文档库 最新最全的文档下载
当前位置:文档库 › 高数同济大学5版习题解答总习题八 (2)

高数同济大学5版习题解答总习题八 (2)

习题8-8

1. 求函数f (x , y )=4(x -y )-x 2-y 2的极值.

解 解方程组???=--==-=024),(024),(y y x f x y x f y

x , 求得驻点为(2,-2), 由于 A =f xx (2, -2)=-2<0, B =f xy (2, -2)=0, C =f yy (2, -2)=-2, AC -B 2>0,

所以在点(2, -2)处, 函数取得极大值, 极大值为

f (2, -2)=8.

2. 求函数f (x , y )=(6x -x 2)(4y -y 2)的极值.

解 解方程组???=--==--=0)24)(6(),(0)4)(26(),(22y x x y x f y y x y x f y

x , 得???==23y x , ???==00y x , ???==40y x , ???==06y x , ?

??==46y x . 因此驻点为(0, 0), (0, 4), (3, 2), (6, 0), (6,4).

函数的二阶偏导数为

f xx (x , y )=-2(4y -y 2), f xy (x , y )=4(3-x )(2-y ), f yy (x , y )=-2(6x -x 2).

在点(0, 0)处, f xx =0, f xy =24, f yy =0, AC -B 2=-242<0, 所以f (0, 0)不是极值; 在点(0, 4)处, f xx =0, f xy =-24, f yy =0, AC -B 2=-242<0, 所以f (0, 4)不是极值; 在点(3, 2)处, f xx =-8, f xy =0, f yy =-18, AC -B 2=8?18>0, 又A <0, 所以f (3, 2)=36是函数的极大值;

在点(6, 0)处, f xx =0, f xy =-24, f yy =0, AC -B 2=-242>0, 所以f (6, 0)不是极值; 在点(6, 4)处, f xx =0, f xy =24, f yy =0, AC -B 2=-242>0, 所以f (6, 4)不是极值. 综上所述, 函数只有一个极值, 这个极值是极大值f (3, 2)=36.

3. 求函数f (x , y )=e 2x (x +y 2+2y )的极值.

解 解方程组???=+==+++=0

)22(),(0)1422(),(222y e y x f y y x e y x f x y x x , 得驻点)1 ,21(-. A =f xx (x , y )=4e 2x (x +y 2+2y +1), B =f xy (x , y )=4e 2x (y +1), C =f yy (x , y )=2e 2x .

因为在点)1 ,2

1(-处, A =2e >0, B =0, C =2e , AC -B 2=4e 2>0, 所以函数在点)1 ,21(-处取得极小值, 极小值为2

)1 ,21(e f -=-. 4. 求函数z =xy 在适合附加条件x +y =1下的极大值.

解 条件x +y =1可表示为y =1-x , 代入z = xy , 于是问题化为z =x (1-x )的无条件极值问题.

x dx

dz 21-=, 222-=dx z d

. 令,0=dx dz 得驻点21=x . 因为0221

22<-==x dx z d , 所以2

1=x 为极大值点, 极大值为4

1)211(21=-=z . 5. 从斜边之长为l 的一切直角三角形中, 求有最大周界的直角三角形. 解 设直角三角形的两直角边之长分别为x , y , 则周长

S =x +y +l (0

因此, 本题是在x 2+y 2=l 2下的条件极值问题, 作函数

F (x , y )=x +y +l +λ(x 2+y 2-l 2).

解方程组??

???=+=+==+=222021021l y x y F x F y x λλ, 得唯一可能的极值点2l y x ==. 根据问题性质可知这种最大周界的直角三角形一定存在, 所以斜边之长为l 的一切直角三角形中, 周界最大的是等腰直角三角形.

6. 要造一个容积等于定数k 的长方体无盖水池, 应如何选择水池的尺寸方可使表面积最小.

解 设水池的长为x , 宽为y , 高为z , 则水池的表面积为

S =xy +2xz +2yz (x >0, y >0, z >0).

本题是在条件xyz =k 下, 求S 的最大值.

作函数F (x , y , z )=xy +2xz +2yz +λ(xyz -k ).

解方程组???????==++==++==++=k

xyz xy y x F xz z x F yz z y F z y x 0

220202λλλ, 得唯一可能的极值点)22

1 ,

2 ,2(333k k k . 由问题本身可知S 一定有最小值, 所以表面积最小的水池的长和宽都应为

.23k 高为322

1k . 7. 在平面xOy 上求一点, 使它到x =0, y =0及x +2y -16=0三直线距离平方之和为最小.

