5)转化为几何结论。例2:(2010?辽

宁高考理科?T19)已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC= AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点. (Ⅰ)证明:CM⊥SN;(Ⅱ)求SN与平面CMN所成角的大小. 【命题立意】本题考查了空间几何体的线面与面面垂直、线面角的求解以及几何体的计算问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。【思路点拨】建系,写出有关点坐标、向量的坐标,计算的数量积,写出答案;求平面CMN的法向量,求线面角的余弦,求线面角,写

出答案。【规范解答】设PA=1,以A为原点,射线AB、AC、AP

分别为x,y,z轴正方向建立空间直角坐标系,如图。则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0, ),N( ,0,0),S(1, ,0) (I)【方

法技巧】(1)空间中证明线线,线面垂直,经常用向量法。(2)求线面角往往转化成直线的方向向量与平面的法向量的夹角问题来解决。(3)线面角的范围是0°~90°,因此直线的方向向量与平

面法向量的夹角的余弦是非负的,要取绝对值。要点考向3:利用

空间向量求二面角考情聚焦:1.二面角是高考命题的重点内容,是年年必考的知识点。 2.常以解答题的形式出现,属中档题或高档题。考向链接:求二面角最常用的办法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角。其计算公式为:设分别为平面的法向量,则与互补或相等,例3:(2010?天津

高考理科?T19)如图,在长方体中,、分别是棱 , 上的点, ,

求异面直线与所成角的余弦值;证明平面求二面角的正弦值。【命题立意】本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力。【思路点拨】建立空间直角坐标系或常规方法处理问题。【规范解答】方法一:以A为坐标原点,AB所在直线为X轴,AD所在直线为Y轴建立空间直角坐标系(如图所示),设 ,依题意得 , , , 易得 , ,于是,所以异面直线与所成角的余弦值为。证明:已知 , , 于是? =0,? =0.因此, , ,又所以平面 (3)解:设平面的法向量,则 ,即不妨令X=1,可得。由(2)可知,为平面的一个法向量。于是,从而所以二面角的正弦值为要点考向4:利用空间向量解决探索性问题考情聚焦:立体几何中已知结论寻求结论成立的条件(或是否存在问题),能较好地考查学生的逻辑推理能力和空间想象能力,是今后考查的重点,也能很好地体现新课标高考的特点。例4:(2010?福建高考理科?T18)如图,圆柱OO1内有一个三棱柱ABC-A1B1C1,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O的直径。(I)证明:平面A1ACC1 平面B1BCC1;(II)设AB=AA1,在圆柱OO1内随机选取一点,记该点取自三棱柱ABC-A1B1C1内的概率为p。(i)当点C在圆周上运动时,求p的最大值;(ii)记平面A1ACC1与平面B1OC所成的角为()。当p取最大值时,求cos 的值。【命题立意】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,以及几何体的体积、几何概型等基础知识;考查空间想象能力、推理论证能力、运算求解能力;考查数形结合思想、化归与转化思想、必然与或然思想。【思路点拨】第一步先由线线垂直得到线面垂直,再由线面垂直得到面面垂直;第二步首先求出长方体的体积,并求解三棱柱的体积的最大值,利用体积比计算出几何概率。立体几何中我们可以利用向量处理角度问题,立体几何中涉及的角:有异面直线所成的角、直线与平面所成的角、二面角等。关于角的计算,均可归结为两个向量的夹角。对于空间向量,有,利用这一结论,我们可以较方便地处理立体几何中的角的问题。【规范解答】(I)平面,平面,,又是的直径,,又,平面,而平面,所以平面平

面;(II)(i)设圆柱的底面半径为,则,故圆柱的体积为,

设三棱柱ABC-A1B1C1,的体积为,所以,所以当取得最大值时取得最大值。又因为点在圆周上运动,所以当时,的面积最大,进而,三棱柱ABC-A1B1C1,的体积最大,且其最大值为,故的最大

值为;(ii)由(i)知,取最大值时,,于是,以为坐标原点,建立空间直角坐标系,则平面,是平面的一个法向量,设平面的法向量为,由于,,所以平面的一个法向量为,,。【方

法技巧】立体几何中我们可以利用空间向量处理常见的问题,本题的(II)(i)也可以采用向量法进行证明:以为坐标原点,建立空间直角坐标系,设圆柱的底面半径为,,则,故圆柱的体积为,

设三棱柱ABC-A1B1C1,的体积为,所以,所以当取得最大值时取得最大值。,所以当时的的面积最大,进而,三棱柱ABC-A1B1C1,的体积最大,且其最大值为,故的最大值为;

【高考真题探究】 1. (2010?广东高考理科?T10)若向量 =(1,1,x), =(1,2,1), =(1,1,1),满足条件 =-2,则 = . 【命题立意】本题考察

空间向量的坐标运算及向量的数量积运算. 【思路点拨】先算出、,再由向量的数量积列出方程,从而求出【规范解答】,,由得,即,解得【答案】2 2. (2010?浙江高考理科?T20)如图,在矩形中,点分别在线段上, .沿直线将翻折成,使平面 . (Ⅰ)求二面角的余弦值;(Ⅱ)点分别在线段上,若沿直线将四边

形向上翻折,使与重合,求线段的长。【命题立意】本题主要

考察空间点、线、面位置关系,二面角等基础知识,考查空间向量的应用,同时考查空间想象能力和运算求解能力。【思路点拨】方法

一利用相应的垂直关系建立空间直角坐标系,利用空间向量解决问题;方法二利用几何法解决求二面角问题和翻折问题。【规范解答】方

法一:(Ⅰ)取线段EF的中点H,连结,因为 = 及H是EF的中点,所以 ,又因为平面平面 . 如图建立空间直角坐标系A-xyz,则(2,2,),C(10,8,0),F(4,0,0),D(10,0,0). 故 =(-2,2,

