文档库 最新最全的文档下载
当前位置:文档库 › 某型航空发动机综合测试仪的设计

某型航空发动机综合测试仪的设计

某型航空发动机综合测试仪的设计
某型航空发动机综合测试仪的设计

航空发动机构造及强度复习题

航空发动机构造及强度复习 一、基本概念 1. 转子叶片的弯矩补偿 2. 转子的自位作用 3. 动不平衡与动不平衡度 4. 静不平衡与静不平衡度 5. 挠轴转子与刚轴转子 6. 转子叶片的静频与动频 7. 转子的临界转速8. 转子的同步正涡动与同步反涡动 9. 转子的同步正进动与同步反进动10. 持久条件疲劳极限 11. 尾流激振12. 恰当半径 13. 陀螺力矩14. 压气机叶片的安全系数 15. 轮盘的破裂转速16. 应力比 17. 动刚度18. 动波 19. 低循环疲劳20. 轮盘的局部安全系数与总安全系数 二、基本问题 1.航空燃气涡轮发动机有哪几种基本类型? 2.航空发动机工作叶片受到哪些负荷? 3.风扇叶片叶尖凸台的作用是什么? 4.航空燃气涡轮发动机中,两种基本类型发动机的优缺点有哪些? 5.列举整流叶片与机匣联接的三种基本方法。 6.压气机转子设计应遵循哪些基本原则? 7.压气机防喘在结构设计方面有哪些措施? 8.压气机转子有哪三种结构形式?各有何优缺点? 9.发动机转子轴向力减荷有哪三项措施? 10.叶片颤振的必要条件是什么?说明颤振与共振的区别。 11.疲劳破坏有哪些基本特征? 12.燕尾形榫头与枞树形榫头有哪些主要特点? 13.说明疲劳损伤的理论要点。 14.轮盘有几种振动形式,各举例画出一个振型图。 15.航空发动机燃烧室由哪些基本构件组成? 16.排除叶片共振故障应从哪几个方面考虑?举例说明各方面的具体措施。 17.什么是等温度盘,为什么采用等温度盘,其温度条件是什么? 18.涡轮相比的结构特点是什么? 19.涡轮部件冷却的目的及对冷却气的要求是什么?在涡轮部件上采用的冷却、散热、 隔热措施有哪些?

课程设计:航空发动机结构与强度课程设计思考

航空发动机结构与强度课程设计思考 一、航空发动机构造与强度课程设计的作用 对于飞行器动力工程的学生,航空发动机构造与强度的课程设计显得尤为重要。课程设计的重要性主要体现在航空发动机构造和强度课程的特点。实践性是航空发动机构造与强度课程最显著的特点。本课程研究的是实际发动机的结构及其强度,从表面上看,内容简单、易懂,理论性、系统性不强。但是要学生自己分析,则往往无从下手,特别是碰到实际的结构分析、结构设计更是束手无策。因此,通过课程设计这个教学环节,完成航空发动机某一结构的设计,起到加深对课堂教学内容的理解,实现理论向实践的转化,巩固理论知识的重要作用。航空发动机构造与强度课程的第二个重要特点是多学科综合的特点。实际的航空发动机结构是一个容纳多学科的、相互渗透的、具体的统一体,一个发动机具体结构的诞生是多学科综合的结果。即使一个简单的叶片结构设计都涉及到气体动力学、传热学、弹性力学、疲劳与断裂力学、有限元分析方法等等。因此本课程的教材涉及的内容多,知识面广,几乎包括了所学过的所有课程。总体上看显得内容繁杂,没有系统性和规律性。这给学生的学习带来了困难。而在完成课程设计的过程中,学生需要综合运用《航空发动机构造》、《航空发动机强度计算》等专业课程以及《弹性力学》、《有限元分析方法》、《机械制图》等专业基础课程的知识,需要查阅国家标准、材料手册等相关资料。因此,航空发动机构造与强度课程设计作为航空发动机构造与强度课程的后续教学环节,起到了提高学生综合运用相关专业课程的能力、加深对航空发动机构造的与强度认识和理解的重

要作用。综上所述可知,课程设计作为大学实践教学环节的组成部分,是实现理论与实践相结合的重要环节。而航空发动机构造与强度课程设计,由于航空发动机构造与强度课程的实践性和多学科性的特点,其课程设计对于提高学生的综合运用学科的能力以及加深对课程的认识和理解尤为重要。 二、工科相关课程设计的研究进展 美国麻省理工学院提出了高等工科教育要“回归工程实践”的教育理念。在《中共中央国务院关于深化教育改革全面推进素质教育的决定》中,明确提出以培养学生的创新精神和实践能力为实施素质教育的重点。清华大学老教授容文盛指出课程设计作为大学某一课程的综合性教学实践环节,它不仅仅是理论教学的辅助环节,而是全面培养学生必不可少的组成部分。因此,如何更好地开展课程设计实现培养高素质人才的目标成为各大高校教师积极探索和思考的问题。西南交通大学的鲁汉清教授提出要发挥课程设计的优势提高学生的综合素质和能力,在课程设计中要注意处理好以下几个关系: (1)人文素质和工程素质的关系。工程素质是工科学生课程设计培养的主要目标,鲁教授提出工程素质是与人文素质不可分割的,借助课程设计,树立起学生老实做人、严谨治学的思想,为工程素质的培养打下良好的基础。 (2)知识、能力与素质教育的关系。鲁教授提出在课程设计的过程中可以通过以下两个途径促进学生的知识、能力与素质教育的协调发展:第一,设计题目的设置向产品设计的方向靠拢,让学生接受真实产品设计的完整过程的训练和熏陶。第二,计算机模拟和实物讲解相结合,计算机模拟的最大优点是可以进行设计结果的快速仿真分析,实物讲解可以直观地提供设计结果。课程设计可以充分