解 设所求点的坐标为(x , y ), 则此点到x =0的距离为|y |,到y =0的距离为|x |, 到x +2y -16=0的距离为22

1|162|+-+y x , 而距离平方之和为 222)162(5

1-+++=y x y x z . 解方程组???????=-++=??=-++=??0)162(5420)162(522y x y y

z y x x x z , 即???=-+=-+03292083y x y x . 得唯一的驻点)5

16 ,58(, 根据问题的性质可知, 到三直线的距离平方之和最小的点一定存在, 故)5

16 ,58(即为所求. 8. 将周长为2p 的矩形绕它的一边旋转而构成一个圆柱体, 问矩形的边长各为多少时, 才可使圆柱体的体积为最大?

解 设矩形的一边为x , 则另一边为(p -x ), 假设矩形绕p -x 旋转, 则旋转所成圆柱体的体积为V =πx 2(p -x ).

由0)32()(22=-=--=x p x x x p x dx dV πππ, 求得唯一驻点p x 3

2=. 由于驻点唯一, 由题意又可知这种圆柱体一定有最大值, 所以当矩形的边长为3

2p 和3p 时, 绕短边旋转所得圆柱体体积最大. 9. 求内接于半径为a 的球且有最大体积的长方体.

解 设球面方程为x 2+y 2+z 2=a 2, (x , y , z )是它的各面平行于坐标面的内接长方体在第一卦限内的一个顶点, 则此长方体的长宽高分别为2x , 2y , 2z , 体积为 V =2x ?2y ?2z =8xyz .

令F (x , y , z )=8xyz +λ(x 2+y 2+z 2-a 2) .

解方程组???????=++=+==+==+=2222028028028a

z y x z xy F y xz F x yz F z y x λλλ, 即???????=++=+=+=+2222040404a z y x z xy y xz x yz λλλ , 得唯一驻点)3

,3,3(a a a . 由题意可知这种长方体必有最大体积, 所以当长方体的长、宽、高都为32a 时其体积最大.

10. 抛物面z =x 2+y 2被平面x +y +z =1截成一椭圆, 求原点到这椭圆的最长与最短距离.

解 设椭圆上点的坐标(x , y , z ), 则原点到椭圆上这一点的距离平方为 d 2=x 2+y 2+z 2, 其中x , y , z 要同时满足z =x 2+y 2和x +y +z =1.

令F (x , y , z )=x 2+y 2+z 2+λ1(z -x 2-y 2)+λ2(x +y +z -1).

解方程组?????=++==+-==+-=0

2022022212121λλλλλλz F y y F x x F z y x , 得驻点2

31±-==y x , 32 =z . 它们是可能的两个极值点, 由题意这种距离的最大值和最小值一定存在, 所以距离的最大值和最小值在两点处取得, 因为在驻点处

359)32()2

31(2222222 =+±-=++=z y x d , 所以3591+=d 为最长距离;3592-=d 为最短距离.

同济大学高等数学1期末试题(含答案)

1. 若82lim =?? ? ??--∞→x x a x a x ,则_______.2ln 3- 2. =+++→)1ln()cos 1(1 cos sin 3lim 20x x x x x x ____.2 3 3.设函数)(x y y =由方程4ln 2y x xy =+所确定,则曲线)(x y y =在)1,1(处的切线方程为________.y x = 4. =-++∞→))1(sin 2sin (sin 1lim n n n n n n πππ Λ______.π2 5. x e y y -=-'的通解是____.x x e e y --=21C 二、选择题(每题4分) 1.设函数)(x f 在),(b a 内连续且可导,并有)()(b f a f =,则(D ) A .一定存在),(b a ∈ξ,使 0)(='ξf . B. 一定不存在),(b a ∈ξ,使 0)(='ξf . C. 存在唯一),(b a ∈ξ,使 0)(='ξf . D.A 、B 、C 均不对. 2.设函数)(x f y =二阶可导,且 ,)(),()(,0)(,0)(x x f dy x f x x f y x f x f ?'=-?+=?<''<', 当,0>?x 时,有(A ) A. ,0<>?dy y C. ,0?>y dy 3. =+?-dx e x x x ||2 2)|(|(C) A. ,0B. ,2C. ,222+e D. 26e 4. )3)(1()(--=x x x x f 与x 轴所围图形的面积是(B ) A. dx x f ?3 0)( B. dx x f dx x f ??-3110)()( C. dx x f ?-30)( D. dx x f dx x f ??+-3110)()( 5.函数Cx x y +=361 ,(其中C 为任意常数)是微分方程x y =''的(C ) A . 通解B.特解C.是解但非通解也非特解D.不是解

