文档库 最新最全的文档下载
当前位置:文档库 › 水平井多段压裂工艺技术

水平井多段压裂工艺技术

水平井多段压裂工艺技术
水平井多段压裂工艺技术

页岩气开采压裂技术分析与思考

页岩气开采压裂技术分析与思考 摘要:目前,社会进步迅速,页岩气存储于致密泥页岩地层中,页岩连续分布、区域广,含有一定量的黏土矿物,塑性强,在高应力载荷下易发生形变,页岩储 层具有低孔低渗等特性,需对页岩储层进行改造才具备商业开发价值。目前涪陵 区块和川东南区块,均已实现页岩气大规模开发,形成一套成熟的页岩气开采工艺,工艺实施需借助现场施工实现,只有严格把控施工质量,确保工艺有效实施,才能够实现对页岩气资源的高效开发。下文对此进行简要的阐述。 关键词:页岩气;开采压裂技术分析;思考 引言 伴随着油田行业的深入发展,如今能源紧缺问题已经成为了社会性现实。页 岩气储层低孔低渗,往往要投入巨大的精力对其进行压裂改造才能够保障产能稳定。水力压裂中压裂液性能带来的影响十分直观与突出。 1页岩气压裂施工质量技术现状 当前,经常使用的技术大多是多级压裂、清水、压裂、水力喷射压裂、重复 压裂与同步压裂等等,页岩气开发过程中所使用的储层改造技术还有氮气泡沫压 裂和大型水力压裂也是国内外目前的主流压裂技术。影响页岩气产量的主要原因 是裂缝的发育程度,如何得到较多的人造裂缝是压裂设计主要应该考虑的。如何 才能得到有效而又经济的压裂成果,在实行水力压裂以前,经常要实行压裂的设计。然而,压裂设计的工作确双有许多,最为主要的核心应属压裂效果的模拟, 经过压裂的模拟才可以预测裂缝发育的宽度及长度,从而知道压裂能否顺利成功。 2页岩气压裂开采中对环境的影响 页岩气压裂在开采的过程当中必定会因为一些噪声及废水废气等开采事故灾 害对环境造成一些污染影响,通常会对水资源进行大量的消耗以及地下水层进行 污染。目前,有些专家和环保人士在对页岩气压裂开采的过程也是提出了很多相 关环境污染的影响问题,同时,岩气压裂在开采过程中确实造成了较为严重的环 境污染。 2.1大量消耗水资源 页岩气压裂的开采使用的水力压裂法是压裂液最为重要的,分别由高压水、 砂以及化学添加剂而组成的。页岩气压裂的开采其用水量也是较大的,一般情况 页岩气压裂开采需消耗四至五百万加化的水资源才能使页岩断裂。 2.2污染地下水层 页岩气压裂开采过程当中,其化学物质有可能会直接通过断裂及裂缝由地下 深处慢慢转向向上移动到地表或者浅层,同时也可能页岩气压裂开采过程中由于 质量问题或者某些操作的不当导致破裂或者空洞。某些石油公司把页岩气压裂使 用过程中的的压裂液中的化学添加剂当成非常重要化学物质,然而,也因为这些 化学物质就可能会造成地下水层的污染。其中的化学物质可能会泄露到地下水层 当中,从而就污染了湖泊及蓄水池等等的地下水资源。当整个开采过程完成以后,其很大部分的压裂液又转回流向了地面,而流回地面的压裂液当中不光只有压裂 液里面某些化学物质,也还有部分地壳中原本就存在的放射性物质以及大量盐之类。当一些有毒污水再流回现场时,转而再流向污水处理厂以及回收再利用,当 遇到雨季来临时,整个过程就造成了严重的地下水层污染。 3页岩气压裂施工工艺 随着页岩气开发力度的不断增大,常规的压裂施工技术已经不能满足大规模

水平井分段多簇压裂工艺的应用

水平井分段多簇压裂工艺的应用 【摘要】鸭平4井位于玉门油田鸭西白垩系是典型的低渗透储层,井深3456m,水平段210m,实施了2段6簇的压裂,同步实施了裂缝监测,取得了理想的效果;压裂共入井液量1961.4 m3,总沙量159 m3,最高砂比26.2%,平均砂比14.5%;该井是玉门油田实施多段多簇压裂工艺的第一口井,是开发低渗透油藏水平井的新突破,探索了一条中深水平井压裂改造的新途径。 【关键词】玉门油田压裂低渗透油藏 1 鸭平4井油藏储层特征 鸭平4井水平段方位角基本在NW280-290°之间,二者基本呈90°夹角,因此有利于沿井筒形成横切裂缝。图1?鸭平4井裂缝方位及体积改造裂缝形 态 对比邻井,该井具有储层厚度较大,缝高易扩展,储层物性较好,液体效率低的特点。该井水平段较短,为提高储层动用程度及施工效率,采用水平井分段多簇压裂工艺,实现体积改造(SRV)。在水平井筒周围储层,形成一定密度的裂逢网络;从而提高增产改造体积。 2 实施分段多簇压裂设计方案 根据该井施工排量的要求,本井分两段进行压裂,每段3簇,每簇射孔段1m,孔密16孔/米,每段共计射48孔,具体射孔参数见表1。 2.1 第一段采用油管传输射孔 采用102枪127弹,孔径10.2mm,穿深680mm,相位角60°。该射孔条件下,8 m3/ min的施工排量,总孔眼摩阻小于1MPa;若压裂施工时仅1簇进液,则计算显示其孔眼摩阻将大于8MPa,则第二层被压开,这时有两簇进液,理论计算出的孔眼摩阻超过2Mpa。 2.2 第二段采用电缆射孔 采用86枪,22.7g深穿透射孔弹,孔径8.12m,穿深为729mm,相位角60°。该射孔方式在8m3/min的施工排量下,总孔眼摩阻小于3MPa;仅1簇进液时孔眼摩阻将高达20MPa,则第二簇被压开,两簇进液时的孔眼摩阻超过5MPa,同样,这种情况能够保证第三簇也能够被压开。 采用分簇射孔工艺,根据摩阻预测,每段射孔孔眼数为48孔,3簇施工时8m3/min的排量较为适宜,既能保证总孔眼摩阻很低,又能起到限流作用(限流摩阻>12MPa)从而保证压开每个射孔簇。

