文档库 最新最全的文档下载
当前位置:文档库 › 几种常见圆锥曲线问题

几种常见圆锥曲线问题

几种常见圆锥曲线问题
几种常见圆锥曲线问题

几种常见圆锥曲线问题

一、圆锥曲线概念、性质类问题

例1.已知椭圆2222135x y m n +=和双曲线

22

22

123x y m n -=有公共的焦点,那么双曲线 的渐近线方程是 ( ) 15()2A x y =±

15()2B y x =± 3()4C x y =± 3()4

D y x =± 分析:本题主要考查圆锥曲线的几何性质,即椭圆、双曲线焦点求法和双曲线渐近线方程 求法.由双曲线方程判断出公共焦点在x 轴上,∴椭圆焦点22(35,0)m n -,双曲线焦点

22(23,0)m n +,∴22223523m n m n -=+,∴228m n =, 又∵双曲线渐近线为62n y x m

.

∴代入228m n =,22m n =,得3

4

y x =±

,∴选D. 例2.设(0,)4

π

θ∈,则二次曲线x 2cot θ-y 2tan θ=1的离心率的取值范围为

( )

1()(0,)2A 12()(,)22B 2()(,2)2

C ()(2,)

D +∞

分析:本题主要考察三角函数和二次曲线的基本知识以及基本的推理计算技能.有一定的综合性,涉及的知识面比较大. 解一:因为(0,)4π

θ∈,所以cot θ>0,tan θ>0,方程所表示的二次曲线是双曲线,离心率必

然大于1.从而排除A 、B 、C ,得D.

解二:依题设知二次曲线是双曲线,半实轴长a 和半虚轴长b 分别为1

tan cot a θθ

=

=,1

cot tan b θθ

=

=.所以半焦距22tan cot c a b θθ=+=+,离心率为21cot c e a θ==+,因

为(0,)4

π

θ∈,所以e 的取值范围为(2,)+∞,选D .

二、直线和圆锥曲线关系类问题

直线与圆锥曲线的位置关系,是高考考查的重中之重,在高考中多以高档题、压轴题出现.主要涉及弦长、弦中点、对称、参量的取值范围、求曲线方程等问题.解题中要充分重视韦达定理和判别式的应用,解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能.

例3.椭圆的中心是原点O ,它的短轴长为22,相应于焦点F (c ,0)(0>c )的准线l 与x 轴相交于点A ,|OF|=2|FA|,过点A 的直线与椭圆相交于P 、Q 两点. (1)求椭圆的方程及离心率;

(2)若0OP OQ ?=

,求直线PQ 的方程;

(3)设AP AQ λ=

(1>λ),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明

FM FQ λ=- .

本小题主要考查椭圆的标准方程和几何性质,直线方程,平面向量的计算,曲线和方程的关系等解析几何的基本思想方法和综合解题能力.

(I)解:由题意,可设椭圆的方程为22

221(2).x y a a b

+=>

由已知得

222

2,

2().

a c a c c c ?-=??=-??

解得 6, 2.a c ==

所以椭圆的方程为22162x y +=,离心率6

.3

e =

(II)解: 由(I)可得(3,0).A

设直线PQ 的方程为(3).y k x =-由方程组

22

16

2(3)

x y y k x ?+=???=-?

2222

(31)182760.k x k x k +-+-=

依题意

2

12(23)0,k ?=->得

66

.33k -

<<

设 1122(,),(,),P x y Q x y 则

2

12218,

31k x x k +=+ ①

2122

276

..31k x x k -=+ ② 由直线PQ 的方程得 1122(3),(3).y k x y k x =-=-于是

22

12121212(3)(3)[3()9].y y k x x k x x x x =--=-++ ③ 1212.0,0.OPOQ x x y y =∴+=

④ 由①②③④得251,k =从而566

(,).533

k =±∈- 所以直线PQ 的方程为

530x y --=或530.x y +-=

(III)证明:1122(3,),(3,).AP x y AQ x y =-=-

由已知得方程组 121

2221122

223(3),,

1

6

2 1.

62x x y y x y x y λλ-=-??=???+=??+=?? 注意1,λ>解得 251

.2x λλ-= 因11(2,0),(,),F M x y -故

112112(2,)((3)1,)

11(,)(,).

