文档库 最新最全的文档下载
当前位置:文档库 › 干旱胁迫对枣树净光合速率的影响

干旱胁迫对枣树净光合速率的影响

干旱胁迫对枣树净光合速率的影响
干旱胁迫对枣树净光合速率的影响

干旱胁迫对枣树净光合速率的影响枣树属于鼠李科(phamnaceae)枣属(zizyphus mill.)植物。该属在世界约有100种,主要分布在两半球的热带、亚热带、及温带地区。近年来对于枣的研究主要有以下几个方面:1、任小林对14个枣的品种进行耐藏性的比较研究,结果表明:早熟脆枣、灵宝圆枣比较耐藏,枣果实耐藏性与呼吸速率呈显著负相关[1]。2、关于枣的抗逆性的研究报导不多,只有少量几个关于枣抗旱性的研究[2]。如马全林等对枣抗旱性的研究,通过对枣树的形态特征的研究,表明枣树体矮小、叶表皮外有蜡质层,表皮上有栅栏组织且排列紧密等特点以及通过根长、根的数量、根冠比等形态指标的研究探讨枣的抗旱性。其他的几个研究也停留在形态指标上,没有对枣在干旱胁迫条件下的生理生化指标等多项指标进行综合研究。关于干旱形态结构生理机制的研究,自80年代末到90年代末,科技工作者已作了深入的探讨和研究,在果树上主要集中于草莓[3],柑橘[4]等果树上。从根系、叶片的形态及生理生化等方面进行了深入的研究,提出了不同果树的抗旱机理及抗旱性指标。人们对果树抗旱形态结构,生理生化机制的研究已经可行,对果树根系叶片形态结构与抗旱性关系的研究已经深入。

本文模拟干旱胁迫及自然状况下土壤水分梯度对枣树生理变化的对比研究,以通榆红枣和酸枣作为材料,研究土壤含水量状况对其净光合速率的影响,以其为探讨干旱胁迫下枣树的干旱逆境的生理响应机制提供理论依据,为其在干旱地区的推广应用提供参考。

叶绿素荧光参数及意义

第一节 叶绿素荧光参数及其意义 韩志国,吕中贤(泽泉开放实验室,上海泽泉科技有限公司,上海,200333) 叶绿素荧光技术作为光合作用的经典测量方法,已经成为藻类生理生态研究领域功能最强大、使用最 广泛的技术之一。由于常温常压下叶绿素荧光主要来源于光系统II 的叶绿素a ,而光系统II 处于整个光合 作用过程的最上游,因此包括光反应和暗反应在内的多数光合过程的变化都会反馈给光系统II ,进而引起 叶绿素a 荧光的变化,也就是说几乎所有光合作用过程的变化都可通过叶绿素荧光反映出来。与其它测量 方法相比,叶绿素荧光技术还具有不需破碎细胞、简便、快捷、可靠等特性,因此在国际上得到了广泛的 应用。 1 叶绿素荧光的来源 藻细胞内的叶绿素分子既可以直接捕获光能,也可以间接获取其它捕光色素(如类胡萝卜素)传递来 的能量。叶绿素分子得到能量后,会从基态(低能态)跃迁到激发态(高能态)。根据吸收的能量多少, 叶绿素分子可以跃迁到不同能级的激发态。若叶绿素分子吸收蓝光,则跃迁到较高激发态;若叶绿素分析 吸收红光,则跃迁到最低激发态。处于较高激发态的叶绿素分子很不稳定,会在几百飞秒(fs ,1 fs=10-15 s )内通过振动弛豫向周围环境辐射热量,回到最低激发态(图1)。而最低激发态的叶绿素分子可以稳定 存在几纳秒(ns ,1 ns=10-9 s )。 波长吸收荧光红 B 蓝 荧光 热耗散 最低激发态较高激发态基态吸收蓝光吸收红光能量A 图1 叶绿素吸收光能后能级变化(A )和对应的吸收光谱(B )(引自韩博平 et al., 2003) 处于最低激发态的叶绿素分子可以通过几种途径(图2)释放能量回到基态(韩博平 et al., 2003; Schreiber, 2004):1)将能量在一系列叶绿素分子之间传递,最后传递给反应中心叶绿素a ,用于进行光化 学反应;2)以热的形式将能量耗散掉,即非辐射能量耗散(热耗散);3)放出荧光。这三个途径相互竞 争、此消彼长,往往是具有最大速率的途径处于支配地位。一般而言,叶绿素荧光发生在纳秒级,而光化 学反应发射在皮秒级(ps ,1 ps=10-12 s ),因此在正常生理状态下(室温下),捕光色素吸收的能量主要用 于进行光化学反应,荧光只占约3%~5%(Krause and Weis, 1991; 林世青 et al., 1992)。 在活体细胞内,由于激发能从叶绿素b 到叶绿素a 的传递几乎达到100%的效率,因此基本检测不到 叶绿素b 荧光。在常温常压下,光系统I 的叶绿素a 发出的荧光很弱,基本可以忽略不计,对光系统I 叶 绿素a 荧光的研究要在77 K 的低温下进行。因此,当我们谈到活体叶绿素荧光时,其实指的是来自光系 统II 的叶绿素a 发出的荧光。

探究光照强度对光合作用强度的影响实验的改进.

