文档库 最新最全的文档下载
当前位置:文档库 › 丙烯酸甲酯的生产工艺设计

丙烯酸甲酯的生产工艺设计

丙烯酸甲酯的生产工艺设计
丙烯酸甲酯的生产工艺设计

5000t/a 丙烯酸甲酯的生产工艺组织与实施

1:丙烯酸甲酯的生产工艺路线选择

丙烯酸甲酯,别名败脂酸甲酯,分子式 C4H6O2或CH2CHCOOCH3,熔 点 -75℃ ,沸点:80.0℃,微溶于水。用于作为有机合成中间体,也是合成高分子聚合物的单体,用于橡胶、医药、皮革、造纸、粘合剂等。

无色液体。有辛辣气味。水中溶解度在20℃时为6G/100ml ,40℃时5G/100ml 、水在丙烯酸甲酯中溶解度为1.8ml/100G 。溶于乙醇和乙醚。在贮存过程中易聚合,光、热和过氧化物能加速其聚合作用。纯粹的单体在低于10℃时不聚合。通常加入对苯二酚单甲醚0.1%作阻聚剂。相对密度(d204)0.9561。熔点-76.5℃。沸点70℃(81.06kPA)。折光率(n20D)1.401。闪点(开杯)-4℃。易燃。中等毒,半数致死量(大鼠,经口)0.3G/kG 。有催泪性。对呼吸系统和皮肤有刺激性。 丙烯酸甲酯(Methyl Acrylate ,简写为MA)是重要的精细化工原料之一,主要用作有机合成中间体及合成高分子单体,丙烯酸甲酯可以和各种硬单体(如:甲基丙烯酸甲酯、苯乙烯、丙烯腈、醋酸乙烯等)及官能性单体[如: (甲基)丙烯酸羟乙酯、羟丙酯、缩水甘油酯、 (甲基)烯酰胺]及其衍生物等进行交换、共聚、接枝等,做成上千种丙烯酸类树脂产品(主要是乳液型、溶剂型及水溶型),广泛用作涂料、胶粘剂、睛纶纤维改性、塑料改性、纤维及织物加工、皮革加工、造纸以及丙烯酸类橡胶等许多方面。

现有生产方式

乙炔法(雷珀(Reppe)法)

是先将乙炔溶解于四氢呋喃溶剂中,用溴化镍为催化剂(作为羰基镍的来源),溴化铜为助催化剂,反应条件为:8~10 MPa ,200~225℃,丙烯酸的产率为90% (对乙炔)或85% (对CO),BASF 和Dow-Badische 相继于1960年进行工业生产,两者略有不同之处,前者用酸作催化剂进行甲醇酯化,后者用Dowex 。50强酸性阳离子交换树脂为催化剂。此法的特点是不用高压处理乙炔,用镍盐作催化剂,而不用有毒的羰基镍。

丙烯睛水解

这是丙烯腈水解,酯化后制取丙烯酯化的方法。

42424222224

2SO H NH COOR CH CH SO H CONH CH CH O H CN CH CH RO H SO H +?=??→???=??→?+?

反应分为两步,由利用丙烯腈水解的酰胺化反应与利用醇的酯化反应组成。在第一步反应中,是在70~100度将丙烯腈添加到硫酸水溶液中以合成丙烯酰胺硫酸盐,然后加适量的水和醇进行酯化。生成的酯用来蒸馏分离掉副产物硫酸氢铵后再送到精制工序。

这种方法所制得的丙烯酸酯的收率系随醇的种类有所不同,使用甲醇的时候,丙烯酸甲酯的收率按丙烯腈计高于85%,以甲醇计高于75%。至于用丁醇以上的高级醇,在经济上还存在问题。

这种方法的缺点是副产品是丙烯酸甲酯的二倍。(重量)即以硫酸氢铵为主要成分的废液,而处理这种废液有很多困难。因为不能将其扔掉,只能用于硫酸回收,或用来制造硫酸铵。另一个缺点是丙烯腈直接合成高级酯有一定的困难。因此这种方法不能用于大规模工厂的生产。

烯酮法

此法是将醋酸脱水或丙酮热分解所得的烯酮在锌化合物等催化剂条件下与甲醛反应制得丙内酰胺,然后在硫酸存在的情况下使其与醇反应合成丙烯酸酯。工业生产用醋酸做原料。

COOR CH CH O H C O C C H CH ROH

ZnCl PO O H C ?=??→????→?==?????→?-224310

7,2690,)(32352 乙烯氰醇法

这是1949年以来联合碳化物公司所采用的方法,将环氧乙烷和氢氰酸反应制得的乙烯氰醇和硫酸,醇一起加热制得的丙烯酸甲酯的。

COOR CH CH CN CH HOCH HCN O H C RO H

O H

?=??→????→?+-22242

丙烯氧化法

随着丙烯酸酯的需求量的加大和丙烯价格的下降,近来很多厂家都企图用价格较低而又适合于大型化的空气氧化合成丙烯酸的方法实现工业化。

乙酸甲酯法

乙酸甲酯与甲醛气相缩合法,在乙酸甲酯的α一碳原子上引入羟甲基,然后脱水即得丙烯酸甲酯。

O H CHCOOCH CH O CH COOCH CH 232233+=?→?+

反应条件为:0.1 MPa ,350~400℃,用碱或负载于SiO2或SiO2/Al2O3上的金属氧化物为催化剂,转化率为30%"-'70%,选择性为60%~90%,主要取决于催化剂和CH2O /CH3COOCH3的分子比。此法在技术上是可行的,但有大量未转化的原料必须回收,其发展取决于催化剂和分离方法的改进。

我们选择丙烯直接氧化法

以丙烯为原料, 两步氧化生成丙烯酸(第一步氧化为丙烯醛, 再氧化成丙烯酸),再与甲醇相酯化生成丙烯酸甲酯, 酯化产物经脱水分馏得成品。

选择理由:

随着丙烯酸酯需要量的增加及丙烯价格的下降,近来很多厂家都用价格低又适合于大型化的空气氧化合成丙烯酸的方法来实现工业化。

反应易于控制

主要生产步骤:

丙烯两步氧化生成丙烯酸

丙烯酸与甲醇酯化反应生成丙烯酸甲酯

1)主反应

丙烯酸与醇的酯化反应是一种生产有机酯的反应。其反应方程式如下:

CH2=CHCOOH+CH3OH <==>CH2=CHCOOCH3+H2O

可逆,放热

(2)副反应

CH2=CHCOOH十2CH3OH———> (CH3O)CH2CH2COOCH3+H2O

MPM:(3-甲氧基丙酸甲酯)

2CH2=CHCOOH十CH3OH ———> CH2=CHCOOC2H4COOCH3+H2O

D-M(3-丙烯酰氧基丙酸甲酯/二聚丙烯酸甲酯)

CH3COOH+R-OH——>CH3COOR十H2O

C2H5COOH+R-OH——>C2H5COOR十H2O

2. 生产工艺条件影响因素分析:

1 、温度控制

当温度波动较小时可以调节以上各影响因素的阀门开度。

当温度波动较大时可以调节以上各影响因素的阀门开度,或是换旁路阀、备用泵等备用装置。

2、反应器的压力

反应器顶部排气阀开度。

3、进料配比

通过各自控制新鲜醇和酸的进料量,以及醇和酸的循环量;

同时控制其比值,保证各自进料总量和比值在正常范围内。

4 、停留时间

通过生产要求的酯化率控制停留时间,60%-70%。

任务点03 典型设备的选择:

可供选择的反应器:固定床反应器、单段绝热式反应器、列管式等温反应器、多段绝热反应器、多段径向绝热反应器、多段轴径向绝热反应器、对外换热式

4.丙烯酸甲酯生产中安全、环保、节能措施:

