文档库 最新最全的文档下载
当前位置:文档库 › 它的主要用途是作为电源变压器和隔离变压器

它的主要用途是作为电源变压器和隔离变压器

它的主要用途是作为电源变压器和隔离变压器
它的主要用途是作为电源变压器和隔离变压器

环型变压器及其应用

环形变压器是电子变压器的一大类型,已广泛应用于家电设备和其它技术要求较高的电子设备中,它的主要用途是作为电源变压器和隔离变压器。环形变压器在国外已有完整的系列,广泛应用于计算机、医疗设备、电讯、仪器和灯光照明等方面。

我国近十年来环形变压器从无到有,迄今为止已形成相当大的生产规模,除满足国内需求外,还大量出口。国内主要用于家电的音响设备和自控设备以及石英灯照明等方面。

环形变压器由于有优良的性能价格比,有良好的输出特性和抗干扰能力,因而它是一种有竞争力的电子变压器,本文拟就它的特点作一介绍。

2环形变压器的特点

环形变压器的铁心是用优质冷轧硅钢片(片厚一般为0.35mm以下),无缝地卷制而成,这就使得它的铁心性能优于传统的叠片式铁心。环形变压器的线圈均匀地绕在铁心上,线圈产生的磁力线方向与铁心磁路几乎完全重合,与叠片式相比激磁能量和铁心损耗将减小25%,由此带来了下述一系列的优点。1)电效率高铁心无气隙,叠装系数可高达95%以上,铁心磁导率可取1.5~1.8T(叠片式铁心只能取1.2~1.4T),电效率高达95%以上,空载电流只有叠片式的10%。2)外形尺寸小,重量轻环形变压器比叠片式变压器重量可以减轻一半,只要保持铁心截面积相等,环形变压器容易改变铁心的长、宽、高比例,可以设计出符合要求的外形尺寸。

3)磁干扰较小环形变压器铁心没有气隙,绕组均匀地绕在环形的铁心上,这种结构导致了漏磁小,电磁辐射也小,无需另加屏蔽都可以用到高灵敏度的电子设备上,例如应用在低电平放大器和医疗设备上。

4)振动噪声较小铁心没有气隙能减少铁心

表1加拿大PLITRON环形变压器外形尺寸及重量输出功率P2/V A变压器外径Dw/mm变压器高度h1/mm装配后高度h2/mm重量m/kg

85525300.25

156333370.35

307033380.45

508038450.9

809735391.00

1209543471.2

16011045501.8

22511050552.2

30011057622.6

50013563674.0

62514578835.0

75015080855.5

100016080856.3

1500200758011.7

环形变压器及其应用:

图1环形变压器外形图

感应振动的噪音,绕组均匀紧紧包住环形铁心,有效地减小磁致伸缩引起的“嗡嗡”声。5)运行温度低由于铁损可以做到1.1W/kg,铁损很小,铁心温升低,绕组在温度较低的铁心上散热情况良好,所以变压器温升低。

6)容易安装环形变压器只有中心一个安装螺杆,特别容易在电子设备中进行快速安装与拆卸。

根据国外文献介绍,环形变压器可分为标准型、经济型及隔离型等三类,各类的特点是:1)标准型电源变压器产品系列容量8~1500V A,有较小的电压调整率、满载运行温升仅为40℃,允许短时超载运行,适合于要求高的使用场合。

初次级绕组间采用B级(130℃)的聚酯薄膜绝缘,要求至少包三层绝缘带,能经受交流4000V,1min的耐压试验。

2)经济型电源变压器产品系列容量50~1500V A,在保证性能的基础上力求降低造价,适用于连续运行而不超载的使用场合,运行温升为60℃,绝缘材料等级为A级(105℃),当满负载时输出电压误差小于3%。

3)隔离变压器产品系列容量50~1000V A,又可分为工业用和医疗设备用两系列。隔离变压器着重是它的绝缘性能,初级与次级间用B级绝缘的聚酯薄膜至少包扎4层,击穿电压大于4000V,所有初级引线必须采用双绝缘导线。变压器最大温升低于45℃。

医疗用的隔离变压器除符合上述的要求外,还要符合UL544标准,即初级和次级绕组应具有热保护,绕组与接地铜屏蔽间隔距离应大于13mm。

此外对医疗用的隔离变压器还要求在初级绕组装有温度保护开关,当铁心温度达到120℃时,温度保护开关断开,当温度恢复正常时,开关自动复位合上。

现将加拿大PLITRON公司出品的标准型环形变压器外形尺寸,重量列于表1,外形图如图1所示。

4环形变压器应用中应注意的问题:

4.1变压器的功率容量

变压器的功率容量是决定铁心尺寸的主要依据。在很多场合变压器的负载是间歇性的,例如音响设备中的电源变压器。这时变压器的体积和重量较连续工作时要减少很多,如图2所示负载A段对整个B段而言是较小的一段,这时变压器的工作周期比其热时间常数要短很多,可用式(1)计算变压器的额定功率。PN=PL(V A)(1)式中:PN——变压器额定功率(V A);

PL——变压器负载功率(V A);

A——接通负载时间;

B———变压器工作周期。

4.2电压调整率

电压调整率是衡量变压器负载特性的重要指标。电压调整率是指当输入电压不变,负载电流从零升到额定值时,输出电压U2的相对变化值,通常以百

图2变压器断续负载情况

图3环形变压器电压调整率与输出功率的关系曲线

图4环形变压器效率与负载率的关系曲线

图5自耦变压器电路图

式中:ΔU——电压调整率;

U20——空载输出电压(V);

U2——变压器额定负载时的输出电压(V)。

表2列出加拿大PLITRON公司环形变压器的电压调整率,其特性曲线如图3所示,电压调整率随变压器容量增大而下降。

表2环形变压器电压调整率变压器功率/V A电压调调整率ΔU/%

(标准型)(经济型)(隔离型)

822

1520

3018

501320.620.6

801216.116.1

1201113.713.7

160811.211.2

22579.39.3

30069.39.3

50047.47.4

62546.76.7

75046.56.5

100045.55.5

150044.9

4.3环形变压器效率

由于变压器有铁损和铜损,输出功率PO总是小于输入功率Pi,变压器的效率η如式(3)所示。η=(3)

图4列出了三组不同功率的变压器效率曲线,随着容量增大效率明显增高,容量300V A以上的变压器,在额定负载下效率可高达95%以上。

4.4自耦变压器

当只要求升压或降压,而不要求初级与次级绕组隔离的情况下,使用自耦变压器是合适的。自耦变压器具有体积小,成本低、传输功率大等优点,用环形铁心绕制自耦变压器因初次级绕组不需绝缘,加工十分方便,体积、重量更小,造价更低。要注意的是自耦变压器初、次级绕组的公共端(COM)要接零线,这样才安全。

自耦变压器电路如图5所示,它的额定功率PAH按式(4)计算。

PAH=PAO(UH-UL)/UH(V A)(4)

式中:PAO——自耦变压器输出功率(V A);

UH——高电压绕组电压(V);

UL——低电压绕组电压(V)。

4.5温升问题

环形变压器的温升特性曲线示于图6,从图6可看出环形变压器的温升是较低的,对标准型系列,即便是过载120%,温升也不超过70℃。

变压器的温升是由铁损和铜损两部分决定的,对环形变压器及叠片式变压器,这两部分基本相等,但环形变压器由于采用优质冷轧硅钢片绕制,并配合良好的退火工艺,其铁心损耗仅为全部损耗的(10~20)%,所以温升主要由绕组铜耗决定,合理的设计是初、次级绕组的功耗应基本平衡。