“探究光照强度对光合作用强度的影响”实验的改进 教材中参考案例 探究光照强弱对光合作用强度的影响 一、材料用具: 打孔器、注射器、40W台灯、烧杯、绿叶(如菠菜叶片) 二、方法步骤: 1. 取生长旺盛的绿叶,用直径为1cm的打孔器打出小圆形叶片30片(注意避 开大的叶脉)。 2. 将小圆形叶片置于注射器内,并让注射器吸入清水,待排出注射器内残留的 空气后,用手堵住注射器前端的小孔缓缓拉动活塞,使小圆形叶片内的气体逸出。这一步骤可以重复几次。 3. 将内部气体逸出的小圆形叶片,放入黑暗处盛有清水的烧杯中待用,这样的 叶片是因为细胞间隙充满了水,所以全部都沉到水底。 4. 取3只小烧杯,分别导入20ml富含二氧化碳的水 5. 分别向3只小烧杯中各放入10片小圆形叶片,然后分别对3个实验装置进 行中强、中、弱三种光照(3盏40W台灯分别向3个实验装置照射,光照强弱可通过调节台灯与实验装置间的距离来决定)。 6. 观察并记录同一时间段内各实验装置中先圆心叶片浮起的数量。 改进: 改进后的装置图片为:

移液管 第一组第二组第三组 改进后的实验分成3组: 第l组用来测呼吸速率,由250 mL医用生理盐水瓶、带刻度的移液管、暗盒组成,瓶中装5 g金鱼藻、250 mL l%NaHCO,溶液和移液管,先将装置放在光下一段时间,以保证瓶内有较充足的氧气。然后将装置移入暗盒中,测定金鱼藻的呼吸速率。 第2组和第3组用来测定不同光照强度下金鱼藻的净光合速率。第2组用40 W台灯控制光照强度。 第3组用100 W台灯控制光照强度。由于台灯光照会释放热量,所以将盐水瓶放入加入清水的大烧杯中,以防止瓶内温度升高而影响实验结果。 然后按下面操作进行实验: 第1步:先读取各移液管液面显示的读数即起始读数。记入下表中。同时打开第2组、第3组的台灯,用秒表记时。 第2步:一段时间后,移液管内液面上升,且3个装置中的液面出现差异。此时,再记录各移液管液面所显示的读数(终止读数。用起始读数减去终止读数.其差值就是一定时间内瓶内氧气的变化量。 第3步:先关掉台灯,按动秒表记下时间,将终止读数记人表格中,然后计算各组的呼吸速率、净光合速率(即相应光照条件下的氧气变化量以及真光合速率(呼吸速率+净光合速率。

影响光合作用的环境因素

《影响光合作用的环境因素》说课稿 一、说教材:《影响光合作用的环境因素》这节内容是必修1模块中第五章第4节的内容.本节课的核心内容是说出影响光合作用速率的环境因素,并通过建立数学模型的形式得出各因素的影响规律.教材是在介绍了光合作用的色素和过程之后引入本节内容,并在酶这一节内容中留意介绍过了实设计的基本原则,这就对本节课的开展奠定了优良的基础,这节课和实际生活联系较为密切,通过本节内容的字习,在一定的程度上可提高学生的生物科学素养,同时为培养学生周密的科学思推提供了一个优良的平台。 二、说学生:这节课的上课对象是高一的学生,此时学生己经在本节第一二课时的学习中明白了光合作用的机理、过程和反应式。这为本节课的导入“影响光合作用的外界因素奠定了优良的基础。同时学生在学习《细胞呼吸》《质壁分及质壁分离复原》实验时已经进行了实验探究能力的训练,掌握了试验探究的方法和基本所则,这为本节课的重点“探究影向合作用的环境因素的展开奠定一定的基础,而且学生在数学科目中已经学习了建立坐标曲线的相关知识,这为本节课建立数学模型做好了铺垫。 基于本节内容特点和学生的详尽学情,我将本节课的三维目标确定如下: 三、教学目标 1、知识目标 (1)概述影响光合作用的环境因素; (2)分折各个环境因素对光含速率的影响规律; 2、能力目标 (1)通过学生自主设计实验,培养学生自主设计实验能力。 (2)通过建立数学曲线模型得出各环境因素的影响規律,培养学生信息转化的能力以及分折归纳的能力. 3、情乏态度价值观

(1)通过实验的设计和探究及实验后的互相交流和评价,培养学生的团队合作能力,交流和表达的能力。 四、教学重难点 1、教学重点:尝试探究光照强度CO2浓度温度对光合作用强度的影响,构建相应的数学模型 2、教学难点:构建光照强度、CO2浓度和温度与光合作用强度关系的数学模型(绘制坐标曲线图) 五、说教法 根据本节内容本身的特点,我将“通过实验探究从而得出各个环境因要的影响規律”和“运用所学類律解決生活中的实际例子”作为本节课的2个重点,要得出相应的律并实际应用,对于学生来说有一定的深度。因此将详尽的实验探究过程作为本节课的一个难点,国为在这个实验探究的过程中,学生不仅仅需要关注自变量和变量,更需要注意各种无关变量的影响,这需要学生有严運的实验思维和较强的动手操作能力。 六说学法 这节课我王要采取学生小组合作的形式,让学生分组自主设计实验,通过互相讨论,成果报告,组间互相分享评价的学习方式得以重点实破。因此我将本节课设计成一堂实验探究课。下面我就来介绍一下整节课的实验流程: 导入→学生活动一→学生活动二→实际应用 七、教学过程 1、导入: 社会热点:由世界人口的增长与土地不断减少引发粮食危机的问题引发学生的思考,我们如何从外部因素入手来提高粮食的产量呢?引导学生回答光合作用的总反应方程式,从而分析出影响光含作用的主要的环境因素,如光照强度、二氧化碳浓度、温度等。

