文档库 最新最全的文档下载
当前位置:文档库 › 【精品教学案】山东省济南市2010届高考数学一轮精品资料---(导数2个课时全部)

【精品教学案】山东省济南市2010届高考数学一轮精品资料---(导数2个课时全部)

【精品教学案】山东省济南市2010届高考数学一轮精品资料---(导数2个课时全部)
【精品教学案】山东省济南市2010届高考数学一轮精品资料---(导数2个课时全部)

导数及其应用

1

.了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.

2. 熟记八个基本导数公式(c,m

x (m 为有理数),x

x a e x x a

x

x log

,ln ,,,cos

,sin 的导数);掌握两

个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数.3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充导数的应用价值极高,主要涉及函数单调性、极大(小)值,以及最大(小)值等,遇到有关问题要能自觉地运用导数.

第1课时 变化率与导数、导数的计算

1.导数的概念:函数y =)

(x f 的导数

)(x f ',就是当Δ

x →

0时,函数的增量Δy 与自变量

的增量Δ

x

的比

x

y ??的 ,即)

(x f '= = .

2.导函数:函数y =)(x f 在区间(a, b)内 的导数都存在,就说)(x f 在区间( a, b )内 ,其导数也是(a ,b )内的函数,叫做)(x f 的 ,记作)(x f '或x y ',函数)(x f 的导函数)(x f '在0x x =时的函数值 ,就是)(x f 在0x 处的导数.

3.导数的几何意义:设函数y =)(x f 在点0x 处可导,那么它在该点的导数等于函数所表示曲线在相应点),(00y x M 处的 .

4.求导数的方法

(1) 八个基本求导公式

)('

C = ; )('n x = ;(n∈Q)

)(sin '

x = , )(cos

'

x =

)('

x

e = , )('x a = )(ln '

x = , )(log 'x a

(2) 导数的四则运算

)('±v u = ])(['

x Cf

)('uv = ,)('

v

u = )

0(≠

v (3) 复合函数的导数

设)(x u θ=在点x 处可导,)(u f y =在点)

(x u

θ=处可导,则复合函数

)]

([x f θ在点x 处可导, 且

)(x f '= ,即x u x u y y '?'='.

1

2

+x 在x 0到x 0+Δx 之间的平均变化率.

解 ∵Δy=

1

1)

(1

1)(11)

(20

2

02

02

020

2

0++

+?+--+?+=

+-+?+x x x x x x x x x .1

1)(2,1

1)()(220

2

0020

2

02

0++

+?+?+=

??∴

++

+?+?+?=

x x x x

x x

y x x x x x x 变式训练1. 求y=

x

在x=x 0处的导数.

)

(

)

)((

lim

lim

lim

0000000

00

x x x x x x x x x x x

x x x x

y x x x +

?+?+

?+-

?+=?-

?+=??→?→?→?.

2

11lim

00

x x x x x =+

?+=→?例2. 求下列各函数的导数: (1);

sin 25

x

x

x x y ++=

(2));

3)(2)(1(+++=x x x y (3);4cos 212sin

2

??

? ?

?

--=x x y

(4).

1111x

x

y

+

+-

= 解 (1)∵,

sin sin 2

3

2

32

5

21

x

x x x x

x

x x y +

+=++=

-

∴y′.

cos sin 232

3)sin ()()(2

3

2

2

52

32

3x x

x x

x

x x x

x x

---

--+-+-

='+'+'= (2)方法一 y=(x 2+3x+2)(x+3)=x 3+6x 2

+11x+6,∴y′=3x 2

+12x+11. 方法二 'y =[])3)(2)(1()3()2)(1('+++++'++x x x x x x =[

])2)(1()2()1('++++'+x x x x (x+3)+(x+1)(x+2)

=(x+2+x+1)(x+3)+(x+1)(x+2)=(2x+3)(x+3)+(x+1)(x+2)=3x 2

+12x+11.

(3)∵y=,sin 2

1

2cos 2sin

x x x =??? ??--∴

.

cos 21)(sin 21sin 21x x x y ='='

??

?

??='(4)x

x x x x x

x

y -=

+

-

-++=

+

+-

=

12)

1)(1(111111 ,

.)1(2)1()1(2122

2x x x x y -=-'--=

'

??

?

??-='变式训练2:求y=tanx 的导数.

解 y′.cos

1cos sin cos cos )(cos sin cos )(sin cos sin 2

22

2

2x

x x

x x x x x x x x =

+='-'=

'??

?

??=例3. 已知曲线y=

.

3

43

13

+

x

(1)求曲线在x=2处的切线方程;

(2)求曲线过点(2,4)的切线方程.

解 (1)∵y′=x 2

,∴在点P (2,4)处的切线的斜率k='y |x=2=4.

∴曲线在点P (2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0. (2)设曲线y=

3

4313

+

x 与过点P (2,4)的切线相切于点??

? ?

?+

343

1,

3

00x x A ,

则切线的斜率k='y |0

x x ==20

x .

∴切线方程为),(343

102

03

0x x x x y -=??

?

??+

-即.

3

43

23

02

0+

-?=

x x x y

∵点P (2,4)在切线上,∴4=,

3

43223

02

+

-

x x 即,044,0432020302030

=+-+∴=+-x x x x x ∴,

0)1)(1(4)1(0002

0=-+-+x x x x ∴(x 0+1)(x 0-2)2

=0,解得x 0=-1或x 0=2,

故所求的切线方程为4x-y-4=0或x-y+2=0.

变式训练3:若直线y=kx 与曲线y=x 3-3x 2

+2x 相切,则k= .

答案 2或4

1

-例4. 设函数

b

x ax x f ++

=1)( (a,b∈Z ),曲线)(x f y =在点))2(,2(f 处的切线方程为y=3.

(1)求)(x f 的解析式;

(2)证明:曲线)(x f y =上任一点的切线与直线x=1和直线y=x 所围三角形的面积为定值,并求出此定值.(1)解

2

)

(1)(b x a x f +-

=',

于是???

?

??

?

=+-=++

,

0)2(1

,32122

b a b a 解得???-==,1,1b a 或???

???

?

-==.

38,4

9b a 因为a,b ∈Z ,故

.

1

1)(-+=x x x f (2)证明 在曲线上任取一点????

?

?

-+

11

,000

x x x .

2

00)

1(11)(--

='x x f 知,过此点的切线方程为

)()1(1

11

1020002

0x x x x x x y -?

?????--=-+--

令x=1,得1

100-+=x x y

,切线与直线x=1交点为???

?

?

?

-+11,100x x .

令y=x ,得120

-=x y ,切线与直线y=x 的交点为)

12,12(00

--x x

直线x=1与直线y=x 的交点为(1,1).从而所围三角形的面积为

2

221

2

2111211

12100000=--=

----+x x x x x .

所以,所围三角形的面积为定值2.