航空发动机研制难点

航空发动机研制难点 目前,在各行各业众多工业产品中,能够称得上是“工业王冠”的大概只有喷气航空发动机和微电子芯片了。“工业王冠”不单单反应的是喷气式航空发动机在技术层面的研制难度,也不仅仅说明了航空发动机在飞机设计中属于“心脏”一样的核心地位,更说明了在国家发展过程中航空发动机如同“王权”一般高端的战略位置。但是我国偏偏在航空发动机研制过程中,长期处于“慢性心脏病”的状态,在追求“工业王权”的过程中,长期处于“知其然,不知其所以然”的境地。不过,在对航空发动机研制客观规律进行总结和对于国家发展有了更深层次的认识之后,我国在当今航空发动机技术发展的战略机遇期,不仅可以与航空强国齐头并进,还要创立属于中华民族的“动力王朝”。 现代涡扇发动机结构极其复杂,图为GE90大涵道比涡扇发动机结构剖视图 采用三维气动算法进行理论计算的压气机叶片 如何组织燃料高效的燃烧而又不伤及自身,是燃烧室设计的核心问题 带有冷却孔的涡轮叶片,采用了激光熔接技术,号称是世界上最难制造的零件之一。 我国直到上世纪八十年代才开始的高推比核心机预研计划F119-PW-100堪称是世界第一发动机,可是只是美国第四代核心机的衍生产品而已,后面还有三代…… 用于民航的大涵道比涡扇发动机,我国目前在这个领域没有自己的发动机型号。 精心雕琢的工业王冠 喷气式航空发动机的性能优势是建立在精巧的连续回旋转子结构上的,其研制难点也基本围绕这一个核心展开。现代飞机不断提高的战术技术指标对航空发动机提出了非常高的要求。高温、高压、高转速而又要求高可靠性、耐久性和维护性是其基本特点。在这些高而又相互矛盾的要求的推动促进下,航空发动机经过长时间的发展已经成为人类有史以来最复杂最精密的工业产品。 压气机的作用是利用来自涡轮的能量对发动机进气进行压缩和增温。一方面提高了进气分子活跃程度,更有利于提高燃烧效率。另外一方面,增加了单位体积内的氧气含量,因为大气尤其是高空大气的单位体积含氧量太低,远小于燃烧室中的燃油充分燃烧所需的耗氧量。压气机的主要设计难点在于要保证效率、增压比和喘振裕度这三大主要性能参数满足发动机的设计要求。一个世纪以来,伴随着气动热力学、计算流体力学的发展.压气机的设计水平在逐年提高。20世纪初采用螺旋桨理论设计压气机叶片,二十年代开始采用孤立叶形理论,三十年代中期开始采用叶栅设计理论,五十年代开始用二维设计技术,七十年代开始建立准三维设计体系,九十年代以来,航空界开始使用三维粘性流场分析设计体系对压气机进行设计。压气机设计理论、计算模型和设计系统在基础理论科研推动下不断进步跨越。即便是有先进的计算机辅助设计手段,如果基础科研理论没有进步,也无法在高性能压气机领域取得突破。由于压气机的逆压梯度相当大、需要对空气流场、温度场和压力场进行详尽的

航空发动机结构强度设计 大作业

航空发动机结构强度设计 大作业 王延荣主编 北京航空航天大学能源与动力工程学院 2013.3

2 1 某级涡轮转子的转速为4700r/min ,共有68片转子叶片,叶片材料GH33的密度ρ为8.2 ×103 kg/m 3,气流参数沿叶高均布,平均半径处叶栅进、出口的气流参数,叶片各截面的重心位置(X , Y , Z ),截面面积A ,主惯性矩I ξ,I η以及ξ轴与x 轴的夹角α,弯曲应力最大的A , B , C 三点的坐标ξA , ηA , ξB , ηB , ξC , ηc 列于下表,试求叶片各截面上的离心拉伸应力、气动力弯矩、离心力弯矩、合成弯矩及A ,B ,C 三点的弯曲应力和总应力。 截 面 0 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ X , cm 0.53 0.41 0.41 0.40 0.24 0.12 Y , cm -0.41 -0.38 -0.30 -0.19 -0.11 -0.02 Z , cm 62.8 59.1 56.0 53.0 49.4 45.8 A , cm 2 1.80 2.32 3.12 4.10 5.48 7.05 I ξ, cm 4 0.242 0.304 0.484 0.939 1.802 I η, cm 4 6.694 9.332 12.52 17.57 23.74 ξA , cm -2.685 -2.847 -2.938 -2.889 -2.894 ηA , cm 0.797 0.951 1.094 1.232 1.319 ξB , cm -0.084 -0.205 -0.303 -0.219 -0.302 ηB , cm -0.481 -0.521 -0.655 -0.749 -1.015 ξC , cm 3.728 3.909 4.060 4.366 4.597 ηC , cm 0.773 0.824 0.840 1.130 1.305 α 31o 40’ 27o 49’ 25o 19’ 22o 5’30’’ 16o 57’ 12o 43’ c 1am c 1um ρ1m p 1m c 2am c 2um ρ2m p 2m 297m/s -410m/s 0.894kg/m 3 0.222MPa 313m/s 38m/s 0.75 kg/m 3 0.178MPa 2 某一涡轮盘转速12500r/min,盘材料密度8.0×103kg/m 3 , 泊松比0.3,轮缘径向应力140MPa,盘厚度h 、弹性模量E、线涨系数α及温度t 沿半径的分布列于下表,试用等厚圆环法计算其应力分布。 截面, n 半径r , cm 盘厚h , cm E, GPa t , ℃ α,10-6/℃平均半径 平均厚度 0 0.0 4.86 162 165 16.5 1 5.0 3.90 16 2 165 16.5 2.5 4.38 2 10.0 2.97 157 250 17.1 7.5 3.435 3 14.0 2.2 4 148 360 18.2 12.0 2.60 5 4 15.0 1.8 6 140 400 19.0 14.5 2.05 5 15.8 1.60 13 7 430 19.4 15.4 1.73 6 16.6 1.80 134 460 19.7 16.2 1.70 7 17.4 2.30 130 500 20.3 17.0 2.05 3 某转子叶片根部固定,其材料密度2850kg/m 3,弹性模量71.54GPa ,叶片长0.1m ,各截面 位置、面积、惯性矩列于下表,试求其前3阶固有静频。 截面号i 0 1 2 3 4 5 6 7 8 9 10 x , m 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 A , 10-4m 2 1.70 1.46 1.26 1.09 0.96 0.86 0.77 0.73 0.70 0.68 0.68 I , 10-8m 4 0.02790.0212 0.0157 0.01080.00840.00610.00450.00370.0032 0.0030 0.0030