水平井完井调研讲解

水平井完井方式 完井工程是衔接钻井和采油工程而又相对独立的工程。目前,常用的水平井完井方式有裸眼完井、射孔完井、割缝衬管完井,带套管外封隔器(ECP)的割缝衬管完井、带套管外封隔器(ECP)的滑套开关完井、预充填砾石筛管完井、阶梯水平井完井、多分支水平井完井等。 1、裸眼完井 适用于碳酸盐岩及其它不坍塌硬地层,特别是一些垂直裂缝地层,如美国奥斯汀白垩系地层。该完井方式工艺简单,钻水平井费用相对较低,但容易引起气、水窜流,修井测井困难,无法进行油层改造,目前使用较少。 2、割缝衬管完井 完井工序是将割缝衬管悬挂在技术套管上,依靠悬挂封隔器封隔管外个环形空间。割缝衬管要加扶正器,以保证衬管在水平井眼中居中,适用于有气顶、无底水、疏松砂岩地层。国外油田采用该种完井方式完井时,都在衬管下井前用油溶树脂或石蜡将割缝涂死,生产时靠地温自动化开,免除割缝被钻井液堵死。塔中四油田402高点CIII油组主力部位5口水平井,其中4口都用割缝衬管完井,初产都在千吨以上,临界产量也都在700t/d以上。 图1 割缝衬管完井示意图

3、带管外封隔器(ECP)割缝衬管完井 用割缝或钻孔尾管带多级管外封隔器下入水平井段后,从末端开始逐级将管外封隔器用水泥挤膨胀后固定,可分段进行小型作业措施。 这种完井方式是依靠管外封隔器实施分段的分隔,下一根盲管,以便实现管内封隔。可以分段进行作业和生产控制,这对于注水开发的油田尤为重要。管外封隔器的完井方法可以分为三种形式:套管外封隔器间连接割缝衬管、套管外封隔器间连接可开关的滑套和套管外封隔器间进行射孔完成。管外封隔器逐级通过定位槽定位,用油管或连续油管待双封隔器对准管外封隔器的定压单流阀将水泥浆挤入皮囊内凝固封隔器后分段隔开。 图2 套管外封隔器及割缝衬管完井示意图 这种完井方法适用于各类油层,目前用的较广,可进行分段压裂改造、可酸化解除油层污染、便于测井和修井,尤其对多条垂直裂缝油藏用多级管外封隔器完井,将十分理想。新疆油田分公司,在一口水平井下6只管外封隔器,其中5只检封密封良好。 4、带ECP管外封隔器的滑套开关完井 这种完井方式与前种基本相同,只是将割缝衬管换成多级滑套,用连续油管逐级开关,其关键技术是内径保持一致的滑套开关工具。某油田三叠系长6到长8低渗透层打水平井未取得预期效果,分段压裂一直是困扰低渗透油藏水平井开发的关键技术,曾用液体胶塞加填砂的方法分段压裂,但封隔的有效性难以保证,并可能对油层造成伤害。如果采用滑套完井方式实现低渗透油层分段压裂,可有

页岩气开采技术

页岩气开采技术 1 综述 页岩气是一种以游离或吸附状态藏身于页岩层或泥岩层中的非常规天然气,是一种非常重要的天然气资源,主要成分是甲烷。页岩气的形成和富集有其自身的特点,往往分布在盆地内厚度较大、分布广的页岩烃源岩地层中。如图1.1所示。页岩气一般存储在页岩局部宏观孔隙体系中、页岩微孔或者吸附在页岩的矿物质和有机质中。页岩孔隙度低而且渗透率极低,可以把页岩理解为不透水的混凝土,这也是页岩气与其他常规天然气矿藏的关键区别。可想而知,页岩气的开采过程极为艰难。根据美国能源情报署(EIA)2010年公布的数据,全球常规天然气探明储量有187.3×1012m3,然而页岩气总量却高达456×1012m3,是常规天然气储量的2.2倍。与常规天然气相比,页岩气具有开采潜力大,开采寿命长和生产周期长等优点,至少可供人类消费360年。从我国来看,中国页岩气探明储量为36×1012m3,居世界首位,在当今世界以化石能源为主要消费能源的背景下,大力发展页岩气开采技术,对我国减少原油和天然气进口,巩固我国国防安全有很重要的意义。我国页岩气主要分布在四川盆地、长江中下游、华北盆地、鄂尔多斯盆地、塔里木盆地以及准噶尔盆地,如图1.2所示。 图1.1页岩气藏地质条件图1.2中国页岩气资源分布页岩气开采是一种广分布、低丰度、易发现、难开采、自生自储连续型非常规低效气藏,气开采过程需要首先从地面钻探到页岩层,再通过开凿水平井穿越页岩层内部,并在水平井内分段进行大型水力加砂压裂,获得大量人工裂缝,还需要在同一地点,钻若干相同的水平井,对地下页岩层进行比较彻底的改造,造成大面积网状裂缝,最后获得规模产量的天然气。因此,水平井技术和水力压裂技术的页岩气成功开采的关键。 2 页岩气水平井技术 1821年,世界上第一口商业性页岩气井在美国诞生,在井深21米处,从8米厚的页岩裂缝中产出了天然气。美国也是页岩气研究开采最先进的国家,也是技术最成熟的国家。国外页岩气开采主要在美国和加拿大(因为加拿大和美国地质条件类似,因此可以承接美国的开采技术),主要得益于水平井技术、完井及压裂技术的成功应用。 2.1 开采技术 早期的页岩气开采主要运用直井技术,直井开采技术简单,开始投入成本低,但是开采