项目涉及危险化学品特性一览表

一、安全工艺方

二、环保技术方案

三、节能技术方案

5 .丙烯酸甲酯生产工艺流程组织

1、原料及预处理工段

2、反应工段

3、产物分离方案

任务点06 丙烯酸甲酯生产操作要点

生产操作要点

酯化反应器的操作是丙烯酸甲酯生产的核心,不仅关系到产品的产量、质量、消耗,还关系到催化剂和设备的使用寿命,甚至整个车间的经济效益。因此,一切操作条件都要维护酯化反应器的生产条件。影响酯化反应的各种因素有温度、进料配比、停留时间等。

准备工作

1、启动真空系统

通过压力控制阀将分馏塔、醇回收塔、醇拔头塔、酯提纯塔抽真空。

开阀向分馏塔、醇回收塔、醇拔头塔、酯提纯塔及薄膜蒸发器投用阻聚剂空气。

2、酯提纯塔脱水

开阀向1内引丙烯酸甲酯,待其有一定液位后,开泵将其送至酯提纯塔,待酯提纯塔达一

定液位后,关调节阀,关丙烯酸甲酯进料阀。

3、醇萃取塔、醇回收塔建立水循环

开阀门向4内引水,待其到一定液位后,用泵将水送至醇萃取塔。使其中的水注满。注满水后向6内注水,待达到一定液位后,向醇回收塔注水。

投用蒸汽和冷却水

正常操作

1、酯化反应器引粗液,并循环升温

控制反应器入口温度为75℃

2、启动分馏塔系统

3、反应器进原料

4、醇萃取塔、醇回收塔进料

5、启动醇拔头塔

6、启动酯提纯塔

7、处理粗液、提负荷

正常停车

停止供给原料

停分馏塔系统

醇拔头塔和酯提纯塔停车

醇萃取塔和醇回收塔停车

分馏塔、醇回收塔、醇拔头塔、酯提纯塔系统打破真空

任务点07 丙烯酸甲酯生产中可能的故障分析及应对措施

聚乙烯生产工艺讲课讲稿

聚乙烯生产工艺

聚乙烯结构:CH2=CH2+CH2=CH2+……-CH2-CH2-CH2-CH2…. 简称PE,是乙烯经聚合制得的一种热塑性树脂。聚乙烯是结构简单的高分子,也是应用最广泛的高分子材料。它是由重复的?CH2?单元连接而成的。聚乙烯是通过乙烯(CH2=CH2)的加成聚合而成的。 聚乙烯(PE)是通用合成树脂中产量最大的品种,主要包括低密度聚乙烯(LDPE)、线型低密度聚乙烯(LLDPE)、高密度聚乙烯(HDPE)及一些具有特殊性能的产品。用途十分广泛,主要用来制造薄膜、容器、管道、单丝、电线电缆、日用品等,并可作为电视、雷达等的高频绝缘材料。也适用于各种浆点、粉点、撒粉、涂布机及喷胶机产品;广泛用于服装、服装面料复合、制鞋、包装、书籍、无线装订、儿童玩具、家电等行业。合剂的首选材料。 聚合实施方法:淤浆法、溶液法、气相法 产品密度大小:高密度、中密度、低密度、线性低密度 产品分子量:低分子量、普通分子量、超高分子量 生产方法:高压法、低压法、中压法 高压法用来生产低密度聚乙烯,这种方法开发得早,用此法生产的聚乙烯至今约占聚乙烯总产量的2/3,但随着生产技术和催化剂的发展,其增长速度已大大落后于低压法。低压法就其实施方法来说,有淤浆法、溶液法和气相法。 淤浆法主要用于生产高密度聚乙烯,而溶液法和气相法不仅可以生产高密度聚乙烯,还可通过加共聚单体,生产中、低密度聚乙烯,也称为线型低密度聚乙烯。近年来,各种低压法工艺发展很快。本设计中采用高压淤浆法合成低密度聚乙烯。

聚乙烯有优异的化学稳定性,室温下耐盐酸、氢氟酸、磷酸、甲酸、胺类、氢氧化钠、氢氧化钾等各种化学物质,硝酸和硫酸对聚乙烯有较强的破坏作用。聚乙烯容易光氧化、热氧化、臭氧分解,在紫外线作用下容易发生降解,碳黑对聚乙烯有优异的光屏蔽作用。受辐射后可发生交联、断链、形成不饱和基团等反映。 聚乙烯的生产工艺 1主要原料 乙烯是最简单的烯烃,常压下是略带芳香气味的无色可燃性气体。 乙烯几乎不溶于水,化学性质活泼。与空气混合能产生爆炸性混合物。是石油化工的基本原料。 乙烯来源于液化天然气、液化石油气、轻柴油、重油或原油等经裂解产生的裂解气中分出;也可由焦炉煤气分出;还可由乙醇脱水制得。 2高压聚合生产工艺 乙烯高压聚合是以微量氧或有机过氧化物为引发剂,将乙烯压缩至 147.1~245.2MPa高压下,在150~290℃的条件下,乙烯经自由基聚合反应转变成为聚乙烯的聚合方法。也是工业上采用自由基型气相本体聚合的最典型方法,海事工业上生产聚乙烯的第一种方法,至今仍然是生产低密度聚乙烯的主要生产方法 3聚合原理 乙烯在高压下按自由基聚合反应机理进行聚合。由于反应温度高,容易发生向大分子链转移反应,产物为带有较多长支链和短支链的线型大分子。经测试,大分子链中平均1000个碳原子的支链上带有20~30个支里链。同时由于支

年产1.1万吨顺丁橡胶生产工艺设计说明书讲述

北京化工大学化学工程学院 设计说明书 题目: 学生: 班级:化工 学号: 指导教师: 2015 年1月

目录 1.工艺设计基础 1.1 设计任务 1.2 原辅材料性质及技术规格 1.3 产品的性质及技术规格 1.4 危险性物料的主要物性 1.5 原辅材料的消耗定额 2.工艺说明 2.1生产方法、工艺技术路线及工艺特点 2.1.1 生产方法 2.1.2 工艺技术路线的确定 2.2生产流程简述 3.工艺计算与主要设备选型 3.1 物料衡算 3.1.1 计算的基准数据 3.1.2 计算基准 3.1.3 各单元物料衡算 3.2热量衡算 3.2.1 计算的基准数据 3.2.2 物料衡算 3.3 聚合釜的计算及选型 4 工艺控制条件及自控设计 5.附图:带控制点的工艺流程图(PID)

1.工艺设计基础 1.1 设计任务 1.1.1设计项目 年产1.1万吨顺丁橡胶生产工艺设计 1.1.2产品规格 纯度为99%的顺丁橡胶 1.1.3生产能力 年产1.1万吨顺丁橡胶; 考虑到设备检修,年开工时间为8000小时; 采用五班三倒制,每班工作8小时。 1.1.4主要设计任务 顺丁橡胶生产工艺由聚合工段和后处理工段两大部分组成,本设计的主要任务为:(1)聚合釜、终止釜和凝聚釜的物料衡算; (2)聚合釜的热量衡算; (3)聚合釜的计算和选型; (4)设计出聚合工段带工艺控制点的工艺流程图。 由于本设计为假定设计,所以设计任务中其他项目如:厂区或厂址、主要技术经济指标、原料的供应、技术规格以及燃料种类、水电汽的主要来源,与其他工业企业的关系,建厂期限、设计单位、设计进度及设计阶段的规定等均从略。 1.1.5产品及主要用途 顺丁橡胶,全名为顺式—1,4—聚丁二烯橡胶,呈白色或微黄色,简称BR,是由丁二烯聚合制得的结构规整的合成橡胶。与天然橡胶和丁苯橡胶相比,硫化后的顺丁橡胶的耐寒性、耐磨性和弹性特别优异,动负荷下发热少,耐老化性尚好,易与天然橡胶、氯丁橡