22FM x y x y y y λλλλλ=--=-+---=-=-

而2221

(2,)(,),2FQ x y y λλ

-=-= 所以 .FM FQ λ=-

例4.已知双曲线G 的中心在原点,它的渐近线与圆2210200x y x +-+=相切.过点()

4,0P -作斜率为1

4

的直线l ,使得l 和G 交于,A B 两点,和y 轴交于点C ,并且点P 在线段AB 上,

又满足2

PA PB PC ?=.

(Ⅰ)求双曲线G 的渐近线的方程; (Ⅱ)求双曲线G 的方程;

(Ⅲ)椭圆S 的中心在原点,它的短轴是G 的实轴.如果S 中垂直于l 的平行弦的中点的轨迹恰好是G 的渐近线截在S 内的部分,求椭圆S 的方程.

讲解:(Ⅰ)设双曲线G 的渐近线的方程为:y kx =,则由渐近线与圆2210200x y x +-+=相

切可得:

2

551

k k =+.

所以,1

2

k =±.

双曲线G 的渐近线的方程为:1

2

y x =±.

(Ⅱ)由(Ⅰ)可设双曲线G 的方程为:

224x y m -=. 把直线l 的方程()1

44

y x =

+代入双曲线方程,整理得2381640x x m ---=. 则8164, 33

A B A B m

x x x x ++==- (*)

∵ 2

PA PB PC ?=,,,,P A B C 共线且P 在线段AB 上,

∴ ()()()2

P

A B P P C x x x x x x --=-,

即:()()4416B A x x +--=,整理得:()4320A B A B x x x x +++= 将(*)代入上式可解得:28m =.

所以,双曲线的方程为22

1287

x y -

=. (Ⅲ)由题可设椭圆S 的方程为:()

22212728x y

a a

+=>.下面我们来求出S 中垂直于l 的

平行弦中点的轨迹.

设弦的两个端点分别为()()1122,,,M x y N x y ,MN 的中点为()00,P x y ,则

22

112

22

222128128x y a x y a ?+=????+=??. 两式作差得:

()()()()121212122

028

x x x x y y y y a -+-++=

由于

12

12

4y y x x -=--,1201202,2x x x y y y +=+= 所以,

00

24028x y a

-=, 所以,垂直于l 的平行弦中点的轨迹为直线

2

4028x y a -=截在椭圆S 内的部分. 又由题,这个轨迹恰好是G 的渐近线截在S 内的部分,所以,

2

1

1122

a =.所以,256a =,椭圆S 的方程为:22

12856

x y +

=. 点评:解决直线与圆锥曲线的问题时,把直线投影到坐标轴上(也即化线段的关系为横坐标(或纵坐标)之间的关系)是常用的简化问题的手段;有关弦中点的问题,常常用到“设而不求”的方法;判别式和韦达定理是解决直线与圆锥曲线问题的常用工具). 三、与圆锥曲线有关的轨迹类问题

解析几何主要研究两大类问题:一是根据题设条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质.求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.解答轨迹问题时,若能充分挖掘几何关系,则往往可以简化解题过程.

例5.如图,P 是抛物线C :y=1

2

x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.

(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程;

(Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求|||

|||||SQ ST SP ST +

的取值

范围.

本题主要考查直线、抛物线、不等式等基础知识,求轨迹方程的方法,解析几何的基本思想和综合解题能力. 解:(Ⅰ)设P(x 1,y 1),Q(x 2,y 2),M(x 0,y 0),依题意x 1≠0,y 1>0,y 2>0.

由y=2

1

x 2, ①

得y '=x .

∴过点P 的切线的斜率k 切= x 1,

∴直线l 的斜率k l =-

切k 1=-1

1x , ∴直线l 的方程为y -21x 12=-1

1

x (x -x 1), 方法一:

联立①②消去y ,得x 2+

1

2

x x -x 12-2=0. ∵M 是PQ 的中点 x 0=

221x x +=-1

1

x , ∴ y 0=

21x 12-1

1

x (x 0-x 1). 消去x 1,得y 0=x 02+

2

21x +1(x 0≠0),

∴PQ 中点M 的轨迹方程为y=x 2+2

21x +1(x ≠0).

方法二: 由y 1=

21x 12,y 2=21

x 22,x 0=2

21x x +, 得y 1-y 2=21x 12-21x 22=2

1

(x 1+x 2)(x 1-x 2)=x 0(x 1-x 2), 则x 0=

2

121x x y y --=k l =-11x , ∴x 1=-

1

x , 将上式代入②并整理,得

y 0=x 02+

2

21x +1(x 0≠0),

∴PQ 中点M 的轨迹方程为y=x 2+

2

21x +1(x ≠0).