2 ), =(6,0,0).设 =(x,y,z)为平面的一个法向量,所以。取,则。又平面的一个法向量,故。所以二面角的余弦值为(Ⅱ)设,则,,因为翻折后,与重合,所以,,故,,得,,

所以。 3. (2010?陕西高考理科?T18)如图,在四棱锥P―ABCD 中,底面ABCD是矩形PA⊥平面ABCD,AP=AB=2, BC= ,E,F分别是AD,PC的中点. (Ⅰ)证明:PC⊥平面BEF;(Ⅱ)求平面BEF

与平面BAP夹角的大小。【命题立意】本题考查了空间几何体的的线线、线面垂直、以及二面角的求解问题,考查了同学们的空间想象能力以及空间思维能力以及利用空间向量解决立体几何问题的方法

与技巧。【思路点拨】思路一:建立空间直角坐标系,利用空间向量求解;思路二:利用几何法求解. 【规范解答】解法一(Ⅰ)如图,以A为坐标原点,AB,AD,AP所在的直线分别为x,y,z轴建立空间直角坐标系.∵AP=AB=2, BC= ,四边形ABCD是矩形. ∴A,B,C,D的坐标为A(0,0,0),B(2,0,0),C(2, ,0),D(0,,0),P(0,0,2) 又E,F分别是AD ,PC的中点,∴E(0,,0),F(1,,1). ∴ =(2,,-2) =(-1,,1) =(1,0, 1),∴ ? =-2+4-2=0,? =2+0-2=0,∴ ⊥ ,⊥ ,∴PC⊥BF,PC⊥EF, , ∴PC⊥平面BEF (II)由(I)知平面BEF的法向量平面BAP 的法向量设平面BEF与平面BAP的夹角为,则∴ ,∴ 平面BEF与平面BAP的夹角为 4. (2010?重庆高考文科?T20)如题图,四棱锥中,底面为矩形,,,点是棱的中点. (I)证明:;(II)若,求二面角的平面角的余弦值. 【命题立意】本小题考查空间直线与直线、直线与平面的位置关系,考查余弦定理及其应用,考查空间向量的基础知识和在立体几何中的应用,考查空间想象能力,推理论证能力,运算求解能力,考查数形结合的思想,考查化归与转化的思想. 【思路点拨】(1)通过证明线线垂直证明结论:线面垂直,(II)作出二面角的平面角,再利用三角函数、余弦定理等知识求余弦值.或建立空间直角坐标系,利用向量的坐标运算证明垂直和求出有关角的三角函数值. 【规范解答】(I)以为坐标原点,射线分别为轴、轴、轴的正半轴,建立空间直角坐标系 .如图所示. 设设,则,,,。于是,,,则,所以,故 . (II)设平面BEC的法向量为,由(Ⅰ)知,,故可取 .设平面DEC的法向量,则,,由,得D ,G ,从而,,故,所以,,可取,则,从而 . 【方法技巧】(1)用几何法推理证明、计算求解;(2)空间向量坐标法,通过向量的坐标运算解题.

5. (2010?江西高考文科?T20)如图,与都是边长为2的正三角形,平面平面,平面, . (1)求直线与平面所成的角的

大小;(2)求平面与平面所成的二面角的正弦值. 【命题立意】本题主要考查空间几何体的线线、线面与面面垂直关系及平行关系,考查空间线面角、二面角的问题以及有关的计算问题,考查空间向量的坐标运算,考查数形结合思想,考查考生的空间想象能力、推理论证能力、划归转化能力和运算求解能力。【思路点拨】本题主要有

两种方法,法一:几何法(1)直接找出线面角,然后求解;(2)

对二面角的求法思路,一般是分三步①“作”,②“证”,③“求”. 其中“作”是关键,“证” 是难点.法二:建立空间直角坐标系,

利用空间向量中的法向量求解.

【规范解答】取CD中点O,连OB,OM,则OB⊥CD,OM⊥CD,又平面平面 ,则MO⊥平面 . 以O为原点,直线OC、BO、OM为x轴,y轴,z轴,建立空间直角坐标系如图. OB=OM= ,则各点坐标分别为O(0,0,0),C(1,0,0),M(0,0,),B(0,- ,0),A(0,- ,2 ),(1)设直线AM与平面BCD所成的角为 . 因(0,,),平面的

法向量为 .则有,所以 . (2), . 设平面ACM的法向量为,由得 . 解得,,取 .又平面BCD的法向量为,则设所求二面角为,则 . 6. (2010?四川高考理科?T18)已知正方体的棱长为1,点是棱的中点,点是对角线的中点. (Ⅰ)求证:为异面直线和的公垂线;(Ⅱ)求二面角的大小;(Ⅲ)求三棱锥的体积. 【命题立意】本题主要考查异面直线、直线与平面垂直、二面角、正方体、三棱锥体积等基础知识,并考查空间想象能力和逻辑推理能力,考查应用向量知识解决数学问题的能力,转化与化归的数学思想. 【思路点拨】方法一:几何法问题(Ⅰ),分别证明,即可. 问题(II)首先利用三垂线定理,作出二面角的平面角,然后通过平面角所在的直角三角形,求出平面角的一个三角函数值,便可解决问题. 问题(Ⅲ)选择便于计算的底面和高,观察图形可知,和都在平面内,且,故,利用三棱锥的体积公式很快求出 . 方法二:建立空