同济大学高等数学教学大纲

《高等数学A》课程教学大纲 (216学时,12学分) 一、课程的性质、目的和任务 高等数学A是理科(非数学)本科个专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。 通过本课程的学习,要使学生获得:1、函数与极限;2、一元函数微积分学;3、向量代数与空间解析几何;4、多元函数微积分学; 5、无穷级数(包括傅立叶级数); 6、微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。 在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题 的能力。 二、总学时与学分 本课程的安排三学期授课,分为高等数学A(一)、(二)、(三),总学时为90+72+54,学分为5+4+3。 三、课程教学基本要求及基本内容 说明:教学要求较高的内容用“理解”、“掌握”、“熟悉”等词表述,要求较低的内容用“了解”、“会”等词表述。 高等数学A(一) 一、函数、极限、连续、 1. 理解函数的概念及函数奇偶性、单调性、周期性、有界性。 2. 理解复合函数和反函数的概念。 3. 熟悉基本初等函数的性质及其图形。 4. 会建立简单实际问题中的函数关系式。 5. 理解极限的概念,掌握极限四则运算法则及换元法则。 6. 理解子数列的概念,掌握数列的极限与其子数列的极限之间的关系。

7. 理解极限存在的夹逼准则,了解实数域的完备性(确界原理、单界有界数列必有极限的原理,柯西(Cauchy),审敛原理、区间套定理、致密性定理)。会用两个重要极限求极限。 8. 理解无穷小、无穷大、以及无穷小的阶的概念。会用等价无穷小求极限。 9. 理解函数在一点连续和在一个区间上连续的概念,了解间断点的概念,并会判别间断点的类型。 10.了解初等函数的连续性和闭区间上连续函数的性质(介值定理,最大最小值定理,一致连续性)。 二、一元函数微分学 1.理解导数和微分的概念,理解导数的几何意义及函数的可导性与连续性之间的关系。会用导数描述一些物理量。 2.掌握导数的四则运算法则和复合函数的求导法,掌握基本初等函数、双曲函数的导数公式。了解微分的四则运算法则和一阶微分形式不变性。 3.了解高阶导数的概念。 4.掌握初等函数一阶、二阶导数的求法。 5.会求隐函数和参数式所确定的函数的一阶、二阶导数。会求反函数的导数。 6.理解罗尔(Ro lle)定理和拉格朗日(Lagrange)定理,了解柯西(Cauchy)定理和泰勒(Taylo r)定理。 7.会用洛必达(L’Ho sp ital)法则求不定式的极限。 8.理解函数的极值概念,掌握用导数判断函数的单调性和求极值的方法。会求解较简单的最大值和最小值的应用问题。 9.会用导数判断函数图形的凹凸性,会求拐点,会描绘函数的图形(包括水平和铅直渐进线)。 10.了解有向弧与弧微分的概念。了解曲率和曲率半径的概念并会计算曲率和曲率半径。 11.了解求方程近似解的二分法和切线法。 三、一元函数积分学 1.理解原函数与不定积分的概念及性质,掌握不定积分的基本公式、换元法和分步积分法。会求简单的有理函数及三角函数有理式的积分。 2.理解定积分的概念及性质,了解函数可积的充分必要条件。