(Ⅱ)设直线l:y=kx+b ,依题意k ≠0,b ≠0,则T(0,b). 分别过P 、Q 作PP '⊥x 轴,QQ '⊥y 轴,垂足分别为P '、Q ',则

=+||||||||SQ ST SP ST |

||

|||||||||||||21y b y b Q Q OT P P OT +

='+'. y=

2

1x 2

由 消去x ,得y 2-2(k 2+b)y+b 2=0. ③

y=kx+b

y 1+y 2=2(k 2+b),

y 1y 2=b 2.

方法一:

=+||||||||SQ ST SP ST |b|(211

1y y +

)≥2|b|2

11

y y =2|b|21b =2.

∵y 1、y 2可取一切不相等的正数, ∴

|

||

|||||SQ ST SP ST +的取值范围是(2,+∞). 方法二:

∴|||

|||||SQ ST SP ST +=|b|2121y y y y +=|b|2

2)(2b b k +. 当b>0时,||||||||SQ ST SP ST +=b 2

2)(2b

b k +=b b k )(22+=b k 2

2+2>2; 当b<0时,|||

|||||SQ ST SP ST +=-b 2

2)(2b b k +=b b k -+)(22.

又由方程③有两个相异实根,得△=4(k 2+b)2-4b 2=4k 2(k 2+2b)>0,

于是k 2+2b>0,即k 2>-2b. 所以

|

|||||||SQ ST SP ST +>b b b -+-)

2(2=2.

∵当b>0时,b

k 2

2可取一切正数,

|

||

|||||SQ ST SP ST +

的取值范围是(2,+∞). 方法三:

由P 、Q 、T 三点共线得k TQ =K TP , 即

22x b y -=1

1x b

y -. 则x 1y 2-b x 1=x 2y 1-b x 2,即b(x 2-x 1)=(x 2y 1-x 1y 2).

于是b =

1

22

2

12122121x x x x x x -?-?

=-21x 1x 2. ∴||||||||SQ ST SP ST +=||||||||21y b y b +

=1|21|21x x -+1

|

21

|21x x -=||12x x +||21x x ≥2. ∵||

1

2

x x 可取一切不等于1的正数, ∴

|

||

|||||SQ ST SP ST +

的取值范围是(2,+∞). 下面是探究型的存在性问题:

例6.直线22:1:21l y kx C x y =+-=与双曲线的右支交于不同的两点A 、B. (I )求实数k 的取值范围;

(II )是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.

本小题主要考查直线、双曲线的方程和性质,曲线与方程的关系,及其综合应用能力. 解:(Ⅰ)将直线22121,l y kx C x y =+-=的方程代入双曲线的方程后整理得

22(2)220.k x kx -++=……①

依题意,直线l 与双曲线C 的右支交于不同两点,故

.22.022

022,0)2(8)2(,022

22

22-<<-????

?

????>->-->--=?≠-k k k k k k k k 的取值范围是解得

(Ⅱ)设A 、B 两点的坐标分别为11(,)x y 、22(,)x y ,则由①式得

2 2

???

???

?

-=?-=+.22,22222221k x x k k x x ……② 假设存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F (c,0). 则由FA ⊥FB 得:

.0)1)(1())((.

0))((21212121=+++--=+--kx kx c x c x y y c x c x 即 整理得

.01))(()1(221212=+++-++c x x c k x x k ……③ 把②式及6

2

c =

代入③式化简得 .066252=-+k k 解得6666

(2,2)()55

k k +-=-

=?--或舍去 可知66

5

k +=-

使得以线段AB 为直径的圆经过双曲线C 的右焦点. 高考中的探索性问题主要考查学生探索解题途径,解决非传统完备问题的能力,是命题者根据学科特点,将数学知识有机结合并赋予新的情境创设而成的,要求考生自己观察、分析、创造性地运用所学知识和方法解决问题.