最新丙烯酸甲酯的生产工艺资料

5000t/a 丙烯酸甲酯的生产工艺组织与实施 1:丙烯酸甲酯的生产工艺路线选择 丙烯酸甲酯,别名败脂酸甲酯,分子式 C4H6O2或CH2CHCOOCH3,熔 点 -75℃ ,沸点:80.0℃,微溶于水。用于作为有机合成中间体,也是合成高分子聚合物的单体,用于橡胶、医药、皮革、造纸、粘合剂等。 无色液体。有辛辣气味。水中溶解度在20℃时为6G/100ml ,40℃时5G/100ml 、水在丙烯酸甲酯中溶解度为1.8ml/100G 。溶于乙醇和乙醚。在贮存过程中易聚合,光、热和过氧化物能加速其聚合作用。纯粹的单体在低于10℃时不聚合。通常加入对苯二酚单甲醚0.1%作阻聚剂。相对密度(d204)0.9561。熔点-76.5℃。沸点70℃(81.06kPA)。折光率(n20D)1.401。闪点(开杯)-4℃。易燃。中等毒,半数致死量(大鼠,经口)0.3G/kG 。有催泪性。对呼吸系统和皮肤有刺激性。 丙烯酸甲酯(Methyl Acrylate ,简写为MA)是重要的精细化工原料之一,主要用作有机合成中间体及合成高分子单体,丙烯酸甲酯可以和各种硬单体(如:甲基丙烯酸甲酯、苯乙烯、丙烯腈、醋酸乙烯等)及官能性单体[如: (甲基)丙烯酸羟乙酯、羟丙酯、缩水甘油酯、 (甲基)烯酰胺]及其衍生物等进行交换、共聚、接枝等,做成上千种丙烯酸类树脂产品(主要是乳液型、溶剂型及水溶型),广泛用作涂料、胶粘剂、睛纶纤维改性、塑料改性、纤维及织物加工、皮革加工、造纸以及丙烯酸类橡胶等许多方面。 现有生产方式 乙炔法(雷珀(Reppe)法) 是先将乙炔溶解于四氢呋喃溶剂中,用溴化镍为催化剂(作为羰基镍的来源),溴化铜为助催化剂,反应条件为:8~10 MPa ,200~225℃,丙烯酸的产率为90% (对乙炔)或85% (对CO),BASF 和Dow-Badische 相继于1960年进行工业生产,两者略有不同之处,前者用酸作催化剂进行甲醇酯化,后者用Dowex 。50强酸性阳离子交换树脂为催化剂。此法的特点是不用高压处理乙炔,用镍盐作催化剂,而不用有毒的羰基镍。 丙烯睛水解 这是丙烯腈水解,酯化后制取丙烯酯化的方法。 424242222242SO H NH COOR CH CH SO H CONH CH CH O H CN CH CH ROH SO H +?=??→???=??→?+? 反应分为两步,由利用丙烯腈水解的酰胺化反应与利用醇的酯化反应组成。在第一步反应中,是在70~100度将丙烯腈添加到硫酸水溶液中以合成丙烯酰胺硫酸盐,然后加适量的水和醇进行酯化。生成的酯用来蒸馏分离掉副产物硫酸氢铵后再送到精制工序。 这种方法所制得的丙烯酸酯的收率系随醇的种类有所不同,使用甲醇的时候,丙烯酸甲酯的收率按丙烯腈计高于85%,以甲醇计高于75%。至于用丁醇以上的高级醇,在经济上还存在问题。 这种方法的缺点是副产品是丙烯酸甲酯的二倍。(重量)即以硫酸氢铵为主要成分的废液,而处理这种废液有很多困难。因为不能将其扔掉,只能用于硫酸回收,或用来制造硫酸铵。另一个缺点是丙烯腈直接合成高级酯有一定的困难。因此这种方法不能用于大规模工厂的生产。 烯酮法

丙烯酸甲酯工艺仿真软件操作手册

丙烯酸甲酯工艺仿真软件操作手册

嘉兴学院丙烯酸甲酯工艺仿真操作手册 北京东方仿真软件技术有限公司 2013年5月 精心整理,用心做精品0

目录 第一章生产原理及工艺特点 (2) 第二章生产流程说明 (4) 第三章设备一览表 (8) 第四章主要操作条件及工艺指标 (9) 第五章操作规程 (11) 第六章操作界面 (15) 精心整理,用心做精品1

第一章生产原理及工艺特点 在该单元中丙烯酸与甲醇反应,生成丙烯酸甲酯,磺酸型离子交换树脂被用作催化剂。 1.1 酯化反应原理 丙烯酸与醇的酯化反应是一种生产有机酯的反应。其反应方程式如下: CH 2=CHCOOH+CH 3 OH <==>CH 2 =CHCOOCH 3 +H 2 O 这是一个平衡反应,为使反应有向有利于产品生成的方向进行,采用一些方法,一种方法是用比反应量过量的酸或醇,另一种方法是从反应系统中移除产物。 1.2 丙烯酸与甲醇的酯化反应 (1)酯化反应器的主反应 酯化反应器的主反应的化学方程式如下: H+(IER)* CH 2=CHCOOH+CH 3 OH <==> CH 2 =CHCOOCH 3 +H 2 O AA MEOH MA *IER指离子交换树脂 (2)酯化反应器的副反应 CH 2=CHCOOH十2CH 3 OH———> (CH 3 O)CH 2 CH 2 COOCH 3 +H 2 O MPM:(3-甲氧基丙酸甲酯) H+(IER)* 2CH 2=CHCOOH十CH 3 OH ———> CH2=CHCOOC 2 H 4 COOCH 3 +H 2 O D-M(3-丙烯酰氧基丙酸甲酯/ 二聚丙烯酸甲酯) 精心整理,用心做精品2

关于乙丙橡胶生产工艺的技术及经济比较

关于乙丙橡胶生产工艺的技术及经济比较 乙丙橡胶(EPR)是继Zieg1er一Natta催化剂的发明、聚乙烯和聚丙烯的出现后问世的一种以乙烯。丙烯为基本单体的共聚橡胶,分为二元乙丙橡胶(EPM)和三元乙丙橡胶(EPDM)两大类。前者是乙烯和丙烯的共聚物;后者是乙烯、丙烯和少量非共轭二烯烃的共聚物。EPR具有许多其它通用合成橡胶所不具备的优异性能,加之单体价廉易得,用途广泛,是国外七大合成橡胶品种中发展最快的一种,其产量、生产能力和消费量在发达国家中均居第三位,仅次于丁苯橡胶、顺丁橡胶。 目前FPR工业生产工艺路线有溶液聚合法、悬浮聚合法和气相聚合法三种。下面将分别详细论述其技术状况及待点,并进行技术经济比较。 一、溶液聚合工艺 1、技术状况生产工艺是在既可以溶解产品、又可以溶解单体和催化剂体系的溶剂中进行的均相反应,通常以直链烷烃如正己烷为溶剂,采用V一A1催化剂体系,聚合温度为30~50C,聚合压力为0.4~0.8MPa,反应产物中聚合物的质量分数一般为8%~10%。工艺过程基本上由原材料准备、化学品配制、聚合、催化剂脱除、单体和溶剂回收精制以及凝聚、干燥和包装等工序组成,但由于各公司在某部分或控制方面有自己的专利技术,因而各具独特的工艺实施方法。 DSM公司EPR溶液聚合工艺技术成熟,比较先进,有下列优点:(1)投资低,工艺最佳化。反应器的优比设计能满足反应物料混合要求,能准确控制聚合反应工艺参数和产品质量,聚合物胶液浓度高而循环溶剂量少,聚合釜体积小但生产强度高,原料和循环单体不需要精制,催化剂效率高,三废中钒含量低,生产弹性大。(2)生产操作费用低,装置年操作时间长,原料和催比剂的消耗低,采用先进控制系统对生产进行控制。(3)产品质量具有极强的竞争力。产品中催化剂残渣含量低,生产中次品少,产品牌号切换灵活,切换废品量少,产品特性能够按用户要求进行调整,产品牌号多,门尼值可在20~160宽范围内调节,质量稳定,重复性好,产品规格指标变化幅度窄和产品加工性能优异。 2、技术特点技术比较成熟,操作稳定,是工业生产EPR的主要方法;产品品种牌号较多,质量均匀,灰分含量较少,应用范围广泛;产品电绝缘性能好。但是由于聚合是在溶剂中进行,传质传热受到限制,聚合物的质过分数一般控制在6%~9%,最高仅达11%~14%,聚合效率低。同时,由于溶剂需回收精制,生产流程长,设备多,建设投资及操作成本较高。 二、悬浮聚合工艺 1、技术状况EPR悬浮聚合工艺产品牌号不多,其用途有局限性,主要用作聚烯烃改性,目前只有Enichem公司和Bayer公司两家使用,占EPR总生产能力的13.4%。该工艺是根据丙烯在共聚反应中活性较低的原理,将乙烯溶解在液

