文档库 最新最全的文档下载
当前位置:文档库 › 指标权重确定方法之熵权法(计算方法参考

指标权重确定方法之熵权法(计算方法参考

指标权重确定方法之熵权法(计算方法参考
指标权重确定方法之熵权法(计算方法参考

指标权重确定方法之炳权法

一、爛权法介绍

爛最先由申农引入信息论,目前已经在工程技术、社会经济等领域得到了非常广泛的应用。

矯权法的基本思路是根据指标变异性的大小来确定客观权重。

一般来说,若某个指标的信息矯越小,表明指标值得变异程度越大,提供的信息量越多,在综合评价中所能起到的作用也越大,其权重也就越大。相反,某个指标的信息墉越大,表明指标值得变异程度越小,提供的信息量也越少,在综合评价中所起到的作用也越小,其权重也就越小。

二、爛权法赋权步骤

1.数据标准化

将各个指标的数据进行标准化处理。

假设给定了&个指标,其中。假设对各指标数据标准化后的值为,那么。

2.求各指标的信息爛

根据信息论息矯的定义,一组数据的信息矯。其中,如果,则定义。

3.确定各指标权重

根据信息*商的计算公式,计算出各个指标的信息爛为。通过信息爛计算各指标的权重:O

三、爛权法赋权实例

1.背景介绍

某医院为了提高自身的护理水平,对拥有的11个科室进行了考核,考核标准包括9项整体护理,并对护理水平较好的科室进行奖励。下表是对各个科室指标考核后的评分结果。

表I 11个科室9项整体护理评价指标得分表

但是由于各项护理的难易程度不同,因此需要对9项护理进行赋权,以便能够更加合理的对各个科室的护理水平进行评价。

2.爛权法进行赋权

1)数据标准化

根据原始评分表,对数据进行标准化后可以得到下列数据标准化表

表2 11个科室9项整体护理评价指标得分表标准化表

2)求各指标的信息埔

根据信息矯的计算公式,可以计算出9项护理指标各自的信息矯如下:

表3 9项指标信息爛表

3)计算各指标的权重

根据指标权重的计算公式,可以得到各个指标的权重如下表所示:

表4 9项指标权重表

3.对各个科室进行评分

根据计算出的指标权重,以及对11个科室9项护理水平的评分。设Z?为第/个科室的最终得分,则,各个科室最终得分如下表所示

表5 11个科室最终得分表

最简单的权重计算方法

表 1 100 名大学生对择偶指标体系重要性的评价结果 、 第一步:以 67%(2/3)为界限,若选择“重要”“非常重要”、“极为重 最简单的权重计算方法 权重:反映指标在指标体系中重要性程度的数量。 研究问题:择偶指标体系权重集计算 1.外貌(身高、体重、长相魅力) 2.性格(情绪稳定性、性格匹配性、性格魅力) 3.成就(才华、财富) 4.潜力(升值空间) 一、定量统计法 假定随机抽取 50 名男大学生,50 名女大学生,填写一份调查问卷,结果 如表 1 所示: 要”的比例合计小于 67%,则删除该指标。由表 1 知,4 个指标累计比例均大 于 67%,均应保留。 第二步:把不重要赋值 1,有点重要赋值 2,重要赋值 3,非常重要赋值 4,极为重要赋值 5,若仅选择重要及以上数据进入统计,则这三种选项的权重

分别为:3/(3+4+5)=0.25;4/(3+4+5)=0.33;5/(3+4+5)=0.42。 第三步:计算每个指标的权重。指标1的权重 =(40*0.25+30*0.33+20*0.42)/{(40*0.25+30*0.33+20*0.42) +(30*0.25+40*0.33+10*0.42)+(40*0.25+30*0.33+10*0.42) +(30*0.25+40*0.33+20*0.42)}=28.3/(28.3+24.9+24.1+29.1)=28.3/106.4=0.266 指标2权重=24.9/106.4=0.234指标3权重=24.1/106.4=0.226 指标4权重=29.1/106.4=0.274 二、专家评定法 假设请三位专家对4个指标进行评价,结果如表2所示。 表2专家评定结果表 第一步,请每位专家就4个指标的重要性打分,4个指标评分的总和为100。第二步,计算每一指标的均值,见最后一列。 第三步,计算4个指标的权重。 指标1权重30/100=0.30 指标2权重26.67/100=0.27

确定权重的方法

确定权重的方法表7-1 地质环境质量评价定权方法一览表 序号 定权方法1 专家打分法 2 调查统计法1.重要性打分法 2.“栅栏”法 3.“网格”法 4.列表打勾 ü集合统计法T 1.频数截取法 2.聚类求均值法 3.中间截取求均 值法. 3 序列综合法1.单定权因子排序法 2.多定权因子排序法 4 公式法1.三元函数法 2.概率法 3.信息量法 4.相关系数法 5.隶属函数法 5 数理统计法1.判别分析法 2.聚类分析法 3.因子分析法 6 层次分析法 7 复杂度分析法 一、专家打分法 专家打分法即是由少数专家直接根据经验并考虑反映某评价观点后定出权重,具体做法和基本步骤如下: 第一步选择评价定权值组的成员,并对他们详细说明权重的概念和顺序以及记权的方法。 第二步列表。列出对应于每个评价因子的权值范围,可用评分法表示。例如,若有五个值,那么就有五列。行列对应于权重值,按重要性排列。 第三步发给每个参予评价者一份上述表格,按下述步骤四~九反复核对、填写,直至没有成员进行变动为止。 第四步要求每个成员对每列的每种权值填上记号,得到每种因子的权值分数。 第五步要求所有的成员对作了记号的列逐项比较,看看所评的分数是否能代表他们的意见,如果发现有不妥之处,应重新划记号评分,直至满意为止。 第六步要求每个成员把每个评价因子(或变量)的重要性的评分值相加,得出总数。