温升也与散热面积关系很大,由于环形变压器铁心温升低,绕组在整个铁心上均匀绕制,散热面积和散热条件都比较好,因此能获得较低的温升。

4.6合闸电流

一般变压器在合闸时都会产生很大的合闸冲击电流,而环形变压器由于没有气隙和具有高磁导率则会造成更大的合闸电流。300V A以下的环形变压器可以用一般熔断器作保护,但为了防止合闸电流烧断熔断器,选择熔断器的电流应比变压器初级电流大8~10倍。300V A以上的环形变压器要考虑使用慢速熔断器或温度熔断器作保护,有时为了降低该冲击电流可以将变压器磁通密度B值取低些。

4.7变压器与整流电路

大多数作电源用的环形变压器都与整流电路相连,现将最常用的整流电路和变压器次级电压U2、次电流I2与直流电压Ud直流电流Id的关系列在表3中,供设计时参考。

表3整流电路与变压器参数电路名称电路图变压器次级电压U2/V变压器次级电流I2/A

双整流电路0.8(Ud+2)1.8Id

桥式整流电路0.8(Ud+2)1.8Id

全波中心抽头1.7(Ud+1)1.2Id

5环形变压器的设计计算

通过设计一台50Hz石英灯用的电源变压器,其初级电压U1=220V,次级电压U2=11.8V,次级电流I2=16.7A,电压调整率ΔU≤7%,来说明计算的方法和步骤。

1)计算变压器次级功率P2

P2=I2U2=16.7×11.8=197V A(5)

2)计算变压器输入功率P1(设变压器效率η=0.95)与输入电流I1P1===207V A(6)I1===0.94A

3)计算铁心截面积SS=K(cm2)(7)

式中:K——系数与变压器功率有关,K=0.6~0.8,取K=0.75;

PO——变压器平均功率,Po===202V A。则S=0.75=10.66cm2,取S=11cm2。

根据现有铁心规格选用铁芯尺寸为:高H=40mm,内径Dno=55mm,外径Dwo=110mm。核算

4)计算初级绕组每伏匝数N10与匝数N1N10=(匝/V)(8)

式中:f——电源频率(Hz),f=50Hz;

B——磁通密度(T),B=1.4T。代入得N10==2.9匝/V,取N10=3匝/V,则

N1=N10U1=3×220=660匝。

5)计算次级绕组每伏匝数N20与匝数N2N20=(匝/V)(9)代入得N20==3.23匝/V,则

N2=N20·U2=3.23×11.8=38.1匝,取N2=38匝。

6)选择导线线径

图7环形变压器截面图

绕组导线线径d按式(10)计算d=1.13(mm)(10)

式中:I——通过导线的电流(A);

j——电流密度,j=2.5~3A/mm2。

当取j=2.5A/mm2时代入式(10)得d=0.72(mm)则初级绕组线径d1=0.72=0.69mm,选漆包线外径为0.72mm。次级绕组线线径d2=0.72=2.94mm,选用两条d=2.12mm(考虑绝缘漆最大外径为)导线并绕。因为导线的截面积Sd2=6.78mm2,而d=2.12mm导线的截面积为3.53mm2两条并联后可得截面积为:2×3.53=7.06mm2,完全符合要求且裕度较大。

6环形变压器的结构计算

环形变压器的绕组是用绕线机的绕线环在铁心内作旋转运动而绕制的,因此铁心内径的尺寸对加工过程十分重要,结构计算的目的就是检验绕完全部绕组后,内径尚余多少空间。若经计算内径空间过小不符合绕制要求时,可以修改铁心尺寸,只要维持截面积不变,电性能也基本不变。

已知铁心内径Dno=55mm,图7中各绝缘层厚度为to=1.5mm,t1=t2=1mm。

1)计算绕完初级绕组及包绝缘后的内径Dn2

计算初级绕组每层绕的匝数n1n1=(匝)(11)

式中:Dn1——铁心包绝缘后的内径,Dn1=Dno-2t0=55-(2×1.5)=52mm;

kp——叠绕系数,kp=1.15。代入得n1==197匝

则初级绕组的层数Q1为Q1===3.35取整数Q1=4层

初级绕组厚度δ1为

δ1=Q1d1kp=4×0.72×1.15=3.3mm

则初级绕组包绝缘后的内径Dn2为

Dn2=Dn1-2(δ1+t1)=52-2(3.3+1)=43.4mm

2)计算次级绕组的厚度δ2

计算次级绕组每层绕的匝数n2,考虑到次级绕组是用2×d2=2×2.21mm导线并绕,则n2===27匝

则次级绕组的层数Q2为Q2===1.41,取整数Q2=2层。

次级绕组厚度δ2为

δ2=Q2d2kp=2×2.21×1.15=5.08mm

3)计算绕完初次级绕组及包绝缘后的内径Dn4

Dn4=Dn2-2(δ2+t2)=43.4-2(5.08+1)=31.24mm

可见绕完绕组后,内径还有裕量,所选铁芯尺寸是合适的。

7环形变压器样品的性能测试

为检验设计方法的准确性,对按设计参数制成的环形变压器样品进行了性能测试,结果如下。

7.1空载特性测试

测量电路如图8所示。测得的数据列于表4,按照表4的数据,绘出图9所示的空载特性曲线。

从变压器的空载特性看出设计符合要求,在额定工作电压220V时(工作点为A),变压器的空载电流只有13.8mA,即使电源电压上升到240V变压器工作在B点铁心还未饱和,有较大的裕度。

7.2电压调整率测量

变压器在空载时测得的次级空载电压U20=12.6V,当通以额定电流I2=16.7A时,次级输出电压为U2=11.8V,按式(2)计算电压调整率为

()

202.1

403.3

604.0

804.9

1005.6

1206.4

1407.3

1608.3

1809.6

20011.2

22013.8

24018

25022.7

环形变压器及其应用

图9环形变压器空载特性曲线

图8空载特性测量电路

ΔU=×100%==6.4%

变压器电压调整率达到ΔU<7%的指标。

7.3温升试验

用电阻法对变压器绕组进行温升试验,在通电4h变压器温升稳定后进行测试,并按式(12)计算绕组平均温升Δτm。Δτm=(k+t1)-(t2-t1)(12)

测量的数据及计算结果列于表5

表5200V A环形变压器温升试验数据绕组类别测冷阻(r1)时的环境温度t1/℃测热阻(r2)时的环境温度t2/℃t1时绕组电阻r1/Ωt2时绕组电阻r2/Ω常数k绕组平均温升Δτ/℃

初级34.835.55.2755.958234.534.2

次级34.835.50.018520.0208234.532.5

从温升试验结果看出所设计的变压器已达到标准型温升标准,即Δτm<40℃,初次级绕组温升基本相等,即两绕组功耗较均衡。

7.4绝缘性能试验

1)绝缘电阻

用500V摇表测试绝缘电阻,初次级绕组之间的绝缘电阻在常态下均大于100MΩ。

2)抗电强度

变压器初级与次级绕组之间能承受50Hz,4000V(有效值)电压1min,而无击穿和飞弧。限定漏电流为1mA,此项试验证明变压器的抗电强度达到IEC标准。

8结语

环形变压器以其优良的性能和有竞争力的性能价格比,可以预期它会在较大领域内取代传统的叠片式变压器,随着环形变压器技术性能进一步提高,它将会在电子变压器领域中有更广阔的应用前景。