间直角坐标系,利用空间向量中的法向量求解. 【规范解答】(方法一):(I)连结 .取的中点,则为的中点,连结. ∵点是棱的

中点,点是的中点,由,得. ∵ ,∴ . ∴ .∴ . 又∵ 与异面直线和都相交,故为异面直线和的公垂线,(II)取的中点,连结,则,过点过点作于,连结,则由三垂线定理得, . ∴ 为二面角的平面角. . 在中. 故二面角的大小为 . (III)易知, ,且和都在平面内,点到平面的距离,∴ . (方法二):以点为坐标原点,建立如图所示的空间直角坐标系,则,,,,,(I)∵点是棱的中点,点是的中点,∴ , ,, , . , , ∴ , , 又∵ 与异面直线和都相交,故为异面直线和的公垂线,(II)设平面的一个法向量为,, . 即取,则 . . 取平面的一个法向量 . ,由图可知,二面角的平面角为锐角,故二面角的大小为 . (III)易知,,设平面的一个法向量为, , , 即取,则,从而 . 点到平面的距离 . .

【跟踪模拟训练】一、选择题(每小题6分,共36分) 1.已知点A (-3,1,-4),则点A关于x轴的对称点的坐标为( ) (A)(-3,-1,4)(B)(-3,-1,-4) (C)(3,1,4) (D)(3,-1,-4) 2.在正三棱柱

ABC―A1B1C1中,D是AC的中点,AB1⊥BC1,则平面DBC1与平面CBC1所成的角为( ) (A)30° (B)45° (C)60° (D)90° 3. 设动直线与函数和的图象分别交于、两点,则的最大值为() A. B. C.2 D.3 4. 在直角坐标系中,设,,沿轴把坐标平面折成的二面角后,的长为() A. B. C. D. 5. 矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B-AC-D,则四面体ABCD的外接球的体积为() A. B. C. D. 6. 如图:在平行六面体中,为与的交点。若,,则下列向量中与相等的向量是()(A)(B)(C)(D)二、填空题(每小题6分,共18分) 7.,,是空间交于同一点的互相垂直的三条直线,点到这三条直线的距离分别为 , , ,则 ,则 _ _。 8.平行六面体ABCD-A1B1C1D1中,AB=2,AA1=2,AD=1,且AB、AD、AA1两两之间夹角均为600,则? = 9.将正方形沿对角线折成直二面角后,有下列四个结论:(1);(2)是等边三角形;(3)与平面成60° ;(4)与所成的角为60°.其中正确结论的序号为_________(填上所有正确结论的序号).三、解答题(共46分) 10. 如图,在四棱锥P―ABCD中,底

面是边长为 2的菱形,∠BAD=60°,对角线AC与BD相交于点O, ,E、

F分别是BC、AP的中点.(1)求证:EF∥平面PCD;(2)求二面角A―BP―D的余弦值. 11. 某组合体由直三棱柱与正三棱锥组成,如图所示,其中,.它的正视图、侧视图、俯视图的面积分别为 +1,,+1.(1)求直线与平面所成角的正弦;(2)在线段上是否存

在点,使平面,若存在,确定点的位置;若不存在,说明理由. 12. 如图,三棱柱中,面, , ,,为的中点。 (I)求证:面;(Ⅱ)求二面角的余弦值参考答案 1.【解析】选A.∵点A关于x轴对称点的规律是在x轴上的坐标不变,在y轴,z轴上的坐标分别变为相反数,∴点A(-3,1,-4)关于x轴的对称点的坐标为(-3,-1,4). 2.【解析】选B.以A为坐标原点,AC、AA1分别为y轴和z轴建立空间直角坐标系.设底面边长为2a.侧棱长为2b. 3.D 4.D 5.C 6.A 7.64 8.3 9.(1)(2)(4) 10.解:(1)证明:取PD的中点G,连接FG、CG ∵FG是△PAD的中卫县,∴FG ,在菱形ABCD中,AD BC,又E为BC的中点,∴CE FG,∴四边形EFGC是平行四边形,

∴EF∥CG 又EF 面PCD,CG 面PCD,∴EF∥面PCD (2)法1:以O 为原点,OB,OC,OP所在直线分别为、、轴建立如图所示的空

间直角坐标系。则0(0,0,0),A(0,,0),B(1,0,0)(0,0,) =(1,,0) =(0,,)设面ABP的发向量为,则,

即即取又,,∴OA⊥面PBD,∴ 为面PBD的发向量,∴ =(0,,0) . 所以所求二面角的余弦值为法2:在菱形ABCD中,AC⊥BD,∵OP⊥面ABCD,AC 面ABCD,∴AC⊥OP,OP BD=0,∴AC⊥面PBD,AC⊥BP,在面PBD中,过O作ON⊥PB,连AN,PB⊥面AON,则AN⊥PB。即∠ANO为所求二面角的平面角AO=ABcos30°= 在Rt△POB中,,∴ ∴cos∠ 。所以所求二面角的余弦值为 11.【解析】 12.解:(1)连接B1C,交BC1于点O,则O为B1C的中点,∵D为 AC中点∴OD∥B1A 又B1A 平面BDC1,OD 平面BDC1 ∴B1A∥平面BDC1 (2)∵AA1⊥面ABC,BC⊥AC,AA1∥CC1 ∴CC1⊥面ABC 则BC⊥平面AC1,CC1⊥AC 如图以C为坐标原点,CA所在直线为X轴,CB所在直线为