第七步每个成员用第六步求得的总数去除分数,即得到每个评价因子的权重。 第八步把每个成员的表格集中起来,求得各种评价因子的平均权重,即为“组平均权重”。 第九步列出每种的平均数,并要求评价者把每组的平均数与自己在第七步得到的权值进行比较。 第十步如有人还想改变评分,就须回到第四步重复整个评分过程。如果没有异议,则到此为止,各评价因子(或变量)的权值就这样决定了。 二、调查统计法 具体作法有下面四种。 1.重要性打分法:重要性打分法是指要求所有被征询者根据自己对各评价因子的重要性的认识分别打分,其步骤如下: a.对被征询者讲清统一的要求,给定打分范围,通常1~5分或1~100分都可。 b.请被征询者按要求打分。 c.搜集所有调查表格并进行统计,给出综合后的权重。 2.列表划勾法:该方法如图7-2所示。事先给出权值,制成表格。由被调查者在认为合适的对应空格中打勾。对应每一评价因子,打勾1~2个,打2个勾表示程度范围。这样就完成一个样本的调查结果。 在样本调查的基础上,除采用一般的求个样本的均值作为综合结果外,还可采用如下方法: 图7-2 列表划勾法示意图 备择程 因子序号 度 W 1 2 3 …m-1 m 0.2 √√√ 0.4 √√√ 0.6 √√ 0.8 √ 1.0 a.频数截取法 频数截取法的主要步骤如下: 第一步:列中值频率分布表,见表7-2。记对应第个评价因子第个样本给的权值区间数为〔〕,

Excel-wps中熵值法、熵权法、指标赋权、权重计算。

Excel -wps 中熵值法、熵权法、指标赋权、权重计算。 Excel 、wps 实现熵权法计算过程: 1.熵权法下指标权重的计算 熵权法下首先计算第i 年份的第j 项指标值的权重: i=1,2,3…n; j=1,2,3…m (2) 令k=1/ln(n)>0,为调节系数,计算指标信息熵: i=1,2,3…n; j=1,2,3…m (3) 最后确定计算指标权重: (0

Excel-wps中熵值法、熵权法、指标赋权、权重计算。 6 2003 0.1710 0.1261 7 2004 0.2852 0.1465 8 2005 0.3170 0.1291 9 2006 0.6475 0.2121 10 2007 0.6475 0.2803 11 2008 0.562183898 0.403750964 12 2009 0.585203446 0.588585521 13 2010 0.694865622 0.465106715 14 2011 0.500221291 0.472249607 15 2012 1 0.602993026 16 2013 0.863566837 0.558954944 17 2014 0.835655753 0.523401776 18 2015 0.193615668 0.586089558 19 2016 0.52105526 1.000347255 20 =SUM(B1:B19) =SUM(C1:C19) 21 pij =B1/B$20 =C1/C$20 下拉后得到19 行新数据

指标权重确定方法之熵权法(计算方法参考

指标权重确定方法之熵权法 一、熵权法介绍 熵最先由申农引入信息论,目前已经在工程技术、社会经济等领域得到了非常广泛的应用。 熵权法的基本思路是根据指标变异性的大小来确定客观权重。 一般来说,若某个指标的信息熵越小,表明指标值得变异程度越大,提供的信息量越多,在综合评价中所能起到的作用也越大,其权重也就越大。相反,某个指标的信息熵越大,表明指标值得变异程度越小,提供的信息量也越少,在综合评价中所起到的作用也越小,其权重也就越小。 二、熵权法赋权步骤 1.数据标准化 将各个指标的数据进行标准化处理。 假设给定了k个指标,其中。假设对各指标数据标准化后的值为,那么。 2.求各指标的信息熵 根据信息论中信息熵的定义,一组数据的信息熵。其中,如果,则定义。 3.确定各指标权重

根据信息熵的计算公式,计算出各个指标的信息熵为。通过信息熵计算各指标的权重:。 三、熵权法赋权实例 1.背景介绍 某医院为了提高自身的护理水平,对拥有的11个科室进行了考核,考核标准包括9项整体护理,并对护理水平较好的科室进行奖励。下表是对各个科室指标考核后的评分结果。 但是由于各项护理的难易程度不同,因此需要对9项护理进行赋权,以便能够更加合理的对各个科室的护理水平进行评价。 2.熵权法进行赋权 1)数据标准化 根据原始评分表,对数据进行标准化后可以得到下列数据标准化表 表2 11个科室9项整体护理评价指标得分表标准化表 科室X1X2X3X4X5X6X7X8X9