图片1:图1环形变压器外形图

图2变压器断续负载情况

图3环形变压器电压调整率与输出功率的关系曲线

图4环形变压器效率与负载率的关系曲线

图5自耦变压器电路图

图6环形变压器的温升与负载率的关系曲线

隔离变压器的作用及工作原理

隔离变压器的作用及工作原 理 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

隔离变压器的作用及工作原理 什么是隔离变压器 隔离变压器是指输入绕组与输出绕组带电气隔离的变压器,隔离变压器用以避免偶然同时触及带电体,变压器的隔离是隔离原副边绕线圈各自的电流。早期为欧洲国家用在电力行业,广泛用于电子工业或工矿企业、机床和机械设备中一般电路的控制电源、安全照明及指示灯的电源。 一次侧、二次侧绕组间有较高绝缘强度以隔离不同电位抑制共模干扰的专用变压器。隔离变压器的变比通常是1:1。 隔离变压器工作原理 隔离变压器的原理和普通变压器的原理是一样的。都是利用电磁感应原理。隔离变压器一般是指1:1的变压器。由于次级不和地相连。次级任一根线与地之间没有电位差。使用安全。常用作维修电源。 隔离变压器不全是1:1变压器。控制变压器和电子管设备的电源也是隔离变压器。如电子管扩音机,电子管收音机和示波器和车床控制变压器等电源都是隔离变压器。如为了安全维修彩电常用1比1的隔离变压器。隔离变压器是使用比较多的,在空调中也是使用的。 一般变压器原、副绕组之间虽也有隔离电路的作用,但在频率较高的情况下,两绕组之间的电容仍会使两侧电路之间出现静电干扰。为避免这种干扰,隔离变压器的原、副绕组一般分置于不同的心柱上,以减小两者之间的电容;也有采用原、副绕组同心放置的,但在绕组之间加置静电屏蔽,以获得高的抗干扰特性。 静电屏蔽就是在原、副绕组之间设置一片不闭合的铜片或非磁性导电纸,称为屏蔽层。铜片或非磁性导电纸用导线连接于外壳。有时为了取得更好的屏蔽效果,在整个变压器,还罩一个屏蔽外壳。对绕组的引出线端子也加屏蔽,以防止其他外来的电磁干扰。这

开关电源变压器参数设计步骤详解

开关电源高频变压器设计步骤 步骤1确定开关电源的基本参数 1交流输入电压最小值u min 2交流输入电压最大值u max 3电网频率F l开关频率f 4输出电压V O(V):已知 5输出功率P O(W):已知 6电源效率η:一般取80% 7损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。一般取Z=0.5 步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3根据u,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin 1令整流桥的响应时间tc=3ms 2根据u,查处C IN值 3得到V imin 确定C IN,V Imin值 u(V)P O(W)比例系数(μF/W)C IN(μF)V Imin(V) 固定输 已知2~3(2~3)×P O≥90 入:100/115 步骤4根据u,确通用输入:85~265已知2~3(2~3)×P O≥90 定V OR、V B 固定输入:230±35已知1P O≥240 1根据u由表查出V OR、V B值

2 由V B 值来选择TVS 步骤5根据Vimin 和V OR 来确定最大占空比 Dmax V OR Dmax= ×100% V OR +V Imin -V DS(ON) 1设定MOSFET 的导通电压V DS(ON) 2 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6确定初级纹波电流I R 与初级峰值电流I P 的比值K RP ,K RP =I R /I P u(V) K RP 最小值(连续模式)最大值(不连续模式) 固定输入:100/1150.41通用输入:85~2650.441固定输入:230±35 0.6 1 步骤7确定初级波形的参数 ①输入电流的平均值I AVG P O I A VG= ηV Imin ②初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③初级脉动电流I R u(V) 初级感应电压V OR (V)钳位二极管反向击穿电压V B (V) 固定输入:100/115 6090通用输入:85~265135200固定输入:230±35 135 200

开关电源变压器设计

开关电源变压器设计 1. 前言 2. 变压器设计原则 3. 系统输入规格 4. 变压器设计步骤 4.1选择开关管和输出整流二极管 4.2计算变压器匝比 4.3确定最低输入电压和最大占空比 4.4反激变换器的工作过程分析 4.5计算初级临界电流均值和峰值 4.6计算变压器初级电感量 4.7选择变压器磁芯 4.8计算变压器初级匝数、次级匝数和气隙长度 4.9满载时峰值电流 4.10 最大工作磁芯密度Bmax 4.11 计算变压器初级电流、副边电流的有效值 4.12 计算原边绕组、副边绕组的线径,估算窗口占有率 4.13 计算绕组的铜损 4.14 变压器绕线结构及工艺 5. 实例设计—12WFlyback变压器设计 1. 前言 ◆反激变换器优点: 电路结构简单 成本低廉 容易得到多路输出 应用广泛,比较适合100W以下的小功率电源 ◆设计难点 变压器的工作模式随着输入电压及负载的变化而变化 低输入电压,满载条件下变压器工作在连续电流模式( CCM ) 高输入电压,轻载条件下变压器工作在非连续电流模式( DCM ) 2. 变压器设计原则 ◆温升 安规对变压器温升有严格的规定。Class A的绝对温度不超过90°C; Class B不能超过110°C。因此,温升在规定范围内,是我们设计变压器必须遵循的准则。 ◆成本

开关电源设计中,成本是主要的考虑因素,而变压器又是电源系统的重要组成部分,因此如何将变压器的价格,体积和品质最优化,是开关电源设计者努力的方向。 3. 系统输入规格 输入电压:Vacmin~ Vacmax 输入频率:f L 输出电压:V o 输出电流:I o 工作频率:f S 输出功率:P o 预估效率:η 最大温升:40℃ 4.0变压器设计步骤 4.1选择开关管和输出整流二极管 开关管MOSFET:耐压值为V mos 输出二极管:肖特基二极管 最大反向电压V D 正向导通压降为V F 4.2计算变压器匝比 考虑开关器件电压应力的余量(Typ.=20%) 开关ON:0.8·V D > V in max / N+V o 开关OFF :0.8·V MOS > N·(V o+V F) + V in max 匝比:N min < N < N max 4.3确定最低输入电压和最大占空比