圆锥曲线常见题型与答案

圆锥曲线常见题型归纳 一、基础题 涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。此类题在考试中最常见,解此类题应注意: (1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况; (3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中 222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=; 例题: (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( ) A .421=+PF PF B .6 21=+PF PF C .1021=+PF PF D .122 2 2 1 =+PF PF (答:C ); (2) 方程8=表示的曲线是_____ (答:双曲线的左支) (3)已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2) (4)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值围为____ (答:11(3,)(,2)22---U ); (5)双曲线的离心率等于25 ,且与椭圆14 922=+y x 有公共焦点,则该双曲线的方程_______(答:2 214x y -=); (6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为 _______(答:226x y -=) 二、定义题 对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。常用到的平面几何知识有:中垂线、角平分线的性质,勾股定理,圆的性质,解三角形(正弦余弦定理、三角形面积公式),当条件是用向量的形式给出时,应由向量的几何形式而用平面几何知识;涉及圆的解析几何题多用平面几何方法处理; 圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例): ①围:,a x a b y b -≤≤-≤≤; ②焦点:两个焦点(,0)c ±; ③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为 2a ,短轴长为2b ; ④准线:两条准线2 a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。 p e c b a ,,,,

高考圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧 一、常规七大题型: (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为 , ,代入方程,然 后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。 如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 典型例题 给定双曲线。过A (2,1)的直线与双曲线交于两点 及 ,求线段 的中点 P 的轨迹方程。 (2 构成的三角形问题,常用正、余弦定理搭桥。 ,为焦点,,。 (1 (2)求 的最值。 (3)直线与圆锥曲线位置关系问题 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。 典型例题 (1)求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。 (4)圆锥曲线的相关最值(范围)问题 圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。 <1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

圆锥曲线常用结论

圆锥曲线常用结论 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

圆锥曲线常用结论(自己选择) 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是 以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、 P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一 点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点, 连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶 点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。

高考圆锥曲线中的定点与定值问题(题型总结超全)

专题08解锁圆锥曲线中的定点与定值问题 一、解答题 1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆的左右焦点分别为,离心率为;圆过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于两点. (Ⅰ)求椭圆的标准方程; (Ⅱ)证明:在轴上存在定点,使得为定值;并求出该定点的坐标. 【答案】(1)(2) 【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得 。设x轴上的定点为,可得 ,由定值可得需满足,解得可得定点坐标。 解得。 ∴椭圆的标准方程为. (Ⅱ)证明: 由题意设直线的方程为, 由消去y整理得, 设,,

要使其为定值,需满足, 解得 . 故定点的坐标为 . 点睛:解析几何中定点问题的常见解法 (1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意. 2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为k 的直线l 经过点()1,0-与抛物线2 :2C y px =(0,p p >为常数)交于不同的两点,M N ,当1 2 k =时,弦MN 的长为15(1)求抛物线C 的标准方程; (2)过点M 的直线交抛物线于另一点Q ,且直线MQ 经过点()1,1B -,判断直线NQ 是否过定点?若过定点,求出该点坐标;若不过定点,请说明理由. 【答案】(1)24y x =;(2)直线NQ 过定点()1,4- 【解析】试题分析:(1)根据弦长公式即可求出答案; (2)由(1)可设()()() 2221122,2,,2,,2M t t N t t Q t t ,则1 2 MN k t t =+, 则()11:220MN x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++= ()1212:220NQ x t t y t t -++=. 由()1,0-在直线MN 上1 1 t t ?= (1); 由()1,1-在直线MQ 上22220t t tt ?+++=将(1)代入()121221t t t t ?=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ?-+-+-=,即可得出直线NQ 过定点.

圆锥曲线问题常见方法

专题:解圆锥曲线问题常用方法(一) 【学习要点】 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,分析:(1)A 在抛物线外,如图,连PF ,则PF PH =当A 、P 、F 三点共线时,距离和最小。 (2)B 在抛物线内,如图,作QR ⊥l 交于R ,则当B 、Q 、R 距离和最小。 解:(1)(2,2) 连PF ,当A 、P 、F 三点共线时,PF AP PH AP +=+最小,此时AF

圆锥曲线经典例题及总结(全面实用,你值得拥有!)