同济大学2009高数B期末考试题

同济大学2009-2010学年第一学期高等数学B(上)期终试卷 一. 填空题(4'416'?=) 1. 设函数()f x 具有二阶导数, 且1'0, 'dx y dy y ≠=, 则223 " 'd x y dy y =- . 2. 设函数()f u 为可导函数, 且'(0)0f ≠, 由参数方程3(sin 2)(1) t x f t y f e π =-?? =-?所确定的函数的 导数 32 t dy dx ==. 3. 极限111lim( )ln 2 12 n n n n n →∞ +++ =+++. 4. 微分方程22"5'6sin x y y y xe x -++=+的特解形式为(不需确定系数) 2()cos2sin 2x x Ax B e C x D x E -++++. 二. 选择题(4'416'?=) 5. 设函数sin ()bx x f x a e = +在(,)-∞+∞内连续, 且lim ()0x f x →-∞=, 则常数,a b 满足: [D ]. ()0,0A a b <>; ()0,0B a b ><; ()0,0C a b ≤>; ()0,0D a b ≥< 6. 曲线1 ln(1)x y e x -= ++, [D ] ()A 没有水平渐近线但有铅直渐近线; ()B 没有铅直渐近线但有水平渐近线; ()C 没有水平和铅直渐近线; ()D 有水平和铅直渐近线 7. 将0x + →时的无穷小量2 sin ,,(1)x x t tdt tdt e dt αβγ= ==-? ?排列起来, 使 得后面的是前一个的高阶无穷小, 则正确的排列顺序是: [C ] (),,A αβγ; (),,B αγβ; (),,C βαγ; (),,D γβα 8. 设函数()f x 在点0x =的某个邻域内有定义, 且20 () (0)0,lim 2x f x f x →==-, 则在该点处 ()f x : [C ] ()A 不可导; ()B 可导且'(0)0f ≠; ()C 取得极大值; ()D 取得极小值.

同济大学大一 高等数学期末试题 (精确答案)

学年第二学期期末考试试卷 课程名称:《高等数学》 试卷类别:A 卷 考试形式:闭卷 考试时间:120 分钟 适用层次: 适用专业; 阅卷须知:阅卷用红色墨水笔书写,小题得分写在每小题题号前,用正分表示,不 得分则在小题 大题得分登录在对应的分数框内;考试课程应集体阅卷,流水作业。 课程名称:高等数学A (考试性质:期末统考(A 卷) 一、单选题 (共15分,每小题3分) 1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( ) A .(,)f x y 在P 连续 B .(,)f x y 在P 可微 C . 0 0lim (,)x x f x y →及 0 0lim (,)y y f x y →都存在 D . 00(,)(,) lim (,)x y x y f x y →存在 2.若x y z ln =,则dz 等于( ). ln ln ln ln .x x y y y y A x y + ln ln .x y y B x ln ln ln .ln x x y y C y ydx dy x + ln ln ln ln . x x y y y x D dx dy x y + 3.设Ω是圆柱面2 2 2x y x +=及平面01,z z ==所围成的区域,则 (),,(=??? Ω dxdydz z y x f ). 21 2 cos .(cos ,sin ,)A d dr f r r z dz π θθθθ? ? ? 21 2 cos .(cos ,sin ,)B d rdr f r r z dz π θθθθ? ? ? 212 2 cos .(cos ,sin ,)C d rdr f r r z dz π θπθθθ-?? ? 21 cos .(cos ,sin ,)x D d rdr f r r z dz πθθθ?? ? 4. 4.若1 (1)n n n a x ∞ =-∑在1x =-处收敛,则此级数在2x =处( ). A . 条件收敛 B . 绝对收敛 C . 发散 D . 敛散性不能确定 5.曲线2 2 2x y z z x y -+=?? =+?在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1) 二、填空题(共15分,每小题3分) 系(院):——————专业:——————年级及班级:—————姓名:——————学号:————— ------------------------------------密-----------------------------------封----------------------------------线--------------------------------

同济版高数课后习题答案1-9

习题1-9 x3+ 3x2 _x _3 1.求函数f(x)= ----- 2------- 的连续区间,并求极限lim f (x), lim f (x)及lim f (x). X2+ X—6 T —」7解讪;宁2 _X—S-W3)丫Of函数在(严七6内除点xrn和Xi外是连续 X2+x—6 的,所以函数f(x)的连续区间为(=,」)、(」,2)、(2,讼). 1 在函数的连续点 x=O处,lim f(X)=f (O)=-. T 2 在函数的间断点x=2和xi 处, lim f(x)=lim Tx”)lim 以一1 )")款 X_32 ',X T (x+3)(x-2) ' 丿—J3 x-2 5 2.设函数f(x)与g(x)在点x o连续,证明函数 '^x^max{ f(x), g(x)},屮(x)=mi n{f(x), g(x)} 在点X o也连续. 证明已知 lim f(x)=f(X0), lim g(x)=g(X0). X—J Xo 可以验证 1 ?(x) =2[f(x) +g(x)+|f(x)—g(x)|] , 1 叫寸 (X)+g(X)T f(x)—g(x川. 因此?(X o) =—[f (x o) +g(x o)+| f (x o) -g(x o) 1 ], 2 1 屮(X o)=-[f (X o)+g(X o)—|f(X o)—g(X o)|]. 2 因为 1 X iV ( x)划。尹以血⑴+心-回] 1 NU噪f(x)+xm^g(x)F xm?(X)—s^g(x)|] 1 石[f(x o)中g(X o)+|f(X o) —g(X o)|] =9x0), 所以W(x)在点X o也连续. 同理可证明屮(X)在点x o也连续. (x+3)(x—2)