页岩气水平井分段压裂复杂缝网形成机制

油气藏评价与开发 第7卷第5期2017年10月 RESERVOIR EVALUATION AND DEVELOPMENT 页岩气水平井分段压裂复杂缝网形成机制 许文俊,李勇明,赵金洲,陈曦宇,彭瑀 (西南石油大学油气藏地质及开发工程国家重点实验室,四川成都610500) 摘要:水平井分段压裂是页岩气高效开发的重要技术手段,有意识地利用水力裂缝沟通页岩储层中的天然裂缝,使其闭合的部分重新开启,开启的部分又相互连通,从而在地层中形成具有较大规模的复杂裂缝网络,有利于实现地层中页岩气向井筒的高效流动。为了合理优化页岩储层压裂设计方案,提高页岩储层压裂改造效果,需先认清页岩水平井分段压裂复杂缝网形成机制。基于位移不连续理论,建立了水平井分段压裂多裂缝干扰模式下的地应力场模型,分析了天然裂缝在复杂地应力场和存在压裂液滤失作用的情况下,发生张开或剪切破裂形成复杂缝网的机理。分析表明:水力裂缝诱导应力虽能降低地层原始水平应力差,但也会增加地层中天然裂缝发生张开和剪切破裂的难度,不利于复杂裂缝网络的形成。压裂液滤失是导致地层中天然裂缝发生张开和剪切破裂形成复杂裂缝网络的关键因素,天然裂缝的剪切破裂区域要远大于张开破裂区域,多条水力裂缝滤失效应的叠加更有利于形成具有较大波及区域的复杂裂缝网络。充分考虑压裂液滤失对复杂裂缝网络形成的影响,对提高页岩气水平井分段多簇压裂改造效果具有重要意义。 关键词:分段压裂;位移不连续理论;剪切破裂区域;张开破裂区域;复杂缝网 中图分类号:TE357文献标识码:A Formation mechanism of complex fracture network under horizontal well staged fracturing in shale gas reservoir Xu Wenjun,Li Yongming,Zhao Jinzhou,Chen Xiyu and Peng Yu (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu,Sichuan 610500,China) Abstract:Horizontal well staged fracturing is an important technology for shale gas production,whose essence is to use hydraulic fracture to activate natural fractures.The natural fractures can make closed parts reopen and opened parts interconnect,and then form complex fracture network in shale reservoirs,accordingly,shale gas will flow to the wellbore through complex fracture network efficiently.In order to optimize shale reservoir fracturing design and improve the effects of shale reservoir fracturing,it is necessary to fully understand the formation mechanism of complex fracture network in staged fractured shale horizontal wells.Based on the displacement discontinuity theory,a complex stress field calculation model which takes into consideration hydraulic fracture inter?ference is established,which analyzes the mechanism that natural fractures occur open and shear fracture,and then the complex fracture network under the circumstance of complex ground stress field and fracturing fluid leak-off was formed.The results demon?strate that although the hydraulic fracture induced stress field can reduce the original horizontal stress difference,it would also in?crease the difficulty of natural fractures opening and shearing,which is unbeneficial for the formation of complex fracture network. Moreover,it is attained that fracturing fluid leak-off is the key factor that leads to the open and shear fracture of natural fractures in the formation of complex fracture network and the shear rupture zone of natural fractures is much larger than the open rupture zone, furthermore,the superposition of multiple hydraulic fracture filtration effect is more favorable for the formation of complex fracture network with a larger spread area.The impacts of fracturing fluid leak-off on complex fracture network have important significance for improving staged fracturing transformation of shale horizontal wells. Key words:staged fracturing,displacement discontinuity theory,shear rupture zone,open rupture zone,complex fracture network 收稿日期:2016-10-31。 第一作者简介:许文俊(1991—),男,在读博士研究生,油气田增产改造理论与技术方面的研究。 基金项目:国家自然科学基金重大项目“页岩地层动态随机裂缝控制机理与无水压裂理论”(51490653);国家重点基础研究发展计划“中国南方海相页岩气高效开发的基础研究”(2013CB228004)。