植物对干旱胁迫的响应及其研究进展

植物对干旱胁迫的响应及其研究进展 学院:班级: 姓名:学号: 摘要:植物在经受干旱胁迫时,通过细胞对干旱信号的感知和传导,调节基因表达,产生新蛋白质,从而引起大量形态、生理和生化上的变化.干旱胁迫对植物在细胞、器官、个体、群体等水平的形态指标有显著影响,也会影响其光合作用、渗透调节、抗氧化系统等生理生化指标.植物对干旱胁迫分子响应较复杂,包括合成一些新的基因如NCED、Dehydrin基因和CBF、DREB等转录因子.另外,干旱胁迫还能造成蛋白质组学的变化. 关键词干旱胁迫;生态响应;生理机制;研究进展干旱作为影响作物生长发育、基因表达、分布以及产量品质的重要因素之一,严重限制了作物的大面积扩展。植物对干旱的适应能力不仅与干旱强度、速度有关,而且更受其自身基因的调控。在一定干旱阀值(drought threshold)胁迫范围内,很多植物能够进行相关抗旱基因的表达,随之产生一系列生理、生化及形态结构等方面的变化,从而显现出抗旱性的综合性状。因此,从植物本身出发,深入研究植物的抗旱机理,揭示其抗旱特性,提高植物品种的抗旱耐旱能力,以降低作物栽培的用水量,同时最大程度提高作物的产量和品质,科学选育适宜广大干旱、半干旱地区种植的优良作物品种,已成为国内外专家学者们所特别关注和研究的热点问题,对于水资源的合理利用和生态环境的改善均有着重要的意义。 目前,生存资源、环境与农业可持续发展之间的矛盾日益突出,这就要求人们更应高度重视农业综合开发过程中作物逆境生物学的基础研究。 一、植物抗旱基因工程研究新进展 (一)与干旱胁迫相关的转录因子研究 通过转化调节基因来提高植物脱水胁迫的耐性是一条十分诱人的途径.由于在逆境条件下,这些逆境相关的转录因子,能与顺式作用重复元件结合,从而调节这些功能基因的表达和信号转导,它们在转基因植物中的过量表达会激活许多抗逆功能基因的同时表达.胁迫诱导基因能增强胁迫反应的耐力,不同的转录因子参与胁迫诱导基因的调控.遗传研究已经鉴

影响光合作用速率的环境因素

影响光合作用速率的环境因素 素养要求 1)影响光合作用速率的环境因素(C级 2)叶绿体中色素的提取和分离(b级 3)用列表比较法,比较光合作用和细胞呼吸,进一步理解提高农作物产量的措施。 叶绿体色素的提取和分离; 说明环境因素对光合作用速率的影响; 收集农业生产上提高农作物光合作用速率的有关信息,了解温室中提高农作物产量的方法;尝试探究影响光合作用速率的环境因素,学习科学研究的一般方法。 活动一叶绿体中色素的提取和分离实验 【自主先学】 先学指导学生阅读教材73页,说出提取和分离叶绿体中色素的原理、方法和步骤。 概念梳理 “叶绿体中色素的提取与分离”实验: (1)色素提取液:。 (2)色素提取原理:。 (3)该实验中化学物质的作用:二氧化硅是使;碳酸钙是。 (4)色素分离方法:法。 (5)色素分离原理:四种色素在层析液中不同,溶解度高的扩散速度。(6)制备滤纸条时,剪去两角的作用是_____________,画滤液细线的要求是__________。(7)色素分离时,加盖的目的是防止____________。 (8)分离结果:滤纸条上自上而下呈现四条色素带。请完成下表。

叶绿素b黄绿色较多最低 【合作探究】 “叶绿体中色素的提取和分离”实验异常结果分析: (1)滤纸条上无色素带 (2)滤纸条上四条色素带颜色均过浅 (3)色素带中绿色过浅 (4)滤纸条上色素带重叠 【检测反馈】 指导学生完成“巩固练习”1、2。 活动二影响光合作用的因素 【自主先学】 先学指导学生阅读教材76~78页,说出影响光合作用的因素。

概念梳理 1.影响光合作用的因素 (1)内部因素:主要包括色素的种类和含量、、C5的含量等。(2)环境因素 ①光照强度和光质:主要影响光合作用中。 ②CO2浓度:主要影响光合作用中。 ③温度:主要影响光合作用中。 ④矿质元素和水 2.光合作用原理的应用 (1)光合作用强度(又称光合作用速率)的表示方法有哪些? (2)光合作用在生产实践上的应用 目的措施或方法 延长光照时间补充光照、轮作及套种 增大光合作用面积 提高光合作用效率 维持适当昼夜温差(白天适当升温,晚上适当降温)) 【合作探究】 影响光合作用的因素 1.分析4个图形特点,说出A、B、C、D图中横坐标的意义 。 2.多因素对光合速率的影响