Y轴,所在直线为轴建立空间直角坐标系则C1(0,0,3) B(0,2,0) D(1,0,0) C(0,0,0) ∴设平面的法向量为由得,取,则又平

面BDC的法向量为cos ∴二面角C1―BD―C的余弦值为【备课资源】1.已知两条异面直线a、b所成的角为40°,直线l与a、b所成的

角都等于θ,则θ的取值范围是( ) (A)[20°,90°] (B)[20°,90°) (C)(20°,40°] (D)[70°,90°]【解析】选A. 取空间任一点O,将直线a,b,l平移到过O点后分别为a′,b′,l′,则l′与a′,b′所成的角即为l与a,b所成的角.当l′与a′,b′共面时θ最小为20°.当l′与a′,b′确定的平面垂直时,θ最大为90°.故θ的

取值范围为[20°,90°]. 3.如图甲,直角梯形ABCD中,AB∥CD,

∠DAB= ,点M、N分别在AB,CD上,且MN⊥AB,MC⊥CB,BC=2,MB=4,现将梯形 ABCD沿MN折起,使平面AMND与平面MNCB垂直(如图乙).

(1)求证:AB∥平面DNC; (2)当DN的长为何值时,二面角D-BC-N

的大小为30°?

空间向量与立体几何(整章教案)

空间向量与立体几何 一、知识网络: 二.考纲要求: (1)空间向量及其运算 ① 经历向量及其运算由平面向空间推广的过程; ② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③ 掌握空间向量的线性运算及其坐标表示; ④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ① 理解直线的方向向量与平面的法向量; ② 能用向量语言表述线线、线面、面面的垂直、平行关系; ③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教

材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 ②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合, 则这些向量叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平 行直线;当我们说a 、b 平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数λ使b =λa (1)对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与

空间向量和立体几何练习题及答案.

1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4. (1)求证:M为PB的中点; (2)求二面角B﹣PD﹣A的大小; (3)求直线MC与平面BDP所成角的正弦值. 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;(3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O, ∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,

空间向量及其运算详细教案

空间向量及其运算 3.1.1 空间向量及其加减运算 教学目标: (1)通过本章的学习,使学生理解空间向量的有关概念。 (2)掌握空间向量的加减运算法则、运算律,并通过空间几何体加深对运算的理解。 能力目标: (1)培养学生的类比思想、转化思想,数形结合思想,培养探究、研讨、综合自学应用能力。 (2)培养学生空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义。(3)培养学生空间向量的应用意识 教学重点: (1)空间向量的有关概念 (2)空间向量的加减运算及其运算律、几何意义。 (3)空间向量的加减运算在空间几何体中的应用 教学难点: (1)空间想象能力的培养,思想方法的理解和应用。 (2)空间向量的加减运算及其几何的应用和理解。 考点:空间向量的加减运算及其几何意义,空间想象能力,向量的应用思想。 易错点:空间向量的加减运算及其几何意义在空间几何体中的应用 教学用具:多媒体 教学方法:研讨、探究、启发引导。 教学指导思想:体现新课改精神,体现新教材的教学理念,体现学生探究、主动学习的思维习惯。 教学过程: (老师):同学们好!首先请教同学们一个问题:物理学中,力、速度和位移是什么量?怎样确定? (学生):矢量,由大小和方向确定 (学生讨论研究)(课件)引入:(我们看这样一个问题)有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板? (老师):我们研究的问题是三个力的问题,力在数学中可以看成是什么? (学生)向量 (老师):这三个向量和以前我们学过的向量有什么不同? (学生)这是三个向量不共面 (老师):不共面的向量问题能直接用平面向量来解决么? (学生):不能,得用空间向量 (老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量板书:空间向量及其运算 (老师):实际上空间向量我们随处可见,同学们能不能举出一些例子? (学生)举例 (老师):然后再演示(课件)几种常见的空间向量身影。(常见的高压电线及支架所在向量,长方体中的三个不共线的边上的向量,平行六面体中的不共线向量) (老师):接下来我们我们就来研究空间向量的知识、概念和特点,空间向量与平面向量既有联系又有区别,我们将通过类比的方法来研究空间向量,首先我们复习回顾一下平面向量

空间向量在立体几何中的应用教案

空间向量在立体几何中的应用 教学目标: (1)掌握空间向量的线性运算及其坐标表示。 (2)能运用向量的数量积判断向量的共线与垂直 (3)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题 重点与难点: 用向量方法解决线面角、二面角问题 教学过程: 1.利用空间向量求两异面直线所成的角的方法及公式为: 异面直线所成角 设分别为异面直线的方向向量,则 2.利用空间向量求直线与平面所成的角的方法及公式为: 线面角 设是直线l 的方向向量,n 是平面的法向量,则 3.利用空间向量求二面角的方法及公式为: 二面角)1800(00≤≤θθ 设 分别为平面 的法向量,则θ与 互补或相等, 注意:运用空间向量坐标运算求空间角的一般步骤为: (1)建立恰当的空间直角坐标。(2)求出相关点的坐标。(3)写出向量坐标。(4)结合公式进行论证、计算。(5)转化为几何结论。 例1:已知三棱锥P -ABC 中,PA ⊥ABC ,AB ⊥AC ,PA=AC=1 2AB ,N 为AB 上一点, AB=4AN,M,S 分别为PB,BC 的中点. (1)证明:CM ⊥SN ; (2)求SN 与平面CMN 所成角的大小. 分析:本题考查了空间几何体的线面与面面垂直、线面角的求解以及几何体的计算问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。 解:设PA =1,以A 为原点,射线AB 、AC 、AP 分别为x,y,z 轴正方向建立空间直角坐标