航空发动机结构分析思考题答案

《航空发动机结构分析》 课后思考题答案 第一章概论 1.航空燃气涡轮发动机有哪些基本类型?指出它们的共同点、区别和应用。 答: 2.涡喷、涡扇、军用涡扇分别是在何年代问世的? 答:涡喷二十世纪三十年代(1937年WU;1937年HeS3B); 涡扇 1960~1962 军用涡扇 1966~1967 3.简述涡轮风扇发动机的基本类型。 答:不带加力,带加力,分排,混排,高涵道比,低涵道比。 4.什么是涵道比?涡扇发动机如何按涵道比分类? 答:(一)B/T,外涵与内涵空气流量比; (二)高涵道比涡扇(GE90),低涵道比涡扇(Al-37fn) 5.按前后次序写出带加力的燃气涡轮发动机的主要部件。 答:压气机、燃烧室、涡轮、加力燃烧室、喷管。 6.从发动机结构剖面图上,可以得到哪些结构信息? 答: a)发动机类型 b)轴数 c)压气机级数 d)燃烧室类型 e)支点位置 f)支点类型 第二章典型发动机 1.根据总增压比、推重比、涡轮前燃气温度、耗油率、涵道比等重要性能指标,指出各代涡喷、涡扇、军用涡扇发动机的性能指 标。 答:涡喷表2.1 涡扇表2.3 军用涡扇表2.2 2.al-31f发动机的主要结构特点是什么?在该机上采用了哪些先进技术? 答:AL31-F结构特点:全钛进气机匣,23个导流叶片;钛合金风扇,高压压气机,转子级间电子束焊接;高压压气机三级可调静

子叶片九级环形燕尾榫头的工作叶片;环形燃烧室有28个双路离心式喷嘴,两个点火器,采用半导体电嘴;高压涡轮叶片不带冠,榫头处有减振器,低压涡轮叶片带冠;涡轮冷却系统采用了设置在外涵道中的空气-空气换热器,可使冷却空气降温125-210*c;加力燃烧室采用射流式点火方式,单晶体的涡轮工作叶片为此提供了强度保障;收敛-扩张型喷管由亚声速、超声速调节片及蜜蜂片各16式组成;排气方式为内、外涵道混合排气。 3.ALF502发动机是什么类型的发动机?它有哪些有点? 答:ALF502,涡轮风扇。优点: ●单元体设计,易维修 ●长寿命、低成本 ●B/T高耗油率低 ●噪声小,排气中NOx量低于规定 第三章压气机 1.航空燃气涡轮发动机中,两种基本类型压气机的优缺点有哪些? 答:(一)轴流压气机增压比高、效率高单位面积空气质量流量大,迎风阻力小,但是单级压比小,结构复杂; (二)离心式压气机结构简单、工作可靠、稳定工作范围较宽、单级压比高;但是迎风面积大,难于获得更高的总增压比。 2.轴流式压气机转子结构的三种基本类型是什么?指出各种转子结构的优缺点。 答 3.在盘鼓式转子中,恰当半径是什么?在什么情况下是盘加强鼓? 答:(一)某一中间半径处,两者自由变形相等联成一体后相互没有约束,即无力的作用,这个半径称为恰当半径;(二)当轮盘的自由变形大于鼓筒的自由变形;实际变形处于两者自由变形之间,具体的数值视两者受力大小而定,对轮盘来说,变形减少了,周向应力也减小了;至于鼓筒来说,变形增大了,周向应力增大了。 4.对压气机转子结构设计的基本要求是什么? 答:基本要求:在保证尺寸小、重量轻、结构简单、工艺性好的前提下,转子零、组件及其连接处应保证可靠的承受载荷和传力,具有良好的定心和平衡性、足够的刚性。 5.转子级间联结方法有哪些 答:转子间:1>不可拆卸,2>可拆卸,3>部分不可拆部分可拆的混合式。 6.转子结构的传扭方法有几种?答: a)不可拆卸:例,wp7靠径向销钉和配合摩擦力传递扭矩; b)可拆卸:例,D30ky端面圆弧齿传扭; c)混合式:al31f占全了;cfm56精制短螺栓。 7.如何区分盘鼓式转子和加强的盘式转子? 答:P40 图3.6 _c\d 8.工作叶片主要由哪两部分组成 答:叶身、榫头(有些有凸台) 9.风扇叶片叶身凸台的作用是什么? 答:减振凸台,通过摩擦减少振动,避免发生危险的共振或颤振。 10.叶片的榫头有哪几种基本形式?压气机常用哪一种?答: a)销钉式榫头; b)枞树型榫头;

航空发动机强度复习题(参考答案)

航空发动机构造及强度复习题(参考答案) 一、 基本概念 1. 转子叶片的弯矩补偿 适当地设计叶片各截面重心的连线,即改变离心力弯矩,使其与气体力弯矩方向相反,互相抵消,使合成弯矩适当减小,甚至为零,称为弯矩补偿。 2. 罩量 通常将叶片各截面的重心相对于z 轴作适当的偏移,以达到弯矩补偿的目的,这个偏移量称为罩量。 3. 轮盘的局部安全系数与总安全系数 局部安全系数是在轮盘工作温度与工作时数下材料的持久强度极限t T σ,与计算轮盘应力中最大周向应力或径向应力之比值。0.2~5.1/max ≥=σσt T K 总安全系数是由轮盘在工作条件下达到破裂或变形达到不允许的程度时的转速c n ,与工作的最大转速m ax n 之比值。max /n n K c d = 4. 轮盘的破裂转速 随着转速的提高,轮盘负荷不断增加,在高应力区首先产生塑性变形并逐渐扩大, 使应力趋于均匀,直至整个轮盘都产生塑性变形,并导致轮盘破裂,此时对应的转速称为破裂转速。 5. 转子叶片的静频与动频 静止着的叶片的自振频率称为静频; 旋转着的叶片的自振频率称为动频;由于离心力的作用,叶片弯曲刚度增加,自振频率较静频高。 6. 尾流激振 气流通过发动机内流道时,在内部障碍物后(如燃烧室后)造成气流周向不均匀,从而对后面转子叶片形成激振。 7. 转子的自位作用 转子在超临界状态下工作时,其挠度与偏心距是反向的,即轮盘质心位于轴挠曲线的内侧,不平衡离心力相应减小,使轴挠度急剧减小,并逐渐趋于偏心距e ,称为“自位”作用。