A B C D E F G H I J K 2)求各指标的信息熵 根据信息熵的计算公式,可以计算出9项护理指标各自的信息熵如下: 表3 9项指标信息熵表 X1X2X3X4X5X6X7X8X9 信息熵 3)计算各指标的权重 根据指标权重的计算公式,可以得到各个指标的权重如下表所示: 表4 9项指标权重表 W1W2W3W4W5W6W7W8W9权重 3.对各个科室进行评分 根据计算出的指标权重,以及对11个科室9项护理水平的评分。设Z l为第l个科室的最终得分,则,各个科室最终得分如下表所示 表5 11个科室最终得分表

最简单的权重计算方法

最简单的权重计算方法 权重:反映指标在指标体系中重要性程度的数量。 研究问题:择偶指标体系权重集计算 1.外貌(身高、体重、长相魅力) 2.性格(情绪稳定性、性格匹配性、性格魅力) 3.成就(才华、财富) 4.潜力(升值空间) 一、定量统计法 假定随机抽取50名男大学生,50名女大学生,填写一份调查问卷,结果如表1所示: 表1 100名大学生对择偶指标体系重要性的评价结果 第一步:以67%(2/3)为界限,若选择“重要”、“非常重要”、“极为重要”的比例合计小于67%,则删除该指标。由表1知,4个指标累计比例均大于67%,均应保留。 第二步:把不重要赋值1,有点重要赋值2,重要赋值3,非常重要赋值4,极为重要赋值5,若仅选择重要及以上数据进入统计,则这三种选项的权重分别

为:3/(3+4+5)=0.25;4/(3+4+5)=0.33;5/(3+4+5)=0.42。 第三步:计算每个指标的权重。指标1的权重=(40*0.25+30*0.33+20*0.42)/{(40*0.25+30*0.33+20*0.42)+(30*0.25+40*0.33+10*0.42)+(40*0.25+30*0.33+10*0.42)+(30*0.25+40*0.33+20*0.42)} = 28.3/(28.3+24.9+24.1+29.1)=28.3/106.4=0.266 指标2权重=24.9/106.4=0.234指标3权重=24.1/106.4=0.226指标4权重=29.1/106.4=0.274 二、专家评定法 假设请三位专家对4个指标进行评价,结果如表2所示。 表2 专家评定结果表 第一步,请每位专家就4个指标的重要性打分,4个指标评分的总和为100。第二步,计算每一指标的均值,见最后一列。 第三步,计算4个指标的权重。 指标1权重30/100=0.30 指标2权重26.67/100=0.27

权重的确定方法汇总

一、指标权重的确定 1.综述 目前关于属性权重的确定方法很多,根据计算权重时原始数据的来源不同,可以将这些方法分为三类:主观赋权法、客观赋权法、组合赋权法。 主观赋权法是根据决策者(专家)主观上对各属性的重视程度来确定属性权重的方法,其原始数据由专家根据经验主观判断而得到。常用的主观赋权法有专家调查法(Delphi法)、层次分析法(AHP )[106-108]、二项系数法、环比评分法、最小平方法等。本文选用的是利用人的经验知识的有序二元比较量化法。 主观赋权法是人们研究较早、较为成熟的方法,主观赋权法的优点是专家可以根据实际的决策问题和专家自身的知识经验合理地确定各属性权重的排序,不至于出现属性权重与属性实际重要程度相悖的情况。但决策或评价结果具有较强的主观随意性,客观性较差,同时增加了对决策分析者的负担,应用中有很大局限性。 鉴于主观赋权法的各种不足之处,人们又提出了客观赋权法,其原始数据由各属性在决策方案中的实际数据形成,其基本思想是:属性权重应当是各属性在属性集中的变异程度和对其它属性的影响程度的度量,赋权的原始信息应当直接来源于客观环境,处理信息的过程应当是深入探讨各属性间的相互联系及影响,再根据各属性的联系程度或各属性所提供的信息量大小来决定属性权重。如果某属性对所有决策方案而言均无差异(即各决策方案的该属性值相同),则该属性对方案的鉴别及排序不起作用,其权重应为0;若某属性对所有决策方案的属性值有较大差异,这样的属性对方案的鉴别及排序将起重要作用,应给予较大权重.总之,各属性权重的大小应根据该属性下各方案属性值差异的大小来确定,差异越大,则该属性的权重越大,反之则越小。 常用的客观赋权法[109-110]有:主成份分析法、熵值法[111-112]、离差及均方差法、多目标规划法等。其中熵值法用得较多,这种赋权法所使用的数据是决策矩阵,所确定的属性权重反映了属性值的离散程度。

指标权重计算的确定方法

指标权重的计算方法 权重是一个相对的概念,是针对某一指标而言。某一指标的权重是指该指标在整体评价中的相对重要程度。 针对量表类问卷,指标权重计算在学术研究和企业研究中都较为常见。量表类问卷权重研究关注重心在于各个指标的权重得分值,而非影响关系,通过计算各个指标或者题项的权重得分值,最后构建完善的权重体系,并且结合各指标权重情况提供科学建议。 方法分类 权重研究分析方法非常多,以及权重研究均针对量表类题项,基本无法对非量表类问卷进行权重体系构建。针对量表类问卷权重研究方法,根据计算权重时原始数据的来源不同,可以将这些方法分为三类:主观赋权法、客观赋权法和组合赋权法。 主观赋权法:是根据决策者(专家)主观上对各属性的重视程度来确定属性权重的方法,常用的主观赋权法包括专家咨询法(Delphi法)、AHP层次分析法等。专家咨询法是由多位专家讨论共同决定各指标的权重值情况,而AHP层次分析法也是利用专家打分,并且使用数据计算过程最终生成各指标权重值。 客观赋权法:是根据原始数据之间的关系通过一定的数学方法来确定权重,其判断结果不依赖于人的主观判断,有较强的数学理论依据。常用的客观赋权法包括因子分析法、熵值法等,因子分析法和熵值法直接使用收集数据进行数据计算,最终生成指标权重值。 组合赋权法:针对主、客观赋权法各自的优缺点,研究人员可以综合使用两种方法,同时基于指标数据之间的内在规律和专家经验对决策指标进行赋权。