关于水平井分段压裂的研究及探讨

关于水平井分段压裂的研究及探讨 【摘要】能源作为现代社会的稀缺资源,直接影响着人们的生产生活,对能源的开发也是极为重要的工程。在石油储存量较小且渗透性较差的油田内,水平井是较为有效的开发方式。如果遇到油气层渗流阻力较大、渗透率极低的情况,则需要将其压开数量不等的裂缝,加强油气的渗透性及减少渗流阻力。本文简单阐述了水平井分段压力技术的原理,各种类型的分段压裂技术,包括封隔器分段压裂、段塞分段压裂、封隔器配合滑套喷砂器分段压裂、水力喷射分段压裂、TAP 分段压裂技术等,为从事能源行业的人员提供一定的技术参考。 【关键词】水平井分段压裂技术研究 由于各个油田的地质情况不一样,在开发的过程中许多特殊情况,如低渗透油气藏、稠油油气藏、储量较小、渗透阻力大等情况,需要采用水平井,其优势在于生产效率高、泄油面积大、储量的动用度较高。为了达到进一步提高水平井的产量,需要对水平井进行压裂,从而形成数量较多的裂缝,提高油气的产量,提升生产效率,但是由于水平井的跨度较大,要达到理想的压裂效果要求分段工具具有性能良好、体积合适、操作性强等特征,才能有效的提高单位油井的油气产量,实现经济效益及资源的充分开发[1]。 1 水平井分段压裂工艺的基本原理 水平井压裂后,其裂缝的形状、性能均有所区别,主要和水平井筒轴线方向及地层的主要应力的方向有着较为密切的关系。该项工艺能够提高产量的原理为压裂使石油的渗流方式发生了改变。进行压裂处理之前,石油的径向流流线主要处于井底的位置,渗透受到较大的阻力,压裂完成后,径向流流线与裂缝壁面呈平行关系,渗流受到的阻力较小。裂缝的主要形态有以下几种:①横向裂缝:当水平井筒和主要应力的方向为呈垂直关系时,即会形成横向裂缝;②纵向裂缝:当水平井筒与主要应力的方向呈平行关系时,即会形成纵向裂缝;③扭曲裂缝:当水平井筒和主要应力有一定的角度时,即会构成扭曲裂缝。压裂后形成的横向裂缝适用于渗透性较差储藏层,其可以明显的促进油井改造。而渗透性好、裂缝性的储藏层则需要利用纵向裂缝来提升改造效果[2]。 2 各种类型的分段压裂工艺2.1 段塞分段压裂 段塞分段压裂工艺是在水平井施工进入尾声时,采用年度较高的物质植入井筒中,使之形成堵塞现象,在利用其它材料,如浓度较高的支撑剂、填砂液体胶塞或者超粘完井液等,进行填充性裂缝。该工艺的优势在于对于工具的要求较低,不需要特殊工具即可以安全设计方案进行施工活动,但是其缺陷在于施工时间较长,在进行冲胶塞施工时容易出现损伤,且由于胶塞强度的限制,在深度较大的水平井中不能达到理想的封隔效果,因此逐渐被新的分段压裂技术所取代[3]。 2.2 TAP分段压裂工艺

页岩气开采压裂技术

页岩气开采压裂技术 摘要:我国页岩气资源丰富但由于页岩地层渗透率很低,页岩气井完井后需要经过储层改造才能获得理想的产量,而水力压裂是页岩气开发的核心技术之一。在研究水力压裂技术开发页岩气原理的基础上,剖析了国外的应用实例,分析了各种水力压裂技术( 多级压裂、清水压裂、水力喷射压裂、重复压裂以及同步压裂技术)的特点和适用性, 探讨了天然裂缝系统和压裂液配制在水力压裂中的作用。 关键词:水力压裂页岩气开采压裂液 0 前言 自1947年美国进行第1次水力压裂以来,经过50多年的发展,水力压裂技术从理论研究到现场实践都取得了惊人的发展。如裂缝扩展模型从二维发展到拟三维和全三维; 压裂井动态预测模型从电模拟图版和稳态流模型发展到三维三相不稳态模型,且可考虑裂缝导流能力随缝长和时间的变化、裂缝中的相渗曲线和非达西流效应及储层的应力敏感性等因素的影响; 压裂液从原油和清水发展到低、中、高温系列齐全的优质、低伤害、具有延迟交联作用的胍胶有机硼和清洁压裂液体系;支撑剂从天然石英砂发展到中、高强度人造陶粒,并且加砂方式从人工加砂发展到混砂车连续加砂;压裂设备从小功率水泥车发展到1000型压裂车和2000 型压裂车;单井压裂施工从小规模、低砂液比发展到超大型、高砂液比压裂作业;压裂应用的领域从特定的低渗油气藏发展到特低渗和中高渗油气藏(有时还有防砂压裂)并举。同时, 从开发井压裂拓宽到探井压裂,使压裂技术不但成为油气藏的增产增注手段,如今也成为评价认识储层的重要方法。 1 国内外现状 水力压裂技术自1947年在美国堪萨斯州试验成功至今近半个世纪了,作为油井的主要增产措施正日益受到世界各国石油工作者的重视和关注,其发展过程大致可分以下几个阶段: 60 年代中期以前, 以研究适应浅层的水平裂缝为主这一时期我国主要以油井解堵为目的开展了小型压裂试验。 60 年代中期以后, 随着产层加深, 以研究垂直裂缝为主。这一时期的压裂目的是解堵和增产, 通常称之为常规压裂。这一时期,我国进入工业性生产实用阶段,发展了滑套式分层压裂配套技术。 70年代,进入改造致密气层的大型水力压裂时期。这一时期,我国在分层压裂技术的基