CO2浓度对光合作用强度的影响

CO2浓度对光合作用强度的影响 (1)曲线(一) ①在一定范围内,光合作用速率随CO2浓度升 高而加快,但达到一定浓度后,再增大CO2浓度, 光合作用速率不再加快。 ② CO2补偿点:A点,外界CO2浓度很低时, 绿色植物叶不能利用外界的CO2制造有机物,只有当植物达到CO2补偿点后才利用外界的CO2合成有机物。 B点表示光合作用速率最大时的CO2浓度,即CO2饱和点,B点以后随着CO2浓度的升高,光合作用速率不再加快,此时限制光合作用速率的因素主要是光照强度。 ③若CO2浓度一定,光照强度减弱,A点B点移动趋势如下: 光照强度减弱,要达到光合作用强度与呼吸作用强度相等,需较高浓度CO2,故A点右移。由于光照强度减弱,光反应减弱而产生的[H]及ATP减少,影响了暗反应中CO2的还原,故CO2的固定减弱,所需CO2浓度随之减少,B点应左移。 ④若该曲线表示C3植物,则C4植物的A、B点移 动趋势如下:由于C4植物能固定较低浓度的CO2, 故A点左移,而光合作用速率最大时所需的CO2浓度 应降低,B点左移,曲线如图示中的虚线。 (2)曲线(二) a-b:CO2太低,农作物消耗光合产物;

b-c:随CO2的浓度增加,光合作用强度增强; c-d:CO2浓度再增加,光合作用强度保持不变; d-e:CO 2浓度超过一定限度,将引起原生质体中毒或气 孔关闭,抑制光合作用。 (3)曲线(三) 由于C4植物叶肉细胞中含有PEP羧化酶,对CO2的亲和 力很强,可以把大气中含量很低的CO2以C4的形式固定 下来,故C4植物能利用较低的CO2进行光合作用,CO2的补偿点低,容易达到CO2饱和点。而C3植物的CO2的补偿点高,不易达到CO2饱和点。故在较低的CO2浓度下(通常大气中的CO2浓度很低,植株经常处于“饥饿状态”)C4比C3植物的光合作用强度强(即P点之前)。一般来说,C4植物由于“CO2泵”的存在,CO2补偿点和CO2饱和点均低于C3植物。 3.温度对光合作用强度的影响:它主要通过影响暗反应 中酶的催化效率来影响光合 作用的速率。在一定温度范 围内,随着温度的升高,光合速率随着增加,超过一定 的温度,光合速率不但不增大,反而降低。因温度太高,酶的活性降低。此外温度过高,蒸腾作用过强,导致气孔关闭,CO2供应减少,从而间接影响光合速率。 ①若Ⅲ表示呼吸速率,则Ⅰ、Ⅱ分别表示实际光合速率

影响光合速率的环境因素

影响光合速率的环境因素 一、单因子的影响 (一)光照强度 曲线分析: (1)描述光照强度对光合作用强度影响的曲线并指出A、B、C 三点的生理含义? A 点: B 点: C点: (2)如果是阴生植物,B 点在横轴上是向左移还是向右移? (3)如果自然界中某种植物,在白天光照强度较长时间为 B 的条件下能否正常生长? (4)根据光照强度对光合作用强度影响的曲线,你认为采取什么措施能增加光合产量? (二) CO2 浓度 曲线分析: (1)描述CO浓度对光合作用强度影响的曲线并指出关键点的生理含义?

(2)根据CO浓度对光合作用影响的曲线,你认为采取什么措施能增加光合产量? (三)温度 曲线分析: (1)描述温度对光合速率影响的曲线并指出关键点的生理含义? (2)如果想要提高产量,如何控制温度? (四)水分 水分既是光合作用的原料,又是体内各种化学反应的介质。水分还能影响气孔的开闭, 间接影响CO进入植物体内。缺水时可使光合速率下降。由于光合作用所需的水只是植物所 吸收水分的一小部分,因此,水分缺乏主要是间接影响光合作用下降。夏季的正午,由于植物缺水而导致气孔关闭,二氧化碳供应不足,光合速率下降。 在生产上的应用:预防干旱;适时适量灌溉。 (五)矿质元素 矿质元素直接或间接影响光合作用。如Mg是叶绿素的组成成分,N是光合酶的组成成分,P是ATP分子的组成成分等等。 在生产上的应用:合理施肥,适时适量地施肥 二、多因子的影响 讨论: (1)P点限制光合速率的变量是什么? (2)Q点限制光合速率的变量是什么? P点时,限制光合速率的因素应为________________ 所表示的因子,随其因子的不断加强,