变压器开关电源致命原理

变压器开关电源致命原理 在Toff期间,控制开关K关断,流过变压器初级线圈的电流突然为0。由于变压器初级线圈回路中的电流产生突变,而变压器铁心中的磁通量不能突变,因此,必须要求流过变压器次级线圈回路的电流也跟着突变,以抵消变压器初级线圈电流突变的影响,要么,在变压器初级线圈回路中将出现非常高的反电动势电压,把控制开关或变压器击穿。 如果变压器铁心中的磁通ф产生突变,变压器的初、次级线圈就会产生无限高的反电动势,反电动势又会产生无限大的电流,而电流在线圈中产生的磁力线又会抵制磁通的变化,因此,变压器铁心中的磁通变化,最终还是要受到变压器初、次级线圈中的电流来约束的。 因此,在控制开关K关断的Toff期间,变压器铁心中的磁通主要由变压器次级线圈回路中的电流来决定,即: e2 =-N2*dф/dt =-L2*di2/dt = i2R —— K关断期间 (1-64) 式中负号表示反电动势e2的极性与(1-62)式中的符号相反,即:K接通与关断时变压器次级线圈产生的感应电动势的极性正好相反。对(1-64)式阶微分方程求解得: 式中C为常数,把初始条件代入上式,就很容易求出C,由于控制开关K由接通状态突然转为关断时,变压器初级线圈回路中的电流突然为0,而变压器铁心中的磁通量不能突变,因此,变压器次级线圈回路中的电流i2一定正好等于控制开关K接通期间的电流i2(Ton+),与变压器初级线圈回路中励磁电流被折算到变压器次级线圈回路电流之和。所以(1-65)式可以写为: (1-66)式中,括弧中的第一项表示变压器次级线圈回路中的电流,第二项表示变压器初级线圈回路中励磁电流被折算到变压器次级线圈回路的电流。 图1-16-a单激式变压器开关电源输出电压uo等于: (1-68)式中的Up-就是反击式输出电压的峰值,或输出电压最大值。由此可知,在控制开关K关断瞬间,当变压器次级线圈回路负载开路时,变压器次级线圈回路会产生非常高的反电动势。理论上需要时间t等于无限大时,变压器次级线圈回路输出电压才为0,但这种情况一般不会发生,因为控制开关K的关断时间等不了那么长。 从(1-63)和(1-67)式可以看出,开关电源变压器的工作原理与普通变压器的工作原理是不一样的。当开关电源工作于正激时,开关电源变压器的工作原理与普通变压器的工作原理基本相同;当开关电源工作于反激时,开关电源变压器的工作原理相当于一个储能电感。 如果我们把输出电压uo的正、负半波分别用平均值Upa、Upa-来表示,则有: 分别对(1-71)和(1-72)两式进行积分得: 由此我们可以求得,单激式变压器开关电源输出电压正半波的面积与负半波的面积完全相等,即: Upa×Ton = Upa-×Toff —— 一个周期内单激式输出 (1-75) (1-75)式就是用来计算单激式变压器开关电源输出电压半波平均值Upa和Upa-的表达式。

隔离变压器的应用

电子报/2013年/11月/3日/第008版 机电技术与维修 隔离变压器的应用 连云港宗成徽 隔离变压器是将一个电气回路内的导体与另一个电气回路的导体作完全的隔离,即通过变压器的输入绕组与输出绕组在电气上彼此隔离,使得它们之间只有磁的联系,用以避免偶然同时触及带电体(或因绝缘损坏而可能带电的金属部件)和地所带来的电击危险。 一、隔离变压器的结构 隔离变压器是变比为1:1的变压器,二次侧有一个或多个绕组。其一次侧接市电,二次侧接用电负荷。单相隔离变压器的一次侧对二次侧及外壳的耐压试验要达3750V、1分钟;三相的耐压试验为4200V、1分钟。这无疑是绝缘加强型(或称双重绝缘)的变压器,见GB 13028-91《隔离变压器和安全隔离变压器技术要求》。这么高的耐压,在一般情况下,确保了一次侧绕组与铁芯、二次绕组及金属外壳之间的绝缘不会损坏、击穿。在电击防护上,隔离变压器还有特殊的技术特点。 二、隔离变压器的使用及要求 1.适用场所 在一些场合,常常因需要,特别是出于安全要求,需要使角隔离变压器。例如,由于一些家用电器的底板是带电的,如果采用隔离变压器来做检修用的电源,检修者再接触家电的底版,就不必担心电击的危险了(当然不得同时接触电源的两根相线),这比在电源处安装RCD(剩余电流保护装置)更具有优越性。因为在发生电击时,虽然RCD动作跳闸了,但人体电痛、麻电的感觉还是存在的;使用隔离变压器后,人体触及带电体,没有电痛、麻电的感觉,所以,隔离变压器是家用电器检修工作者的优先选择。在一些需要将TN接地型式转变为局部IT型式时,也需要用隔离变压器来进行转换。根据规范规定,在同一个供电系统中,不宜存在两种接地型式。如要求存在另一种接地形式,那就要采用隔离变压器来进行转换。例如,医院中手术室内的IT接地型式的电源,一般就是采用隔离变压器将医院供电系统的TN接地型式转换来的。 2.隔离变压器的使用要求 使用隔离变压器时,其二次侧不可接PE线。接了PE线,就失去了隔离的意义;另一方面是可避免因他处故障由PE线引来的故障电压造成电击危险。这也是TN接地系统的缺点。其次,要求一台隔离变压器为一台用电设备供电。如果要为多个用电设备供电,最好采用有多个二次绕组的隔离变压器。当条件不允许,而采用一台隔离变压器的一个二次绕组为两台用电设备供电时,需将两台用电设备的金属外壳用绝缘导线进行连接,而且该导线不得接地,这称作不接地的等电位联结。这样,可消除两台用电设备因与不同相电源“碰壳”引发的电击危险。 图1为隔离变压器为一台用电设备供电出现“碰壳”的示意图。 由图1可见,人体触及了隔离变压器二次侧“碰壳”的电器时,在人体上的电压Ut是很小的。因为图中的C是非故障相L2对地的电容,其容抗Xc、对地接触电阻R都较大,使得故障电流Id很小,远远小于能使人体心室纤颤的电流,人体没有电击的危险。 图2为隔离变压器的一个二次绕组同时为两台用电设备供电出现“碰壳”的示意图。 图2中,如用电器1出现外壳与L2"碰壳”,用电器2出现外壳与L1“碰壳”,此时,由于外壳与地的接触电阻RI、R2较大,故障电流Id不足以使熔断器熔断。此时的220V电压将按两台用电器与地的接触电阻R1、R2的阻值进行分配。如按R1=R2计算,则人体接触一台用电器外壳时的电压为110V,大于安全电压50V,使人体遭受电击。如将两台电器的金属外壳用不接地的绝

变压器的设计实例

摘要:详细介绍了一个带有中间抽头高频大功率变压器设计过程和计算方法,以及要注意问题。根据开关电源变换器性能指标设计出变压器经过在实际电路中测试和验证,效率高、干扰小,表现了优良电气特性。关键词:开关电源变压器;磁芯选择;磁感应强度;趋肤效应;中间抽头 0 引言 随着电子技术和信息技术飞速发展,开关电源SMPS(switch mode power supply)作为各种电子设备、信息设备电源部分,更加要求效率高、成本小、体积小、重量轻、具有可移动性和能够模块化。变压器作为开关电源必不可少磁性元件,对其进行合理优化设计显得非常重要。在高频开关电源设计中,真止难以把握是磁路部分设计,开关电源变压器作为磁路部分核心元件,不但需要满足上述要求,还要求它性能高,对外界干扰小。由于它复杂性,对其设计一、两次往往不容易成功,一般需要多次计算和反复试验。因此,要提高设计效果,设汁者必须有较高理论知识和丰富实践经验。 1 开关电源变换器性能指标 开关电源变换器部分原理图如图1所示。 PCbfans提示请看下图: 其主要技术参数如下: 电路形式半桥式; 整流形式全波整流; 工作频率f=38kHz; 变换器输入直流电压Ui=310V; 1