变式训练4:偶函数f (x )=ax 4+bx 3+cx 2

+dx+e 的图象过点P (0,1),且在x=1处的切线方程为y=x-2,求y=f (x )的解析式.

解 ∵f(x )的图象过点P (0,1),∴e=1. ① 又∵f(x )为偶函数,∴f(-x )=f (x ).

故ax 4+bx 3+cx 2+dx+e=ax 4-bx 3+cx 2

-dx+e. ∴b=0,d=0. ②

∴f(x )=ax 4+cx 2

+1.

∵函数f (x )在x=1处的切线方程为y=x-2,∴可得切点为(1,-1). ∴a+c+1=-1. ③

∵)1('f =(4ax 3

+2cx)|x=1=4a+2c ,∴4a+2c=1. ④

由③④得a=2

5,c=2

9-

. ∴函数y=f (x )的解析式为

.

12

92

5)(2

4

+-

=

x

x

x f

1.理解平均变化率的实际意义和数学意义。

2.要熟记求导公式,对于复合函数的导数要层层求导.

3.搞清导数的几何意义,为解决实际问题,如切线、加速度等问题打下理论基础.

第2课时 导数的概念及性质

1. 函数的单调性

⑴ 函数y =)(x f 在某个区间内可导,若)

(x f '>0,则

)

(x f 为 ;若

)

(x f '<0,则

)

(x f 为 .(逆命题不成立)

(2) 如果在某个区间内恒有

)(='x f ,则

)

(x f .

注:连续函数在开区间和与之相应的闭区间上的单调性是一致的.(3) 求可导函数单调区间的一般步骤和方法:① 确定函数)(x f 的 ;

② 求)(x f ',令 ,解此方程,求出它在定义区间内的一切实根;

③ 把函数)(x f 的间断点(即)(x f 的无定义点)的横坐标和上面的各个实根按由小到大的顺序排列起来,然后用这些点把函数)(x f 的定义区间分成若干个小区间;④ 确定)(x f '在各小开区间内的 ,根据)(x f '的符号判定函数)(x f 在各个相应小开区

间内的增减性.2.可导函数的极值⑴ 极值的概念

设函数)(x f 在点0x 附近有定义,且对0x 附近的所有点都有 (或 ),则称)(0x f 为函数的一个极大(小)值.称0x 为极大(小)值点.

⑵ 求可导函数极值的步骤: ① 求导数)(x f ';

② 求方程)(x f '=0的 ;

③ 检验)(x f '在方程)(x f '=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负,那么函数y =)(x f 在这个根处取得 ;如果在根的左侧附近为负,右侧为正,那么函数y =)(x f 在这个根处取得 .

3.函数的最大值与最小值: ⑴ 设y =)(x f 是定义在区间[a ,b ]上的函数,y =

)

(x f 在(a ,b )内有导数,则函数y =

)

(x f 在[a ,b ]上 有最大值与最小值;但在开区间内 有最大值与最小值. (2) 求最值可分两步进行:

① 求y =)(x f 在(a ,b )内的 值;

② 将y =)(x f 的各 值与)(a f 、)(b f 比较,其中最大的一个为最大值,最小的一个为最小值.

(3) 若函数y =)(x f 在[a ,b ]上单调递增,则)(a f 为函数的 ,)(b f 为函数的 ;若函数y =)(x f 在[a ,b ]上单调递减,则)(a f 为函数的 ,)(b f 为函数的 .

例1. 已知f(x)=e x

-ax-1. (1)求f(x)的单调增区间;

(2)若f(x )在定义域R 内单调递增,求a 的取值范围;

(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,说明理由.

解:)(x f '=e x

-a.

(1)若a≤0,)(x f '=e x

-a≥0恒成立,即f(x)在R 上递增.

若a>0,e x

-a≥0,∴e x

≥a,x≥lna.∴f(x)的单调递增区间为(lna,+∞). (2)∵f(x )在R 内单调递增,∴)(x f '≥0在R 上恒成立. ∴e x

-a≥0,即a≤e x

在R 上恒成立.

∴a≤(e x )min ,又∵e x

>0,∴a≤0.

(3)方法一 由题意知e x

-a≤0在(-∞,0]上恒成立.

∴a≥e x

在(-∞,0]上恒成立.∵e x

在(-∞,0]上为增函数.

∴x=0时,e x 最大为1.∴a≥1.同理可知e x

-a≥0在[0,+∞)上恒成立.

∴a≤e x

在[0,+∞)上恒成立.∴a≤1,∴a=1.

方法二 由题意知,x=0为f(x)的极小值点.∴)0('f =0,即e 0

-a=0,∴a=1.

变式训练1. 已知函数f(x)=x 3

-ax-1.

(1)若f(x)在实数集R 上单调递增,求实数a 的取值范围;

(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a 的取值范围;若不存在,说明理由;

(3)证明:f(x)=x 3

-ax-1的图象不可能总在直线y=a 的上方.

(1)解 由已知)(x f '=3x 2

-a,∵f(x)在(-∞,+∞)上是单调增函数,

∴)(x f '=3x 2-a≥0在(-∞,+∞)上恒成立,即a≤3x 2

对x∈R 恒成立.

∵3x 2≥0,∴只需a≤0,又a=0时,)(x f '=3x 2

≥0,

故f(x)=x 3

-1在R 上是增函数,则a≤0.

(2)解 由)(x f '=3x 2-a≤0在(-1,1)上恒成立,得a≥3x 2

,x∈(-1,1)恒成立.

∵-1

-1),

在x∈(-1,1)上,)(x f '<0,即f(x)在(-1,1)上为减函数,∴a≥3. 故存在实数a≥3,使f(x)在(-1,1)上单调递减.

(3)证明 ∵f(-1)=a-2

例2. 已知函数f(x)=x 3

+ax 2

+bx+c,曲线y=f(x )在点x=1处的切线为l:3x-y+1=0,若x=3

2

时,

y=f(x )有极值.

(1)求a,b,c 的值;

(2)求y=f(x )在[-3,1]上的最大值和最小值.

解 (1)由f(x)=x 3+ax 2+bx+c,得)(x f '=3x 2

+2ax+b,

当x=1时,切线l 的斜率为3,可得2a+b=0 ① 当x=32

时,y=f(x)有极值,则

??

? ??'32f =0,可得4a+3b+4=0 ②

由①②解得a=2,b=-4.由于切点的横坐标为x=1,∴f(1)=4. ∴1+a+b+c=4.∴c=5.

(2)由(1)可得f(x)=x 3+2x 2-4x+5,∴)(x f '=3x 2

+4x-4, 令

)

(x f '=0,得x=-2,x=3

2

.

当x 变化时,y,y′的取值及变化如下表:

x -3 (-3,-2) -2

?

?? ?

?

-32,2

3

2

??

?