”环境因素对光合作用强度的影响“教学设计

“环境因素对光合作用强度的影响”教学设计 崔敏(湖南省衡阳县第三中学湖南衡阳421000) 摘要:本节课教学设计思路是以“环境因素对光合作用强度的影响”为主线,采用视频、课件等多元化的教学方式,通过对环境因素对光合作用强度的影响实验的讨论分析,不仅让学生对科学探究有一个比较完整的认识,从中领悟科学探究的原则和方法,更加培养了学生的科学素质和创新精神。 关键词:环境因素光合作用强度教学设计自主学习 1、教学内容 《环境因素对光合作用强度的影响》是高中生物学必修一“分子与细胞”第五章第四节的内容,从知识体系和认知能力上看,本节课是对“光合作用”认识的最高点,也是历年高考必然涉及的重要主干知识。它在已学过的光合作用知识的基础之上,让学生深入地剖析影响光合作用的因素,将所学理论知识联系实际,从而体会到环境因素对生产上的指导意义。本堂课重点探究光照强度等三大环境因素对光合作用强度的影响,初步学会构建“光照强度、CO2浓度与光合作用强度关系”的数学模型。 2、教学方式 在教学中,采用多元化的教学方式:利用观看视频、ppt展示等教学手段,让学生对实验过程有直观感性的认识;通过学生自主学习,充分调动学生学习主动积极性;通过师生共同总结并同步板书,让学生更深入地理解环境因素对光合作用强度的影响;通过课堂实验探究,及时加深巩固本节所学习、涉及到的实验原理和方法,培养学生的科学素质和创新精神。 3、教学目标 3.1 知识目标: 1.简述光合作用强度的概念; 2.分析影响光合作用强度的三大环境因素; 3.说出光合作用原理的应用; 3.2 技能目标: 1.尝试探究影响光合作用强度的三大环境因素; 2.学会构建“光照强度、CO2浓度与光合作用强度关系”的数学模型(绘制坐标图); 3.3 情感目标: 1.参与“探究影响光合作用强度的因素”的合作学习和自我评价; 2.体验自主性、探究式学习成功的快乐; 4、教学重难点 4.1 重点: 尝试探究光照强度对光合作用强度的影响,构建相应的数学模型 4.2 难点: 构建光照强度、CO2浓度与光合作用强度关系的数学模型(绘制坐标曲线图); 5、课程类型:高一新授课

干旱胁迫对植物的影响

干旱胁迫对植物影响 摘要:胁迫严重影响着植物的生长发育,如干旱胁迫,可造成经济作物产量的逐年大幅下降[1],它们不能逃避不利的环境变化, 它 们需要快速的感应胁迫刺激进而适应各种环境胁迫。大多数植物遭受干旱逆境后各个生理过程都会受到不同程度的影响。我们都知道 ,水分在植物的生命活动中起着重要的作用,不仅是光合作用的原料之一,而且还维持着植物的正常体态。因此,我们要用各种预防途径来减少干旱对植物的影响。 关键词:干旱胁迫植物影响 Drought stress impact on plants Abstract : stress seriously influence the plant growth and development, such as drought stress, which can cause economic crop production has fallen dramatically year by year [1], they cannot escape from adverse environmental change, they need fast induction stress stimulation and adapt to various environmental stresses. Most plants by drought adversity after various physiological processes are subject to the influence of different level. As we all know, water in the plant life activities play an important role, not only is one of the raw material of photosynthesis, but also maintains the normal posture of plants. Therefore, we want to use a variety of preventive ways to minimize the effects of drought on plant.