变换器输出直流电压Ub=14.7V; 输出电流Io=25A; 工作脉冲占空度D=0.25~O.85; 转换效率η≥85%; 变压器允许温升△τ=50℃; 变换器散热方式风冷; 工作环境温度t=45℃~85℃。 2 变压器磁芯选择以及工作磁感应强度确定 2.1 变压器磁芯选择 目前,高频开关电源变压器所用磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。这些材料中,坡莫合金价格最高,从降低电源产品成本方面来考虑不宜采用。非晶合金和超微晶材料饱和磁感应强度虽然高,但在假定测试频率和整个磁通密度测试范围内,它们呈现铁损最高,因此,受到高功率密度和高效率制约,它们也不宜采用。虽然铁氧体材料损耗比坡莫合金大些,饱和磁感应强度也比非晶合金和超微晶材料低,但铁氧体材料价格便宜,可以做成多种几何形状铁芯。对于大功率、低漏磁变压器设计,用E-E型铁氧体铁芯制成变压器是最符合其要求,而且E-E型铁芯很容易用铁氧体材料制作。所以,综合来考虑,变换器变压器磁芯选择功率铁氧体材料,E-E型。 2.2 工作磁感应强度确定 工作磁感应强度Bm是开关电源变压器设计中一个重要指标,它与磁芯结构形式、材料性能、工作频率及输出功率因素有关关。若工作磁感应强度选择太低,则变压器体积重量增加,匝数增加,分布参数性能恶化;若工作磁感应强度选择过高,则变压器温升高,磁芯容易饱和,工作状态不稳定。一般情况下,开关电源变压器Bm值应选在比饱和磁通密度Bs低一些,对于铁氧体材料,工作磁感应强度选取一般在0.16T 到0.3T之间。在本设计中,根据特定工作频率、温升、工作环境等因素,把工作磁感应强度定在0.2 T。 3 变压器主要设计参数计算 3.1 变压器计算功率 开关电源变压器工作时对磁芯所需功率容量即为变压器计算功率,其大小取决于变压器输出功率和整流电路形式。变换器输出电路为全波整流,因此 2

正激式变压器开关电源工作原理

正激式变压器开关电源工作原理 正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。 1-6-1.正激式变压器开关电源工作原理 所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。 图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R 是负载电阻。 在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。 我们从(1-76)和(1-77)两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua ,而输出电压的幅值Up不变。因此,正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。 图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。其工作原理与图1-2的串联式开关电源电压滤波输出电路完全相同,这里不再赘述。关于电压平均值输出滤波电路的详细工作原理,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。 正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关电源变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关电源变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3。 反馈线圈N3绕组和削反峰二极管D3对于正激式变压器开关电源是十分必要的,一方面,反馈线圈N3绕组产生的感应电动势通过二极管D3可以对反电动势进行限幅,并把限幅能量返回给电源,对电源进行充

如何选用隔离变压器

如何选用隔离变压器 本篇文章我们针对细节产品进行进一步介绍,在后期的工作过程中我们会隔离变压器、自耦变压器、行灯变压器、单相变压器、三相调压器等等产品的一些选用方法和安装注意事项以后维护工作我们都会做详细的说明,供用户阅读,在这一章节中我们主要谈到如何选择隔离变压器。 我们都知道隔离变压器有两种,一种是干扰隔离变压器;另一种是电源隔离变压器,它们的相同点都是:一次和二次绕组圈数比都为1。在我们的产品介绍页:我们也有详细介绍这种变压器,需要了解的用户可以前往。 那么在什么情况下选择干扰变压器呢? 当电子设备如电子仪表及工业控制计算机等如果直接在市电电网中,就会受到接在市电电网中的一些大功率电力电子装置中晶闸管的快速导通与截止以及各种大型设备的起、停造成的脉冲干扰。就需要选用隔离变压器。 电源隔离变压器有良好的绝缘性,所以在家用等产品中,为了降低成本、减小体积都直接用市电220v的电源进行整流,然后通过开关稳压电源给彩色电视机供电。这样就使220v电源的一根线直接与彩色电视机底板连通,即平时俗你的"热底板"。在维修彩色电视机时为防止不小心碰上"热底板"而触电,可以选用电源隔离变压器。但需注意的是使用电源隔离变压器时,应注意隔离变压器的功率要大于负载电器的功率。 这就是隔离变压器选用的一些原则,在下面一些章节中我们将会为大家介绍其使用方法和原理。 雄世变压器厂家以生产隔离变压器、单相变压器、自耦变压器、三相调压器等产品为主。为供电系统提供专门专业的变压器。 三相隔离变压器特性优点: 高度隔离 N-G性能良好 高度共模干扰抑制 将△转换为Y或Y至△ 电压抽头容易转换

按用户的特殊性能要求设计 应用领域 加装在稳压电源的输入或输出端 需要隔离和屏蔽的任何系统 三相隔离变压器的优势 在现在国家不断的在各行各业大力提倡高效、节能、环保的的环境下,发展具有环保节能的三相隔离变压器就成为了国内企业需要努力的方向。具体说来,三相隔离变压器的发展趋势有以下四点: 一、更绿色环保 环保是大势所趋,随着能源紧张及环境污染加剧,各大生产制造厂商纷纷将下一步的发展目标锁定在了节能环保上。三相隔离变压器也同样如此,节能环保是永恒的课题。如何让产品更低损耗,更高能效,更低噪音,更少使用不能再生材料等问题都值得进一步研究与探索。新材料、新工艺的开发与引进将使未来的三相隔离变压器更节省能源,运转更加宁静。 二、安全系数高 我国生产的三相隔离变压器数量以达成千上百万,运用于各大重点项目、运行在科技、医疗、生产等多个领域。特别是夏季用电高峰季节,对于变压器的安全性提出了更高的要求。从设计、生产、工艺、质检等各个阶段进行把关,确保电力设备的万无一失。未来三相隔离变压器将在安全性上进一步进行可靠性认证,电力安全将是设计生产商不懈努力的目标。 三、容量扩展 随着城市化进程不断加剧,城市人口的不断膨胀,电力需求也与日俱增。电力短缺问题最明显的表现在夏冬两季用电高峰,对电力的大幅度增长需求,让城市电网不堪重负。采取的临时性措施也只能解一时燃眉之急,扩展容量才是根本的解决之道。目前,国家已经对电力设施进行积极改造,扩大容量,使之能符合城市人口高峰时期的用电需求。 四、高新材料的研发 很多企业都意识到要发展必须要创新。新型材料的开发与运用对变压器行业带来了巨大的推动作用。NomexH级绝缘、非晶合金等新材料、新工艺的引入,为三

(整理)开关电源变压器测试标准

开关电源变压器测试标准 正常的试验大气条件(除有规定条件除外,均应在正常试验条件下进行试验): 温 度: 15~35℃ 相对湿度: 45%~75% 气 压: 86~106kPa 一、直流铜阻 目的:保证每一绕组使用正确的漆包线规格。 仪器:TH2511低直流电阻测试仪。 方法:变压器各绕组在温度为20℃时的直流电阻,应符合产品规格书的标准。 若测量环境温度不等于20℃时,应按下面的公式换算 R 20=θ +5.2345 .254R θ 式中: R 20——温度为20时的直流电阻,Ω; R θ——温度为θ时测得的直流电阻,Ω; θ——测量时的环境温度,℃。 二、电感量 目的:确保使用正确的磁性材料及绕组圈数的正确性。 仪器:WK3255B 电桥。 方法:对变压器测试端施加额定条件的电桥,测试电感量。见图1 图1 开 路