??1,32

1

y′ + 0 - 0 + y

8 单调递增 ↗ 13 单调递减 ↘ 27

95

单调递增

4 ∴y=f(x )在[-3,1]上的最大值为13,最小值为

.

27

95

变式训练2. 函数y=x 4

-2x 2

+5在区间[-2,2]上的最大值与最小值.

解 先求导数,得y′=4x 3-4x,令y′=0,即4x 3

-4x=0.解得x 1=-1,x 2=0,x 3=1.

导数y′的正负以及f(-2),f(2)如下表:

x -2 (-2,-1) -1 (-1,0) 0 (0,1) 1

(1,2) 2

y′ - 0 + 0 - 0 + y 13 ↘ 4 ↗ 5 ↘ 4 ↗ 13

从上表知,当x=±2时,函数有最大值13,当x=±1时,函数有最小值4.

例3. 已知函数f(x)=x 2e -ax

(a >0),求函数在[1,2]上的最大值.

解 ∵f(x )=x 2e -ax (a >0),∴)(x f '=2xe -ax +x 2·(-a)e -ax =e -ax (-ax 2

+2x). 令

)

(x f '>0,即e -ax (-ax 2

+2x)>0,得0

a

2.

∴f(x)在(-∞,0),??

? ??+∞,2a 上是减函数,在??

?

?

?a 2,0上是增函数.

①当0<

a

2<1,即a>2时,f(x )在(1,2)上是减函数,

∴f(x )max =f (1)=e -a

. ②当1≤a

2≤2,即1≤a≤2时, f(x)在??

? ??a 2,

1上是增函数,在??

?

??2,2

a 上是减函数,

∴f(x)max =f ??

?

??a 2=4a -2e -2

.

③当

a

2>2时,即0

∴f(x )max =f (2)=4e -2a

.

综上所述,当0

,

当1≤a≤2时,f(x)的最大值为4a -2e -2

,

当a>2时,f(x)的最大值为e -a

.

变式训练3. 设函数f(x)=-x(x-a)2

(x∈R ),其中a∈R .

(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程; (2)当a≠0时,求函数f(x)的极大值和极小值.

解:(1)当a=1时,f(x)=-x(x-1)2=-x 3+2x 2

-x,

f(2)=-2,)(x f '=-3x 2

+4x-1, =')2(f -12+8-1=-5,

∴当a=1时,曲线y=f(x)在点(2,f(2))处的切线方程为 5x+y-8=0.

(2)f(x)=-x(x-a)2=-x 3+2ax 2-a 2

x,

)(x f '=-3x 2+4ax-a 2

=-(3x-a)(x-a), 令

)

(x f '=0,解得x=

3

a 或x=a.

由于a≠0,以下分两种情况讨论.

①若a>0,当x 变化时,)(x f '的正负如下表:

x

(-∞,3

a )

3

a

(3

a ,a)

a (a,+∞) )

(x f ' - 0 +

-

f(x) ↘

3

27

4a

-

因此,函数f(x)在x=3

a 处取得极小值f (

3

a ),

且f (

3

a )=-

;

27

43

a

函数f(x)在x=a 处取得极大值f(a),且f(a)=0. ②若a<0,当x 变化时,)(x f '的正负如下表:

x

(-∞,a) a (a,3

a )

3

a

(3

a ,+∞)

)

(x f ' -

0 + 0 - f(x) ↘

-3

27

4a

因此,函数f(x)在x=a 处取得极小值f(a),且f(a)=0; 函数f(x)在x=3a 处取得极大值f (

3

a ),

且f (

3

a )=-

3

27

4a

.

例4. 某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a 元(3≤a≤5)的管理费,预计当每件产品的售价为x 元(9≤x≤11)时,一年的销售量为

(12-x)2

万件. (1)求分公司一年的利润L (万元)与每件产品的售价x 的函数关系式;

(2)当每件产品的售价为多少元时,分公司一年的利润L 最大,并求出L 的最大值Q (a ).

解 (1)分公司一年的利润L (万元)与售价x 的函数关系式为:L=(x-3-a)(12-x)2

,x∈[9,11].

(2))(x L ' =(12-x)2

-2(x-3-a)(12-x)=(12-x)(18+2a-3x). 令'L =0得x=6+32

a 或x=12(不合题意,舍去).

∵3≤a≤5,∴8≤6+3

2a≤

3

28.

在x=6+3

2a 两侧L′的值由正变负.

所以①当8≤6+3

2

a <9即3≤a<2

9

时,L max =L(9)=(9-3-a)(12-9)2

=9(6-a).

②当9≤6+32a≤

3

28,即2

9

≤a≤5时,

L max =L(6+3

2a)=(6+3

2a-3-a)[12-(6+3

2a)]2

=4(3-3

1

a)3

.

所以???

?

???

≤≤??? ??-<≤-=.

52

9,3134,

2

93),6(9)(3

a a a a a Q

答 若3≤a<2

9

,则当每件售价为9元时,分公司一年的利润L 最大,最大值Q (a )=9(6-a)

(万元);若2

9≤a≤5,则当每件售价为(6+3

2

a)元时,分公司一年的利润L 最大,最大值

Q(a)=3

3134?

?? ?

?

-a (万元).

变式训练4:某造船公司年造船量是20艘,已知造船x 艘的产值函数为R(x)=3 700x+45x 2

-10x

3

(单位:万元),成本函数为C(x)=460x+5 000(单位:万元),又在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x).

(1)求利润函数P(x)及边际利润函数MP(x);(提示:利润=产值-成本) (2)问年造船量安排多少艘时,可使公司造船的年利润最大? (3)求边际利润函数MP(x)的单调递减区间,并说明单调递减在本题中的实际意义是什么?

解:(1)P(x)=R(x)-C(x)=-10x 3+45x 2+3 240x-5 000(x∈N *

,且1≤x≤20);

MP(x)=P(x+1)-P(x)=-30x 2+60x+3 275 (x∈N *

,且1≤x≤19).

(2))(x P '=-30x 2

+90x+3 240=-30(x-12)(x+9), ∵x>0,∴)(x P '=0时,x=12,

∴当00,当x>12时,)(x P '<0,

∴x=12时,P(x)有最大值.

即年造船量安排12艘时,可使公司造船的年利润最大.

(3)MP(x)=-30x 2+60x+3 275=-30(x-1)2

+3 305. 所以,当x≥1时,MP(x)单调递减,

所以单调减区间为[1,19],且x∈N *

.

MP(x)是减函数的实际意义是:随着产量的增加,每艘利润与前一艘比较,利润在减少.