聚乙烯塑料生产工艺

前言 塑料工业是一门新兴的工业。从十九世纪中叶以后,以樟脑和硝酸纤维素混合制得的可塑性物质为塑料工业的诞生开辟了道路。二十世纪以来,人们用化学合成的方法,制成了一系列具有天然树脂性能的合成树脂。从此,塑料工业便开始迅速发展起来,塑料成为国民经济各个领域中不可缺少的材料。当前,塑料工业已是世界上发展最迅速的工业领域之一。1950 年全世界塑料产量为150万吨,1960年发展到690万吨,1970年达到3000万吨,1979年达到6344万吨。据国外预测,到1985年,全世界塑料的总产量可达1亿吨,到2000年世界塑料产量将超过3.5亿吨。在可以预见的未来,全世界可生产的塑料不仅在体积上将超过钢铁,而且在重量上也将于钢铁相当。未来的世界将是一个“塑料的世界”。聚乙烯具有优良的耐低温性,耐化学药品的侵蚀性,突出的电源绝缘性,同时并能耐高压、耐辐射性。由于聚乙烯仅由碳、氢二种元素所组成,没有极性元素的存在,所以它还有着良好的抗水性。聚乙烯按其生产方法的不同,有高压法聚乙烯、中压法聚乙烯和低压法聚乙烯三种之分。三种方法各有优缺点,在工业上是并存的。聚乙烯的性能随制造方法的不同,于分子结构有关;可分为低密度与高密度。通常,由高压法制得的聚乙烯叫做“低密度密度”,而由中压法或低压法制得的聚乙烯叫做“高密度聚乙烯”。除此之外,还有低分子量聚乙烯,超高分子量聚乙烯,交联聚乙烯,氯化聚乙烯,氯磺化聚乙烯,乙烯-丙烯酸乙酯共聚物等多种聚乙烯及其共聚物。随着各种改性技术和复合技术的发展,聚乙烯正在向一些新的应用领域渗透。 第一章 聚乙烯性能 1.1聚乙烯物理性质 聚乙烯在薄膜状态下可以被认为是透明的,但是在块状存在的时候由于其内部存在大量的晶体,会发生强烈的光散射而不透明。聚乙烯结晶的程度受到其枝链的个数 的影响,枝链越多,越难以结晶。聚乙烯的晶体融化温度也受到枝链个数的影响,分布于从90摄氏度到130摄氏度的范围,枝链越多融化温度越低。聚乙烯单晶通常可以通过把高密度聚乙烯在130摄氏度以上的环境中溶于二甲苯中制备。聚乙烯为白色蜡状半透明材料,柔而韧,比水轻,无毒,具有优越的介电性能。易燃烧且离火后继续燃烧。透水率低,对有机蒸汽透过率则较大。聚乙烯的透明度随结晶度增加而下降在一定结晶度下,透明度随分子量增大而提高。高密度聚乙烯熔点范围为132-135oC,低密度聚乙烯熔点较低(112oC)且范围宽。常温下不溶于任何已知溶剂中,70oC以上可少量溶解于甲苯、乙酸戊酯、三氯乙烯等溶剂中。聚乙烯无臭,无毒,手感似蜡,具有优良的耐低温性能(最低使用温度可达-70~-100℃),化学稳定性好,能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸),常温下不溶于一般溶剂,吸水性小,但由于其为线性分子可缓慢溶于某些有机溶剂,且不发生溶胀,电绝缘性能优良;但聚乙烯对于环境应力(化学与机械作用)是很敏感的,耐热老化性差。聚乙烯的性质因品种而异,主要取决于分子结构和密度。1.2聚乙烯化学性质聚乙烯有优异的化学稳定性,室温下耐盐酸、氢氟酸、磷酸、甲酸、胺类、氢氧化钠、氢氧化钾等各种化学物质,硝酸和硫酸对聚乙烯有较强的破坏作用。聚乙烯容易光氧化、热氧化、臭氧分解,在紫外线作用下容易发生降解,碳黑对聚乙烯有优异的 7 第三章 聚乙烯加工与应用 3.1加工与应用 可用吹塑、挤出、注射成型等方法加工,广泛应用于制造薄膜、中空制品、纤维和日用 杂品等。在实际生产中,为了提高聚乙烯对紫外线和氧化作用的稳定性,改善加工及使用性

顺丁橡胶生产工艺

第三节顺丁橡胶生产工艺 顺丁橡胶(BR):以13-丁二烯为单体,经配位聚合而得到的高顺式聚丁二烯高分子弹性体。 一、主要原料 1.单体 单体1,3-丁二烯 2.引发剂 Li系→组成简单,活性高、用量少,易控制,加工性能差。 Ti系→产物为线型结构,Rp快,相对分子质量分布窄,加工性能不好。 Co系→→支化度高 较好,顺式含量高,相对分子质量分布较宽,易于加工。 Ni系→→可提高单体浓度和聚合温度,国内多采用。 Ni系引发剂组成:主引发剂→环烷酸镍Ni(OOCR)2 助引发剂→三异丁基铝Al(i-C4H9)3,外观浅黄透明,无悬浮物 第三组分→三氟化硼乙醚络合物BF3OC2H5 3.溶剂 溶剂:苯、甲苯、甲苯-庚烷、溶剂油(简称C6油或抽余油)等 ↓ 要求是馏程60~90℃,碘值<0.2g/100g,水值<20mg/kg。 影响:造成聚合体系的粘度不同,影响传热、搅拌、回收、生产能力等。 4.其他 终止剂:乙醇(纯度95%,含水5%,恒沸点78.2℃,相对密度0.81) 防老剂:2,6-二叔丁基-4-甲基苯酚(简称264) 熔点69~71℃,游离甲酚<0.04%,灰分<0.03%,油溶性合格。二、原理与工艺 1.聚合原理与方法 配位聚合 采用连续式溶液聚合法。 2.顺丁橡胶生产工艺 (1)生产工艺配方与聚合条件

①工艺配方; 丁油浓度12~15g/ml 镍/丁≤2.0×10-5 铝/丁≤1.0×10-4 硼/丁≤2.0×10-4 铝/硼>0.25 醇/铝6 铝/镍3~8 防老剂/丁0.79%~1.0% 聚合温度:首釜<95℃,末釜<100℃ 聚合压力:<0.45Mpa 转化率:>85% 收率:>95% 每吨胶消耗丁二烯: 1.045t ②聚合条件的确定 1/单体浓度 门尼粘度是生产控制的主要指标,一般控制在(45~50)±5左右。 2/引发剂的陈化方式→引发剂的活性有很大影响 陈化方式: 三元陈化→(Ni、B、Al分别配制成溶液,再按一定次序加入) 双二元陈化→(将Al分成一半,分别与Ni、Al组分混合陈化) 稀硼单加→(将Ni、Al混合陈化,B配制成溶液后直接加入聚合釜)→应用最多一种方式 3/溶剂的选择 甲苯的溶解能力最好,但搅拌不利。 生产中选择:溶剂油为溶剂 优点:成本低,来源丰富,毒性小,易分离回收。 缺点;溶解性能不好,易产生挂胶。 4/聚合温度控制 现象:丁二烯聚合反应的反应热为1381.38kJ/kg,如不及时排除将会影响产物