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两 个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22 2 21x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 22 ,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);

高中数学:圆锥曲线中的数形结合思想

高中数学:圆锥曲线中的数形结合思想 圆锥曲线中直线和圆锥曲线结合在一起的题目较多,下文主要阐述了用数形结合思想来解决两类问题。 一、直线的条数 我们在学习圆锥曲线的过程中,遇到了这样的问题: 例1. 过点A(0,2)可以作4条直线与双曲线有且只有一个公共点。 这个结论可以引申:平面直角坐标系中任一点A(),过A与双曲线 有且只有一个交点的直线条数问题。图示说明:(图1) 可以证明: (1)区域①、②中的点,过这些点与双曲线有且只有一个交点的直线有4条。 (2)在双曲线的两支上的点,过这些点与双曲线有且只有一个交点的直线有3条。 (3)在双曲线的渐近线上的点(除原点)或在双曲线内部(区域③)的点,过这些点与双曲线有且只有一个交点的直线有2条。 (4)过原点与双曲线有且只有一个交点的直线有0条。 同样,我们也可以引申:平面直角坐标系中任一点A(),过A与抛物线有且只有一个交点的直线条数问题。图示说明:(图2) 可以证明: (1)点在抛物线内部(区域①)时,过这些点与抛物线有且只有一个交点的直线有1条。(与对称轴平行的直线) (2)点在抛物线上时,过这些点与抛物线只有一个交点的直线有2条。(1条切线+1条与对称轴平行的直线)。

(3)点在抛物线外(区域②)时,过这些点与抛物线只有一个交点的直线有3条。(2条切线+1条与对称轴平行的直线)。 椭圆中,比较常规,这里从略。 总结:要注意的是直线与圆锥曲线相交有且只有一个交点的情况未必相切,但相切必定只一个交点;掌握了这些区域的特点,关于这类直线条数的问题就迎刃而解了。 二、直线的斜率 关于直线与圆锥曲线相交、相切及直线条数的问题,我们还能引申到求直线的斜率问题,而这类问题又以双曲线比较典型,下面着重就双曲线中直线的斜率进行说明。 例1. 设离心率为e的双曲线C:的右焦点为F,直线l 过点F且斜率k,直线l与双曲线C的左、右支都相交的充要条件是()。 A. B. C. D. 分析:这是与左、右支都相交的问题。 方法1:作为选择题,可以采用特殊法。显然k=0时,D符合题意。但k=0时代入A、B、C均错。 方法2:渐近线的斜率为,左右支要都相交,则 (图3)。

解圆锥曲线问题常用方法

解圆锥曲线问题常用方法(二) 【学习要点】 解圆锥曲线问题常用以下方法: 4、数形结合法 解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将某些代数式子利用其结构特征,想象为某些图形的几何意义而构图,用图形的性质来说明代数性质。 如“2x+y ”,令2x+y=b ,则b 表示斜率为-2的直线在y 轴上的截距;如“x 2 +y 2 ”,令d y x =+22,则d 表示点P (x ,y )到原点的距离;又如“ 23+-x y ”,令2 3 +-x y =k ,则k 表示点P (x 、y )与点A (-2,3)这两点连线的斜率…… 5、参数法 (1)点参数利用点在某曲线上设点(常设“主动点”),以此点为参数,依次求出其他相关量,再列式求解。如x 轴上一动点P ,常设P (t ,0);直线x-2y+1=0上一动点P 。除设P (x 1,y 1)外,也可直接设P (2y,-1,y 1) (2)斜率为参数 当直线过某一定点P(x 0,y 0)时,常设此直线为y-y 0=k(x-x 0),即以k 为参数,再按命题要求依次列式求解等。 (3)角参数 当研究有关转动的问题时,常设某一个角为参数,尤其是圆与椭圆上的动点问题。 6、代入法 这里所讲的“代入法”,主要是指条件的不同顺序的代入方法,如对于命题:“已知条件P 1,P 2求(或求证)目标Q ”,方法1是将条件P 1代入条件P 2,方法2可将条件P 2代入条件P 1,方法3可将目标Q 以待定的形式进行假设,代入P 1,P 2,这就是待定法。不同的代入方法常会影响解题的难易程度,因此要学会分析,选择简易的代入法。 【典型例题】 例1:已知P(a,b)是直线x+2y-1=0上任一点,求S=136422+-++b a b a 的最小值。 分析:由此根式结构联想到距离公式, 解:S=2 2 )3()2(-++b a 设Q(-2,3), 则S=|PQ|,它的最小值即Q 到此直线的距离 ∴S min 5 535 | 1322|= -?+- 点评:此题也可用代入消元的方法转化为二次函数的最小值问题(注:可令根式内为t 消元后,它是一个一元二次函数)

高考数学中圆锥曲线重要结论的最全总结

高考数学圆锥曲线重要结论 一、定义:第一定义:平面内到两定点F1(-c,0),F2(c,0)的距离和为定值(大于两定点间的距离|F1F2|)2a的点的轨迹叫椭圆,两定点叫椭圆的焦点,两焦点间的距离叫焦距,与坐标轴的交点叫顶点。 第二定义:平面内到一个定点F的距离与到定直线1的距离比为常数e(0

高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反; ②标准方程中一次项的字母与对称轴和准线方程的字母一

致; ③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像; 二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

解圆锥曲线问题常用方法及性质总结

解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+ 椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 椭圆与双曲线的对偶性质总结 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的 两个端点.