进一步说明 专家咨询法(Delphi法),是采用背对背通信方式征询专家小组成员预测意见,经过几轮征询使专家小组的预测意见趋于集中,最后做出符合市场未来发展趋势的预测结论。本质上是一种反馈匿名函询法。其大致流程是:在对所要预测的问题征得专家的意见之后,进行整理、归纳、统计,再匿名反馈给各专家,再次征求意见,再集中,再反馈,直至得到一致的意见。 AHP层次分析法,根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同层次聚集组合,形成一个剁成次的分析结构模型,从而最终使问题归结为最底层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权值的确定或相对优劣次序的排定。其基本模型如下: 层级分析法的计算步骤为:首先构造两两判断矩阵,然后让专家进行评分,接着计算特征根,并进行一致性检验,最后进行权重的计算。 熵值法,熵值是不确定性的一种度量。信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性越大,熵也越大。因而利用熵值携带的信息进行权重计算,结合各项指标的变异程度,利用信息熵这个工具,计算出各项指标的权重,为多指标综合评价提供依据。 通常熵值法的使用场景情况如下: 配合因子分析(或主成分析)得到一级指标权重,进一步使用熵值法计算具体二级指标的权重,最终构建权重体系;

权重的三种计算方法举例

权重的计算方法举例 权重:反映指标在指标体系中重要性程度的数量。 研究问题:择偶指标体系权重集计算 1.外貌(身高、体重、长相魅力) 2.性格(情绪稳定性、性格匹配性、性格魅力) 3.成就(才华、财富) 4.潜力(升值空间) 一、定量统计法 假定随机抽取50名男大学生,50名女大学生,填写一份调查问卷,结果如表1所示: 表1 100名大学生对择偶指标体系重要性的评价结果 第一步:以67%(2/3)为界限,若选择“重要”、“非常重要”、“极为重要”的比例合计小于67%,则删除该指标。由表1知,4个指标累计比例均大于67%,均应保留。 第二步:把不重要赋值1,有点重要赋值2,重要赋值3,非常重要赋值4,极为重要赋值5,若仅选择重要及以上数据进入统计,则这三种选项的权重分别为:3/(3+4+5)=0.25;4/(3+4+5)=0.33;5/(3+4+5)=0.42。 第三步:计算每个指标的权重。指标1的权重=(40*0.25+30*0.33+20*0.42)/{(40*0.25+30*0.33+20*0.42)+(30*0.25+40*0.33+10*0.42)+(40*0.25+30*0.33+10*0.42)+(30*0.25+40*0.33+20*0.42)} = 28.3/(28.3+24.9+24.1+29.1)=28.3/106.4=0.266 指标2权重=24.9/106.4=0.234指标3权重=24.1/106.4=0.226 指标4权重=29.1/106.4=0.274

二、专家评定法 假设请三位专家对4个指标进行评价,结果如表2所示。 表2 专家评定结果表 第一步,请每位专家就4个指标的重要性打分,4个指标评分的总和为100。第二步,计算每一指标的均值,见最后一列。 第三步,计算4个指标的权重。 指标1权重30/100=0.30 指标2权重26.67/100=0.27 指标3权重23.33/100=0.23 指标4权重20/100=0.20

熵值法的原理及实例讲解

熵值法的原理及实例讲解 熵值法 1.算法简介熵值法是一种客观赋权法,其根据各项指标观测值所提供的信息的大小来确定指标权重。设有m个待评方案,n项评价指标,形成原始指标数据矩阵X?(xij)m?n,对于某项指标xj,指标值Xij的差距越大,则该指标在综合评价中所起的作用越大;如果某项指标的指标值全部相等,则该指标在综合评价中不起作用。在信息论中,熵是对不确定性的一种度量。信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性就越大,熵也越大.根据熵的特性,我们可以通过计算熵值来判断一个方案的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响越大!因此,可根据各项指标的变异程度,利用信息熵这个工具,计算出各

个指标的权重,为多指标综合评价提供依据! 2.算法实现过程数据矩阵?X11?X1m??????其中Xij为第i个方案第j个指标的数值A????X??n1?Xnm?n? 数据的非负数化处理于熵值法计算采用的是各个方案某一指标占同一指标值总和的比值,因此不存在量纲的影响,不需要进行标准化处理,若数据中有负数,就需要对数据进行非负化处理!此外,为了避免求熵值时对数的无意义,需要进行数据平移:对于越大越好的指标:’Xij?Xij?min(X1j,X2j,?,Xn j)max(X1j,X2j,?,Xnj)?min(X1j,X2j,?,Xnj) ?1,i?1,2,?,n;j?1,2,?,m对于越小越好的指标:’Xij?max(X1j,X2j,?,Xnj)?Xijm ax(X1j,X2j,?,Xnj)?min(X1j,X2j,?,Xnj)?1,i ?1,2,?,n;j?1,2,?,m为了方便起见,仍记非负化处理后的数据为Xij 计算第j 项指标下第i个方案占该指标的比重Pij?Xij?Xi?1n(j?1,2,?m) 计算第j项指标的熵值ej??k*?Pijlog(Pij),其中