丙烯酸甲酯工艺说明

15000吨/年丙烯酸甲酯生产工艺 第一章生产原理及工艺特点 在该单元中丙烯酸与甲醇反应,生成丙烯酸甲酯,磺酸型离子交换树脂被用作催化剂。 1.1 酯化反应原理 丙烯酸与醇的酯化反应是一种生产有机酯的反应。其反应方程式如下: CH 2=CHCOOH+CH 3 OH <==>CH 2 =CHCOOCH 3 +H 2 O 这是一个平衡反应,为使反应有向有利于产品生成的方向进行,采用一些方法,一种方法是用比反应量过量的酸或醇,另一种方法是从反应系统中移除产物。 1.2 丙烯酸与甲醇的酯化反应 (1)酯化反应器的主反应 酯化反应器的主反应的化学方程式如下: H+(IER)* CH 2=CHCOOH+CH 3 OH <==> CH 2 =CHCOOCH 3 +H 2 O AA MEOH MA *IER指离子交换树脂(2)酯化反应器的副反应 CH 2=CHCOOH十2CH 3 OH———> (CH 3 O)CH 2 CH 2 COOCH 3 +H 2 O MPM:(3-甲氧基丙酸甲酯) H+(IER)* 2CH 2=CHCOOH十CH 3 OH ———> CH2=CHCOOC 2 H 4 COOCH 3 +H 2 O D-M(3-丙烯酰氧基丙酸甲酯/二聚丙烯酸甲酯)

H+(1ER) CH 2=CHCOOH+CH 3 OH———>HOC 2 H 4 COOCH 3 HOPM(3-羟基丙酸甲酯) H+(1ER) CH 2=CHCOOH+CH 3 OH ——>CH 3 OC 2 H 4 COOH MPA(3-甲氧基丙酸) H+(1ER) 2CH 2=CHCOOH———>CH 2 =CHCOOC 2 H 4 COOH D-AA(3·丙烯酰氧基丙酸/二聚丙烯酸) 其他副产物是由于原料中的杂质的反应而形成的。典型的丙烯酸中的杂质的反应如下: CH 3COOH+R-OH——>CH 3 COOR十H 2 O C 2H 5 COOH+R-OH——>C 2 H 5 COOR十H 2 O 丙烯酸甲酯的酯化反应在固定床反应器内进行,它是一个可逆反应,本工艺采用酸过量使反应向正方向进行。 反应在如下情况下进行: 温度:75℃(MA) 醇/酸摩尔比:0.75(MA) 由于甲酯易于通过蒸馏的方法从丙烯酸中分离出来,从经济性角度,醇的转化率被设在60%-70%的中等程度。未反应的丙烯酸从精制部分被再次循环回反应器后转化为酯。 用于甲酯单元的离子交换树脂的恶化因素有:金属离子的玷污、焦油性物质的覆盖、氧化、不可撤回的溶涨等。因此,如果催化剂有意被长期使用,这些因素应引起注意。被金属铁离子玷污导致的不可撤回的溶涨应特别注意。 1.3 丙烯酸回收 丙烯酸回收是利用丙烯酸分馏塔精馏的原理,轻的甲酯、甲醇和水从塔

乙丙橡胶工艺

常熟理工学院 ------材料科学与工程专业聚合物合成工艺课程设计 题目:配位嵌段共聚合制备乙丙橡胶的合成工艺 姓名:颜霞 学号:150207135 专业:材料科学与工程专业 班级:07级材料(1)班 指导教师:左晓兵 起止日期:2009.1—2009.

配位嵌段共聚合制备乙丙橡胶的合成工艺 一、聚合方法概述 反应方程式: CH3 CH3 |︱ CH2= CH2 + CH= CH2 ( CH2--- CH2)m(—CH2)n 乙烯丙烯共聚物 CH3 | CH2= CH2 + CH= CH2 +二烯烃 CH3 ︱ (CH2--- CH2)m—(CH—CH2)n—(二烯烃)y EPDM三元共聚物 反应机理:以乙烯、丙烯为单体,用钒-铝配合物为引发剂,其聚合机理属于配位离子型聚合反应。聚合时,首先是单体上双键的∏电子在引发剂活性中心的空位上进行络合,由于R-V键变弱,以致断裂,单体分子插入R-V键,链的增长按这个方式不断重复进行。 主要用途:因乙丙橡胶分子主链为饱和结构而呈现出卓越的耐候性、耐臭氧、电绝缘性、低压缩永久变形、高强度和高伸长率等宝贵性能,其应用极为广泛,消耗量逐年增加。根据乙丙橡胶的不同系列和分子结构方面的特点,乙丙橡胶应用种类有通用型、混用型、快速硫化型、易加工型和二烯烃橡胶并用型等不同应用类型。从实际应用情况分析,乙丙橡胶在非轮胎方面得到了广泛的应用。 1.汽车工业乙丙橡胶在汽车制造行业中应用量最大,主要应用于汽车密封条、散热器软管、火花塞护套、空调软管、胶垫、胶管等。在汽车密封条行业中,主要利用EPDM的弹性、耐臭氧、耐候性等特性,其ENB型的EPDM橡胶已成为汽车密封条的主体材料,国内生胶年消耗量已超过1万吨,但由于品种关系,其一半还依靠进口。由于热塑性三元乙丙橡胶EPDM/PP强度高、柔性好、涂装光泽度高、易回收利用的特点,在国内外汽车保险杠和汽车仪表板生产中已作为主导材料。预计到2010年仅汽车保险杠和仪表板两项产品,EPDM/PP的国内年用量可达4.5万吨。此类产品的回收利用主要采用的工艺方法是:先去掉产品表面的涂料-粉碎-清洗-再造粒-添加新料后生产新产品。这样在保险杠和仪表板生产中,就能节约大量原材料取得较好的经济效益。目前,我国乙丙橡胶在汽车工业中的用量占全国乙丙橡胶总用量的42%-44%,其中还不包括船舶、列车和集装箱密封条的乙丙橡胶用量。因乙丙橡胶的粘接性能不好,在汽车轮胎行业中在大量用料的轮胎主体和胎面部位上无法推广使用乙丙橡胶,只在内胎、白胎侧、胎条等部位少量使用乙丙橡胶。

顺丁橡胶工艺流程

一、产品及原材料简介 1.1产品简介 产品为丁二烯橡胶(BR)9000,规格BR9O00. 丁二烯橡胶(BR)9000全名顺式-1,4-聚丁二烯橡胶(Cis 1,4Polybutadiene Rubber). 丁二烯橡胶(BR)9000为白色或浅黄色弹性体,性能和天然橡胶相近,是一种优良的通用橡胶,其结构式为: 顺式-1,4结构在聚合链中含量在90%以上的聚丁二烯才具有良好的弹性. 丁二烯橡胶(BR)9000与天然橡胶和丁苯橡胶相比,具有弹性高,耐磨性好,耐寒性好,生热低,耐屈挠性和动态性能好等特性,它与油类、补强剂、填充剂、天然橡胶以及丁苯橡胶等均有良好的相容性.丁二烯橡胶(BR)9000的主要缺点是抗湿滑性,撕裂强度和拉伸强度较低,冷流性大,加工性能较差。 表1-1 丁二烯橡胶(BR)9000产品质量指标(GB/T8659-2001)