8. 静不平衡与静不平衡度 由不平衡力引起的不平衡称为静不平衡;静不平衡度是指静不平衡的程度,用质量与偏心矩的乘积me 表示,常用单位为cm g ?。 9. 动不平衡与动不平衡度 由不平衡力矩引起的不平衡称为动不平衡;动不平衡度是指动不平衡的程度,用me 表示,常用单位是cm g ?。 10. 动平衡 动平衡就是把转子放在动平衡机床上进行旋转,通过在指定位置上添加配重,以消除不平衡力矩。 11. 挠性转子与刚性转子 轴的刚性相对于支承的刚度很小的转子系统称为挠性转子;转子的刚性相对于支承的刚性很大的转子称为刚性转子。 12. 转子的临界转速 转子在转速增加到某些特定转速时,转子的挠度会明显增大,当转速超过该转速时,挠度又明显减小,这种特定的转速称为转子的临界转速,是转子的固有特性。 13. 涡动 转轴既要绕其本身轴线旋转,同时,该轴又带动着轮盘绕两轴承中心的连线旋转,这种复合运动的总称为涡动。 14. 自转与公转(进动) 轮盘绕轴旋转称为自转;挠曲的轴线绕轴承连线旋转称为公转或进动。 15. 转子的同步正涡动与同步反涡动 自转角速度与进动角速度大小与转向均相同的涡动称为同步正涡动;自转角速度与进动角速度大小相等,但转向相反的涡动称为同步反涡动; 16. 转子的协调正进动与协调反进动 自转角速度与进动角速度大小与转向均相同的涡动称为同步正涡动,对应的进动称为协调正进动;自转角速度与进动角速度大小相等,但转向相反的涡动称为同步反涡动,对应的进动称为协调反进动。 17. 持久条件疲劳极限 规定一个足够的循环次数L N ,以确定L N 下的“持久疲劳极限”,称为“持久条件疲劳极限”。

发动机课程设计汇总

课程设计说明书 设计题目 院(系)专业班学生姓名 完成日期 指导教师(签字) 华中科技大学

目录 一目的与要求 (1) 二设计任务 (2) 三工作过程模拟计算 (3) 四动力学计算 (7) 五设计感想 (10) 参考文献 (11) 附录A 发动机外特性曲线 (12) 附录 B F g-?、F j-?、F-?曲线图 (13) 附录 C F N-?、F L-?、F t-?、F k-?、R B-?曲线图 (14) 附录 D 发动机合成扭矩∑M k-?曲线图 (15)

一目的与要求 1.目的 发动机课程设计是《发动机现代设计》课程的后续教学环节,旨在对刚学习过的发动机设计课程以及发动机原理课程的知识进行综合运用,加深对专业知识的理解。在课程设计环节,通过总体性能计算(工作过程模拟计算与动力学计算)将发动机的结构参数与性能参数结合起来,弄清结构与性能之间的内在联系;通过发动机总体布置图设计,对发动机的总体结构有一个全面而具体的了解,并深化对发动机各主要零件的作用和设计要求的理解。 2.要求 对提供的教学参考资料要认真分析,在理解的基础上借鉴,不要盲目照搬照抄。独立完成,可以讨论,不许抄袭;按时完成,不得延期。交课程设计材料(计算说明书与图纸)时必须通过指导教师的考核,不得代交。计算说明书应包括:计算目的、已知条件、变量说明、计算结果及说明(分析)等,其中动力学计算应有受力分析图,曲线图应标明坐标及单位。所绘图纸应符合工程图纸规范要求。

二设计任务 4110柴油机总体方案设计 1. 技术参数 机型:立式,直列,水冷,四冲程,废气涡轮增压、中冷燃烧室型式:直喷式 气缸直径:110mm 活塞行程:125mm(曲柄半径:62.5mm) 缸数:4 发火顺序:1-3-4-2 压缩比:17 标定功率(kW)/转速(r/min):140/2300 最大扭矩(N.m)/转速(r/min): 640/1450~1550 外特性最低燃油耗率(g/kW.h):200 标定工况燃油耗率(g/kW.h):210 机油耗率(g/kW.h):≤1.0 调速率:≤8% 怠速(r/min): 750 曲轴旋转方向(从前端看):顺时针 气门间隙(冷态):进气门0.3~0.4,排气门0.4~0.5 冷却方式:强制水冷 润滑方式:压力、飞溅复合式 启动方式:电启动 配气定时:进气门开,上止点前20oCA;进气门关,下止点后43oCA排气门开,下止点前60oCA;排气门关,上止点后20oCA 供油提前角:上止点前18±2oCA 2. 其他有关数据 活塞质量:1.32kg 活塞销质量:0.58kg 活塞环总质量:0.088kg 连杆大头质量(直开口/斜开口, kg): 1.89/1.98 连杆小头质量(kg):0.704 连杆长度L(mm):210 曲柄销直径:70mm 曲柄销长度:40mm 主轴颈直径:85mm 主轴颈长度(非止推挡):36mm 曲柄臂厚度:28mm 曲柄臂宽度:126mm