权重的确定方法

权重的确定方法 权重是一个相对的概念,是针对某一指标而言。某一指标的权重是指该指标在整体评价中的相对重要程度。在模糊决策中,权重至关重要,他反映了各个因素在综合决策过程中所占有的地位和所起的作用,直接影响决策的结果。通常是根据经验给出权重,不可否认这在一定程度上能反映实际情况,但凭经验给出的权重有时不能客观的反映实际情况,导致评判结果“失真”。比较客观的权重的判定方法有如下几种: 1.确定权重的统计方法 1.1专家估测法 该法又分为平均型、极端型和缓和型。主要根据专家对指标的重要性打分来定权,重要性得分越高,权数越大。优点是集中了众多专家的意见,缺点是通过打分直接给出各指标权重而难以保持权重的合理性。 设因素集U={n u u u ,...,2,1},现有k 个专家各自独立的给出各个因素i u (i=1,2,...,n )的权重, ∑==k j ij i a k a 11(i=1,2,...,n ),即)1,...,1,1(1 1211∑∑∑====k j nj k j j k j j a k a k a k A 。 1.2加权统计方法 当专家人数k<30人时,可用加权统计方法计算权重。 按公式i s i i k x w a ∑==1计算(其中s 为序号数)然后可得权重A 。 1.3频数统计方法 由所有专家独立给出的各个因素的权重,得到权重分配表,对各个因素i u (i=1,2,...,n )进行但因素的权重统计实验,步骤如下: 第一步:对因素i u (i=1,2,...,n )在它的权重ij a (j=1,2,...,k)中找出最大值i M 和最小值i m , 即{}ij k j i a M ≤≤=1max ,{} ij k j i a m ≤≤=1min . 第二步;适当选取整数p,利用公式p m M i i -计算出权重分为p 组的组距,并将权重从小到大分 为p 组. 第三步:计算出落在每组内权重的频数和频率. 第四步:根据频数和频率的分布请况,取最大频率所在分组的组中值为因素i u 的权重i a (i=1,2,...,n ),从而得权重A=(n a a a ,...,,21). 1.4因子分析权重法 根据数理统计中因子分析方法,对每个指标计算共性因子的累积贡献率来定权。累积贡献率越大,说明该指标对共性因子的作用越大,所定权数也越大。 1.5信息量权数法 根据各评价指标包含的分辨信息来确定权数。采用变异系数法,变异系数越大,所赋的

权重的确定方法

权重的确定方法 综合评价指标体系内部各元素间存在质和量的联系。由指标体系的结构模型(如层次模型),我们已经确定了指标体系质的方面的联系,那么权重则反映各系统各元素之间量的方面联系纽带,它对于系统综合评价具有重要的意义。无论是在模糊综合评价,还是层次分析、灰色系统评价无一例外的用到了评价指标的权重。 权重的概念 韦氏大词典中对权重(Weight)的解释为:“在所考虑的群体或系列中,赋予某一项目的相对值”;“在某一频率分布中,某一项目的频率”;“表示某一项目相对重要性所赋予的一个数”。从中我们可以得出两点结论: (1)权重是表示因素重要性的相对数值。 (2)权重是通过概率统计得出的频率分布中的频率。 由此可以看出权重具有随机性与模糊性,它是一个模糊随机量。在综合评价中权重可以定义为元素对于整体贡献的相对重要程度,即元素能够反映总体的程度。 权重的确定方法 对实际问题选定被综合的指标后,确定各指标的权的值的方法有很多种。有些方法是利用专家或个人的知识和经验,所以有时称为主观赋权法。但这些专家的判断本身也是从长期实际中来的,不是随意设想的,应该说有客观的基础;有些方法是从指标的统计性质来考虑,它是由调查所得的数据决定,不需征求专家们的意见,所以有时称为客观赋权法。在这些方法中,德尔菲(Delphi)方法是被经常被采用的,其它方法就相对来说用得不多,这里列举几个在下面,以供比较。 1. 德尔菲法 德尔菲法又称为专家法,其特点在于集中专家的知识和经验,确定各指标的权重,并在不断的反馈和修改中得到比较满意的结果。基本步骤如下: (1)选择专家。这是很重要的一步,选得好不好将直接影响到结果的准确性。一般情况下,选本专业领域中既有实际工作经验又有较深理论修养的专家10~30人左右,并需征得专家本人的同意。 (2)将待定权重的p个指标和有关资料以及统一的确定权重的规则发给选定的各位 专家,请他们独立的给出各指标的权数值。 (3)回收结果并计算各指标权数的均值和标准差。 (4)将计算的结果及补充资料返还给各位专家,要求所有的专家在新的基础上确定