平邑甜茶叶片光合速率及叶绿素荧光参数对氯化镉处理的响应

中国农业科学 2010,43(15):3176-3183 Scientia Agricultura Sinica doi: 10.3864/j.issn.0578-1752.2010.15.015 平邑甜茶叶片光合速率及叶绿素荧光参数 对氯化镉处理的响应 王 利1,2,杨洪强1,3,范伟国3,张 召2 (1山东农业大学资源与环境学院农业资源利用博士后流动站,山东泰安 271018;2山东农业大学林学院农业生态与环境重点实验室, 山东泰安 271018;3山东农业大学园艺科学与工程学院/作物生物学国家重点实验室,山东泰安 271018) 摘要:【目的】研究氯化镉处理对平邑甜茶叶片光系统Ⅱ(PSⅡ)活性、光合速率影响及其相互关系,为进一步揭示镉伤害机理提供理论依据。【方法】平邑甜茶在含不同浓度氯化镉1/2 Hoagland营养液中培养30 d后, 测定其叶片光合速率(Pn)、气孔导度、胞间CO2浓度和荧光参数等,分析氯化镉处理后这些参数间的关系。【结果】 在氯化镉处理下,平邑甜茶叶片光合速率和气孔导度显著降低,胞间CO2浓度增加,300 μs时的叶绿素荧光强度 (Fk)提高,PSⅡ最大光化学效率(Fv/Fm,φPo)、用于电子传递的量子产额(φEo)、光化学性能指数(PI ABS)以及 有活性的反应中心的密度(RC/CS)明显下降,并且这些参数的变化幅度随着氯化镉浓度的增加而提高;通径分析 显示,300 μs时的相对可变荧光强度(V K)及其可变荧光Fv占(J相的荧光强度Fj-O相的荧光强度Fo)振幅的 比例(W K)对Pn的直接作用高于其它荧光参数。【结论】氯化镉使平邑甜茶叶片PSⅡ供体侧、受体侧和反应中心 受到显著伤害,从而降低了PSⅡ活性和光合速率;在氯化镉处理下,V K和W K对Pn的直接作用比较大。 关键词:平邑甜茶;氯化镉;光合速率;光系统Ⅱ;叶绿素荧光 Effect of CdCl2 Treatment on Photosynthetic Rate and Chlorophyll Fluorescence Parameters in Malus hupehensis Leaves WANG Li 1,2, YANG Hong-qiang 1,3, FAN Wei-guo3, ZHANG Zhao2 (1Post-Doctoral Mobile Station of Agricultural Resource Utilization, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong; 2Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Taian 271018, Shandong; 3State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong) Abstract: 【Objective】For discovering the mechanism of Cd damage on leaves of Malus hupehensis Rehd., the activity of photosystemⅡ (PSⅡ), net photosynthetic rate (Pn) and their correlation in leaves treated with CdCl2 were studied. 【Method】 After 30 days of treatment by CdCl2 in 1/2 Hoagland solution, the Pn, stomatal conductance (Gs), intercellular CO2 concentration (Ci) and chlorophyll fluorescence parameters in leaves of Malus hupehensis Rehd. were measured, and the relationship between these parameters under CdCl2 treatment were analyzed. 【Result】Under the treatment of CdCl2, the Pn and Gs reduced, the Ci and the fluorescence intensity Fk at 300 μs increased, and the maximum photochemistry efficiency of PSⅡ(Fv/Fm, φPo), the quantum yield for electron transport (φEo) , the performance index on absorption basis (PI ABS) and the density of active reaction center (RC/CS) all decreased significantly. Furthermore, the range of variation of these parameters increased with the increasing of CdCl2 concentration. The direct effect of the relatively variable fluorescence intensity V K and the ratio of variable fluorescence Fv on the amplitude Fj-Fo (W K) at 300 μs for Pn were higher than that of others through the path analysis. 【Conclusion】 CdCl2 damaged the sides of acceptor and donor and the reaction centers of PSⅡ of leaves of Malus hupehensis Rehd. The activity of PSⅡand Pn decreased, and the direct 收稿日期:2009-12-02;接受日期:2010-03-01 基金项目:山东农业大学博士后项目、国家自然科学基金项目(30671452) 作者简介:王利,副教授,博士。E-mail:liwang6868@https://www.wendangku.net/doc/3d8743332.html,。通信作者杨洪强,教授。E-mail:hqyang@https://www.wendangku.net/doc/3d8743332.html,

CO2浓度对光合作用强度的影响

CO2浓度对光合作用强度的影响(1)曲线(一) ①在一定范围内,光合作用速率随CO2浓度升 高而加快,但达到一定浓度后,再增大CO2浓度, 光合作用速率不再加快。 A点,外界CO2浓度很低时, 绿色植物叶不能利用外界的CO2制造有机物,只有当植物达到CO2补偿点后才利用外界的CO2合成有机物。 B点表示光合作用速率最大时的CO2浓度,即B点以后随着CO2浓度的升高,光合作用速率不再加快,此时限制光合作用速率的因素主要是光照强度。 ③若CO2浓度一定,光照强度减弱,A点B点移动趋势如下: 光照强度减弱,要达到光合作用强度与呼吸作用强度相等,需较高浓度CO2,故A点右移。由于光照强度减弱,光反应减弱而产生的[H]及ATP减少,影响了暗反应中CO2的还原,故CO2的固定减弱,所需CO2浓度随之减少,B点应左移。 ④若该曲线表示C3植物,则C4植物的A、B点移 动趋势如下:由于C4植物能固定较低浓度的CO2,故 A点左移,而光合作用速率最大时所需的CO2浓度应 降低,B点左移,曲线如图示中的虚线。 (2)曲线(二) a-b:CO2太低,农作物消耗光合产物;

b-c:随CO2的浓度增加,光合作用强度增强; c-d:CO2浓度再增加,光合作用强度保持不变; d-e:CO 2浓度超过一定限度,将引起原生质体中毒或气 孔关闭,抑制光合作用。 (3)曲线(三) 由于C4植物叶肉细胞中含有PEP羧化酶,对CO2的亲和 力很强,可以把大气中含量很低的CO2以C4的形式固定 下来,故C4植物能利用较低的CO2进行光合作用,CO2的补偿点低,容易达到CO2饱和点。而C3植物的CO2的补偿点高,不易达到CO2饱和点。故在较低的CO2浓度下(通常大气中的CO2浓度很低,植株经常处于“饥饿状态”)C4比C3植物的光合作用强度强(即P点之前)。一般来说,C4植物由于“CO2泵”的存在,CO2补偿点和CO2饱和点均低于C3植物。 3.温度对光合作用强度的影响: 它主要通过影响暗反应 中酶的催化效率来影响光合 作用的速率。在一定温度范 围内,随着温度的升高,光合速率随着增加,超过一定 的温度,光合速率不但不增大,反而降低。因温度太高,酶的活性降低。此外温度过高,蒸腾作用过强,导致气孔关闭,CO2供应减少,从而间接影响光合速率。 ①若Ⅲ表示呼吸速率,则Ⅰ、Ⅱ分别表示实际光合速率