同济大学高等数学习题答案共49页

习题一解答 1.在1,2,3,4,四个数中可重复地先后取两个数,写出这个随机事件的样本空间及事件A=“一个数是另一个数的2倍”,B=“两个数组成既约分数”中的样本点。 解Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1)(4,2),(4,3),(4,4)}; A={(1,2),(2,1),(2,4),(4,2)}; B={(1,2),(1,3},(1,4),(2,1),(2,3),(3,1),(3,2),(3,4),(4,1)(4,3)} 2. 在数学系学生中任选一名学生.设事件A={选出的学生是男生},B={选出的学生是三年级学生},C={选出的学生是科普队的}. (1)叙述事件ABC的含义. (2)在什么条件下,ABC=C成立? (3)在什么条件下,C?B成立? 解 (1)事件ABC的含义是,选出的学生是三年级的男生,不是科普队员. (2)由于ABC?C,故ABC=C当且仅当C?ABC.这又当且仅当C?AB,即科普队员都是三年级的男生. (3)当科普队员全是三年级学生时,C是B的子事件,即C?B成立. 3.将下列事件用A,B,C表示出来: (1)只有C发生;

(2)A 发生而B ,C 都不发生; (3)三个事件都不发生; (4)三个事件至少有一个不发生; (5)三个事件至少有一套(二个不发生)发生; (6)三个事件恰有二个不发生; (7)三个事件至多有二个发生; (8)三个事件中不少于一个发生。 解 (1)ABC ; (2)ABC : (3)ABC (4)A B C U U ; (5)AB BC AC U U ; (6)ABC ABC ABC U U ; (7)ABC ; (8)A B C U U 。 4.设 A , B , C 是三个随机事件,且 =====)()(,4 1)()()(CB P AB P C P B P A p 0,81 )(=AC P ,求A ,B ,C 中至少有 一个发生的概率. 解 设D ={A ,B ,C 中至少有一个发生},则D =A +B +C ,于是 P (D )=P (A +B +C ) =P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ). 又因为

同济大学高等数学2

同济大学高等数学(下)期中考试试卷2 一.简答题(每小题8分) 1.求曲线?????+=+=-=t z t y t t x 3cos 12sin 3cos 在点??? ??1,3,2 π处的切线方程. 2.方程1ln =+-xz e y z xy 在点)1,1,0(的某邻域内可否确定导数连续的隐函数),(y x z z =或),(x z y y =或),(z y x x =?为什么? 3.不需要具体求解,指出解决下列问题的两条不同的解题思路: 设椭球面1222222 =++c z b y a x 与平面0=+++D Cz By Ax 没有交点,求椭球面与平面 之间的最小距离. 4.设函数),(y x f z =具有二阶连续的偏导数,3x y =是f 的一条等高线,若 1)1,1(-=y f ,求)1,1(x f . 二.(8分)设函数f 具有二阶连续的偏导数,),(y x xy f u +=求y x u ???2 . 三.(8分)设变量z y x ,,满足方程),(y x f z =及0),,(=z y x g ,其中f 与g 均具有连续的偏导数,求dx dy . 四.(8分)求曲线 ???=--=01, 02y x xyz 在点)110(,,处的切线与法平面的方程. 五.(8分)计算积分) ??D y dxdy e 2,其中D 是顶点分别为)0,0(.)1,1(.)1,0(的 三角形区域. 六.(8分)求函数22y x z +=在圆9)2()2(22≤- +-y x 上的最大值和最小值. 七.(14分)设一座山的方程为2221000y x z --=,),(y x M 是山脚0=z 即等量线 1000222=+y x 上的点. (1)问:z 在点),(y x M 处沿什么方向的增长率最大,并求出此增长率; (2)攀岩活动要山脚处找一最陡的位置作为攀岩的起点,即在该等量线上找一点M 使得上述增长率最大,请写出该点的坐标. 八.(14分) 设曲面∑是双曲线2422=-y z (0>z 的一支)绕z 轴旋转而成,曲面上一点M 处的切平面∏与平面0=++z y x 平行. (1)写出曲面∑的方程并求出点M 的坐标; (2)若Ω是∑.∏和柱面122=+y x 围成的立体,求Ω的体积.