研究可导函数)(x f 的单调性、极值(最值)时,应先求出函数)(x f 的导函数)('x f ,再找出)('x f =0的x 取值或)('x f >0()('x f <0)的x 的取值范围.

k52006年高考第一轮复习数学:14.1 导数的概念与运算

知识就是力量
本文为自本人珍藏
版权所有 仅供参考
※第十四章
●网络体系总览
导 概 数 念 的 导 数
导数
的 性 导 求 函 单 数 法 数 调 的 的 导 应 函 极 数 用 数 值 的 函 最 数 大 的 值 小 与 值 最
●考点目标位定位 要求: (1)了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率 等) ,掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念. (2)熟记基本求导公式〔C,xm(m 为有理数) ,sinx,cosx,ex,ax,lnx,logax 的导数〕 ,掌握 两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. (3)了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条 件和充分条件(导数在极值点两侧异号) ,会求一些实际问题(一般指单峰函数)的最大值 和最小值. ●复习方略指南 深入理解和正确运用极限的概念、法则是本章学习的基础,能对简单的初等函数进行求 导是本章学习的重点,能把实际问题转化为求解最大(小)值的数学模型,应用导数知识去解 决它是提高分析问题、解决问题能力,学好数学的关键. 1.熟练记忆基本求导公式和函数的求导法则,是正确进行导数运算的基础. 2.掌握导数运算在判断函数的单调性、求函数的极大(小)值中的应用,尤其要重视导数 运算在解决实际问题中的最值问题时所起的作用.
14.1
●知识梳理
导数的概念与运算
1.导数的概念: (1)如果当Δ x→0 时,
?y 有极限,我们就说函数 y=f(x)在点 x0 处可 ?x
导 , 并 把 这 个 极 限 叫 做 f ( x ) 在 点 x0 处 的 导 数 , 记 作 f ′ ( x0 ) 即 f ′ ( x0 ) = ,
?x ?0
lim
f ( x0 ? ?x) ? f ( x0 ) ?y = lim . ?x ?x?0 ?x
(2)如果函数 f(x)在开区间(a,b)内每一点都可导,就说 f(x)在开区间(a,b)内 可导.这时对于开区间(a,b)内每一个确定的值 x0,都对应着一个确定的导数 f′(x0),这样 就在开区间(a,b)内构成一个新的函数,这一新函数叫做 f(x)在开区间(a,b)内的导函 数,记作 f′(x),即 f′(x)= lim
?x ?0
f ( x ? ?x) ? f ( x) ,导函数也简称导数. ?x
2.导数的几何意义:函数 y=f(x)在点 x0 处的导数的几何意义,就是曲线 y=f(x)在点 P(x0,f(x0) )处的切线的斜率. 3.几种常见的导数: - C′=0(C 为常数);(xn)′=nxn 1;(sinx)′=cosx;(cosx)′=-sinx;(ex)′=ex;

高考数学选择填空题

选择题 1.(安徽)12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是( ) A .2 2 83C A B .26 86C A C .22 86C A D .22 85C A 2.(北京)如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图象大致是( ) 3.(福建)已知函数y =f (x ),y =g (x )的导函数的图象如图,那么y =f (x ),y =g (x )的图象可能是( ) 4.(广东)在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延 长线与CD 交于点F .若AC =u u u r a ,BD =u u u r b ,则AF =u u u r ( ) A . 1142 +a b B . 21 33 +a b C . 11 24 +a b D .1 233 + a b 5.(宁夏) 在该几何体的正视图中, 线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为( ) A . B .C .4 D .6.(湖北)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ) x A . B . C . D . A B C D M N P A 1 B 1 C 1 D 1

2018年高考数学选择、填空题精华练习

2018年高考选择题和填空题专项训练(1) 一. 选择题: (1) 2 5(4)(2) i i i +=+( ) (A )5(1-38i ) (B )5(1+38i ) (C )1+38i (D )1-38i (2)不等式|2x 2-1|≤1的解集为( ) (A ){|11}x x -≤≤ (B ){|22}x x -≤≤ (C ){|02}x x ≤≤ (D ){|20}x x -≤≤ (3)已知F 1、F 2为椭圆22 221x y a b +=(0a b >>)的焦点;M 为椭圆上一点,MF 1垂直于x 轴,且∠ F 1MF 2=600,则椭圆的离心率为( ) (A )1 2 (B (C (D (4)23 5 (2)(23)lim (1)n n n n →∞-+=-( ) (A )0 (B )32 (C )-27 (D )27 (5)等边三角形ABC 的边长为4,M 、N 分别为AB 、AC 的中点,沿MN 将△AMN 折起,使得面AMN 与面MNCB 所处的二面角为300,则四棱锥A -MNCB 的体积为( ) (A )3 2 (B (C (D )3 (6)已知数列{}n a 满足01a =,011n n a a a a -=+++ (1n ≥),则当1n ≥时,n a =( ) (A )2n (B ) (1)2 n n + (C )2n - 1 (D )2n -1 (7)若二面角l αβ--为1200,直线m α⊥,则β所在平面内的直线与m 所成角的取值范围是( ) (A )00(0,90] (B )[300,600] (C )[600,900] (D )[300,900] (8)若(sin )2cos2f x x =-,则(cos )f x =( ) (A )2-sin 2x (B )2+sin 2x (C )2-cos 2x (D )2+cos 2x (9)直角坐标xOy 平面上,平行直线x =n (n =0,1,2,……,5)与平行直线y =n (n =0,1,2,……,5)组成的图形中,矩形共有( ) (A )25个 (B )36个 (C )100个 (D )225个 (10)已知直线l :x ―y ―1=0,l 1:2x ―y ―2=0.若直线l 2与l 1关于l 对称,则l 2的方程是( ) (A )x ―2y +1=0 (B )x ―2y ―1=0 (C )x +y ―1=0 (D )x +2y ―1=0 二. 填空题: (11)已知向量集合{|(1,2)(3,4),}M a a R λλ==+∈ ,{|(2,2)(4,5),}N a a R λλ==--+∈ ,则M N =____________. (12)抛物线26y x =的准线方程为 . (13)在5名学生(3名男生,2名女生)中安排2名学生值日,其中至少有1名女生的概率是 . (14)函数y x =(0x ≥)的最大值为 . (15)若1 (2)n x x + -的展开式中常数项为-20,则自然数n = .