【CN110130867A】一种小井眼侧钻水平井分段多簇压裂方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910304847.1 (22)申请日 2019.04.16 (71)申请人 中国石油天然气股份有限公司 地址 100007 北京市东城区东直门北大街9 号中国石油大厦 (72)发明人 常笃 齐银 陆红军 张矿生  卜向前 任勇 苏良银 汪澜  刘兴银 赵广民  (74)专利代理机构 西安吉盛专利代理有限责任 公司 61108 代理人 赵娇 (51)Int.Cl. E21B 43/267(2006.01) E21B 33/134(2006.01) E21B 33/13(2006.01) (54)发明名称 一种小井眼侧钻水平井分段多簇压裂方法 (57)摘要 本发明公开了一种小井眼侧钻水平井分段 多簇压裂方法,根据储层情况确定压裂段数和射 孔位置,每段采用多簇射孔,完成第一段多簇压 裂,接着通过水力泵送小直径可溶桥塞实现第二 段和以后多段的分段压裂,其中压裂施工过程中 通过泵入可溶解暂堵转向颗粒,堵塞已起裂的 簇,迫使压裂液进入未起裂的簇,实现段内多簇 有效起裂,压裂施工完成后,小直径可溶桥塞、暂 堵转向颗粒在地层条件下自行溶解,不影响改造 效果,重复上述步骤,直至完成小井眼侧钻水平 井所有段的压裂,本发明可解决小直径可捞式桥 塞施工工序复杂、笼统压裂各簇开启率较低的问 题,本发明具有不钻塞、施工效率高、成本低的特 点,实现了小井眼侧钻水平井分段多簇压裂的目 的。权利要求书2页 说明书10页CN 110130867 A 2019.08.16 C N 110130867 A

水平井分段压裂技术总结

水平井分段压裂技术总结 篇一:水平井分段压裂技术及其应用 水平井分段压裂技术及其应用 摘要:水平井分段压裂工艺技术为改善水平井水平段渗流条件、提高单井产量提供了技术支持。本文从我国水平井分段压裂技术的发展现状入手,以应用最为广泛的裸眼水平井封隔器分级压裂技术为重点,以该技术在长庆油田苏里格气田苏75区块的现场应用为例,对水平井压裂技术及其现场应用情况进行了分析与总结。 关键词:水平井分段压裂封隔器苏里格气田 水平井因其具有泄油面积大、单井产量高、穿透度大、储量动用程度高等优势,在薄储层、低渗透、稠油油气藏及小储量的边际油气藏等的开发上表现出了突出的优势,成为提高油气井产量和提升油田勘探综合效益的重要手段之一,近年来在我国得到了快速的发展。然而在低渗透油藏开采中因其渗透率较低、渗透阻力大、连通性较差,导致水平井单井产量也难以提升,难以满足经济开发的要求,水平井增产改造的问题便摆在了工程技术人员的面前。而水平井分段压裂工艺技术的推广应用为改善水平井水平段渗流条件、提高单井产量提供了技术支持。 一、我国水平井分段压裂技术现状 我国的水平井分段压裂技术及配套工具的研究起步较晚,国内三大石

油公司对于水平井分段压裂技术开展广泛的研究开始与“十一五”期间,近几年得到了大力的推广应用。目前国内应用规模较大的水平井分段压裂技术主要包括以下三种: 1.裸眼封隔器分段压裂技术。20XX年我国在四川广安002-H1-2井第一次实施了裸眼封隔器分段压裂试验,当时是由Schlumberger提供的技术。目前该技术在我国的现场应用仍然以国外技术为主,主要采用由BakerHughes、weatherford、Packersplus等公司提供的装置系统,我国应用总规模约300~500口,占去了水平井分段压力工艺实施的1/3左右,分段数最多达到20段。我国在该技术方面上处于研发和现场试验阶段,现场试验分段数能达到10段,所采用的压裂材质、加工工艺等方面和国外相比还有一定差距。 2.水平井水力喷射分段压裂技术。1998年,首先由Surjaatmadja提出了水力喷射压裂工艺方法,并将其应用于水平井压裂。我国于20XX 年在长庆油田引进Halliburton配套技术,首次成功的完成了靖平1井的分段压裂。目前该技术在我国大部分油田都得到了广泛的现场试验和应用,总实施口数达到200口以上,分段数在10段以内。 3.套管完井封隔器分段压裂技术。该技术在我国应用和研发的规模较大,且技术以区域成熟,尤其是在中石油吉林油田国内研发和应用规模较大。此外应用较为广泛的还有:吉林油田的油套两段压裂技术、大庆油田实施的双封单卡拖动 篇二:国内外水平井分段压裂技术研究 国内外水平井分段压裂技术进展