评价指标权重确定方法综述

评价指标权重确定方法综述 *** (西安科技大学地质与环境学院西安 710600) 摘要:权重是一个相对的概念,是针对某一指标而言的。某一指标的权重是指该指标在整体评价中的相对重要程度。在多因素的各种评价决策问题中,确定各因素的权重是评价决策的关健之一,本文着重介绍了专家估测法、频数统计法、因子分析权重法、信息量权数法、独立性权数法、主成份分析法、层次分析法、模糊关系方程法等几种确定权重的方法。 关键词:权重;变量;因子分析;层次分析。 The review of the weighing values’s evaluation method *** ( xi’an university of science and technology Xi’an 710600 ) Abstract: the weight is a relative concept, is aimed at a certain indicators. One refers to the weights of indicators in the evaluation of the overall relative important degree. In multi-factor evaluation of decision making problems, determine the weight of each factor is one of the key evaluation decision, this paper emphatically introduces the expert estimation method, frequency statistics, factor analysis weighting method, weighting method, independent information weighting method, principal component analysis method, analytic hierarchy process (ahp) and fuzzy relation equation method of several kinds of determining weights methods. Key words: weight; Variables; Factor analysis; Hierarchical analysis. 0 引言 多因素的评价决策问题具有广泛的理论和实际应用背景。解决多因素决策问题的许多方法都需要关于因素权重的信息。所以,如何确定权重是评价决策的关键之一。下面将分别介绍几种不同类型的方法,应用时候可以根据具体情况选用。 1专家估测法

Matlab学习系列19.-熵值法确定权重

19.熵值法确定权重 一、基本原理 在信息论中,熵是对不确定性的一种度量。信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性越大,熵也越大。 根据熵的特性,可以通过计算熵值来判断一个事件的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响(权重)越大,其熵值越小。 二、熵值法步骤 1. 选取n个国家,m个指标,则x j为第i个国家的第j个指标的数值(i=1, 2…,n; j=1,2,…,m); 2. 指标的归一化处理:异质指标同质化 由于各项指标的计量单位并不统一,因此在用它们计算综合指标前,先要对它们进行标准化处理,即把指标的绝对值转化为相对值,并令X j X j ,从而解决各项不同质指标值的同质化问题。而且,由于正向指标和负向指标数值代表的含义不同(正向指标数值越高越好,负向指标数值越低越好),因此,对于高低指标我们用不同的算法进行数据标准化处理。其具体方法如下: 正向指标: X ij min {勺公2),...,人)} X ij max{X ij,X2j,...,X nj} min {勺公?」,…,x j

负向指标:

max{X ij,X2j,...,X nj} X j X j max{X jj,X2j,...,X nj} m in {勺必),…,x^} 则X j为第i个国家的第j个指标的数值(i=1,2…,n; j=1,2,…,m) 为了方便起见,归一化后的数据X j仍记为X j; 3?计算第j项指标下第i个国家占该指标的比重: X ij P j —, i 1,2..., n, j 1,2..., m X ij i 1 4. 计算第j项指标的熵值: n e j k P ij ln( p j) i 1 其中,k=1/ln(n)>0.满足e j >0; 5. 计算信息熵冗余度: d j 1 e j; 6. 计算各项指标的权值: d j W j —, j 1,2,...,m d j j 1 7. 计算各国家的综合得分: m s W j p ij, i 1,2,...n j 1 三、Matlab实现 按上述算法步骤,编写Matlab函数:shang.m function [s,w]=sha ng(x) %函数shang(), 实现用熵值法求各指标(列)的权重及各数据行的得分

指标权重确定方法之熵权法(计算方法参考

指标权重确定方法之炳权法 一、爛权法介绍 爛最先由申农引入信息论,目前已经在工程技术、社会经济等领域得到了非常广泛的应用。 矯权法的基本思路是根据指标变异性的大小来确定客观权重。 一般来说,若某个指标的信息矯越小,表明指标值得变异程度越大,提供的信息量越多,在综合评价中所能起到的作用也越大,其权重也就越大。相反,某个指标的信息墉越大,表明指标值得变异程度越小,提供的信息量也越少,在综合评价中所起到的作用也越小,其权重也就越小。 二、爛权法赋权步骤 1.数据标准化 将各个指标的数据进行标准化处理。 假设给定了&个指标,其中。假设对各指标数据标准化后的值为,那么。 2.求各指标的信息爛 根据信息论息矯的定义,一组数据的信息矯。其中,如果,则定义。 3.确定各指标权重 根据信息*商的计算公式,计算出各个指标的信息爛为。通过信息爛计算各指标的权重:O 三、爛权法赋权实例 1.背景介绍

某医院为了提高自身的护理水平,对拥有的11个科室进行了考核,考核标准包括9项整体护理,并对护理水平较好的科室进行奖励。下表是对各个科室指标考核后的评分结果。 表I 11个科室9项整体护理评价指标得分表 但是由于各项护理的难易程度不同,因此需要对9项护理进行赋权,以便能够更加合理的对各个科室的护理水平进行评价。 2.爛权法进行赋权 1)数据标准化 根据原始评分表,对数据进行标准化后可以得到下列数据标准化表 表2 11个科室9项整体护理评价指标得分表标准化表

2)求各指标的信息埔 根据信息矯的计算公式,可以计算出9项护理指标各自的信息矯如下: 表3 9项指标信息爛表 3)计算各指标的权重 根据指标权重的计算公式,可以得到各个指标的权重如下表所示: 表4 9项指标权重表 3.对各个科室进行评分 根据计算出的指标权重,以及对11个科室9项护理水平的评分。设Z?为第/个科室的最终得分,则,各个科室最终得分如下表所示 表5 11个科室最终得分表