1.2 原材料规格及性能 1.2.1 原料 1.2.1.1 丁二烯 纯度≥ 99.2% 水值≤ 25mg/kg 乙腈≤ 3mg/kg TBC ≤ 20mg/kg 二聚物≤ 300mg/kg 总炔烃≤ 20mg/kg(其中乙烯基乙炔< =5mg/kg) 含氧化合物≤ 10mg/kg 1.2.1.1 粗溶剂油 沸程: 60~90℃ 碘指: <0.1G/100g 水值:无游离水 硫化物:无 水溶物酸碱性:中性 1.2.1.3 环烷酸镍 含镍量:≥ 6%(m/m) 含水量: < 0.5%(m/m) 机械杂质: < 0.2%(m/m) 苯不溶物:微量 不皂化物:无 外观:绿色透明粘稠物 1.2.1.4 三氟化硼乙醚络合物

BF含量: 46.8~47.8%(m/m)3 比重: 1.120~1.127 沸点: 124.5~126℃ 油溶性:在250倍油中全溶,三小时后无沉淀含水量: <=0.5%(m/m) 外观;无色透明,无沉淀物 1.2.1.5 三异丁基铝 溶度: 2.0 ± 0.2g/l 悬浮铝;无 外观;无色透明液体 活性铝含量: >= 80%(m/m) 二异丁基氢化铝:≤15%(m/m) 1.2.1.6 2,6-二叔丁基-4-甲基苯酚(防老剂)溶点; 68.5~70.0℃ 游离甲酚:≤0.03% 灰分:≤0.03% 外观:白色或浅黄色晶体 1.2.1.7 5A分子筛 吸水量: ≥200mg/ml 堆积密度: >0.6~0.7t/m3 1.2.1.8 活性氧化铝 粒径: 4~6mm 吸水率:≥100% 强度:≥13kg/个球 堆积密度: 0.63~0.78t/m3 外观:白色或微红色粒状固体 1.2.1.9 液碱 氢氧化钠含量:≥30% 水不溶物含量: <0.1% 1.2.1.10 聚乙烯薄膜 规格:宽700cm ,厚0.04~0.06mm 熔点: <100℃ 1.2.1.11 牛皮纸袋质量标准: 规格: 900×370×160mm

甲基丙烯酸甲酯催化剂简述

两段氧化法生产甲基丙烯酸甲酯工艺所需催化剂的简述 两段氧化法生产甲基丙烯酸甲酯的工艺,其反应部分共分为两个反应阶段。第一段反应为氧化反应,汽化的叔丁醇(或异丁烯)和空气、水蒸气按一定的比例通过装有催化剂的固定床反应器,在催化剂的催化氧化作用下快速反应,生产甲基丙烯醛及一部分副产物,反应生产物经冷却脱水后作为二段反应的原料。 二段反应为氧化酯化反应,在釜式反应器(三相浆态床)内,甲基丙烯醛、甲醇和氧气按一定的比例进行反应,在催化剂的作用下氧化酯化生成甲基丙烯酸甲酯,产物进入精馏工段进行精制提纯。 一段催化剂形状为实心柱状,其生产过程主要分为溶解、搅拌加热、喷雾干燥、压片成型等工序。生产的不同批次的催化剂均要进行充分的单管实验,以验证催化剂各方面的性能,从单管实验结果来看,本公司生产的催化剂大部分均能达到理想的效果,产品性能比较稳定。通过单管实验数据及生产运行的结果来看,热媒温度控制在330℃是较合适的,此时,床层热点温度在360摄氏度(热点温度最高不超过390℃)左右。投入生产以来,催化剂各方面的性能均表现良好。 二段催化剂为黑色粉末状固体,载体过三百目筛,附着钯金属后 灼烧而成。通过微反实验验证催化剂性能(同时要加入两种助催化剂),选择性及转化率均能达到要求,但投入生产后,化工的放大作用影响了催化剂的性能。可能是因为进料方式、气体分布情况、催化剂分布情况等因素,催化剂选择性及转化率没有达到微反实验的效果。同时,反应器的形状、大小、气体分布装置、三相分离设备均一定程度的影

响了生产的顺利进行,同时也限制了催化剂性能的充分体现。 从催化剂投入使用以来,分析生产数据,一段反应的催化剂性能优于二段反应的催化剂。但一段反应的反应器性能及操作均有类似产品可供参考,而二段反应的反应器及分离设施均在摸索阶段,所以二段催化剂没有表现出良好的性能,除了本身的原因之外,反应器的性能也一定程度上影响了其能力的发挥。 此外,一二段催化剂本身均有需要提高的地方,例如其反应表面积及机械强度等。

三元乙丙橡胶配方

起止日期:2009.1—2009. 配位嵌段共聚合制备乙丙橡胶的合成工艺 一、聚合方法概述 反应方程式: CH3 CH3 |︱ CH2= CH2 + CH= CH2 ( CH2--- CH2)m(—CH2)n 乙烯丙烯共聚物 CH3 | CH2= CH2 + CH= CH2 +二烯烃 CH3 ︱ (CH2--- CH2)m—(CH—CH2)n—(二烯烃)y EPDM三元共聚物 反应机理:以乙烯、丙烯为单体,用钒-铝配合物为引发剂,其聚合机理属于配位离子型聚合反应。聚合时,首先是单体上双键的∏电子在引发剂活性中心的空位上进行络合,由于R-V键变弱,以致断裂,单体分子插入R-V键,链的增长按这个方式不断重复进行。 主要用途:因乙丙橡胶分子主链为饱和结构而呈现出卓越的耐候性、耐臭氧、电绝缘性、低压缩永久变形、高强度和高伸长率等宝贵性能,其应用极为广泛,消耗量逐年增加。根据乙丙橡胶的不同系列和分子结构方面的特点,乙丙橡胶应用种类有通用型、混用型、快速硫化型、易加工型和二烯烃橡胶并用型等不同应用类型。从实际应用情况分析,乙丙橡胶在非轮胎方面得到了广泛的应用。 1.汽车工业乙丙橡胶在汽车制造行业中应用量最大,主要应用于汽车密封条、散热器软管、火花塞护套、空调软管、胶垫、胶管等。在汽车密封条行业中,

主要利用EPDM的弹性、耐臭氧、耐候性等特性,其ENB型的EPDM橡胶已成为汽车密封条的主体材料,国内生胶年消耗量已超过1万吨,但由于品种关系,其一半还依靠进口。由于热塑性三元乙丙橡胶EPDM/PP强度高、柔性好、涂装光泽度高、易回收利用的特点,在国内外汽车保险杠和汽车仪表板生产中已作为主导材料。预计到2010年仅汽车保险杠和仪表板两项产品,EPDM/PP的国内年用量可达4.5万吨。此类产品的回收利用主要采用的工艺方法是:先去掉产品表面的涂料-粉碎-清洗-再造粒-添加新料后生产新产品。这样在保险杠和仪表板生产中,就能节约大量原材料取得较好的经济效益。目前,我国乙丙橡胶在汽车工业中的用量占全国乙丙橡胶总用量的42%-44%,其中还不包括船舶、列车和集装箱密封条的乙丙橡胶用量。因乙丙橡胶的粘接性能不好,在汽车轮胎行业中在大量用料的轮胎主体和胎面部位上无法推广使用乙丙橡胶,只在内胎、白胎侧、胎条等部位少量使用乙丙橡胶。 2.建筑行业由于乙丙橡胶具有优良的耐水性、耐热耐寒性和耐候性,又有施工简便等特点,因此乙丙橡胶在建筑行业中主要用于塑胶运动场、防水卷材、房屋门窗密封条、玻璃幕墙密封、卫生设备和管道密封件等。乙丙橡胶在建筑行业中用量最大的还数塑胶运动场和防水卷材,就国内用量而言已占乙丙橡胶总用量的26%-28%。用EPDM生产的防水卷材已逐渐代替其他材料(如CMS)制作的防水卷材,尤其是用于地下建筑的防水卷材。 3.电气和电子行业在电气和电子行业中主要利用乙丙橡胶的优良电绝缘性、耐候性和耐腐蚀性,在许多电气部件中采用了此类橡胶。例如用乙丙橡胶生产电缆,尤其是海底电缆用EPDM或EPDM/PP代替了PVC/NBR制作电缆的绝缘层,电缆的绝缘性能和使用寿命有了大幅度提高。在变压器绝缘垫、电子绝缘护套方面也大量采用了乙丙橡胶制作。 4.乙丙橡胶与其他橡胶并用也是乙丙橡胶应用的一个很大的领域乙丙橡胶与其他橡胶并用在性能上可互补并改善工艺和降低成本。但由于各种配合剂对不同高聚物的亲合能力各异,共硫化性又取决于各高聚物交联效率,不同高聚物并用共混不可能达到分子级相容,而是分相存在的不均体系。配合剂的这种相间不均分配,对乙丙并用橡胶的性能有重大影响。在此简要介绍如下: (1)三元乙丙橡胶与丁基橡胶有较好的相容性和共硫化性,此两胶并用物理机械性能呈加和性,丁基橡胶可改善乙丙橡胶气密性,提高撕裂性和隔音性;而乙丙橡胶改善了丁基橡胶的耐臭氧性和耐老化性,改善了丁基橡胶压出表面光度,提高了半成品停放时的抗变形性能。 (2)三元乙丙橡胶可以不同比例与氯丁橡胶并用,以改善乙丙橡胶的耐油性能。乙丙橡胶与氯丁橡胶并用后,两种橡胶性能互补。乙丙橡胶的耐油性、耐燃性和粘着性有所改进;氯丁橡胶也改善了耐臭氧、耐化学腐蚀、耐热、耐蒸汽、耐低温屈挠等性能,并提高了氯丁橡胶的加工油及炭黑的填充量,从而降低了成本。