三、直流叠加 目的:检验磁芯的磁饱和特性或实际工作条件下的磁芯特性。 仪器:WK3255B 电桥;FJ1772A 直流磁化电源。 方法:对变压器测试端施加规定的直流电流,用电桥测试电感量。见图2 图2 图中I 0 —— 在测试端N1绕组施加的直流电流 四、漏感 目的:保证绕组处于骨架上正确的位置以及磁性材料的气隙大小的正确性。 仪器:WK3255B 电桥。 方法:将所测变压器次级端短路,在初级端施加额定条件的电桥测试电感量。 见图3 图3 五、绝缘电阻 目的:保证每一绕组对磁芯、静电屏蔽及各绕组间绝缘电阻性能满足所需的 技术指标。 仪器:2679绝缘电阻测试仪。 方法:用绝缘电阻测试仪对变压器的初次级绕组间或绕组和磁芯、静电屏蔽 短 路

隔离变压器(医用)

一、隔离变压器系统(又称医用IT隔离供电系统)在医疗领域的必选性: (IT隔离供电系统,即中性点不接地配电系统) 1. 隔离变压器系统因降低了接触电压和电网对地漏电流(有效控制对心脏的直接漏电流),故人身触电危险被降到最小程度。 众所周知,当用电设备对人体心脏直接漏电大于10uA 时,会造成对病人的微电击事故。而在一般通用建筑中所采用的RCD、ELCB等对地漏电保护开关,其动作响应值是mA级(如:30 mA),远远不能满足医疗领域的需要。 因此,现在国际上对医疗领域中的手术室、ICU、CCU等重要场所通常采用局部“中性点不接地的供电系统”(即“IT系统”或称“隔离电源系统”)供电。1912年芬兰澄诺灏亚(CNHY)电气控制有限公司通过单相3KV A-10KV A的隔离变压器给这些场所供电,首先就防止了其它供电回路中的漏电流通过接地线窜入手术室、ICU、CCU的医疗电气设备上对病人的安全构成威胁;另外,一旦隔离电源上所接的负载(如各种医疗电气设备)出现对地故障,因对地不能构成回路,只能产生一个很小的容性漏电流,极大地保护了病人免遭漏电流的伤害。 2. 隔离变压器系统在电网负载端出现第一个绝缘故障点时,不会引起电源空开动作(跳闸),保证了供电的连续性。 隔离变压器系统在医疗领域某些场所因对供电持续性要求很高,故设计成两路(甚至三路)电源(接地供电系统)自动切换,以保证这些特殊场所的供电连续性,但如果在负载端出现相对绝缘故障时,故障电流将经过电源中性点对地构成回路,从而形成一个较大的故障电流,使上一级空开或熔断器动作,最终导致供电中断。而如果在这些特殊场所局部采用IT配电系统时,因其电源中性点不接地,当负载端出现第一点相对地绝缘故障时,因其对地不能构成回路,只会产生一个很小的容性漏电流,对人体不会产生危害,同时也不会导致空开动作,从而保证了手术室供电的连接性。 3. 隔离变压器系统降低了对地漏电流,故提高了防火安全性。 二、国内/外相关规定: 隔离变压器系统在许多国家和国际标准上都对医疗领域,尤其是那些生命攸关的场所,如手术室、重症监护室、心脏监护室等的电器作了特殊的规定。其目的就是保证为该场所内的医疗电器提供一个安全可靠的电源,以确保病人的安全。相关标准如下:德国DIN VDE 0107 芬兰SFS6000 奥地利OEVE-EN7 法国NFC 15-211 意大利CEI 64-4 美国NFPA 99-1993 澳大利亚AS2500 英国HTM2007/2014,BS7671 巴西NBR 13543 IEC(国际电工协会)6034-7-710 在国际电工协会IEC60364标准中规定,在医疗领域,由电网电源供电,用于维持生命或外科手术的医疗电器设备,以及用于手术室照明和类似照明设备,额定电压超过AC25V 或DC60V的设备,必须使用带绝缘电阻监视仪的IT系统。 同时我国《民用建筑电气设计规范》中14.7.6.3中规定“在电源突然中断后,有招致重大医疗危险的场所,应采用电力系统不接地(IT系统)的供电方式”;14.2.8中规定“IT系统必须装设绝缘监视及接地故障报警系统或显示装置”。以及我国2002年11月26日发布、12月1

电气隔离的安全原理与安全条件(新编版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 电气隔离的安全原理与安全条 件(新编版) Safety management is an important part of production management. Safety and production are in the implementation process

电气隔离的安全原理与安全条件(新编版) 电气隔离防护的主要要求之一是被隔离设备或电路必须由单独的电源供电。这种单独的电源可以是一个隔离变压器,也可以是一个安全等级相当于隔离变压器的电源。通常电气隔离是指采用电压比为1:1,即一次侧与二次侧电压相等的隔离变压器,实现工作回路与其他电气回路上的电气隔离。 一、电气隔离的安全原理 电气隔离实质上是将接地的电网转换为一范围很小的示接地电网。图4-3是电气隔离的原理图。分析图中a,b两人的触电危险性可以看出:正常情况下,由于N线(或PEN线)直接接地,使流经a 的电流沿系统的工作接地和重复接地构成回路,a的危险性很大;而流经b的电流只能沿绝缘电阻和分布电容构成回路,电击的危险性可以得到抑制。 二、电气隔离的安全条件

单独的供电电源有的仅对单一设备供电,有的同时对多台设备供电。对这两种情况,从安全条件上有其通用的要求,也有各自的特殊要求。 1.通用要求 (1)电气上隔离的回路,其电压不得超过500V交流有效值。 (2)电气上隔离的回路必须由隔离的电源供电。使用隔离变压器供电时,隔离变压器?必须具有加强绝缘的结构,其温升和绝缘电阻要求与安全隔离变压器相同。最大容量单相变压器不得超过25kVA、三相变压器不得超过40kVA。 (3)被隔离回路的带电部分保持独立,严禁与其他电气回路、保护导体或大地有任何电气连接。应有防止被隔离回路发生故障接地及窜入其他电气回路的措施。 (4)软电线电缆中易受机械损伤的部分的全长均应是可见的。 (5)被隔离回路应尽量采用独立的布线系统。 (6)隔离变压器的二次侧线路电压过高或线路过长都会降低回路对地绝缘水平。因此,必须限制二次侧电压和二次侧线路长度,

(整理)开关电源与变压器电源的分析

现在的电源大致分两大类:电子开关电源和变压器电源。 开关电源:: 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间。 开关电源中应用的电力电子器件主要为二极管、IGBT和MOSFET。 开关电源的三个条件 1、开关:电力电子器件工作在开关状态而不是线性状态 2、高频:电力电子器件工作在高频而不是接近工频的低频 3、直流:开关电源输出的是直流而不是交流 变压器电源: 线性电源(Liner power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。要达到高精度的直流电压,必须经过稳压电路进行稳压。 线性电源与开关电源对比 线性电源的电压反馈电路是工作在线性状态。 线性电源一般是将输出电压取样然后与参考电压送入比较电压放大器,此电压放大器的输出作为电压调整管的输入,用以控制调整管使其结电压随输入的变化而变化,从而调整其输出电压。 从其主要特点上看:线性电源技术很成熟,制作成本较低,可以达到很高的稳定度,波纹也很小,而且没有开关电源具有的干扰与噪音,但其体积相对开关电源来说,比较庞大,且输入电压范围要求高;而开关电源与之相反。 线性电源用途 线性电源产品可广泛应用于科研、大专院校、实验室、工矿企业、电解、电镀、充电设备等。 从以上两个解释大家应该知道开关电源与变压器电源(线性)的大致区别了吧。 很多朋友都会碰到一个问题,就是现在的低廉变压器电源为什么不能满足一般大、中功率的红外摄像机供电使用,而开关电源侧存在漏电的情况,这样,我把我所认识的两款电源和大家说说。 电源的优缺点: 开关电源优点:

反击式开关电源变压器设计

反激式开关电源变压器的设计 反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我算变压器的方法。 算变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。下面我就来算了一个输入85V到265V,输出5V,2A 的电源,开关频率是100KHZ。 第一步就是选定原边感应电压VOR,这个值是由自己来设定的,这个值就决定 了电源的占空比。可能朋友们不理解什么是原边感应电压,是这样的,这要从下面看起,慢慢的来, 这是一个典型的单端反激式开关电源,大家再熟悉不过了,来分析一下一个工作周期,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的I=Vs*ton/L,这三项分别是原边输入电压,开关开通时间,和原边电感量.在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的I=VOR*toff/L,这三项分别是原边感应电压,即放电电压,开关管关断时间,和电感量.在经过一个周期后,原边电感电流的值会回到原来,不可能会变,所以,有VS*TON/L=VOR*TOFF/L,,上升了的,等于下降了的,懂吗,好懂吧,上式中可以用D来代替TON,用1-D来代替TOOF,移项可得,D=VOR/(VOR+VS)。此即是最大占空比了。比如说我设计的这个,我选定感应电压为80V,VS为90V ,则D=80/(*80+90)=0.47 第二步,确实原边电流波形的参数. 原边电流波形有三个参数,平均电流,有效值电流,峰值电流.,首先要知道原边电流的波形,原边电流的波形如下图所示,画的不好,但不要笑啊.这是一个梯形波横向表示时间,纵向表示电流大小,这个波形有三个值,一是平均值,二是有效值,三是其峰值,平均值就是把这个波形的面积再除以其时间.如下面那一条横线所示,首先要确定这个值,这个值是这样算的,电流平均值=输出功率/效率*VS,因为输出功率乘以效率就是输入功率,然后输入功率再除以输入电压就是输入电流,这个就是平均值电流。现在下一步就是求那个电流峰值,尖峰值是多少呢,这个我们自己还要设定一个参数,这个参数就是KRP,所谓KRP,就是指最大脉动电流和

隔离变压器

隔离变压器 1 隔离变压器工作原理 隔离是指变压器原副边绕线圈之间是电绝缘的。变压器的隔离是隔离原副边绕线圈各自的电流。隔离有很多种,对于低压常见的变压器主要是金属绕线圈外面敷上绝缘漆,然后原副边绕线圈绕在一闸铁心上组成一个变压器。这种变压器的绕线圈使用的导线很多人就叫其“漆包线”。原因就是那层绝缘漆。这时原副边就是靠那层漆绝缘的,即隔离的。 隔离变压器的原理与普通干式变压器相同,也是利用电磁感应原理,主要隔离一次电源回路,二次回路对地浮空,以保证用电安全。 现以单相双绕组变压器为例阐明其变压器的原理,如图所示:当一次侧绕组上加上电压U1时,流过电流I1,在铁芯中就产生交变磁通?1,这些磁通称为主磁通,在它作用下,两侧绕组分别感到电势E1,E2,感到电势公式为: E=4.44fN?m 式中: E--感应电势有效值 f--频率 N--匝数 ?m--主磁通最大值 当二次绕组与一次绕组匝数有差异,感应电势E1和E2大小也不同,当略去内阻抗压降后,电压U1和U2大小也就不同。 当变压器二次侧空载时,一次侧仅流过主磁通的电流(I0),这个电流称为励磁电流。当二次侧加负载流过负载电流I2时,也在铁芯中产生磁通,力图改变主磁通,但一次电压不变时,主磁通是不变的,一次侧就要流过两部分电流,一部分为励磁电流I0,一部分为用来平衡I2,所以这部分电流随着I2变化而变化。 一般变压器原、副绕组之间虽也有隔离电路的作用,但在频率较高的情况下,两绕组之间的电容仍会使两侧电路之间出现静电干扰。为避免这种干扰,隔离变压器的原、副绕组一般分置于不同的心柱上,以减小两者之间的电容;也有采用原、副绕组同心放置的,但在绕组之间加置静电屏蔽,以获得高的抗干扰性。 静电屏蔽就是在原、副绕组之间设置一片不闭合的铜片或非磁性导电纸,称为屏蔽层。铜片或非磁性导电纸用导线连接于外壳。有时为了取得更好的屏蔽效果,在整个变压器,还罩一个屏蔽外壳。对绕组的引出线端子也加屏蔽,

24V电源变压器设计

24V电源变压器是低频变压器. 本文介绍的方法适合50Hz一千瓦以下普通交流变压器的设计. (1) 电源变压器的铁心 它一般采用硅钢片. 硅钢片越薄,功率损耗越小,效果越好.整个铁心是有许多硅钢片叠成的,每片之间要绝缘.买来的硅钢片, 表面有一层不导电的氧化膜, 有足够的绝缘能力.国产小功率变压器常用标准铁心片规格见后续文章. (2) 电源变压器的简易设计 设计一个 变压器,主要是根据电功率选择变压器铁心的截面积,计算初次级各线圈的圈数等.所谓铁心截面积S是指硅钢片中间舌的标准尺寸a和叠加起来的总厚度b的乘积.如果24V电源变压器的初级电压是U1,次级有n个组,各组电压分别是U21,U22,┅,U2n, 各组电流分别是I21,I22,┅,I2n,...计算步骤如下: 第一步,计算次级的功率P2.次级功率等于次级各组功率的和,也就是P2 =U21*I21+U22*I22+┅+U2n*I2n. 第二步, 计算变压器的功率P.算出P2后.考虑到变压器的效率是η,那么初级功率P1=P2/η,η一般在0.8~0.9之间.变压器的功率等于初,次级功率之和的一半,也就是P=(P1+P2)/2 第三步, 查铁心截面积S.根据变压器功率,由式(2.1)计算出铁心截面积S,并且从国产小功率变压器常用的标准铁心片规格表中选择铁心片规格和叠厚. 第四步, 确定每伏圈数N.根据铁心截面积S和铁心的磁通密度B,由式(2.2)得到初级线圈的每伏圈数N.铁心的B值可以这样选取: 质量优良的硅钢片,取11000高斯;一般硅钢片,取10000高斯;铁片,取7000高斯.考到导线电阻的压降, 次级线圈每伏圈数N'应该比N增加5%~10%,也就是N'在1.05N~1.1N之间选取. 第五步,初次级线圈的计算.初级线圈N1=N*U1.次级线圈N21=N'*U21,N22=N'*U22 ┅,N2 =N'*U2n. 第六步, 查导线直径.根据各线圈的电流大小和选定的电流密度,由式(2.3)可以得到各组线圈的导线直径.一般24V电源变压器的电流密度可以选用3安/毫米2 第七步, 校核. 根据计算结果,算出线圈每层圈数和层数,再算出线圈的大小,看看窗口是否放得下.如果放不下,可以加大一号铁心,如果太空,可以减小一号铁心.采用国家标准GEI铁心,而且舌宽a和叠厚b的比在1:1~1:1.7之间, 线圈是放得下的.各参数的计算公式如下: ln(S)=0.498*ln(P)+0.22 ┅(2.1) ln(N)=-0.494*ln(P)-0.317*ln(B)+6.439┅(2.2) ln(D)=0.503*ln(I)-0.221┅(2.3) 变量说明: P: 变压器的功率. 单位: 瓦(W) B: 硅钢片的工作磁通密度. 单位: 高斯(Gs) S: 铁心的截面积. 单位: 平方厘米(cm2) N: 线圈的每伏圈数. 单位: 圈每伏(N/V) I: 使用电流. 单位: 安(A) D: 导线直径. 单位: 毫米(mm) (二)GEI铁心规格