太行航空发动机总体设计方案

一·本型航空发动机的应用领域 舰载机是以航空母舰或其他军舰为基地的海军飞机。用于攻击空中、水面、水下和地面目标,并遂行预警、侦察、巡逻、护航、布雷、扫雷和垂直登陆等任务。它是海军航空兵的主要作战手段之一,是在海洋战场上夺取和保持制空权、制海权的重要力量。舰载机能适应海洋环境。普通舰载机一般在6级风、4~5级浪的海况下,仍能在航空母舰上起落。舰载机能远在舰炮和战术导弹射程以外进行活动;借助母舰的续航力,可远离本国领土,进入各海洋活动。舰载歼击机多兼有攻击水面、地面目标的能力,舰载强击机(攻击机)多兼有空战能力,以充分发挥有限数量舰载机的最大效能。舰载飞机的起落和飞行条件比陆上飞机恶劣,因此舰载飞机应有良好的起飞性能、较低的着陆速度、良好的低速操纵性。驾驶舱的视野开阔,在母舰和飞机上还装有特殊的导航设备,便于驾驶员对准甲板跑道。为了少占甲板面积和便于在舰上机库存储器放,多数舰载飞机的机翼在停放时可以向上折叠,有的垂尾和机头也可以折转。此外,海水和潮湿的环境容易使飞机机体、发动机和机载设备严重腐蚀,飞机要有较好的防腐蚀措施。

二·航空发动机的性能设计指标 推力:15000daN 单位推力:20daN·s/kg 重量:150kg 推重比:10 耗油率:0.4kg/(h·N) 总压比:36 涡轮前温度:1800K 整机效率:50% 设计寿命:24000h 三·航空发动机的结构形式 3.1压气机 采用传统的小涵道比涡轮风扇发动机。涡轮风扇发动机有内外两

个涵道,它的外涵风扇处于飞机进气道内,可以在跨声速或超声速飞行时工作,较之于螺浆发动机具有效率高的优点。涡扇发动机与涡喷发动机相比,它具有较高的推进效率与较大的推力。而且采用涡轮风扇发动机后,为提高热效率而提高涡轮前温度不会给推进效率带来不利影响。而且外涵道的冷空气可以在涡轮部位形成冷空气薄膜,降低涡轮前高温燃气对涡轮的损害。而且外涵道空气与涡轮后燃气相掺混,有利于增加推力并降低噪音。下面对主要部件进行阐述。 压气机依然选用轴流式压气机。空气在轴流式是压气机中的流动方向大致平行工作轮轴,采用此中压气机的优点是其流动使其在结构上容易组织多级压缩,以没一级都较低的整压压力比获得较高的压气机总增压压力比。每级的增压压力i1.15-1.35之间,使得空气流经每级叶片通道时无需急剧的改变方向,减少流动损失,因而压气机效率高。特别在大流量是,轴流式压气机较其他种类的压气机更容易获得较高的压气机效率,可达90%左右,多级轴流式压气机还具有大流量,高效率,小迎风面的优点。 采用鼓盘式转子,兼顾鼓式转子的抗弯刚性和盘式转子的承受大离心载荷的能力,具体为混合式鼓盘转子,采用这种形式的转

航空发动机综合课程设计

航空工程学院 航空发动机综合课程设计 题目Loss of the Thrust Reverser Indication on Engine 1 or 2 1号或2号发动机反推显示丢失 作者姓名 专业名称2010级热能与动力工程指导教师魏武国 提交日期答辩日期

目录 第1章 CFM56-5B发动机介绍 (4) 1.1 概述 (4) 1.2 发动机特点 (5) 第2章反推系统 (6) 2.1 概述 (6) 2.2 反推控制系统 (7) 2.3 反推显示系统 (8) 2.4 反推装置 (9) 2.4.1 阻流门锁扣 (11) 2.4.2 阻流门液压作动筒 (12) 2.4.3阻流门位置开关 (13) 2.4.4 液压控制组件(HCU) (16) 第3章反推系统分析 (18) 3.1 反推系统结构框图 (18) 3.2 反推系统功能框图 (19) 第4章故障分析 (20) 4.1 故障描述 (20) 4.2 可能原因 (20) 4.2.1 DMC-1故障 (21) 4.2.2 阻流门锁扣故障 (21) 4.2.3 阻流门作动筒故障 (21) 4.2.4 阻流门位置开关故障 (21) 4.2.5 反推器HCU故障 (21) 4.3 故障树 (23) 4.4 排故流程图 (24) 参考文献 (25)

缩写 英文缩写英文及中文含义 ECU Engine Control Unit 发动机控制组件 CPU Control Processing Unit 控制处理组件 DAC Double Annular Combustor 双环腔燃烧室 EIU Electronic Interface Unit 电子接口组件 ECU Electronic Control Unit 电子控制组件 HCU Hydraulic Control Unit 液压控制组件 SEC Spoiler Elevator Computer 扰流板升降舵计算机 SOV Shut Off Valve 关断活门 ECAM Electronic Centralized Aircraft Monitoring飞机电子中央监控TLA Throttle Lever Angle 油门杆角度 DMC Display Management Computer 显示管理计算机

航空发动机强度与振动

航空发动机强度与振动课程设计报告 题目及要求 题目基于 ANSYS 的叶片强度与振动分析 1.叶片模型 研究对象为压气机叶片,叶片所用材料为 TC4 钛合 金,相关参数如下: 材料密度:4400kg/m3弹性模量:1.09*1011Pa 泊松比: 0.34 屈服应力:820Mpa 叶片模型如图 1 所示。把叶片简化为根部固装的等截

面悬臂梁。叶型由叶背和叶盆两条曲线组成,可由每条曲 线上 4 个点通过 spline(样条曲线)功能生成,各点位置 如图 2 所示,其坐标如表 1 所示。 注:叶片尾缘过薄,可以对尾缘进行修改,设置一定的圆角 2.叶片的静力分析 (1)叶片在转速为 1500rad/s 下的静力分析。 要求:得到 von Mises 等效应力分布图,对叶片应力分布进行分析说明。并计算叶片的安全系数,进行强度校核。 3.叶片的振动分析 (1)叶片静频计算与分析 要求:给出 1 到 6 阶的叶片振型图,并说明其对应振动类型。