水平井不动管柱封隔器分段压裂技术

万方数据

万方数据

万方数据

?144?中国石油大学学报(自然科学版)2010年8月 有限元分析,采用轴对称模型对其简化,建立的管柱模型及网格划分如图6所示。胶筒材料为橡胶,材料常数C10=1.87MPa,Co.=o.47MPa;其余材料定义为钢,其弹性模量E=206GPa,泊松比/z=0.3;网格划分中心管、套管和护套采用CAX4R单元,胶筒采用CAX4RH单元划分;定义中心管与压缩式封隔器的护套摩擦系数为0.1,其他接触摩擦系数定义为0.3;扩张式封隔器的护套与中心管定义为绑定约束,护套与长胶筒的顶部和底部也定义为绑定约束。 图6模型装配图(左)及网格划分(右) №.6Assemblydrawingofmodelandgrid mapofsealrubber 管柱力学分析分两步进行,加载方式为先在长胶筒的内部逐渐施加30一50MPa的内压力,使扩张式长胶筒与套管接触密封,管柱锚定套管不动。胶筒与套管的接触应力值如图7所示,最大接触压力为33.3MPa。然后对管柱进行加载,包括管柱的内部压力和管外压力,以及封隔器对管柱的摩擦力,封隔器附近中心管的应力值如图8所示。 图7长胶简接触应力曲线 Fig.7Contactstresscurve oflongrubber从图8应力曲线可以看出,中心管在与封隔器接触处的应力值最大,中心管的最大应力值为168.2MPa,发生在封隔器与中心管的结合处。压裂施工时该部位最容易被拉断,因此在工具设计时对该类部件选取高强度材料(选用35CrMo材料),增加抗拉强度。 图8中心管处应力曲线 Fig.8Stressclllrveofcentraltube 4创新点与优点 4.1创新点 (1)工艺管柱的无卡瓦锚定设计,设计封隔器长胶筒摩擦锚定,降低了安全事故的发生,可有效避免卡瓦式锚定工具卡钻的问题。 (2)密封胶筒内加入了特殊材料,增强密封耐压性能和抗疲劳破坏性能。 (3)设计工具挡砂传液机构,有效避免了工具内腔进砂引起的事故。 (4)综合应用不动管柱+分段压裂+可洗井等技术。 4.2技术优点 (1)可以在不动管柱的情况下,实现水平井2—3段的分段压裂;可以对水平井的长井段进行均匀布酸和有效的措施改造,大大提高水平井的压裂措施效益。 (2)一般情况,整个压裂施工可以在ld内完成,节省了泵注时间和费用,加快了返排时间,降低了残酸或压裂液对油层的污染伤害,有利于保护油气层。 (3)管柱具有反洗井功能,砂卡时可以进行反洗井作业。 5结束语 力学分析证明该新型水平井封隔器分段压裂工艺管柱达到设计要求,其中心管在与封隔器接触处的应力值最大,是应力破坏薄弱处,设计时进行了充分考虑。该技术提高了我国套管完井水平井分段压裂的工艺技术水平和配套工具水平,具有良好的推 广应用前景。万方数据

页岩气开采(压裂技术)对环境、健康的影响

页岩气开采(压裂技术)对环境、健康的影响 Shale gas exploitation (Fracking)and its environmental and health impact 周睿译普红雁程浩毅校 本译文由云南省健康与发展研究会提供 来源:《世界页岩气资源:美国以外14个区域的初步评估》,美国能源信息署,2011年,https://www.wendangku.net/doc/399041521.html, 页岩气开采也涉及到许多其他的环境和健康问题。欧盟2012年8月的一项研究表明,压裂法开采页岩气存在着较高的风险,它有可能引发一系列环境问题,例如污染地下水、地表水和空气,引发水资源安全问题,占用土地资源,影响生物多样性,产生噪声污染及交通问题。

(1)用水 页岩气开采需要大量的水,可能会(导致)对钻井所在地区造成供水压力。每一次压裂操作大约使用1500万升水,而钻井可被压裂多达10次。根据我们的计算,单独一口井所使用的水能够供大约10000欧洲人使用一年。 在水资源供应本已存在压力或是由于气候变化可能存在压力的地区,水量需求水平尤为重要。在欧洲,德国和波兰拥有有丰富的页岩气储量,但其人均可再生水资源位列欧盟国家最末。在英国,目前进行的页岩气开采的地区,其供水情况已经被认为处于“超负荷”水平。2012年美国大部分地区遭遇夏季干旱的侵袭,页岩气开采表现出这种缺水的影响,德克萨斯和堪萨斯的某些地区被迫停止了页岩气的开采,而在宾夕法尼亚州,页岩气的开采则被禁止使用河水。在其他地方,页岩气运营商试图通过收买农场主或向土地所有者支付大量金钱来获得水资源的使用权。 尽管通常认为压裂法比煤和核能用水更少,但却不太可能简单地替代上述两种能源。实际上,如果将多种装置的累积效应考虑在内时,压裂法反而可能会需要更多的水。