高三数学一轮复习导数导学案

课题: 导数、导数的计算及其应用 2课时 一、考点梳理: 1.导数、导数的计算 (1).导数的概念:一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0Δy Δx =__________,称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或0|x x y '=. (2).导函数: 记为f ′(x )或y ′. (3).导数的几何意义: 函数y =f (x )在x =x 0处的导数f ′(x 0)的几 何意义是曲线y =f (x )在x =x 0处的切线的斜率.相应地,切线方程为______________. ! (4).基本初等函数的导数公式 (5).导数的运算法则 (1)[f (x )±g (x )]′=__________;(2)[f (x )·g (x )]′=__________;(3)??? ?f x g x ′ =__________(g (x )≠0). (6).复合函数的导数: 2.导数与函数的单调性及极值、最值 (1)导数和函数单调性的关系: (1)对于函数y =f (x ),如果在某区间上f ′(x )>0,那么f (x )为该区间上的________;如果在某区间上f ′(x )<0,那么f (x )为该区间上的________. (2)若在(a ,b )的任意子区间内f ′(x )都不恒等于0,f ′(x )≥0?f (x )在(a ,b )上为____函数,若在(a ,b )上,f ′(x )≤0,?f (x )在(a ,b )上为____函数. [ (2)函数的极值与导数 (1)判断f (x 0)是极值的方法: 一般地,当函数f (x )在点x 0处连续时, ①如果在x 0附近的左侧________,右侧________,那么f (x 0)是极大值; ②如果在x 0附近的左侧________,右侧________,那么f (x 0)是极小值. (2)求可导函数极值的步骤 : ①____________ ;②________________ ;③_________________________. (3)求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤: (1)求函数y =f (x )在(a ,b )上的________; (2)将函数y =f (x )的各极值与______________比较,其中最大的一个是最大值,最小的一个是最小值. ` 二、基础自测: 1.若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy ),则Δy Δx 等于( ). A .4 B .4x C .4+2Δx D .4+2Δx 2 原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) ; f ′(x )=________ f (x )=sin x f ′(x )=________ f (x )=cos x f ′(x )=________ f (x )=a x f ′(x )=________ f (x )=e x > f ′(x )=________ f (x )=lo g a x f ′(x )=________ f (x )=ln x f ′(x )=________

高考理科数学选择填空的答题技巧

2019年高考理科数学选择填空的答题技巧第I卷 一、选择题:本题共12小题,每小题5分,共60分 1~12,单选 选择题只有一个答案是正确的,因此可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支。选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判断。 高考理科数学选择题答题套路 理科数学选择题答题套路:剔除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。 理科数学选择题答题套路:特特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。 高考数学选择题的解法 1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,

则它在一般情况下不真这一原理,达到去伪存真的目的。例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为 A.-5/4 B.-4/5 C.4/5 D.2√5/5 解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。 2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。 3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。 宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士

高三数学一轮复习 导数的综合应用

导数的综合应用 一、选择题 1.已知函数f(x)=x2+mx+ln x是单调递增函数,则m的取值范围是( B ) (A)m>-2(B)m≥-2 (C)m<2 (D)m≤2 解析:函数定义域为(0,+∞), 又f'(x)=2x+m+. 依题意有f'(x)=2x+m+≥0在(0,+∞)上恒成立, ∴m≥-恒成立,设g(x)=-, 则g(x)=-≤-2, 当且仅当x=时等号成立. 故m≥-2, 故选B. 2.(2013洛阳统考)函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f'(x)>1,则不等式 e x·f(x)>e x+1的解集为( A ) (A){x|x>0} (B){x|x<0} (C){x|x<-1或x>1} (D){x|x<-1或0e x-e x=0, 所以g(x)=e x·f(x)-e x为R上的增函数. 又因为g(0)=e0·f(0)-e0=1, 所以原不等式转化为g(x)>g(0), 解得x>0. 故选A. 3.如图所示,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S'(t)的图象大致为( A )

解析:由导数的定义知,S'(t0)表示面积函数S(t0)在t0时刻的瞬时变化率.如图所示,正五角星薄片中首先露出水面的是区域Ⅰ,此时其面积S(t)在逐渐增大,且增长速度越来越快,故其瞬时变化率S'(t)也应逐渐增大;当露出的是区域Ⅱ时,此时的S(t)应突然增大,然后增长速度减慢,但仍为增函数,故其瞬时变化率S'(t)也随之突然变大,再逐渐变小,但S'(t)>0(故可排除选项B);当五角星薄片全部露出水面后,S(t)的值不再变化,故其导数值S'(t)最终应等于0,符合上述特征的只有选项A. 4.已知f(x)是定义域为R的奇函数,f(-4)=-1,f(x)的导函数f'(x)的图象如图所示.若两正 数a,b满足f(a+2b)<1,则的取值范围是( B ) (A)(B) (C)(-1,0) (D)(-∞,-1) 解析:因为f(x)是定义域为R的奇函数,f(-4)=-1,所以f(-4)=-f(4),所以f(4)=1,所以f(a+2b)

高考数学第一轮复习导数概念和几何意义

第1讲 变化率与导数、导数的运算 【2014年高考会这样考】 1.利用导数的几何意义求曲线在某点处的切线方程. 2.考查导数的有关计算,尤其是简单的函数求导. 【复习指导】 本讲复习时,应充分利用具体实际情景,理解导数的意义及几何意义,应能灵活运用导数公式及导数运算法则进行某些函数求导. 基础梳理 1.函数y =f (x )从x 1到x 2的平均变化率 函数y =f (x )从x 1到x 2的平均变化率为f (x 2)-f (x 1)x 2-x 1 . 若Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则平均变化率可表示为Δy Δx . 2.函数y =f (x )在x =x 0处的导数 (1)定义 称函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0Δy Δx = li m Δx →0f (x 0+Δx )-f (x 0)Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=li m Δx →0Δy Δx . (2)几何意义 函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.函数f (x )的导函数 称函数f ′(x )=li m Δx →0f (x +Δx )-f (x )Δx 为f (x )的导函数,导函数有时也记作y ′. 4.基本初等函数的导数公式 若f (x )=c ,则f ′(x )=0; 若f (x )=x α(α∈R ),则f ′(x )=αx α-1; 若f (x )=sin x ,则f ′(x )=cos x ;

最新高考数学选择填空解题技巧——学生专用资料

高考数学选择题解题技巧 一:排除法 目前高考数学选择题为四选一单项选择题,所以选择一个符合题意的选项等于选择三个不合题意的选项。例如:范围问题可把一些简单的数代入,符合条件则排除不含这个数的范围选项,不合条件则排除含这个数的范围。当然,选取数据时要注意考虑选项的特征,不能选取所有选项都含有或都不含的数。 例如:已知函数f (x )=2mx 2-2(4-m )x +l ,g (x )=mx ,若对于任一实数x ,f (x )与g (x )的值至少有一个 为正数,则实数m 的取值范围是 A .(0,2) B .(0,8) C .(2,8) D .(-∞,0) 我们可以简单的代入数据m=4及m=2,容易检验这两个数都是符合条件的,所以正确选项为B 。 再如,选择题中的解不等式问题都直接应用排除法,与范围问题类似。选择题中的数列求通项公式、求和公式问题也可应用排除法。令n 等于1,2,3……即可。 使用排除法应注意积累常见特例。如:常函数,常数列(零数列),斜率不存在的直线…… 二:增加条件法 当发现条件无法使所有变量确定时,而所求为定值时,可自我增加一个条件,使题目简单。 例如:设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0,则FA FB FC ++=( ) A .9 B .6 C .4 D .3 发现有A 、B 、C 三个动点,只有一个FA FB FC ++=0条件,显然无法确定A 、B 、C 的位置,可令C 为原点,此时可求A 、B 的坐标,得出答案B 。 其实,特值法是狭义的增加条件法。因为我们习惯具体的数字,不习惯抽象的字母符号,所以经常可以把题目中的字母换成符合条件的数字解题。 三:以小见大法 关于一些判断性质类的题目,可以用点来检验,只有某些点的性质符合性质,函数才可能符合性质。以小见大法通常结合排除法。 例如:函数sin ()sin 2sin 2x f x x x =+是( ) A .以4π为周期的偶函数 B .以2π为周期的奇函数 C .以2π为周期的偶函数 D .以4π为周期的奇函数