系,如图。 则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0, 12),N(12,0,0),S(1,1 2,0) (1) 111(1,1,),(,,0), 222 11 00 22 1 (II)(,1,0), 2 (,,)CMN 022,(2,1,2) 1021 -1-22|cos |= 22 32 SN CMN CM SN CM SN CM SN NC a x y z z x y x a x y a SN =-=--=-++=⊥=-=?-+=??==-??-+=??<>=? 因为所以设为平面的一个法向量,则令得因为所与平面所成的o 45角为 例2:如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF FB ⊥, 2AB EF =,90BFC ∠=?,BF FC =,H 为BC 的中点。 (1)求证:FH ∥平面EDB ; (2)求证:AC ⊥平面EDB ; (3)求二面角B DE C --的大小。 分析:本题主要考查了空间几何体的线面平行、线面垂直的证明、二面角的求解的问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。 解: ,,//,,,,,,,. ABCD AB BC EF FB EF AB AB FB BC FB B AB FBC AB FH BF FC H BC FH BC AB BC B FH ABC ∴⊥⊥∴⊥=∴⊥∴⊥=∴⊥=∴⊥ 四边形为正方形,又且,平面又为中点,且平面 A E F B C D H G X Y Z

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VADL底面ABC (1)证明AB丄平面VAD (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA丄底面ABCD AB骑, BC=1 , PA=2, E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N使NE!平面PAC并求出N点到AB和AP的距 离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体 ABCD-ABCD 中,AD=AA=1, AB=2,点E 在棱 AB 上移动. 证明:DE 丄AD; 当E 为AB 的中点时,求点 A 到面ECD 的距离; 7T AE 等于何值时,二面角 D — EC- D 的大小为-(易错点:在找平面DEC 的法向量的时候,本 来法向量就己经存在了 ,就不必要再去找,但是我认为去找应该没有错吧 ,但法向量找出来了 , 和 那个己经存在的法向量有很大的差别 ,而且,计算结果很得杂,到底问题出在哪里?) 4. 如图,直四棱柱 ABCD — A I B I C I D I 中,底面ABCD 是等腰梯形,AB // CD , AB = 2DC =2, E 为BD i 的中点,F 为AB 的中点,/ DAB = 60° (1)求证:EF //平面 ADD 1A 1; ⑵若BB 1 ~2-,求A 1F 与平面DEF 所成角的正弦值. N : 5 题到 11 题都是运用基底思想解题 5. 空间四边形 ABCD 中, AB=BC=CD AB 丄BC, BC 丄CD , AB 与CD 成60度角,求AD 与BC 所 成角的大小。 (1) (2) (3) A B

空间向量高中数学教案课程

空间向量 考纲导读 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式; 掌 握 空 间 两 点 间 的距离公式. 理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直. 第1课时空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广. 本节知识点是:

1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积;(1) 向量:具有 和 的量. (2) 向量相等:方向 且长度 . (3) 向量加法法则: .(4) 向量减法法则: .(5) 数乘向量法则: .3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相 或 .(2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使 . (3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使 .4.共面向量 (1) 共面向量:平行于 的向量. (2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P . 共面向量定理的推论: .5.空间向量基本定理 (1) 空间向量的基底: 的三个向量. 2.线性运算律 (1) 加法交换律:a +b = .

2019-2020年高考数学一轮复习 9.6 空间向量及其运算(B)教案

2019-2020年高考数学一轮复习 9.6 空间向量及其运算(B)教案 ●知识梳理 空间两个向量的加法、减法法则类同于平面向量,即平行四边形法则及三角形法则. a·b=|a||b|cos〈a,b〉. a2=|a|2. a与b不共线,那么向量p与a、b共面的充要条件是存在实数x、y,使p=x a+y b. a、b、c不共面,空间的任一向量p,存在实数x、y、z,使p=x a+y b+z c. ●点击双基 1.在以下四个式子中正确的有 a+b·c,a·(b·c),a(b·c),|a·b|=|a||b| A.1个 B.2个 C.3个 D.0个 解析:根据数量积的定义,b·c是一个实数,a+b·c无意义.实数与向量无数量积,故a·(b·c)错,|a·b|=|a||b||cos〈a,b〉|,只有a(b·c)正确. 答案:A 2.设向量a、b、c不共面,则下列集合可作为空间的一个基底的是 A.{a+b,b-a,a} B.{a+b,b-a,b} C.{a+b,b-a,c} D.{a+b+c,a+b,c} 解析:由已知及向量共面定理,易得a+b,b-a,c不共面,故可作为空间的一个基底,故选C. 答案:C 3.在平行六面体ABCD—A′B′C′D′中,向量、、是 A.有相同起点的向量 B.等长的向量 C.共面向量 D.不共面向量 解析:∵-==, ∴、、共面. 答案:C 4.已知a=(1,0),b=(m,m)(m>0),则〈a,b〉=_____________. 答案:45° 5.已知四边形ABCD中,=a-2c,=5a+6b-8c,对角线AC、BD的中点分别为E、F,则=_____________. 解析:∵=++,又=++, 两式相加,得2=(+)+(+)+(+). ∵E是AC的中点,故+=0.同理,+=0. ∴2= +=(a-2c)+(5a+6b-8c)=6a+6b-10c.∴=3a+3b-5c. 答案:3a+3b-5c ●典例剖析 【例1】证明空间任意无三点共线的四点A、B、C、D共面的充分必要条件是:对于空间任一点O,存在实数x、y、z且x+y+z=1,使得=x+y +z. 剖析:要寻求四点A、B、C、D共面的充要条件,自然想到共面向量定理. 解:依题意知,B、C、D三点不共线,则由共面向量定理的推论知:四点A、B、C、D共面对空间任一点O,存在实数x1、y1,使得=+x1+y1=+x1(-)+y1(-)=(1-x1-y1)+x1+y1,取x=1-x1-y1、y=x1、z=y1,则有=x+y+z,且x+y+z=1.