(2)叶片动频计算与分析 要求:列表给出叶片在转速为 500rad/s,1000rad/s,1500rad/s, 2000rad/s 下的动频值。 (3)共振分析 要求:根据前面的计算结果,做出叶片共振图(或称 Campbell 图),找出叶片的共振点及共振转速。因为叶片一弯、二弯、一扭振动比较危险,故只对这些情况进行共振分析。 3. 按要求撰写课程设计报告 说明:网格划分必须保证结果具有一定精度。各输出结果图形必须用ANSYS 的图片输出功能,不允许截图,即图片背景不能为黑色。 课程设计报告 基于 ANSYS 的叶片强度与振动分析1. ANSYS 有限元分析的一般步骤 (1)前处理 前处理的目的是建立一个符合实际情况的结构有限元模型。在Preprocessor 处理器中进行。包括:分析环境设置(指定分析工作名称、分析标题)、定义单元类型、定义实常数、定义材料属性(如线弹性材料的弹性模量、泊松比、密度)、建立几何模型(一般用自底向上建模:先定义关键点,由这些点连成线,由线组成面,再由线形

航空发动机整机的性能方案设计

航空发动机整机的性能方案设计 对于一款民用航空发动机来说,最重要的是什么?安全!省油!安!全!省!油!重要的话说三遍!正如有国外专家说的那样:民用发动机必须足够安全、足够省油,否则就是白给航空公司,人家也不要。 “丈母娘择婿指南” 那么大家说了,你就造个最安全、最省油的,很难吗?我们先不涉及制造、装配,仅谈一谈整机的性能设计问题。一款民用航空发动机要想和心目中的飞机搭伙过日子,就得首先被航空公司挑中。与中国大妈挑女婿的标准类似,能被选中的发动机也要满足以下几点要求:力气大(高推力)、吃得少(省油)、不要动不动就撂挑子(安全性高),最好全年无休(可靠性高),有病不去医院吃个药片就能好(维修成本低),同时还要足够沉稳内敛(低噪声)、讲究卫生(污染物排放少)。下面,就让我们一起走近民用航空发动机,看看它是怎样从整机性能上勤修内功征服丈母娘的吧。

事情是这样的,在我们周围的空气里面,住着无数调皮的空气分子。根据脾气秉性的不同,又分为氮气分子、氧气分子、水分子等各种类型。这些分子就像被一杆子打散的桌球,时时刻刻处于不停的运动和相互碰撞中。当它们前进的方向上有东西挡路时,就狠狠地撞上去。遇上其它空气分子还好,大不了大家都改个方向继续往前跑。若遇到列队迎敌的固体分子们,那就是一个被立刻反射回来的下场。当然,此时铜墙铁壁的固体分子也被狠狠地撞了一下腰。 分子们个体太小,碰撞一下的力量当然也是不值一提的。但架不住数量太多,每时每刻都有数以亿亿亿计的分子撞上来。所以宏观来看,空气中的任何物体都会持续受到一个压力的作用,即气压P。“咦?我就算初中毕业也知道这个P 应该叫压强吧?!”没错,说起这个名称,那还真有个原因:发动机内部各个部件的表面积和各流道截面的面积一般是固定不变的,如果每次计算压力都用压强乘以面积那也太傻了,所以直接扔掉面积不管,压力就是压强了! 显然,这个压力的大小与单位时间内撞上来的分子个数成正比。同样数量的空气分子被塞到大小不同的箱子中,它们对箱壁的压力也会不同。箱子越大,分子们越稀疏,撞到同一块地方的分子就越少,压力也就越小。具体说来就是,压力P

航空发动机结构设计中可装配性案例分析

航空发动机结构设计中可装配性案例分析 摘要:航空发动机零部件数目繁多,结构复杂,精度及性能要求高,型号规格相似,在生命周期内需要多次装配、分解及维修,且为手工装配,工作量大,错装、漏装现象容易发生。因此,对于航空发动机这种高度复杂的产品,除了应当完善严格的工艺规划、装配操作与流程管理外,更应当在设计初期对产品的可装配性进行分析,总体上提高产品质量和可靠性,降低成本,缩短发动机的开发和制造周期。 关键词:航空;发动机;结构设计;可装配性;案例 1分组设计 在航空发动机压气机转子设计中,后几级叶片通常采用环形燕尾榫头固定,即在轮缘上车出 1 个环形燕尾槽安装叶片,使加工简单,装配方便。考虑到叶片在工作中受热膨胀以及为了有利于安装分解,叶片榫头与鼓筒榫槽设计为间隙配合,为防止工作状态叶片甩开后,缘板出现周向碰摩或较大串动,静态装配时要求叶片周向总间隙 M 在合理范围内。 叶片首次装配或更换新叶片后,通常会出现总间隙M 小于规定要求的情况,操作者会将最后 1 个叶片(不带锁紧槽的叶片)暂时不装,将安装的叶片手动排除活动间隙后,用卡尺测量空缺位置的缘板间隙,比对最后 1 个安装叶片的缘板宽度,计算二者差值,即为装配工序留 给加工修磨工序的修磨值,通过修磨值确定对 1 片或多片叶片进行修磨。目前设计要求为:如果装配后不能满足总间隙 M 的要求,允许修磨叶片缘板的 2 个周向侧面,但每边叶片修磨量有上限要求。有时会发生叶片修磨过量,导致叶片修磨后仍无法满足要求,需要更换叶片进行重新修磨,造成叶片的损坏或浪费。 2非均布设计 在某型发动机设计中,4 支点轴承外环安装在高压涡轮后轴颈内,轴向用 4 支点轴承螺母紧固,采用锁紧环防松方法。锁紧环安装在轴承螺母径向安装槽内,通过锁紧环上的定位销插入高压涡轮后轴颈和轴承螺母周向同一个卡槽内防松。其中,高压涡轮后轴颈后端面和轴承螺母后端周向均布 12 个卡槽。要求轴承螺母拧紧至一定的力矩(1193~1342N m)后,用锁紧环锁紧。在实际装配中,在规定的力矩范围内,高压涡轮后轴颈后端面和轴承螺母后端的卡槽只有 1 次机 会重合,或者 12 个槽全部对上,或者 1 个也对不上,旋转角度需为360°÷12÷1=30°,每次都需采用修磨螺母端面的方法解决,既损坏机件连接性能,又耗费人力物力。而在 CFM56 系列发动机类似设计中,高压涡轮后轴颈后端面周向均布 12 个卡槽,而轴承螺母后端面周向均 布 11 个卡槽,螺母旋转 1 周,有 11 次机会可以对正锁紧,旋转角度只需为 360°÷12÷11=2.73°,这样可使力矩范围更窄,也能 1 次对正成功。 3防错设计