高考数学 导数及其应用的典型例题

第二部分 导数、微分及其导数的应用 知识汇总 一、求导数方法 1.利用定义求导数 2.导数的四则运算法则 3.复合函数的求导法则 若)(u f y =与)(x u φ=均可导,则[])(x f y φ=也可导,且dx du du dy dx dy ? = 即 [])()(x x f y φφ'?'=' 4.反函数的求导法则 若)(x f y =与)(y x φ=互为反函数,且)(y φ单调、可导,则 )(1)(y x f φ'= ',即dy dx dx dy 1 = 5.隐函数求导法 求由方程0),(=y x F 确定的隐函数 )(x f y =的导数dx dy 。只需将方程0),(=y x F 两边同时对x 求导(注意其中变量y 是x 的函数),然后解出 dx dy 即可。 6.对数求导法 对数求导法是先取对数,然后按隐函数求导数的方法来求导数。对数求导法主要解决两类函数的求导数问题: (1)幂指数函数y=)()(x v x u ;(2)由若干个因子的乘积或商的显函数,如 y= 3 4 )3(52)2)(1(---++x x x x x ,3 ) 2)(53() 32)(1(--+-=x x x x y ,5 5 2 2 5 +-=x x y 等等。 7.由参数方程所确定函数的求导法则 设由参数方程 ? ? ?==)() (t y t x ?φ ),(βα∈t 确定的函数为y=f(x),其中)(),(t t ?φ

可导,且)(t φ'≠0,则y=f(x)可导,且 dt dx dt dy t t dx dy =''=)()(φ? 8.求高阶导数的方法 二、求导数公式 1.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 2.常见函数的高阶导数 (1) n n x n x -+-?-?-?=αα αααα)1()2()1()() ( (2) x n x e e =) () ( (3) ()()ln x n x n a a a = (4) () (sin ) sin 2n x x n π? ?=+? ??? (5) ??? ? ??+=2cos )(cos )(πn x x n (6) () 1 (1)!ln()(1) ()n n n n a x a x --+=-+ (7) 1 )() (!)1()1(++-=+n n n n b ax a n b ax

2020高考数学选择、填空题,高考考情与考点预测

高考数学历年考点框架 理科数学每年必考知识点: 复数、程序框图、三视图、函数与导数、三角函数、圆锥曲线、球的组合体、(计数原理、概率与统计模块)等。 理科数学每年常考的知识点: 常用逻辑用语、集合、线性规划、数列、平面向量、解三角形、定积分、直线与圆等。 最后冲刺指导(14个专题) 1、集合与常用逻辑用语小题 (1)集合小题 历年考情: 针对该考点,近9年高考都以交并补子运算为主,多与解不等式等交汇,新定义运算也有较小的可能,但是难度较低;基本上是每年的送分题,相信命题小组对集合题进行大幅变动的决心不大。 常见集合元素限定条件;对数不等式、指数不等式、分式不等式、一元二次不等式、绝对值不等式、对数函数的定义域、二次根式、、点集(直线、圆、方程组的解);补集、交集和并集;不等式问题画数轴很重要;指数形式永远大于0不要忽记;特别注意代表元素的字母是还是。 2020高考预测:

(2)常用逻辑用语小题 历年考情: 9 年高考中2017 年在复数题中涉及真命题这个概念.这个考点包含的小考点较多,并且容易与函数,不等式、数列、三角函数、立体几何交汇,热点就是“充要条件”;难点:否定与否命题;冷点:全称与特称(2015 考的冷点),思想:逆否.要注意,这类题可以分为两大类,一类只涉及形式的变换,比较简单,另一类涉及命题真假判断,比较复杂。 简单叙述:小范围是大范围的充分不必要;大范围是小范围的必要不充分。 2020高考预测:

2、复数小题 历年考情: 9 年高考,每年1 题,考查四则运算为主,偶尔与其他知识交汇,难度较小.考查代数运算的同时,主要涉及考查概念有:实部、虚部、共轭复数、复数的模、对应复平面的点坐标、复数运算等。 无法直接计算时可以先设z=a+bi 2020高考预测: 3、平面向量小题 历年考情:

高考数学选择填空技巧大全

选择技巧大全 一、排除法:所有人都能明白的方法,不 过,排除法与其他方法结合较多,具体结合见下面。 二、特殊值代入检验+排除法 题目(尤其是函数题)喜欢叫我们求某个式子中某个未知数的范围,此时,我们只需要研究选项,代入在范围内特定的值并检验是否符合题意便即可得出答案。 例题:已知函数 () 2 f(x)=2mx-24-m x+1, (x)=mx g,若对于任一实数x,f(x)与(x) g的值至少有一个为正数,则实数m的取值范围是 A.(0,2) B.(0,8) C.(2,8) D.(-∞,0) 最佳做法:我们可以简单的代入数据m=4及m=2,容易检验这两个数都是符合条件的,所以正确选项为B。

点评:这道题看上去非常复杂,一眼看过去似乎无从下手,实际上,选择题很多题目并不需要知道怎么下手,只需要代入即可。 二、自创条件法: 当发现条件无法使所有变量确定时,而所求为定值时,可自我增加一个条件,使题目简单。 关键:自创的条件不得与题目条件相矛盾。 例题:设F为抛物线2y=4x的焦点,A,B, FA FB FC,C为该抛物线上三点,若++=0 FA FB FC() 则++= A.9 B.6 C. 4 D.3 解法:发现有A、B、C三个动点,只有一个FA FB FC条件,显然无法确定A、B、C的++=0 位置,可令C为原点,此时可求A、B的坐

标,得出答案B。 点评:涉及到可以自创条件的题目类型有很多,要在不改变题意的情况下尽量创造多的有利于解题的条件。 三、估计法: 对于一个不能够确定的解,可以通过估计法来估计它的值,并且将其作为真的值来应用于解题中,比如,对于ln2可以直接估计为0.8,ln5就直接估计为1.7或1.8。 关键:估计要准确,一般而言,估计有些许偏差不会影响解题,但若严重偏差则会导致错误。 估计法可分为代数估计法和几何估计法,几何估计法就是用于估计一个图形的长度或面积或体积。 难点:对于估计法要做到心中有数,这就需要平时对估计数值进行大量练习。