毕业设计丙烯酸甲酯

安徽职业技术学院毕业论文 论文题目:丙烯酸甲酯 所属系部:化工系 专业:应用化工技术 姓名:陈小帅 班级:应化1022班 学号: 2010272252 指导老师:汪武 完成日期: 2013-3-24

丙烯酸甲酯制备工艺流程

摘要 作为有机合成中间体,也是合成高分子聚合物的单体,用于橡胶、医药、皮革、造纸、粘合剂等。丙烯酸甲酯拥有很强的功用。 工艺描述:丙烯酸甲酯是由粗丙烯酸和甲醇在作为酸性酯化催化剂的硫酸存在下直接生产。反应热约为-25.1KJ/mol,即酯化反应只是轻微的放热反应,反应物开始反应时不会出现剧烈的反应。相反,会形成一个平衡的混合物,其中除了需要的产物,还存在相当数量的原料。为了加速这个典型的平衡反应,得到需要的产物,通过蒸馏不断地从反应系统中移去两个反应产物,水和丙烯酸甲酯,蒸馏塔塔顶物中含有没反应的甲醇被回收,没反应的丙烯酸甲酯留在酯化反应器中。酯化反应在均态液相下进行,既不需要有机溶剂,也不需要搅拌。通过蒸馏分离出高纯度丙烯酸甲酯。 将甲醇(来自甲醇回收塔C5200和罐区)、硫酸(来自罐区)、成品塔C5500底部馏分和(来自罐区)加化学处理剂联氨改性的粗丙烯酸送入酯化反应器R5010中。来自甲醇回收塔5200的新鲜及循环甲醇以气态进入R5010;然后,塔顶物(丙烯酸甲酯,水,轻组分)被送到抽提塔(C5100),在C5100,用工艺水洗去甲醇,被洗过的丙烯酸甲酯从底部去抽提塔分离器V5110,底部物流送醇回收塔C5200,在C5200中轻组分从顶部蒸出,回收的醇送回C5200。基本没有有机物的水冷却后用作抽提塔C5100的循环水,多余的通过废水罐送废水处理厂。分离器V5110中的粗酯被送往初馏塔(C5300),也作为酯化塔的回流。少量含有丙烯酸甲酯的初馏塔塔顶低沸物在冷凝器E5330中冷凝并收集在相分离器V5340中。有机相的大部分在塔上部温度控制下作为回流返回初馏塔C5300,一小部分有机相通过容器V5460送初馏物蒸馏塔C5400,以得到合格产品。为进一步精制,C5300塔底物送成品塔C5500,这个塔的塔顶物是最终产品,送到罐区的检验罐,5500塔底物送回酯化部分。 关键词:丙烯酸甲酯;工艺节能描述;工艺化学反应;工艺操作流程;节能技术的应用。

2016年全国职业院校技能大赛赛题

2016年全国职业院校技能大赛化工生产技术赛项赛题竞赛试题由化工生产仿真操作、精馏操作和化工专业知识考核三个部分试题组成。具体考核时间及占总分比重分别为:化工理论考核90分钟,占总分比重的15%,化工仿真操作考核120分钟,占总分比重的40%,精馏现场操作考核90分钟,占总分比重的45%。根据本赛项竞赛项目的特点,对化工生产仿真操作和精馏操作赛题公开;对化工专业知识考核命题范围(见表1)和考核题库公开,题库采用由中国化工教育协会与化工工业职业技能鉴定中心组织编写的《化工总控工职业技能鉴定应知试题集》,此书由化学工业出版社2010年10月公开出版,书号为:978-7-122-09483-4。 表1 2016年全国职业院校技能大赛高职组化工生产技术赛项理论试题命题范围命题范围知识点 选择题 (含多选题) 是非题职业道德职业道德及职业守则 3 2 基础知识化学基本知识 5 4 计量知识 1 1 化工基础数据 1 1 分析与检验知识 1 2 单元操作流体输送 4 2 传热 3 1 非均相物系分离 2 2 压缩、制冷 2 1 干燥 1 1

命题范围知识点 (含多选题) 是非题蒸馏精馏 4 2 结晶 1 1 吸收 3 2 蒸发 1 1 萃取 2 1 反应 4 2 化工工艺 化工生产基础知识、化工生产操作知识、 典型化工生产工艺 5 3 催化剂催化剂相关基础知识 1 1 化工识图化工工艺图纸制图、识图知识 2 1 化工机械与设备典型化工设备种类、结构 4 2 材质的选择 设备维护保养及安全使用 化工仪表与自动化化工仪表种类、应用与使用维护 5 2 化工控制仪表及控制规律 化工自动控制系统 安全与环境保护“三废”与环保 3 3 工业生产中常见的安全技术和措施 消防 化工物料危险性、灭火原理、灭火器性 能及使用 1 1