绩效考核指标权重的计算方法

绩效考核指标权重的计算方法在企业人力资源管理中,有许多涉及到权重的设置,如素质评价、绩效考核等。在一般的情况下,管理者都知道权重的重要性,但在设定权重时却往往会依凭自己积累起来的经验以及评价因素的定位来 进行判断。事实上,这种确定权重的方式存在很强的主观性,在实践中会导致一些不必要的偏差。如何在设定权重时,既考量管理者多年来积累起来的经验判断,又科学客观地定位各评价因素,避免一些不必要的偏差,使评价结果更接近于实际情况呢?下面的几种方法,或许能给你带来一定的收获。 一、简单排序编码法 这种方法通过管理者对各项考评因素的重视程度进行排序 编码,然后确定权重的一种简单的方法,需要管理者从过去的历史数据及个人的经验对各项考评项目作出正确的排序。 比如在绩效考核过程中,某一职位有四个KPI的考评因素,分别为A,B,C,D,依企业的要求及目标设定者的经验,各项考评因素的重要性排序为B,D,C,A;然后再按照自然数顺序由大到小对其进行分配,分别为4,3,2,1。然后将权数归一化,最后结果为A: 1/(4+3+2+1)=0.1;B:4/(4+3+2+1)=0.4C:2/(4+3+2+1)=0.2;D: 3/(4+3+2+1)=0.3。 这种简单排序编码法计算权数的方法简单,但也存在主观因素,存在一定的不合理性。但至少它比管理者单纯地依据自身经验进行设定的方式要客观一些。 二、倍数环比法 倍数环比法首先将各个考评因素随机排列,然后按照顺序对

各项因素进行比较,得出各因素重要度之间的倍数关系,又称环比比率,再将环比比率进行统一转换为基准值,最后进行归一化处理,确定其最终权重。这种方法需要对考评因素有客观的判断依据,需要有客观准确的历史数据作为支撑。 以上述四个因素为例,如下表。 说明:表格第二行,0.3表示A的重要性是B的0.3倍;2表示B的重要性是C的2倍,0.55表示C的重要性是D的0.55倍;1表示D本身。第三 行,是以D为基准进行的比率归一化,因C的重要性是D的0.55倍,因此取值为0.55*1=0.55;B是C的2倍,所以取值为 0.55*2=1.1;以下类推。最终权重则以合计数为分母,各基准值为分子算出。这种倍数环比法决定权重的方法较为实用,计算也简单,由于有准确的历史数据作支撑,因此具有较高的客观科学性。 三、优序对比法 倍数环比法虽然较为实用,但事实上,许多企业的历史数据常常不能反映因素之间的客观关系,而且也有些因素不能用量化的形式进行计算。如何评定它们之间的重要程度呢?优序对比法通过各项因素两两比较,充分考虑各项因素之间的互相联系,从而确定其权重。 首先需要构建判断尺度,一般情况下,重要程度判断尺度可用1,2,3,4,5五级表示,数字越大,表明重要性越大。当两个目标对比时,如果一个目标性为5,则另一目标重要性为0;如果一个目标为3,则另一个目标为2。 仍以上述四个因素为例,进行说明。 说明:合计列是将该行与其他因素两两比较得出的值进行加总,最终权数则是以各行合计数除以总合计得出。

权重确定方法

? ? ? ? ? ? 权重 权重是一个相对的概念,是针对某一指标而言。某一指标的权重是指该指标在整体评价中的相对重要程度。 权重表示在评价过程中,是被评价对象的不同侧面的重要程度的定量分配,对各评价因子在总体评价中的作用进行区别对待。事实上,没有重点的评价就不算是客观的评价,每个人员的性质和所处的层次不同,其工作的重点也肯定是不能一样的。因此,相对工作所进行的业绩考评必须对不同内容对目标贡献的重要程度做出估计,即权重的确定。 总之,权重是要从若干评价指标中分出轻重来,一组评价指标体系相对应的权重组成了权重体系。一组权重体系{Vi|I=1,2,…n},必须满足下述两个条件: (1)0