影响光合作用的因素练习题

影响光合作用的因素练习题 一、内部因素对光合作用速率的影响及应用 1.同一植物的不同生长发育阶段 曲线分析:在外界条件相同的情况下,光合作用速率由弱到强依次是___________、_________、__________ 应用:根据植物在不同生长发育阶段__________速率不同,适时、适量地提供水肥及其他环境条件,以使植物茁壮成长。 2.同一叶片的不同生长发育时期 曲线分析:随幼叶发育为壮叶,叶面积增大,叶绿体不断增多,叶绿素含量不断增加,光合速率______;老叶内叶绿素被破坏,光合速率随之______。 应用:农作物、果树管理后期适当摘除老叶、残叶及茎叶蔬菜及时换新叶,都是根据其原理,可降低其___________消耗的有机物。 二、外界因素对光合作用速率的影响及应用 1.单因子因素 (1)光照强度 ①原理分析:光照强度影响光合速率的原理是通过影响____________阶段,制约________________________的产生,进而制约__________阶段。 ②图像分析:A点时只进行_________;AB段随着光照强度的增强,________强度也增强,但是仍然小于____________强度;B点时代谢特点为__________________;BC段随着光照强度的增强,光合作用强度仍不断增强;

C点对应的光照强度为____________,限制C点的环境因素可能有_________________等。 ③完成填空后,在下面的四幅图中标出A点、AB段、B点和B点之后的氧气和二氧化碳转移方向。 ④应用分析:欲使植物正常生长,则必须使光照强度大于____点对应的光照强度;适当提高_________可增加大棚作物产量。 (2)光照面积 ①图像分析:OA段表明随叶面积的不断增大,光合作用实际量不断增大,A点 为光合作用面积的饱和点。随叶面积的增大,光合作用强度不再增加,原因是_____________________ ②OB段表明干物质量随光合作用增加而增加,而由于A点以后 不再增加,但叶片随叶面积的不断增加,(OC段)不断增加,所以干物质积累量不断(BC段)。 ②应用分析:适当间苗、修剪,合理施肥、浇水,避免徒长。封顶过早,使中下层叶子所受的光照往往在光补偿点以下,白白消耗有机物,造成不必要的浪费。 (3)CO2浓度 ①原理分析:CO2浓度影响光合作用的原理是通过影响阶段,制约生

白刺叶不同水分状况下光合速率及其叶绿素荧光特性的研究

西北植物学报!"##$!"$%&&’(""")*""++ ,-./01.20134/5267--894:.2;8:2 文章编号(&###<=#"$%"##$’&&<""")<#> 白刺叶不同水分状况下光合速率及其 叶绿素荧光特性的研究? 何炎红!郭连生@!田有亮 %内蒙古农业大学林学院!呼和浩特#&##&A’ 摘要(采用B C’K L M N O L P"O Q P&!光饱和点为%)R)J&$#’K L M N O L P"O Q P&I叶生长初期和叶成熟期净光合速率水势补偿点%净光合速率 为#时的水势’分别为P+2)$ST U和P$2R)ST U!V T W初始水分胁迫水势分别为P"2"#ST U和P)2)+ST U G研 究指出运用净光合速率水势补偿点和非光化学猝灭初始水分胁迫水势可评价白刺对干旱环境的适应性G 关键词(白刺I水分胁迫I光合速率I叶绿素荧光 中图分类号(W A=$2R>文献标识码(X Y Z[\[]^_\Z‘\a b c d\‘]d_ef Z g[h[i Z^g g j g k[h‘]b‘_b‘[l m8.3/38/./:n o.13o p d\q a l l‘h‘_\r‘d l sd\‘h Y[\‘_\a d g] t uv U w’K L M N O L P"O Q P&!U w+U N|y x%Q U%!$U%|M w-M|w%M"%)R)J&$#’K L M N O L P"O Q P&I C w%x} }U$N&U w+L U%!$}Q%U y}Q M"N}U"y$M,%x!%x}-x M%M Q&w%x}%|’,U%}$-M%}w%|U N’M L-}w Q U%|M w-M|w%Q%%x}N}U" ,U%}$-M%}w%|U N U%<}$Mw}%-x M%M Q&w%x}%|’$U%}’,U Q P+2)$ST UU w+P$2R)ST U$}Q-}’%|(}N&!U w+%x} .=>|w|%|U N,U%}$-M%}w%|U N Q,}$}P"2"#ST UU w+P)2)+ST U!$}Q-}’%|(}N&2~x}Q%!+&-M|w%}+M!%%x U% -x M%M Q&w%x}%|’,U%}$-M%}w%|U N’M L-}w Q U%|M w-M|w%U w+.=>|w|%|U N,U%}$-M%}w%|U N’M!N+8}!Q}+|w }(U N!U%|w y%x}U+U-%U8|N|%|}Q M"./0121/20234506157%MU$|+}w(|$M w L}w%Q2 ?收稿日期("##$<#$<&"I修改稿收到日期("##$<&#<#> 基金项目(国家自然科学基金重点项目%+#"+#"A#’ 作者简介(何炎红%&A R A P’!女!博士研究生!主要从事森林培育理论与技术研究G @通讯联系人G D M$$}Q-M w+}w’}%M(z{E B|U w&)&?Q|w U2’M L