圆锥曲线经典结论总结(教师版)

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+.

圆锥曲线大题题型归纳3

圆锥曲线大题题型归纳 基本方法: 1. 待定系数法:求所设直线方程中的系数,求标准方程中的待定系数a 、b 、c 、e 、p 等等; 2. 齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题; 3. 韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根; 4. 点差法:弦中点问题,端点坐标设而不求。也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式; 5. 距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题; 基本思想: 1.“常规求值”问题需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题当作存在去求,若不存在则计算时自然会无解; 3.证明“过定点”或“定值”,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关; 4.证明不等式,或者求最值时,若不能用几何观察法,则必须用函数思想将对象表示为变量的函数,再解决; 5.有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 6.大多数问题只要真实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。 题型一:求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题 例1、 已知F 1,F 2为椭圆2100x +2 64 y =1的两个焦点,P 在椭圆上,且∠F 1PF 2=60°,则△F 1PF 2的面积为多少? 点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。 变式1、已知12,F F 分别是双曲线223575x y -=的左右焦点,P 是双曲线右支上的一点,且

高二数学专题(一)简化圆锥曲线运算的几种数学思想人教版

高二数学专题(一)简化圆锥曲线运算的几种数学思想人教版 【本讲教育信息】 一. 教学内容: 专题(一)简化圆锥曲线运算的几种数学思想 二. 教学重、难点: 1. 重点: 圆锥曲线的综合问题。 2. 难点: 灵活运用介绍的几种数学思想简化圆锥曲线的运算。 【典型例题】 (一)极端思想 通过考察圆锥曲线问题的极端元素,灵活地借助极限状态解题,则可以避开抽象及复杂运算,优化解题过程,降低解题难度。这是简化运算量的一条重要途径。 [例1] 求已知离心率5 2= e ,过点(1,0)且与直线l :032=+-y x 相切于点(3 5 ,32- ),长轴平行于y 轴的椭圆方程。 解:把点(35,32- )看作离心率5 2=e 的椭圆0)35(51)32(2 2=-++y x (“点椭圆”),则与直线l :032=+-y x 相切于该点的椭圆系即为过直线l 与“点椭圆”的公共点的椭圆 系方程为:0)32()3 5(51)32(2 2=+-+-++y x y x λ 又由于所求的椭圆过点(1,0),代入上式得,3 2 -=λ 因此,所求椭圆方程为:15 22 =+y x (二)补集思想 有些圆锥曲线问题,从正面处理较难,常需分类讨论,运算量大,且讨论不全又容易出错,如用补集思想考虑其对立面,可以达到化繁为简的目的。 [例2] k 为何值时,直线l :)1(1-=-x k y 不能垂直平分抛物线x y =2的某弦。 解:设}|{R k k I ∈=,|{k A =直线l 垂直平分抛物线x y =2的某弦}。若直线l 垂直平分抛物线的弦AB ,且A ),(11y x ,B ),(22y x ,则12 1x y =,22 2x y = 上述两式相减得:212121))((x x y y y y -=+- 即2 1212111y y x x y y k +=--=- 又设M 是弦AB 的中点,且),(00y x M ,则2 2210k y y y -=+= 因为点M 在直线l 上,所以k x 1 210-=

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型 总论:常用的八种方法 1、定义法 2、韦达定理法 3、设而不求点差法 4、弦长公式法 5、数形结合法 6、参数法(点参数、K 参数、角参数) 7、代入法中的顺序 8、充分利用曲线系方程法 七种常规题型 (1)中点弦问题 (2)焦点三角形问题 (3)直线与圆锥曲线位置关系问题 (4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题 1.曲线的形状已知--------这类问题一般可用待定系数法解决。 2.曲线的形状未知-----求轨迹方程 (6) 存在两点关于直线对称问题 (7)两线段垂直问题 常用的八种方法 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、设而不求法 解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 02 20=+k b y a x 。(其中K 是直线AB 的斜率) (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有 020 20=-k b y a x (其中K 是直线AB 的斜率) (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. (其中K 是直线AB 的斜率) 4、弦长公式法 弦长公式:一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 2 0++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=12·| |12a k △ ·+,若直接用结论,能减少配方、开方等运算过程。 5、数形结合法 解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来