确定权重的原则 一、系统优化原则 在评价指标体系中,每个指标对系统都由它的作用和贡献,对系统而言都有它的重要性。所以,在确定它们的权重时,不能只从单个指标出发,而是要处理好各评价指标之间的关系,合理分配它们的权重。应当遵循系统优化原则,把整体最优化作为出发点和追求的目标。 在这个原则指导下,对评价指标体系中各项评价指标进行分析对比,权衡它们各自对整体的作用和效果,然后对它们的相对重要性做出判断。确定各自的权重,即不能平均分配,又不能片面强调某个指标、单个指标的最优化,而忽略其他方面的发展。在实际工作中,应该使每个指标发挥其应有的作用。 二、评价者的主观意图与客观情况相结合的原则 评价指标权重反映了评价者和组织对人员工作的引导意图和价值观念。当他们觉得某项指标很重要,需要突出它的作用时,就必然各该指标以较大的权数。但现实情况往往与人们的主观意愿不完全一致,比如,确定权重时要考虑这样几个问题:(1)历史的指标和现实的指标;(2)社会公认的和企业的特殊性;(3)同行业、同工种间的平衡。所以,必须同时考虑现实情况,把引导意图与现实情况结合起来。前面已经讲过,评价经营者的经营业绩应该把经济效益和社会效益同时加以考虑。 三、民主与集中相结合的原则 权重是人们对评价指标重要性的认识,是定性判断的量化,往往受个人主观因素的影响。不同的人对同一件事情都有各自的看法,而且经常是不相同的,其中有合理的成分;也有受个人价值观、能力和态度造成的偏见。这就需要实行群体决策的原则,集中相关人员的意见互相补充,形成统一的方案。这个过程有下列好处: 1、考虑问题比较全面,使权重分配比较合理,防止个别人认识和处理问题的片面性。 2、比较客观的协调了评价各方之间意见不统一的矛盾,经过讨论、协商、考察各种具体情况而确定的方案,具有很强的说服力,预先消除了许多不必要的纠纷。 3、这是一种参与管理的方式,在方案讨论的过程中,各方都提出了自己的意见,而且对评价目的和系统目标都有进一步的体会和了解,在日常工作中,可以更好的按原定的目标进行工作。 权值因子判断表法 1、组成评价的专家组。包括人事部门的人员、评价专家以及相关的其他人员。根据不同的评价对象和目的,专家构成可以不同。 2、制订评价指标因子判断表。见下表:

Excel,wps中熵值法、熵权法、指标赋权、权重计算。【精品文档】

Excel 、wps 实现熵权法计算过程: 1.熵权法下指标权重的计算 熵权法下首先计算第i 年份的第j 项指标值的权重: ∑== n i ij ij ij y y p 1 ' ' i=1,2,3…n; j=1,2,3…m (2) 令k=1/ln(n)>0,为调节系数,计算指标信息熵: )ln (1 ij n i ij j p p k e ∑=-= i=1,2,3…n; j=1,2,3…m (3) 最后确定计算指标权重: ∑=--= m j j j j e m e w 11 (0

6 2003 0.1710 0.1261 7 2004 0.2852 0.1465 8 2005 0.3170 0.1291 9 2006 0.6475 0.2121 10 2007 0.6475 0.2803 11 2008 0.562183898 0.403750964 12 2009 0.585203446 0.588585521 13 2010 0.694865622 0.465106715 14 2011 0.500221291 0.472249607 15 2012 1 0.602993026 16 2013 0.863566837 0.558954944 17 2014 0.835655753 0.523401776 18 2015 0.193615668 0.586089558 19 2016 0.52105526 1.000347255 20 =SUM(B1:B19) =SUM(C1:C19) 21 pij =B1/B$20 =C1/C$20 下拉后得到19 行新数据

确定权重的7种方法

确定权重的7种方法 表7-1 地质环境质量评价定权方法一览表 一、专家打分法 专家打分法即是由少数专家直接根据经验并考虑反映某评价观点后定出权重,具体做法和基本步骤如下: 第一步选择评价定权值组的成员,并对他们详细说明权重的概念和顺序以及记权的方法。 第二步列表。列出对应于每个评价因子的权值范围,可用评分法表示。例如,若有五个值,那么就有五列。行列对应于权重值,按重要性排列。 第三步发给每个参予评价者一份上述表格,按下述步骤四~九反复核对、填写,直至没有成员进行变动为止。 第四步要求每个成员对每列的每种权值填上记号,得到每种因子的权值分数。 第五步要求所有的成员对作了记号的列逐项比较,看看所评的分数是否能代表他们的意见,如果发现有不妥之处,应重新划记号评分,直至满意为止。 第六步要求每个成员把每个评价因子(或变量)的重要性的评分值相加,得出总数。

第七步每个成员用第六步求得的总数去除分数,即得到每个评价因子的权重。 第八步把每个成员的表格集中起来,求得各种评价因子的平均权重,即为“组平均权重”。 第九步列出每种的平均数,并要求评价者把每组的平均数与自己在第七步得到的权值进行比较。 第十步如有人还想改变评分,就须回到第四步重复整个评分过程。如果没有异议,则到此为止,各评价因子(或变量)的权值就这样决定了。 二、调查统计法 具体作法有下面四种。 1.重要性打分法:重要性打分法是指要求所有被征询者根据自己对各评价因子的重要性的认识分别打分,其步骤如下: a.对被征询者讲清统一的要求,给定打分范围,通常1~5分或1~100分都可。 b.请被征询者按要求打分。 c.搜集所有调查表格并进行统计,给出综合后的权重。 2.列表划勾法:该方法如图7-2所示。事先给出权值,制成表格。由被调查者在认为合适的对应空格中打勾。对应每一评价因子,打勾1~2个,打2个勾表示程度范围。这样就完成一个样本的调查结果。 在样本调查的基础上,除采用一般的求个样本的均值作为综合结果外,还可采用如下方法: 图7-2 列表划勾法示意图 备择程 因子序号 度 W 1 2 3 …m-1 m 0.2 √√√ 0.4 √√√ 0.6 √√ 0.8 √ 1.0 a.频数截取法 频数截取法的主要步骤如下: 第一步:列中值频率分布表,见表7-2。记对应第个评价因子第个样本给的权值区间数为〔〕,=1,2,…,相对表中征询权值的几个区间,计算每一征询权值区间中所包含样本权值的频数,并推求

相关文档
相关文档 最新文档