数学选修空间向量及其运算教案

第三章空间向量与立体几何 §3.1空间向量及其运算 3.1.1 空间向量及其加减运算 师:这节课我们学习空间向量及其加减运算,请看学习目标。 学习目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 师:在必修四第二章《平面向量》中,我们学习了平面向量的一些知识,现在我们一起来复习。(不要翻书) (在黑板或背投上呈现或边说边写) 1、在平面中,我们把具有__________________的量叫做平面向量; 2、平面向量的表示方法:

①几何表示法:_________________________ ②字母表示法:_________________________ (注意:向量手写体一定要带箭头) 3、平面向量的模表示_________________,记作____________ 4、一些特殊的平面向量: ①零向量:__________________________,记作___(零向量的方向具有任意性) ②单位向量:______________________________ (强调:都只限制了大小,不确定方向) ③相等向量:____________________________ ④相反向量:____________________________ 5、平面向量的加法: 6、平面向量的减法: 7、平面向量的数乘:实数λ与向量a的积是一个向量,记作λa,其长度和 方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. 8、向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb 数乘结合律:λ(aμ)=a) (λμ [师]:刚才我们复习了平面向量,那空间向量会是怎样,与平面向量有怎样的区别和联系呢?请同学们阅读书P84-P86.(5分钟) [师]:对比平面向量,我们得到空间向量的相关概念。(在刚复习的黑板或幻灯片上,只需将平面改成空间) [师]:空间向量与平面向量有什么联系? [生]:向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.所以凡涉及 空间两个向量的问题,平面向量中有关结论仍适用于它们。

利用空间向量立体几何(完整版)

向量法解立体几何 引言 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。 基本思路与方法 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系

线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点()111,,P x y z 与()222,,Q x y z 的 距离为222212121()()()PQ x x y y z z =-+-+- 2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ 在法向量(),n A B =上的射影PQ n n ?= 0022 Ax By C A B +++ 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ , 计算平面α的法向量n , 计算PQ 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤:

空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等 的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向 量也叫做共线向量或平行向量,a ρ 平行于b ρ,记作b a ρ?//。 (2)共线向量定理:空间任意两个向量a ρ、b ρ (b ρ≠0ρ), a ρ b ρa ρb ρλ=)1(=++=y x y x 其中 a ± 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件 是存在实数,x y 使p xa yb =+r r r 。 (3)四点共面:若A 、B 、C 、P 四点共面<=>y x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量 p r ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。 若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫 做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三 个有序实数,,x y z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r 。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组 (,,)x y z ,使++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐 标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 注:①点A (x,y,z )关于x 轴的的对称点为(x,-y,-z),关于xoy 平面的对称点为(x,y,-z).即点关于什么轴/平面对称,什么坐标不变,其余的分坐标均相反。②在y 轴上的点设为(0,y,0),在平面yOz 中的点设为(0,y,z) (2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位 正交基底,用{,,}i j k r r r 表示。空间中任一向量k z j y i x a ++==(x,y,z ) (3)空间向量的直角坐标运算律: ①若123(,,)a a a a =r ,123(,,)b b b b =r ,则112233(,,)a b a b a b a b +=+++r r ,

空间向量及其线性运算(教案)

课 题:空间向量及其线性运算 教学目标: 1.运用类比方法,经历向量及其运算由平面向空间推广的过程; 2.了解空间向量的概念,掌握空间向量的线性运算及其性质; 3.理解空间向量共线的充要条件 教学重点:空间向量的概念、空间向量的线性运算及其性质; 教学难点:空间向量的线性运算及其性质。 教学过程: 一、创设情景 1、蚂蚁爬行的问题引入为什么要研究空间向量. 2、平面向量的概念及其运算法则; 二、建构数学 1.空间向量的概念: 在空间,我们把具有大小和方向的量叫做向量注:⑴空间的一个平移就是一个向量 ⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量 ⑶空间的两个向量可用同一平面内的两条有向线段来表示 2.空间向量的运算 定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图) b a AB OA OB +=+= b a -=-= )(R a ∈=λλ 运算律: ⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3.平行六面体: 平行四边形ABCD 平移向量a 到D C B A ''''的轨迹所形成的几何体,叫做平行六面体,并记作:ABCD -D C B A '''',它的六个面都是平行四边形,每个面的边叫做平行六面体的棱。 4.共线向量 与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向 量叫做共线向量或平行向量.a 平行于b 记作b a //. 当我们说向量a 、b 共线(或a //b )时,表示a 、b 的有向线段所在的直线可能是同 一直线,也可能是平行直线. 5.共线向量定理: 共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 的充要条件是存在实数λ,

高中数学空间向量与立体几何的教学反思

空间向量与立体几何的教学反思 本部分是高三理科数学复习的一个重要部分,是数学必修4“平面向量”在空间的推广,又是数学必修2“立体几何初步”的延续,努力使学生将运用空间向量解决有关直线、平面位置关系的问题,体会向量方法在研究几何图形中的作用,进一步发展空间想象能力和几何直观能力。空间向量为处理立体几何问题提供了新的视角(“立体几何初步”侧重于定性研究,本章则侧重于定量研究)。空间向量的引入,为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具。 进一步体会向量方法在研究几何问题中的作用。向量是一个重要的代数研究对象,引入向量运算,使数学的运算对象发生了一个重大跳跃:从数、字母与代数式到向量,运算也从一元到多元。向量又是一个几何对象,本身既有方向,又有长度;是沟通代数与几何的一个桥梁,是一个重要的数学与物理模型,这些也为进一步学习向量和研究向量奠定了一定的基础。 利用向量来解决立体几何问题是学习这部分内容的重点,要让学生体会向量的思想方法,以及如何用向量来表示点、线、面及其位置关系 一、现将原大纲目标与新课程目标进行简单的比较:

《标准》中要求让学生经历向量及其运算由平面向空间推广的

过程,目的是让学生体会数学的思想方法(类比与归纳),体验数学在结构上的和谐性与在推广过程中的问题,并尝试如何解决这些问题。同时在这一过程中,也让学生见识一个数学概念的推广可能带来很多更好的性质。掌握空间向量的基本概念及其性质是基本要求,是后续学习的前提。 新老课程相比,该部分减少了大量的综合证明的内容,重在对于图形的把握,发展空间概念,运用向量方法解决计算问题,这样的调整,将使得学生把精力更多地放在理解数学的细想方法和本质方面,更加注意数学与现实世界的联系和应用,重在发展学生的数学思维能力,发展学生的数学应用意识,提高学生自觉运用数学分析问题、解决问题的能力,为学生日后的进一步学习,或工作、生活中应用数学,打下更好的基础。 二、教学要求 本章从数量表示和几何意义两方面,把对向量及其运算的认识从二维情形提升到三维情形。这是“由此及彼,由浅入深”的认识发展过程。 本章以立体几何问题为载体,体现向量的工具作用和向量方法的基本步骤和原理,再次渗透符号化、模型化、运算化和程序化的数学思想。主要要思想方法是: (1)类比、猜想、归纳、推广(让学生经历由平面向空间推广的过程); (2)能灵活选择向量法、坐标法与综合法解决立体几何问题。

高三数学一轮复习第8讲空间向量的应用教案

第八讲 空间向量的应用 一、考情分析 在高考的立体几何试题中,平行或垂直的证明、空间角与空间距的求解是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是复习的难点.空间向量的引入有利于解决这些问题,为立体几何增添了活力,新思想、新方法与时俱进,很多较难的空间的证明或计算问题,就有了解决的通法,减少学生学习度量问题的困难.本讲主要帮助考生理解并领悟向量工具的威力,运用向量方法简捷地解决这些问题. 二、知识归纳及例析 (一)平行的证明 (1)两条直线平行的证明思路: a b a b a b λ??=(a b 、 分别是a b 、的方向向量). (2)直线与平面平行的证明思路: 法1:0a a n a n α?⊥??=(a n 、 分别是a α、的方向向量、法向量); 法2:12a a xe ye α?=+(a 分别是a 的方向向量,12e e 、 是平面α的一个 基底). (3)两个平面平行的证明思路: 1212n n n n αβλ??=(12n n 、 分别是平面αβ、的法向量). 例1:(04年湖南卷)在底面是菱形的四棱锥P ABCD -中, 3 ABC PA AC a π ∠= ==,,221PB PD a E PD PE ED ==∈=,,::. (1)证明:PA ⊥平面ABCD . (2)在棱PC 上是否存在一点F ,使BF 平面AEC ?

解析:(1)∵底面ABCD 是菱形,3 ABC π ∠=, ∴PA AD AC a ===, 在PAB ?中,222PA AB PB +=, ∴PA AB ⊥,同理,PA AD ⊥,故PA ⊥平面ABCD . (2)建立直角坐标系,如图,设点F 是棱PC 上一点,()01PF PC λλ=<<,则:2033a a AE ? ?= ??? ,,,302a AC ?? = ? ? ?? ,,, )()()31112a BF BP PF BP PC a λλλλ??=+=+=-+- ? ??? ,,, 令BF x AC y AE =+,解之得:113 222 x y λ= =-=,,, ∴当点F 是棱PC 的中点时,BF AC AE 、  、 共面, 又∵BF ?平面AEC ,∴当点F 是棱PC 的中点时,BF 平面AEC . (二)垂直的证明 (1)两条直线垂直的证明思路 0a b a b a b ⊥?⊥??=(a b 、 分别是a b 、的方向向量). (2)直线与平面垂直的证明思路 法1:a a n a n αλ⊥??=(a n 、 分别是a α、的方向向量、法向量); 法2:11220 a e a e a a e a e α??⊥?=??⊥????⊥?=????(a 分别是a 的方向向量,12e e 、 是平面 α的一个基底). (3)两个平面垂直的证明思路 12120n n n n αβ⊥?⊥??=(12n n 、 分别是平面αβ、的法向量) .