圆锥曲线问题通法通解

解圆锥曲线问题常用方法 【学习要点】 解圆锥曲线问题常用以下方法: 1、数形结合法 解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将某些代数式子利用其结构特征,想象为某些图形的几何意义而构图,用图形的性质来说明代数性质。 如“2x+y ”,令2x+y=b ,则b 表示斜率为-2的直线在y 轴上的截距;如“x 2+y 2 ”,令d y x =+22,则d 表示点P (x ,y )到原点的距离;又如“ 23+-x y ”,令2 3 +-x y =k ,则k 表示点P (x 、y )与点A (-2,3)这两点连线的斜率…… 2、参数法 (1)点参数利用点在某曲线上设点(常设“主动点”),以此点为参数,依次求出其他相关量,再列式求解。如x 轴上一动点P ,常设P (t ,0);直线x-2y+1=0上一动点P 。除设P (x 1,y 1)外,也可直接设P (2y,-1,y 1) (2)斜率为参数 当直线过某一定点P(x 0,y 0)时,常设此直线为y-y 0=k(x-x 0),即以k 为参数,再按命题要求依次列式求解等。 (3)角参数 当研究有关转动的问题时,常设某一个角为参数,尤其是圆与椭圆上的动点问题。 3、代入法 这里所讲的“代入法”,主要是指条件的不同顺序的代入方法,如对于命题:“已知条件P 1,P 2求(或求证)目标Q ”,方法1是将条件P 1代入条件P 2,方法2可将条件P 2代入条件P 1,方法3可将目标Q 以待定的形式进行假设,代入P 1,P 2,这就是待定法。不同的代入方法常会影响解题的难易程度,因此要学会分析,选择简易的代入法。 【典型例题】 例1:已知P(a,b)是直线x+2y-1=0上任一点,求S=136422+-++b a b a 的最小值。 分析:由此根式结构联想到距离公式, 解:S=2 2)3()2(-++b a 设Q(-2,3), 则S=|PQ|,它的最小值即Q 到此直线的距离 ∴S min 5 5 35 | 1322|= -?+- 点评:此题也可用代入消元的方法转化为二次函数的最小值问题(注:可令根式内为t 消元后,它是一个一元二次函数)

圆锥曲线常用结论(无需记忆-会推导即可).

椭圆与双曲线--经典结论 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0 P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-,即0 202y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是22 00002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆 22 22 1x y a b +=内,则过Po 的弦中点的轨迹方程是

圆锥曲线经典题型总结(含答案)

圆锥曲线整理 1.圆锥曲线的定义: (1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|); (2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d . 圆锥曲线的定义是本部分的一个重点内容,在解题中有广泛的应用,在理解时 要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12 222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。 (3)抛物线:开口向右时22(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。 注意:1.圆锥曲线中求基本量,必须把圆锥曲线的方程化为标准方程。 2.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): 椭圆:由x 2 ,y 2分母的大小决定,焦点在分母大的坐标轴上。 双曲线:由x 2 ,y 2项系数的正负决定,焦点在系数为正的坐标轴上; 抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 3.与双曲线x 2a 2- y 2 b 2 =1有相同渐近线的双曲线方程也可设为x 2a 2- y 2 b 2 =λ(λ≠0), 渐近线方程为y =±b a x 的双曲线方程也可设为x 2a 2- y 2 b 2 =λ(λ≠0).要求双曲线x 2a 2- y 2b 2 =λ(λ≠0)的渐近线,只需令λ=0即可. 4.直线与圆锥曲线的位置关系的判断是利用代数方法,即将直线的方程与圆锥曲线的方程联立,根据方程组解的个数判断直线与圆锥曲线的位置关系. 解决直线与圆锥曲线问题的通法 (1)设方程及点的坐标. (2)联立直线方程与曲线方程得方程组,消元得方程. (3)应用韦达定理及判别式. (4)结合已知、中点坐标公式、斜率公式及弦长公式求解. 5.若直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),且直线P 1P 2的斜率为 k ,则弦长|P 1P 2|=1+k 2|x 1-x 2|= 1+1 k 2|y 1-y 2|(k ≠0).|x 1-x 2|,|y 1-y 2|

相关文档
相关文档 最新文档