(完整版)航空发动机试验测试技术

航空发动机试验测试技术 航空发动机是当代最精密的机械产品之一,由于航空发动机涉及气动、热工、结构与 强度、控制、测试、计算机、制造技术和材料等多种学科,一台发动机内有十几个部件和 系统以及数以万计的零件,其应力、温度、转速、压力、振动、间隙等工作条件远比飞机 其它分系统复杂和苛刻,而且对性能、重量、适用性、可靠性、耐久性和环境特性又有很 高的要求,因此发动机的研制过程是一个设计、制造、试验、修改设计的多次迭代性过程。在有良好技术储备的基础上,研制一种新的发动机尚要做一万小时的整机试验和十万小时 的部件及系统试验,需要庞大而精密的试验设备。试验测试技术是发展先进航空发动机的 关键技术之一,试验测试结果既是验证和修改发动机设计的重要依据,也是评价发动机部 件和整机性能的重要判定条件。因此“航空发动机是试出来的”已成为行业共识。 从航空发动机各组成部分的试验来分类,可分为部件试验和全台发动机的整机试验, 一般也将全台发动机的试验称为试车。部件试验主要有:进气道试验、压气机试验、平面 叶栅试验、燃烧室试验、涡轮试验、加力燃烧室试验、尾喷管试验、附件试验以及零、组 件的强度、振动试验等。整机试验有:整机地面试验、高空模拟试验、环境试验和飞行试 验等。下面详细介绍几种试验。 1进气道试验 研究飞行器进气道性能的风洞试验。一般先进行小缩比尺寸模型的风洞试验,主 要是验证和修改初步设计的进气道静特性。然后还需在较大的风洞上进行l/6或l/5的 缩尺模型试验,以便验证进气道全部设计要求。进气道与发动机是共同工作的,在不同状 态下都要求进气道与发动机的流量匹配和流场匹配,相容性要好。实现相容目前主要依靠 进气道与发动机联合试验。 2,压气机试验 对压气机性能进行的试验。压气机性能试验主要是在不同的转速下,测取压气机特性 参数(空气流量、增压比、效率和喘振点等),以便验证设计、计算是否正确、合理,找出 不足之处,便于修改、完善设计。压气机试验可分为: (1)压气机模型试验:用满足几何相似的缩小或放大的压气机模型件,在压气机试验台上按任务要求进行的试验。 (2)全尺寸压气机试验:用全尺寸的压气机试验件在压气机试验台上测取压气机特性,确定稳定工作边界,研究流动损失及检查压气机调节系统可靠性等所进行的试验。 (3)在发动机上进行的全尺寸压气机试验:在发动机上试验压气机,主要包括部件间的匹配和进行一些特种试验,如侧风试验、叶片应力测量试验和压气机防喘系统试验等。 3,燃烧室试验 在专门的燃烧室试验设备上,模拟发动机燃烧室的进口气流条件(压力、温度、流量) 所进行的各种试验。主要试验内容有:燃烧效率、流体阻力、稳定工作范围、加速性、出 口温度分布、火焰筒壁温与寿命、喷嘴积炭、排气污染、点火范围等。 由于燃烧室中发生的物理化学过程十分复杂,目前还没有一套精确的设计计算方法。因此,燃烧室的研制和发展主要靠大量试验来完成。根据试验目的,在不同试验器上,采 用不同的模拟准则,进行多次反复试验并进行修改调整,以满足设计要求,因此燃烧室试 验对新机研制或改进改型是必不可少的关键性试验。

航空发动机设计的总体强度

航空发动机设计的总体强度 众所周知,航空发动机是一种高温、高压、高转速的精密机械,那强度,必须刚刚的!!上一期的总体结构想必大家还念念不忘,本期借着结构的东风讲讲发动机的总体强度。 第一个问题,强度专业是干啥滴?通俗地讲,“大发”作为一个干得多吃得少的新时代好青年,没有一个强健的身体可不行呢,这个强健,既体现在普通意义的强度上面(抗拉抗弯还要抗扭),还体现在抗疲劳能力(怎么折腾都不坏)和抗打击能力(无知的小鸟呼啦啦地撞上来)等方方面面,总的来说,生活在 航空发动机这样一个地狱般的工作环境里,没有一副打不坏、耐力好、贼扛揍 的好身板是不行的。为了确保发动机方方面面的零组件都能符合这样变态的标准,我们的强度攻城狮们可谓是殚精竭虑。 今天,我们首先为大家介绍的是总体强度专业。 在国内,很少有总体强度这样一个概念,那总体强度是干什么的呢?其主要有三个方面:用洋文来说分别为Load, WEM and Rotor Dynamics。发动机行业内有句名言,载荷先行活看结构,这个载荷呢就是这里的Load;WEM作为一个 洋小伙,其全称为Whole Engine Model,凡是和整机模型相关的各种任务都 找他;最后一位就是本期的主角,RotorDynamics,转子动力学。 下面客官请听我娓娓道来。 1转子动力学的前生后世 为满足航空器日益增长的舒适性、经济性、高效率等要求,现代民用航空发动机被设计为带涡轮和压气机的旋转机械。为保障不同涡轮和压气机的工作性能,发动机主要采用双轴和三轴的结构布局,而转速往往达到每分钟几千(低压部件)或几万转(高压部件)。在这种严酷的工作条件下,发动机转子动力学设计就显得尤为重要了。 发动机转子动力学设计的优劣,直接影响着发动机整机振动的好坏与否。 如果将航空发动机拟化为一个人,涡轮、压气机、燃烧室等部件结构代表 着发动机的骨骼与肌肉,燃油和空气代表着食物与血液,性能等代表着物理特