高中数学 空间向量及其运算 教案

空间向量及其运算 【高考导航】 本节内容是高中教材新增加的内容,在近两年的高考考查中多作为解题的方法进行考查,主要是解题的方法上因引入向量得以扩展.例如2001上海5分,2002上海5分. 【学法点拨】 本节共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积.这一节是空间向量的重点,在学习本节内容时要与平面向量的知识结合起来,认识到研究的范围已由平面扩大到空间.一个向量是空间的一个平移,两个不平行向量确定的是一个平行平面集,在此基础上,把平行向量基本定理和平面向量基本定理推广到空间,得出空间直线与平面的表达式,有了这两个表达式,我们可以很方便地解决空间的共线和共面问题.空间向量基本定理是空间几何研究代数化的基础,有了这个定理,整个空间被3个不共面的基向量所确定,空间一个点或一个向量和实数组(x ,y ,z )建立起一一对应关系,空间向量的数量积一节中,由于空间任一向量都可以转化为共面向量,所以空间两个向量的夹角的定义、取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同. 【基础知识必备】 一、必记知识精选 1.空间向量的定义 (1)向量:在空间中具有大小和方向的量叫作向量,同向且等长的有向线段表示同一向量或相等向量. (2)向量的表示有三种形式:a ,AB ,有向线段. 2.空间向量的加法、减法及数乘运算. (1)空间向量的加法.满足三角形法则和平行四边形法则,可简记为:首尾相连,由首到尾.求空间若干个向量之和时,可通过平移将它们转化为首尾相接的向量.首尾相接的若干个向量若构成一个封闭图形,则它们的和为0,即21A A +32A A +…1A A n =0. (2)空间向量的减法.减法满足三角形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向一定”,另外要注意 -=的逆应用. (3)空间向量的数量积.注意其结果仍为一向量. 3.共线向量与共面向量的定义. (1)如果表示空间向量的有向线段在直线互相平行或重合,那么这些向量叫做共线向量或平行向量.对于空间任意两个向量a,b(b≠0),a∥b ?a=λb ,若A 、B 、P 三点共线,则对空间任意一点O ,存在实数t,使得OP =(1-t)OA +t OB ,当t=2 1 时,P 是线段AB 的中点,则中点公式为OP = 2 1 (OA +). (2)如果向量a 所在直线O A 平行于平面α或a 在α内,则记为a ∥α,平行于同一个平面的

高中数学选修2-1教案 第三章 空间向量与立体几何 3.2立体几何中的向量方法

3.2立体几何中的向量方法 第一课时 立体几何中的向量方法(1) 教学要求:向量运算在几何证明与计算中的应用.掌握利用向量运算解几何题的方法,并能解简单的立体几何问题. 教学重点:向量运算在几何证明与计算中的应用. 教学难点:向量运算在几何证明与计算中的应用. 教学过程: 一、复习引入 1. 用向量解决立体几何中的一些典型问题的基本思考方法是:⑴如何把已知的几何条件(如线段、角度等)转化为向量表示; ⑵考虑一些未知的向量能否用基向量或其他已知向量表式; ⑶如何对已经表示出来的向量进行运算,才能获得需要的结论? 2. 通法分析:利用两个向量的数量积的定义及其性质可以解决哪些问题呢? ⑴利用定义a ·b =|a ||b |cos <a ,b >或cos <a ,b >=a b a b ??,可求两个向量的数量积或夹角 问题; ⑵利用性质a ⊥b ?a ·b =0可以解决线段或直线的垂直问题; ⑶利用性质a ·a =|a |2,可以解决线段的长或两点间的距离问题. 二、例题讲解 1. 出示例1:已知空间四边形OABC 中,OA BC ⊥,OB AC ⊥.求证:OC AB ⊥. 证明:·OC AB =·()OC OB OA - =·OC OB -·OC OA . ∵OA BC ⊥,OB AC ⊥, ∴·0OA BC =,·0OB AC =, ·()0OA OC OB -=,·()0OB OC OA -=. ∴··OA OC OA OB =,··OB OC OB OA =. ∴·OC OB =·OC OA ,·OC AB =0. ∴OC AB ⊥ 2. 出示例2:如图,已知线段AB 在平面α内,线段AC α⊥,线段BD ⊥AB ,线段'DD α⊥,'30DBD ∠=,如果AB =a ,AC =BD =b ,求C 、D 间的距离. 解:由AC α⊥,可知AC AB ⊥. 由'30DBD ∠=可知,<,CA BD >=120, ∴2||CD =2()CA AB BD ++=2||CA +2||AB +2||BD +2(·CA AB +·CA BD +·AB BD ) =22222cos120b a b b +++=22a b +. ∴CD 3. 出示例3:如图,M 、N 分别是棱长为1的正方体''''ABCD A B C D -的 棱'BB 、''B C 的中点.求异面直线MN 与'CD 所成的角. 解:∵MN =1(')2CC BC +,'CD ='CC CD +, ∴·'MN CD =1(')2CC BC +·(')CC CD +=12 (2|'|CC +'CC CD +·'BC CC +·BC CD ). ∵'CC CD ⊥,'CC BC ⊥,BC CD ⊥,∴'0CC CD =,·'0BC CC =,·0BC CD =, ∴·'MN CD =122|'|CC =12. …求得 cos <,'MN CD >12 =,∴<,'MN CD >=60. 4. 小结:利用向量解几何题的一般方法:把线段或角度转化为向量表示式,并用已知向量表示未知向量,然后通过向量的运算去计算或证明.

空间向量与立体几何知识点汇总

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|.(3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

(完整)空间向量__新高中数学教学教学教案

欢迎阅读 空间向量 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距 离公式. 理解空 间向量的夹角的概念;掌握空间向量的数量积的概念、 性质和运算律;了解空间 向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直. 第1课时 空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广.本节知识点是: 1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积;(1) 向量:具有 和 的量.(2) 向量相等:方向 且长度 .(3) 向量加法法则: .(4) 向量减法法则: .(5) 数乘向量法则: .3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相 或 . (2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使 . (3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使 .4.共面向量 (1) 共面向量:平行于 的向量. 基础过关 考纲导读 高考导航 空间向量 定义、加法、减法、数乘运算 数量积 坐标表示:夹角和距离公式 求距离 求空间角 证明平行与垂直 2.线性运算律 (1) 加法交换律:a +b = . (2) 加法结合律:(a +b )+c = .(3) 数乘分配律:λ(a +b )= .

相关文档
相关文档 最新文档