高中数学导数的应用——极值与最值专项训练题(全)

高中数学专题训练 导数的应用——极值与最值一、选择题 1.函数y=ax3+bx2取得极大值和极小值时的x的值分别为0和1 3,则() A.a-2b=0B.2a-b=0 C.2a+b=0 D.a+2b=0 答案 D 解析y′=3ax2+2bx,据题意, 0、1 3是方程3ax 2+2bx=0的两根 ∴-2b 3a= 1 3,∴a+2b=0. 2.当函数y=x·2x取极小值时,x=() A. 1 ln2B.- 1 ln2 C.-ln2 D.ln2 答案 B 解析由y=x·2x得y′=2x+x·2x·ln2 令y′=0得2x(1+x·ln2)=0 ∵2x>0,∴x=- 1 ln2 3.函数f(x)=x3-3bx+3b在(0,1)内有极小值,则() A.0<b<1 B.b<1 C.b>0 D.b<1 2 答案 A 解析f(x)在(0,1)内有极小值,则f′(x)=3x2-3b在(0,1)上先负后正,∴f′(0)=-3b<0, ∴b>0,f′(1)=3-3b>0,∴b<1 综上,b的范围为0<b<1 4.连续函数f(x)的导函数为f′(x),若(x+1)·f′(x)>0,则下列结论中正确的是() A.x=-1一定是函数f(x)的极大值点 B.x=-1一定是函数f(x)的极小值点 C.x=-1不是函数f(x)的极值点 D.x=-1不一定是函数f(x)的极值点 答案 B 解析x>-1时,f′(x)>0 x<-1时,f′(x)<0 ∴连续函数f(x)在(-∞,-1)单减,在(-1,+∞)单增,∴x=-1为极小值点.

5.函数y =x 33+x 2-3x -4在[0,2]上的最小值是( ) A .-173 B .-103 C .-4 D .-643 答案 A 解析 y ′=x 2+2x -3. 令y ′=x 2+2x -3=0,x =-3或x =1为极值点. 当x ∈[0,1]时,y ′<0.当x ∈[1,2]时,y ′>0,所以当x =1时,函数取得极小值,也为最小值. ∴当x =1时,y min =-173. 6.函数f (x )的导函数f ′(x )的图象,如右图所示,则( ) A .x =1是最小值点 B .x =0是极小值点 C .x =2是极小值点 D .函数f (x )在(1,2)上单增 答案 C 解析 由导数图象可知,x =0,x =2为两极值点,x =0为极大值点,x =2为极小值点,选C. 7.已知函数f (x )=12x 3-x 2-72x ,则f (-a 2)与f (-1)的大小关系为( ) A .f (-a 2)≤f (-1) B .f (-a 2)

届高三数学第一轮复习导数

导 数 第3章 导数及其运用 §3.1导数概念及其几何意义 重难点:了解导数概念的实际背景,理解导数的几何意义. 考纲要求:①了解导数概念的实际背景. ②理解导数的几何意义. 经典例题:利用导数的定义求函数y=|x|(x ≠0)的导数. 当堂练习: 1、在函数的平均变化率的定义中,自变量的的增量x ?满足( ) 2 3 ) 4 5A C 6A .7A .f ′(x0)>0 B .f ′(x0)<0 C .f ′(x0)=0 D .f ′(x0)不存在 8.已知命题p :函数y=f(x)的导函数是常数函数;命题q :函数y=f(x)是一次函数,则命题p 是命题q 的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 9.设函数f(x)在x0处可导,则0 lim →h h h x f h x ) ()(00--+等于 A .f ′(x0) B .0 C .2f ′(x0) D .-2f ′(x0) 10.设f(x)=x(1+|x|),则f ′(0)等于

A .0 B .1 C .-1 D .不存在 11.若曲线上每一点处的切线都平行于x 轴,则此曲线的函数必是___. 12.两曲线y=x2+1与y=3-x2在交点处的两切线的夹角为___________. 13.设f(x)在点x 处可导,a 、b 为常数,则0 lim →?x x x b x f x a x f ??--?+) ()(=_____. 14.一球沿一斜面自由滚下,其运动方程是s=s(t)=t2(位移单位:m ,时间单位:s),求小球在t=5时的 瞬时速度________. 15.已知质点M 按规律s=2t2+3做直线运动(位移单位:cm ,时间单位:s), (1)当t=2,Δt=0.01时,求t s ??. 法则3 2()()v x v x ???? 经典例题:求曲线y=2 1x x +在原点处切线的倾斜角. 当堂练习: 1.函数f (x )=a4+5a2x2-x6的导数为 ( ) A.4a3+10ax2-x6 B.4a3+10a2x -6x5 C.10a2x -6x5 D.以上都不对 2.函数y=3x (x2+2)的导数是( ) A.3x2+6 B.6x2 C.9x2+6 D.6x2+6

高三数学选择填空训练题

高三数学选择填空训练题六 姓名:座号:成绩: 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的 四个选项中,有且只有一项是符合题目要求的. 1.若集合A={x|?1<x<3},B={?1, 0, 1, 2},则A∩B=() A. {?1, 0, 1, 2} B. {x|?1<x<3} C. {0,1, 2} D. {?1, 0, 1} 2.已知复数z满足z i=2+i,i是虚数单位,则|z|=() A. B. C. 2 D. 3.在1, 2, 3, 6这组数据中随机取出三个数,则数字2是这三个不同数字的平均数的概率是() A. 1 4 B. C. 1 2 D. 4.已知变量,x y满足约束条件 2, 4, 1, y x y x y ≤ ? ? +≥ ? ?-≤ ? 则3 z x y =+的最小值为() A. 11 B. 12 C. 8 D. 3 5.设等差数列{a n}的前n项和为S n,若a2+a8=10,则S9= () A. 20 B.35 C. 45 D. 90 6.已知抛物线28 y x =的准线与x轴交于点D,与双曲线221 x y -=交于A,B两点,点F为抛物线的焦点,若△ADF为等腰直角三角形,则双曲线的离心率是() A. B. C. D. 7.已知函数f(x)=sin(ωx+?) (ω>0, 0<?< 2 π),f(x 1 )=1,f(x2)=0,若|x1–x2|min=1 2 , 且f(1 2 ) =1 2 ,则f(x)的单调递增区间为() A. 5 1 [+2,+2], 66 k k k Z -∈ B. 51 [+2,+2],. 66 k k k Z -∈ C. 51 [+2,+2], 66 k k k Z ππ -∈ D. 7 1[+2,+2], 66 k k k Z ∈ 8.函数|| e () x f x=的部分图象大致为() 9. 《算法统宗》是明朝程大位所著数学名著,其中有这样一段表述:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一”,其意大致为:有一栋

高三数学重点知识:导数及其应用

2019年高三数学重点知识:导数及其应用查字典数学网高中频道收集和整理了2019年高三数学重点知识:导数及其应用,以便高中生在高考备考过程中更好的梳理知识,轻松备战。祝大家暑假快乐。 一基础再现 考点87简单复合函数的导数 1.曲线在点处的切线方程为____________。 2.已知函数和的图象在处的切线互相平行,则=________. 3.(宁夏、海南卷)设函数 (Ⅰ)讨论的单调性;(Ⅱ)求在区间的最大值和最小值. 考点88定积分 4.计算 5.(1);(2) 6. 计算= 7.___________ 8.求由曲线y=x3,直线x=1,x=2及y=0所围成的曲边梯形的面积. 二感悟解答 1.答案: 2.答案:6 3.解:的定义域为. 当时,;当时,;当时,.