水平井压裂工艺现状及发展趋势_曾凡辉

[收稿日期]2010 07 02 [基金项目]国家油气重大专项(2008ZX05006 005 002)。 [作者简介]曾凡辉(1981 ),男,2004年大学毕业,博士,讲师,现主要从事压裂酸化理论与现场应用研究工作。 水平井压裂工艺现状及发展趋势 曾凡辉 (西南石油大学地质资源与地质工程博士后科研流动站,四川成都610500) 郭建春,苟 波 (西南石油大学油气藏地质及开发工程国家重点实验室,四川成都610500) 袁 伟 (塔里木油田分公司开发事业部油藏工程部,新疆库尔勒841000) [摘要]水平井是薄、低渗透以及小储量边际油气藏开发的有效方式。对于渗透率极低、渗流阻力大、连 通性差的油气藏,往往压开多条裂缝来增加油气渗流能力。水平井段跨度大,压裂时如何实现各段间的 有效封隔,是保证水平井改造有效性需要考虑的重要方面。广泛调研了国内外水平井现有压裂工艺,对 限流法、封隔器分段、封隔器+滑套分段、水力喷射分段、不动管柱滑套式水力喷射分段压裂工艺的特 点、适应性及关键问题进行了讨论,并列举了相关应用实例。针对不同的水平井完井情况,推荐了相适 应的分段压裂改造工艺,对以后水平井压裂改造工艺的选择具有借鉴意义。 [关键词]水平井;压裂;分段压裂;工艺现状;适应性 [中图分类号]T E357 1[文献标识码]A [文章编号]1000 9752(2010)06 0294 05 水平井在开发油气藏过程中具有泄油面积大、单井产量高、储量动用程度高等优点,它是薄储层、低渗透、稠油油气藏以及小储量边际油气藏的有效开发方式。为了进一步提高开采效果,往往需要采取水力压裂工艺对水平井压裂形成多条裂缝增加油气井产量。水平井分段压裂改造的难点在于水平段跨度大,为了实现各改造段间有效封隔,要求分段工具能够 下得去、封得住、取得出 。为此,笔者广泛调研了目前各种水平井分段压裂改造的工艺现状,分析了各种工艺的优缺点,对分段工艺的发展进行了展望,对以后水平井分段压裂工艺的选择具有指导意义。 1 水平井压裂增产机理 水平井压裂后的裂缝形态主要取决于水平井筒轴线方向与地层最大主应力方向的关系。水平井压裂后裂缝形态主要有3种:水平井筒与最大主应力方向平行,形成纵向裂缝;水平井筒与最大主应力方向垂直,形成横向裂缝;水平井筒与最大主应力方向有一定的夹角,形成扭曲裂缝[1]。水平井压裂的增产机理在于压裂改变了渗流模式:压裂前的径向流流线在井底高度集中,井底渗流阻力大;压裂后的流线平行于裂缝壁面,其渗流阻力相对小很多。高渗透、裂缝性储层水平井压裂后形成纵向裂缝有利于提高改造效果,低渗透储层水平井压裂形成横向裂缝对改造有利[2]。 2 水平井压裂工艺现状 为了充分利用水平井开发低渗透油气藏,水平井的压裂施工一般是沿着水平井筒压开多条裂缝。与单裂缝压裂工艺相比,需要解决压开多条裂缝的有效隔离问题。目前压开多裂缝的技术主要有限流法压裂和分段压裂两类。 2 1 限流法压裂 采用套管作为压裂管柱,在低密度布孔前提下,压裂液高速通过射孔孔眼进入储层时会产生摩阻, 294 石油天然气学报(江汉石油学院学报) 2010年12月 第32卷 第6期 Journal of Oil and Gas Technology (J JPI) Dec 2010 Vol 32 No 6

水平井分段压裂技术总结

水平井分段压裂技术总结 百度最近发表了一篇名为《水平井分段压裂技术总结》的范文,这里给大家转摘到百度。 篇一:水平井分段压裂技术及其应用水平井分段压裂技术及其应用摘要:水平井分段压裂工艺技术为改善水平井水平段渗流条件、提高单井产量了技术支持。 本文从我国水平井分段压裂技术的发展现状入手,以应用最为广泛的裸眼水平井封隔器分级压裂技术为重点,以该技术在长庆油田苏里格气田苏区块的现场应用为例,对水平井压裂技术及其现场应用情况进行了分析与总结。 关键词:水平井分段压裂封隔器苏里格气田水平井因其具有泄油面积大、单井产量高、穿透度大、储量动用程度高等优势,在薄储层、低渗透、稠油油气藏及小储量的边际油气藏等的开发上表现出了突出的优势,成为提高油气井产量和提升油田勘探综合效益的重要手段之一,近年来在我国得到了快速的发展。 然而在低渗透油藏开采中因其渗透率较低、渗透阻力大、连通性较差,导致水平井单井产量也难以提升,难以满足经济开发的要求,水平井增产改造的问题便摆在了工程技术人员的面前。 而水平井分段压裂工艺技术的推广应用为改善水平井水平段渗流条件、提高单井产量了技术支持。 一、我国水平井分段压裂技术现状我国的水平井分段压裂技术及

配套工具的研究起步较晚,国内三大石油公司对于水平井分段压裂技术开展广泛的研究开始与十一五期间,近几年得到了大力的推广应用。 目前国内应用规模较大的水平井分段压裂技术主要包括以下三种:裸眼封隔器分段压裂技术。 年我国在四川广安--井第一次实施了裸眼封隔器分段压裂试验,范文当时是由的技术。 目前该技术在我国的现场应用仍然以国外技术为主,主要采用由、、等公司的装置系统,我国应用总规模约~口,占去了水平井分段压力工艺实施的/左右,分段数最多达到段。 我国在该技术方面上处于研发和现场试验阶段,现场试验分段数能达到段,所采用的压裂材质、加工工艺等方面和国外相比还有一定差距。 水平井水力喷射分段压裂技术。 年,首先由提出了水力喷射压裂工艺方法,并将其应用于水平井压裂。 我国于年在长庆油田引进配套技术,首次成功的完成了靖平井的分段压裂。 目前该技术在我国大部分油田都得到了广泛的现场试验和应用,总实施口数达到口以上,分段数在段以内。 套管完井封隔器分段压裂技术。 该技术在我国应用和研发的规模较大,最全面的范文写作网站且