乙丙橡胶生产工艺及技术经济分析doc 6页.doc

乙丙橡胶生产工艺及其技术经济分析 乙丙橡胶(EPR)是继Zieg1er一Natta催化剂的发明、聚乙烯和聚丙烯的出现后问世的一种以乙烯。丙烯为基本单体的共聚橡胶,分为二元乙丙橡胶(EPM)和三元乙丙橡胶(EPDM)两大类。前者是乙烯和丙烯的共聚物;后者是乙烯、丙烯和少量非共轭二烯烃的共聚物。 EPR具有许多其它通用合成橡胶所不具备的优异性能,加之单体价廉易得,用途广泛,是80年代以来国外七大合成橡胶品种中发展最快的一种,其产量、生产能力和消费量在发达国家中均居第三位,仅次于丁苯橡胶、顺丁橡胶。1998年世界EPR总生产能力约为102吨,消费量为81.4万吨。初步统计,1999年消费量约为83.61万吨,预计2003年将达到98.0万吨。1998~2003年EPR的需求增长率为3.8%,高于丁苯橡胶和顺丁橡胶需求量的增长速率。 目前FPR工业生产工艺路线有溶液聚合法、悬浮聚合法和气相聚合法三种。下面将分别详细论述其技术状况及待点,并进行技术经济比较。 1、溶液聚合工艺 1.1技术状况 60年代初实现工业化,经不断完善和改进,技术己成熟,为许多新建装置所使用,是工业生产的主导技术,约占FPR总生产能力的77.6%。 该工艺是在既可以溶解产品、又可以溶解单体和催化剂体系的溶剂中进行的均相反应,通常以直链烷烃如正己烷为溶剂,采用V一A1催化剂体系,聚合温度为30~50C,聚合压力为0.4~0.8 MPa,反应产物中聚合物的质量分数一般为8%~10%。工艺过程基本上由原材料准备、化学品配制、聚合、催化剂脱除、单体和溶剂回收精制以及凝聚、干燥和 包装等工序组成, 但由于各公司在某部分或控制方面有自己的专利技术,因而各具独特的工艺实施方法。代表性的公司有DSM、 Exxon、uniroya1、DuPont、日本三井石化和JSR公司。其中最典型的代表是DSM公司,它不仅是全球最大的EPR生产者,而且在荷兰、美国、日本、巴西所拥有的四套装置均是采用溶液聚合工艺,占世界溶液聚合工艺生产EPR总能力的1/4。下面将以该公司为例进行说明。 DSM公司采用己烷为溶剂,乙叉降冰片烯(ENB)或双环戊二烯(DCPD)为第三单体,氢气为分子量调节剂,VOCL3一1/2AL2Et3CL3为催化剂。此外,为提高催化剂活性及降低其用量,还加入了促进剂。催化剂的配比用量、预处理方式、促进剂类型是DSM公司的专有技术。反应物料二级预冷到一500C,根据生产的牌号,单釜或两釜串联操作。聚 合釜容积大约为6m3。聚合反应条件为:温度低于650C,压力低于2. 5 MPa,反应热用

高密度聚乙烯生产工艺开发进展

高密度聚乙烯生产工艺开发进展 概述世界聚乙烯工业生产和消费现状,了解高密度聚乙烯(HDPE)生产工艺的最新进展,提出本地该行业发展建议。 标签:聚乙烯;生产工艺;现状 高密度聚乙烯(HDPE)是一种不透明白色腊状材料,密度比水小,柔软而且有韧性,被广泛应用于制备诸如片材挤塑、薄膜挤出、管材或型材挤塑,吹塑、注塑和滚塑等。 在聚乙烯生产工艺技术领域,一直是多种工艺并存,各展其长。目前并存的液相法工艺有Nova公司的中压法工艺、Dow化学公司的低压冷却法工艺和DSM 公司的低压绝热工艺。应用最为广泛的浆液法工艺是科诺科菲利浦斯、索尔维公司的环管工艺和赫斯特、日产化学、三井化学的搅拌釜工艺。气相法工艺主要有Univation公司的Unipol工艺、BP公司的Innovene工艺和Basell公司的Spherilene 工艺。近年来,气相法由于流程较短、投资较低等特点发展较快,目前的生产能力约占世界聚乙烯总生产能力的34%,新建的LLDPE装置近70%采用气相法技术。近年来,在各工艺技术并存的同时,新技术不断涌现。其中冷凝及超冷凝技术、不造粒技术、共聚技术、双峰技术、超临界烯烃聚合技术以及反应器新配置等新技术的开发,极大地促进了世界聚乙烯工业的发展。 1 冷凝及超冷凝技术 冷凝及超冷凝技术是UCC、Exxon化学和BP公司开发的,是指在一般的气相法PE流化床反应器工艺的基础上,使反应的聚合热由循环气体的温升和冷凝液体的蒸发潜热共同带出反应器,从而提高反应器的时空产率和循环气撤热的一种技术。冷凝操作可以根据生产需要随时在线进行切换,使装置可以在投资不需要增加太大的情况下大幅度提高装置的生产能力,装置操作的弹性大,使得该技术具有无可比拟的优越性。通过采用该技术不仅将单线最大生产能力从22.5wt/y 提高到45wt/y年以上,而且进一步降低了单位产品的投资和操作费用,操作稳定性也得到了进一步提高。国外已有大量采用冷凝和超冷凝技术对气相法PE装置扩能的实绩,最高扩能达到原有能力的2.5倍以上。我国扬子石化公司、天津石化公司、广州石化公司以及吉林石化公司、中原石化有限责任公司、新疆独山子石化公司等的聚乙烯装置采用该技术也取得扩能成功。 2 不造粒技术 随着催化剂技术的进步,现在已出现了直接由聚合釜中制得无需进一步造粒的球形PE树脂的技术。直接生产不需造粒树脂,不但能省去大量耗能的挤出造粒等步骤,而且从反应器中得到的低结晶产品不发生形态变化,这样有利于缩短加工周期、节省加工能量。Montell公司的Spherilene工艺采用负载于MgCl2上的钛系催化剂,由反应器直接生产出密度为0.890-0.970g/cm3的PE球形颗粒,

项目一:年产5000吨丙烯酸甲酯的生产技术

项目1:500吨\年丙烯酸甲酯的生产技术 任务点01 丙烯酸甲酯生产工艺路线选择――――生产现状、生产方法分析比较(原料来源,催化剂性能,安全、环保分析,经济性分析); 丙烯睛水解乙酸甲酯法原料来源石油石油 安全、环保分析;经济性分析这种方法所制的的丙烯酸甲酯 的收率系随醇的种类而有所不 同,使用甲醇时,丙烯酸甲酯的 收率按丙烯晴计高于85%,以甲 醇计高于75%。 此法在技术上是可行的,其 发展取决于催化剂和分离方 法的改进。 缺点至于用丁醇以上的高级醇时,在 经济上海存在着问题。这种方法 的缺点是副产物高于丙烯酸甲 酯2倍(重量)以上的副产物, 即以硫酸氢铵为主要成分的废 酸,而处理这种废酸有很多困 难。因为不能将其抛弃,而只能 用于硫酸回收,或用来制造硫酸 铵。另一缺点是从丙烯晴直接合 成高级酯类有一定的困难。因此 不能用这种方法来建设大规模 的工厂。虽然此法在技术上是可行的,但有大量未转化的原料必须回收。 总结选择:丙烯氧化法 随着丙烯酸酯需要量的增加及丙烯价格的下降,近来很多厂家都企图用价格较低而又适合于大型化的空气氧化合成丙烯酸的方法来实现工业化(流程如图所示)。 以丙烯作原料的丙烯酸合成法有以下两种方法:一种是先将丙烯氧化成丙烯醛,再由丙烯醛氧化成丙烯酸的二步法,另一种是丙烯酸一步空气氧化直接合成丙烯酸的一步法。第一种方法中,在丙烯酸氧化上又可分为气相法和液相法,可是从收率及连续化难易方面考虑,几乎都愿意采用气相接触氧化。至于一步法中除了丙烯酸以外,实际上也同时产生丙烯醛,因此很难将一步法和二步法的第一步反应加以明确区分。 二步法的第一步反应是合成丙烯醛,其中以壳牌开发公司所采用的方法最早引起工业上的注意,这种方法以Cu2O作催化剂,反应系统中氧气浓度保证很低,转化率低到1%左右。此后,酿酒(Distillers)公司发明了Se—CUO催化剂,曾当作丙烯晴新和成的第一步反应催化剂而引起注意。以后自标准油公司(俄亥俄)[The Standard Oil(Ohio)]发表Mo—Bi系催化剂以来,接着出现了很多高转化率及高收率 的催化剂。反应条件根据催化剂而有所不同,一般温度为400~500℃,压力接近于常压,氧/丙烯(克分子)为2~5,接触时间是0.5~4秒。使用最多的是Mo系催化剂,也有不少是在Mo—Bi、Mo—As、Mo—Co、Sb—Sn、Sb—V、Sb—U等体系中加入其他多价金属。有不少专利着重对加在Cu上的助催化剂进行了研究。 第二步反应与第一步反应相比,可以在稍低的温度下进行氧化,即在350~400℃

相关文档