从而,分别在区间,单调增,在区间单调减. (Ⅱ)由(Ⅰ)知在区间的最小值为. 又. 所以在区间的最大值为. 4.答案:6 5.答案:(1) 死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。 (2)利用导数的几何意义:与x=0,x=2所围图形是以(0,0)为圆心,2为半径的四分之一个圆,其面积即为(图略) 观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重

高中数学一轮复习 第1讲 导数的概念及其运算

第1讲 导数的概念及其运算 1.已知函数3 2 ()32f x ax x =++,若f′(-1)=4,则a 的值等于( ) A.193 B.163 C.133 D.103 【答案】 D 【解析】 f′2 ()36x ax x f =+,′(-1)=3a 10643 a -=,=. 2.设y=-2e x sinx,则y′等于( ) A.-2e x cosx B.-2e x sinx C.2e x sinx D.-2e (x sinx+cosx) 【答案】 D 【解析】 ∵y=-2e x sinx, ∴y′=(-2e )x ′sinx+(-2e )(x sinx)′ =-2e x sinx-2e x cosx =-2e (x sinx+cosx). 3.已知3 270()x m f x mx m <,=+,且f′(1)18≥-,则实数m 等于( ) A.-9 B.-3 C.3 D.9 【答案】 B 【解析】 由于f′2 27()3x mx m =+,故f′27(1)183m m ≥-?+≥ -18 , 由m<0得2 27318318270m m m m +≥-?++≤?2 3(3)m +0≤,故m=-3. 4.设曲线11 x y x +=-在点(3,2)处的切线与直线ax+y+1=0垂直,则a 等于( ) A.2 B.12 C.12 - D.-2 【答案】 D 【解析】 因为y′22(1) x -= ,-所以切线斜率k=y′|3 x ==1 2-,而此切线与直线ax+y+1=0垂直, 故有()1k a ?-=-,因此12a k ==-. 5.已知12()f x =sin2x+sinx,则f′(x)是( ) A.仅有最小值的奇函数 B.既有最大值又有最小值的偶函数 C.仅有最大值的偶函数 D.非奇非偶函数 【答案】 B 【解析】 f′12()x =cos 22x ?+cosx=cos2x+cosx =2cos 21x -+cosx=2(cos 29148)x +-. 故f′(x)是既有最大值2,又有最小值98-的偶函数,选B 项.

高考数学选择填空题

高考数学选择填空题

选择题 1.(安徽)12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是( ) A .228 3 C A B .268 6 C A C .228 6 C A D .228 5 C A 2.(北京)如图,动点P 在正方体11 1 1 ABCD A B C D -的对 角线1 BD 上.过点P 作垂直于平面11 BB D D 的直线,与 正方体表面相交于M N ,.设BP x =,MN y =,则函数 () y f x =的图象大致是( ) 3.(福建)已知函数y =f (x ),y =g (x )的导函数的图象如图,那么y =f (x ),y =g (x )的图象可能是( ) 4.(广东)在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若 AC =u u u r a , BD =u u u r b ,则 AF = u u u r ( ) ) x A . B . C . D . C D M N P A 1 B 1 C 1 D 1 A . B . C . D .

A .1142+a b B .2133+a b C .11 24+a b D .1233 +a b 5. (宁夏)某几何体的一条棱长为 体的正视图中,这条棱的投影是长为在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为( ) A . B .C .4 D .6.(湖北)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 飞行,之后卫星在P P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月 飞行,若用1 2c 和2 2c 分别表示椭轨道Ⅰ和Ⅱ的焦 距,用1 2a 和2 2a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的 长,给出下列式子: ①1 122 a c a c +=+;②1 122 a c a c -=-;③12 12 c a a c >;④11 c a < 22 c a . 其中正确式子的序号是( ) A .①③ B .②③ C .①

高考数学填空题100题

江苏省高考数学填空题训练100题 1.设集合}4|||}{<=x x A ,}034|{2 >+-=x x x B ,则集合A x x ∈|{且=?}B A x I __________; 2.设12)(2 ++=x ax x p ,若对任意实数x ,0)(>x p 恒成立,则实数a 的取值范围是________________; 3.已知m b a ==32,且21 1=+b a ,则实数m 的值为______________; 4.若0>a ,94 32= a ,则=a 3 2log ____________; 5.已知二次函数3)(2 -+=bx ax x f (0≠a ),满足)4()2(f f =,则=)6(f ________; 6.已知)(x f y =是定义在R 上的奇函数,当),0(+∞∈x 时,22)(-=x x f , 则方程0)(=x f 的解集是____________________; 7.已知)78lg()(2 -+-=x x x f 在)1,(+m m 上是增函数,则m 的取值范围是________________; 8.已知函数x x x f 5sin )(+=,)1,1(-∈x ,如果0)1()1(2 <-+-a f a f ,则a 的取值范围是____________; 9.关于x 的方程a a x -+= 53 5有负数解,则实数a 的取值范围是______________; 10.已知函数)(x f 满足:对任意实数1x ,2x ,当2`1x x <时,有)()(21x f x f <,且)()()(2121x f x f x x f ?=+. 写出满足上述条件的一个函数:=)(x f _____________; 11.定义在区间)1,1(-内的函数)(x f 满足)1lg()()(2+=--x x f x f ,则=)(x f ______________; 12.函数1 22)(2+++=x x x x f (1->x )的图像的最低点的坐标是______________; 13.已知正数a ,b 满足1=+b a ,则ab ab 2 + 的最小值是___________; 14.设实数a ,b ,x ,y 满足12 2=+b a ,32 2 =+y x ,则by ax +的取值范围为______________; 15.不等式032)2(2≥---x x x 的解集是_________________; 16.不等式06||2 <--x x (R x ∈)的解集是___________________; 17.已知???<-≥=0 ,10 ,1)(x x x f ,则不等式2)(≤+x x xf 的解集是_________________; 18.若不等式 2 22 9x x a x x +≤≤+在]2,0(∈x 上恒成立,则a 的取值范围是___________; 19.若1>a ,10<-x b a ,则实数x 的取值范围是______________;

相关文档
相关文档 最新文档