光合作用-影响光合作用的因素

1.影响光合作用速率的环境因素(Ⅱ) (1)分析影响光合作用速率的内外因(从底物、条件和产物分析) (2)总结光合作用原理在农业生产方面的应用 分析影响光合作用的因素,我们要从光合作用的反应式出发,从反应物、产物和反应条件三个方面入手。 光合作用强度(光合速率):植物在单位时间内通过光合作用制造糖类的数量。用一定时间内原料消耗或产物生成的数量来定量表示。 对坐标曲线分析采用:识轴→明点→析线 一、单因子变量对光合作用影响的曲线分析 1.光照强度 (1)原理:影响光反应阶段,制约ATP及NADPH的产生,进而制约暗反应 (2)曲线 光补偿点:光合作用强度与呼吸作用强度相等时刻的光照强度。光照强度>光补偿点,植物才能生长。 光饱和点:光合作用强度达到饱和时的最低光照强度。 (3)应用:温室大棚适当提高光照强度可以提高光合作用速率。 判断光补偿点的移动 (1)光合作用增强,呼吸作用不变或减弱 若外因使光合速率大于呼吸速率,左移。 (2)光合作用不变或减弱,呼吸作用增强 若外因使光合速率小于呼吸速率,右移。

判断光饱和点的移动 植物出现光饱和点实质是强光下暗反应跟不上光反应从而限制了光合速率随着光强的增加而提高。影响暗反应的因素如CO2浓度、温度(影响酶的活性)、pH(影响酶的活性)会影响光饱和点。所以我们在分析时要抓住这一本质,如果外界因素使暗反应增强,则光饱和点右移,反之,则左移。 分析表中数据可知,若其他条件不变,当pH由9.0增大到10.0时水葫芦的光补偿点最可能(左移/右移/不移动)。光饱和点最可能(左移/右移/不移动)。 【例2】图甲表示某植物体在30℃恒温时的光合速率(以植物体对O2的吸收或释放量计算)与光照强度的关系。

第4章第1节_叶绿素荧光参数及意义-v2.

第四章 叶绿素荧光技术应用 第一节 叶绿素荧光参数及其意义 韩志国,吕中贤(泽泉开放实验室,上海泽泉科技有限公司,上海,200333) 叶绿素荧光技术作为光合作用的经典测量方法,已经成为藻类生理生态研究领域功能最强大、使用最广泛的技术之一。由于常温常压下叶绿素荧光主要来源于光系统 II 的叶绿素 a ,而光系统 II 处于整个光合作用过程的最上游,因此包括光反应和暗反应在内的多数光合过程的变化都会反馈给光系统 II ,进而引起叶绿素 a 荧光的变化,也就是说几乎所有光合作用过程的变化都可通过叶绿素荧光反映出来。与其它测量方法相比,叶绿素荧光技术还具有不需破碎细胞、简便、快捷、可靠等特性,因此在国际上得到了广泛的应用。 1 叶绿素荧光的来源 藻细胞内的叶绿素分子既可以直接捕获光能,也可以间接获取其它捕光色素(如类胡萝卜素)传递来的能量。叶绿素分子得到能量后,会从基态(低能态)跃迁到激发态(高能态)。根据吸收的能量多少,叶绿素分子可以跃迁到不同能级的激发态。若叶绿素分子吸收蓝光,则跃迁到较高激发态;若叶绿素分析吸收红光,则跃迁到最低激发态。处于较高激发态的叶绿素分子很不稳定,会在几百飞秒(fs ,1 fs=10-15 s )内通过振动弛豫向周围环境辐射热量,回到最低激发态(图 1)。而最低激发态的叶绿素分 子可以稳定存在几纳秒(ns ,1 ns=10-9 s )。 A 较高激发态 B 热耗散 吸收蓝 光 吸收红光 最低激发态 能量 荧光 基态 蓝 波长 红 荧光 图 1 叶绿素吸收光能后能级变化(A )和对应的吸收光谱(B )(引自韩博平 et al., 2003) 处于最低激发态的叶绿素分子可以通过几种途径(图 2)释放能量回到基态(韩博平 et al., 2003; Schreiber, 2004):1)将能量在一系列叶绿素分子之间传递,最后传递给反应中心叶绿素 a ,用于进行光化学反应;2)以热的形式将能量耗散掉,即非辐射能量耗散(热耗散);3)放出荧光。这三个途径相互竞争、此消彼长,往往是具有最大速率的途径处于支配地位。一般而言,叶绿素荧光发生在纳秒级,而光化学反应发射在皮秒级(ps ,1 ps=10-12 s ),因此在正常生理状态下(室温下),捕光色素吸收的能量主要用于进行光化学反应,荧光只占约 3%~5%(Krause and Weis, 1991; 林世青 et al., 1992)。 在活体细胞内,由于激发能从叶绿素 b 到叶绿素 a 的传递几乎达到 100%的效率,因此基本检测不到叶绿素 b 荧光。在常温常压下,光系统 I 的叶绿素 a 发出的荧光很弱,基本可以忽略不计,对光系统 I 叶绿素 a 荧光的研究要在 77 K 的低温下进行。因此,当我们谈到活体叶绿素荧光时,其实指的是来自光系统 II 的叶绿素 a 发出的荧光。

相关文档
相关文档 最新文档