先进航空发动机关键制造技术研究

ARTICLES 学术论文 引言 航空发动机的设计、材料与制造技术对于航空工业的发展起着关键性的作用,先进的航空动力是体现一个国家科技水平、军事实力和综合国力的重要标志之一。随着航空科技的迅速发展,面对不断提高的国防建设要求,航空发动机必须满足超高速、高空、长航时、超远航程的新一代飞机的需求。 近年来,航空工业发达国家都在研制高性能航空发动机上投入了大量的资金和人力,实施一系列技术开发和验证计划,如“先进战术战斗机发动机计划(ATFE )”、“综合高性能涡轮发动机技术(IHPTET )计划”及后续的VAATE 计划、英法合作军用发动机技术计划(AMET )等。在这些计划的支持下,美国的F119、欧洲的 EJ200、法国的M88和俄罗斯的AL-41F 等推重比10 一级发动机陆续问世。 为了提高发动机的可靠性和推力,先进高性能发动机采用了大量新材料,且结构越来越复杂,加工精度要求越来越高,对制造工艺提出了更高的要求。而且,在新一代航空发动机性能的提高中,制造技术与材料的贡献率为 50%~70%,在发动机减重方面,制造技术和材料的贡献率占70%~80%,这也充分表明先进的材料和工艺是航空发动机实现减重、增效、改善性能的关键。 1 航空发动机的材料、结构及工艺特点 在提高发动机可靠性和维护性的同时,为了提高发动机的推力和推重比,航空发动机普遍采用轻量化、整体化结构,如整体叶盘、叶环结构。钛合金、镍基高温合金,以及比强度高、比模量大、抗疲劳性能好的树脂基复合材 先进航空发动机关键制造技术研究 黄维,黄春峰,王永明,陈建民 (中国燃气涡轮研究院,四川 江油 621703) Key manufacturing technology research of advanced aero-engine HUANG Wei ,HUANG Chun-feng ,WANG Yong-ming ,CHEN Jian-min (China Gas Turbine Establishment ,Jiangyou 621703,China ) Abstract :This paper describes the features of aero-engine material ,structure and technology ,and then ,development status and trend of key manufacturing technology for advanced aero-engine was analyzed. Finally ,the development of advanced aero-engine manufacturing technology in China is introduced and some proposals are put forward. Key Words : aero-engine ,manufacturing ,summarization 作者简介: 黄维(1982—),男,四川仁寿人,中国燃气涡轮研究院助理工程师,主要从事工艺技术研究。E-mail :huangwei611@https://www.wendangku.net/doc/3a9231535.html,

(完整版)航空发动机结构练习题库(一)

1.航空发动机研制和发展面临的特点不包括下列哪项()。 A.技术难度大 B.研制周期长 C.费用高 D.费用低 正确答案:D 试题解析:发动机研制开发耗费昂贵。 2.航空发动机设计要求包括()。 A.推重比低 B.耗油率高 C.维修性好 D.可操纵性差 正确答案:C 试题解析:航空发动机设计要求其推重比高、耗油率低、可操纵性好、维修性好。 3.下列哪种航空发动机不属于燃气涡轮发动机()。 A.活塞发动机 B.涡喷发动机 C.涡扇发动机 D.涡桨发动机 正确答案:A 试题解析:活塞发动机不属于燃气涡轮发动机,二者结构、原理不同。 4.燃气涡轮发动机的核心机由压气机、燃烧室和()组成。 A.进气道 B.涡轮 C.尾喷管 D.起落架 正确答案:B 试题解析:压气机、燃烧室和涡轮并称为核心机。 5.活塞发动机工作行程不包括()。 A.进气行程 B.压缩行程 C.膨胀行程 D.往返行程 正确答案:D 试题解析: 活塞发动机四个工作行程:进气、压缩、膨胀、排气。 6.燃气涡轮发动机的主要参数不包括下列哪项()。 A.推力 B.推重比 C.耗油率 D.造价 正确答案:D 试题解析:造价不是发动机性能参数。 7.对于现代涡扇发动机,常用()代表发动机推力。 A.低压涡轮出口总压与低压压气机进口总压之比

B.高压涡轮出口总压与压气机进口总压之比 C.高压涡轮出口总压与低压涡轮出口总压之比 D.低压涡轮出口总压与低压涡轮进口总压之比 正确答案:A 试题解析:低压涡轮出口总压与低压压气机进口总压之比用来表示涡扇发动机推力。 8.发动机的推进效率是()。 A.单位时间发动机产生的机械能与单位时间内发动机燃油完全燃烧时放出的热量之比。 B.发动机的推力与动能之比。 C.发动机推进功率与单位时间流过发动机空气的动能增量之比。 D.推进功率与单位时间内发动机加热量之比。 正确答案:C 试题解析:发动机的推进效率是发动机推进功率与单位时间流过发动机空气的动能增量之比。 9.航空燃气涡轮发动机是将()。 A.动能转变为热能的装置 B.热能转变为机械能的装置 C.动能转变为机械能的装置 D.势能转变为热能的装置 正确答案:B 试题解析:航空燃气涡轮发动机是将热能转变为机械能的装置。 10.航空燃气涡轮喷气发动机经济性的指标是()。 A.单位推力 B.燃油消耗率 C.涡轮前燃气总温 D.喷气速度 正确答案:B 试题解析:燃油消耗率是航空燃气涡轮喷气发动机经济性的指标。 11.气流马赫数()时,为超音速流动。 A.小于1 B.大于0 C.大于1 D.不等于1 正确答案:C 试题解析:气流马赫数大于1时,为超音速流动。 12.燃气涡轮喷气发动机产生推力的依据是()。 A.牛顿第二定律和牛顿第三定律 B.热力学第一定律和热力学第二定律 C.牛顿第一定律和付立叶定律 D.道尔顿定律和玻尔兹曼定律 正确答案:A 试题解析:燃气涡轮喷气发动机产生推力的依据是牛顿第二定律和牛顿第三定律。 13.燃气涡轮喷气发动机出口处的静温一定()大气温度。 A.低于 B.等于 C.高于

相关文档
相关文档 最新文档