隔离变压器的作用及工作原理

隔离变压器的作用及工作原理 什么是隔离变压器 隔离变压器是指输入绕组与输出绕组带电气隔离的变压器,隔离变压器用以避免偶然 同时触及带电体,变压器的隔离是隔离原副边绕线圈各自的电流。早期为欧洲国家用在电 力行业,广泛用于电子工业或工矿企业、机床和机械设备中一般电路的控制电源、安全照 明及指示灯的电源。 一次侧、二次侧绕组间有较高绝缘强度以隔离不同电位抑制共模干扰的专用变压器。 隔离变压器的变比通常是1:1。 隔离变压器工作原理 隔离变压器的原理和普通变压器的原理是一样的。都是利用电磁感应原理。隔离变压 器一般是指1:1的变压器。由于次级不和地相连。次级任一根线与地之间没有电位差。使用安全。常用作维修电源。 隔离变压器不全是1:1变压器。控制变压器和电子管设备的电源也是隔离变压器。如电子管扩音机,电子管收音机和示波器和车床控制变压器等电源都是隔离变压器。如为了 安全维修彩电常用1比1的隔离变压器。隔离变压器是使用比较多的,在空调中也是使用的。 一般变压器原、副绕组之间虽也有隔离电路的作用,但在频率较高的情况下,两绕组 之间的电容仍会使两侧电路之间出现静电干扰。为避免这种干扰,隔离变压器的原、副绕 组一般分置于不同的心柱上,以减小两者之间的电容;也有采用原、副绕组同心放置的, 但在绕组之间加置静电屏蔽,以获得高的抗干扰特性。 静电屏蔽就是在原、副绕组之间设置一片不闭合的铜片或非磁性导电纸,称为屏蔽层。铜片或非磁性导电纸用导线连接于外壳。有时为了取得更好的屏蔽效果,在整个变压器, 还罩一个屏蔽外壳。对绕组的引出线端子也加屏蔽,以防止其他外来的电磁干扰。这样可

使原、副绕组之间主要只剩磁的耦合,而其间的等值分布电容可小于0.01pF,从而大大减小原、副绕组间的电容电流,有效地抑制来自电源以及其他电路的各种干扰。 隔离变压器的分类 普通隔离变压器由于一次侧、二次侧绕组之间没有直接的电气连接,故一般的电力变压器不论变比为多少都具有电位隔离的功能,而隔离变压器则可以隔离更高的电位差。它被广泛应用于交流电源线上、通信线上,隔离接地回路,有效抑制低频、音频范围内的共模干扰,但不能抑制差模干扰。信号与脉冲隔离变压器也广泛地应用在音频到视频范围,用于中断地环路,实现耦合交流、隔离直流成分、阻抗匹配等功能。由于隔离变压器的一次侧与二次侧之间存在分布电容,从而降低了接地回路阻抗。当由于某种原因,B点电位升高出现干扰电压en时,高频共模干扰可从一次侧耦合到二次侧。 屏蔽隔离变压器在隔离变压器的一次侧和二次侧之间插入一层金属屏蔽层,屏蔽层将一次侧与二次侧之间的电容分为两个,起到了屏蔽作用。如将金属屏蔽层与变压器接地端连接,则来自一次侧的共模干扰在到达二次侧前被屏蔽层阻抗旁路。如将金属层与变压器一次侧输入端(有调压抽头时接调压抽头或接地端和零线端)连接,来自一次侧的差模干扰在到达二次侧前也被屏蔽层短路。 双重屏蔽隔离变压器当一次侧同时出现共模和差模干扰时,将一层屏蔽层连接到一次侧以降低差模噪声,将另一层屏蔽层连接到共模干扰的基准面或地线上以降低共模噪声。隔离变压器外壳也被连接到安全地线上。屏蔽层的连接线必须短而可靠,否则在高频时,屏蔽效果明显降低。 三重屏蔽的隔离变压器当需要更高隔离要求的时候,可选用三重屏蔽的隔离变压器。三种不同屏蔽层的连接方法取决于变压器的安装方法以及接地条件。一般将变压器安装在设备机架的隔板或屏蔽室的隔墙上,并将机架接设备安全地线,输入电源安全地被断开加绝缘管保护。 对隔离变压器的要求在变电所、发电厂中电子设备使用的隔离变压器,应参照国家对设备的标准要求进行选择,电源用的隔离变压器应满足如下几项指标:①额定电压:220V

开关电源变压器设计资料完整版

开关电源变压器设计 开关变压器是将DC 电压﹐通过自激励震荡或者IC 它激励间歇震荡形成高频方波﹐通过变压器耦合到次级,整流后达到各种所需DC 电压﹒ 变压器在电路中电磁感应的耦合作用﹐达到初﹒次级绝缘隔离﹐输出实现各种高频电压﹒ 目的﹕减小变压器体积﹐降低成本﹐使设备小形化﹐节约能源﹐提高稳压精度﹒ N 工频变压器与高频变压器的比较﹕ 工频 高频 E =4.4f N Ae Bm f=50HZ E =4.0f N Ae Bm f=50KHZ N Ae Bm 效率﹕ η=60-80 % (P2/P2+Pm+ P C ) η>90% ((P2/P2+Pm ) 功率因素﹕ Cosψ=0.6-0.7 (系统100W 供电142W) Cosψ>0.90 (系统100W 供电111W) 稳压精度﹕ ΔU%=1% (U20-U2/U20*100) ΔU<0.2% 适配.控制性能﹕ 差 好 体积.重量 大 小

开关变压器主要工作方式 一.隔离方式: 有隔离; 非隔离 (TV&TVM11) 二.激励方式: 自激励; 它激励 (F + & IC) 三.反馈方式: 自反馈; 它反馈 (F- & IC) 四.控制方式: PWM: PFM (T & T ON ) 五.常用电路形式: FLYBACK & FORWARD 一.隔离方式: 二.

开关变压器主要设计参数 静态测试参数: R DC. L. L K. L DC. TR. IR. HI-POT. IV O-P.Cp. Z. Q.……… 动态测试参数: Vi. Io. V o. Ta. U. F D max…………. 材料选择参数 CORE: P. Pc. u i. A L. Ae. Bs……. WIRE: Φ℃. ΦI max. HI-POT…….. BOBBIN: UL94 V--O.( PBT. PHENOLIC. NYLON)………. TAPE: ℃. δh. HI-POT…….. 制程设置要求 P N…(SOL.SPC).PN//PN.PN-PN. S N(SOL.SPC).Φn. M tape:δ&w TAPE:δ&w. V℃……..

相关文档