水平井压裂技术现状与展望

第31卷 第6期2009年12月石 油 钻 采 工 艺 OIL DRILLING & PRODUCTION TECHNOLOGY Vol. 31 No. 6Dec. 2009 文章编号:1000 – 7393( 2009 ) 06 – 0013 – 06水平井压裂技术现状与展望 李 宗 田 (中国石化石油勘探开发研究院,北京 100083) 摘要:水平井具有泄油面积大、单井产量高、穿透度大、储量动用程度高、避开障碍物和环境恶劣地带等优点,在石油工业的科研和实践中成了人们关注的焦点。对于钻遇在低渗透油气藏的水平井,由于渗透率低、渗流阻力大、连通性差,产量达不到经济开发要求,必然要面临增产改造的问题。水平井水平段压裂与直井压裂改造的工作重点有所不同。为此阐述了国内外水平井技术发展概况、水平井压裂设计、水平井分段压裂工艺、水平井压裂存在的主要问题及水平井压裂技术发展趋势,为同类油藏的改造提供了参考。 关键词:低渗透油气藏;水平井;压裂;现状;展望中图分类号:TE348;TE357.43 文献标识码:A Prospect of horizontal well fracturing technology LI Zongtian (Exploration and Production Research Institute , SINOPEC , Beijing 100083, China ) Abstract: Horizontal well has many advantages including large drainage area, high penetrating capacity, high recovery ratio, and the?ability?to?avoid?obstacles?and?harsh?environment?areas,?etc.?So?it?has?become?a?focus?of?people’s?attention?of?in?scientific?research?and?practice?of?petroleum?industry.?Because?of?the?low?permeability,?strong?filtrational?resistance,?poor?connection,?production?of?horizontal?wells in low permeability reservoirs cannot meet the requirement of economic development. So it is inevitable to tackle the problem of stimulating. Hydro-fracturing emphasis between horizontal and vertical wells is different. This paper presents domestic and overseas horizontal well technical state-of-the-art, design of hydraulic fracturing in horizontal well, the technique of segmentation fracturing for horizontal well, main problems in hydro-fracturing for horizontal well and development trend of hydraulic fracturing in horizontal well. Key words: low permeability oil and gas reservoir; horizontal well; fracturing; current state; prospect 作者简介: 李宗田,1997年毕业于华东石油学院,现为教授级高级工程师,享受国家特殊津贴的专家,首席科学家。E-mail :lizt@https://www.wendangku.net/doc/399041521.html, 。 国内外油气田开发的实践表明[1-5]:对于薄储 层、低渗透、稠油油气藏以及小储量的边际油气藏等,水平井开发是最佳的开发方式。水平井技术于20世纪20年代提出,40年代付诸实施,80年代相继在美国、加拿大、法国等国家得到工业化应用,并由此形成研究、应用水平井技术的高潮[6-7]。 近年来,水平井钻完井总数几乎成指数增长,全世界的水平井井数为5万口左右,主要分布在美国、加拿大、俄罗斯等69个国家,其中美国和加拿大占88.4%。在国内,水平井钻井技术日益受到重视,在 多个油田得以迅速发展,其应用油藏有低压低渗透砂岩油气藏、稠油油藏、火山喷发岩油气藏、不整合屋脊式砂岩油气藏等多种类型。中国石化从1991年开始发展水平井,2002年底共钻水平井325口,至2008年底,中国石化共完成水平井1711口。中国石油从2002年加大力度发展水平井,2006年当年完钻522口,2007年完成水平井600口,2008 年突破水平井1000口。中海油2000年以来每年水平井数量增

工程技术角度分析页岩气开采

工程技术角度分析页岩气开采 页岩气已成为全世界非常规油气资源勘探开发的重点领域。由于页岩气具有区别于常规气藏的显著特性,导致页岩气资源勘探开发成为一个庞大的系统工程,涉及复杂的技术体系,最主要的不同之处在于将工程技术前移至页岩气资源评价和开发过程。水平钻井、滑溜水多段压裂、裂缝检测等一系列关键技术的突破是美国页岩气近年来飞速发展的重要原因。中国非常规油气藏潜力很大,不同机构的评价结果表明,中国陆域页岩气可采资源量很大,是常规天然气资源量的1.1~2.4倍。目前,中国页岩气第二轮招投标已顺利结束,距离实现65亿立方米/a产量目标只有不到3年的时间,多个区块页岩气的勘探及评价即将陆续展开。目前,页岩气水平井分段压裂已占单井建设投资的40%~50%,进一步体现了工程技术的重要性。为此,在勘探开发过程中提出了工程技术的早期介入、合理应用和深入理解,以有助于页岩气的资源评价。 1 页岩气储层压裂机理及实现策略 1.1压裂改造原理 页岩气之所以能在页岩气中存留,缘于页岩极为致密的孔隙结构和极低的渗透率。页岩气储层中天然气基本无法运移到井筒,其主要原因在于2个方面:1.天然气分子直径在页岩气纳米级孔隙中运移难度大。甲烷的分子直径大小是:0.40nm,乙烷的分子直径大小是0.44nm,而页岩的孔隙大小是0.5~100nm,远远小于砂岩的孔隙(大于1μm)。对于孔隙直径较小的页岩,天然气基本是无法运移的。即使孔隙直径在100nm的页岩,天然气的运移难度也较大。2.天然气在致密孔隙结构中运移时间较长。理论研究表明,基质渗透率在0.000001mD时,流体穿透100m基质流入井筒需要的时间将超过1Ma。因此,页岩气得以开采利用,必须通过水力压裂在页岩储层里形成具有相当大体积、形态分布复杂、具有一定渗透能力的裂缝网络体系,使页岩气通过这个裂缝网络体系流入到井筒。 For personal use only in study and research; not for commercial use 页岩气压裂与常规压裂形成的双翼对称的平面张开缝不同,页岩气压裂(或称之为“体积改造”)旨在形成相互交错的复杂的“网络”裂缝体(含张开缝和剪切缝),增加平面与纵向上的储层改造体积SRV(stimulated reservoir volume),达到与页岩最大裂缝接触面积,提高初始产量和最终采收率。因此,页岩气开采工程技术实质是通过水力压裂把储层“压碎”。 1.2 压裂改造及其分类 人们将储层分为常规和非常规。压裂的目的不同,常规储层和页岩气储层的

相关文档
相关文档 最新文档