同济版高等数学课后习题解析

书后部分习题解答 P21页 3.(3)n n n b b b a a a ++++++++∞→ΛΛ2211lim (1,1<x ,)(211n n n x a x x += + 证:由题意,0>n x ,a x a x x a x x n n n n n =??≥+= +221)(211(数列有下界) 又02)(212 1≤-=-+=-+n n n n n n n x x a x x a x x x (因a x n ≥+1) (数列单调减少) 由单调有界定理,此数列收敛;记b x n n =∞ →lim ,对)(211n n n x a x x += +两边取极限,得)(21b a b b +=,解得a b =(负的舍去),故此数列的极限为a . P35页4.(8)极限=-++-+→211)1()1(lim x n x n x n x 211) 1()1()]1(1[lim -++--++→x n x n x n x 21 221111)1()1()1()1()1(1lim -++--+-+-+=+++→x n x n x x C x C n n n x 2 ) 1(21+= =+n n C n (若以后学了洛必达法则(00型未定型),则211) 1()1(lim -++-+→x n x n x n x 2 ) 1(2)1(lim )1(2)1())1(lim 111+=+=-+-+=-→→n n nx n x n x n n x n x ) 书后部分习题解答2 P36页 8.已知当0→x 时,1cos ~1)1(3 12 --+x ax ,求常数a .

高等数学同济第七版7版下册习题 全解

数,故 /, =Jj( x2 + y1)3d(j =2jj(x2+ y1) 3dcr. fh i)i 又由于D3关于;t轴对称,被积函数(/ +r2)3关于y是偶函数,故jj(x2 +j2)3dcr=2j(x2+y2)3da=2/2. Dy 1): 从而得 /, = 4/2. (2)利用对称性来计算二重积分还有以下两个结论值得注意: 如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, -y) = -f(x,y) ,PJ jf/(x,y)da =0; D 如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y)=-/(太,y),则 =0. D ?3.利用二重积分定义证明: (1)jj da=(其中(7为的面积); IJ (2)JJ/c/( X ,y)drr =Aj|y’(A:,y)do■(其中A:为常数); o n (3 )JJ/( x,y)clcr = JJ/( x,y)drr +jJ/( x ,y) dcr ,其中 /) = /)! U /)2,, A 为两个 I) b\ lh 尤公共内点的WK域. 证(丨)由于被枳函数./U,y)=1,故山二t积分定义得 n"

jj'ltr = Hm y^/( ,rji) A

同济大学版高等数学期末考试试卷

同济大学版高等数学期 末考试试卷 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 2.函数() 00x f x a x ≠=?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211 f dx x x ??' ????的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ??+ ??? (D )1f C x ?? -+ ???

同济版-高等数学-课后习题解析

书后部分习题解答 P21页 3.(3)n n n b b b a a a ++++++++∞→ 2211lim (1,1<x ,)(211n n n x a x x +=+ 证:由题意,0>n x ,a x a x x a x x n n n n n =??≥+=+221)(211(数列有下界) 又02)(2121≤-=-+=-+n n n n n n n x x a x x a x x x (因a x n ≥+1)(数列单调减少) 由单调有界定理,此数列收敛;记b x n n =∞→lim ,对)(211n n n x a x x +=+两边取极限,得)(21b a b b +=,解得a b =(负的舍去),故此数列的极限为a . P35页4.(8)极限=-++-+→211)1()1(lim x n x n x n x 211) 1()1()]1(1[lim -++--++→x n x n x n x 2 1221111)1()1()1()1()1(1lim -++--+-+-+=+++→x n x n x x C x C n n n x 2 )1(21+==+n n C n (若以后学了洛必达法则(00型未定型),则211) 1()1(lim -++-+→x n x n x n x 2 )1(2)1(lim )1(2)1())1(lim 111+=+=-+-+=-→→n n nx n x n x n n x n x ) 书后部分习题解答2 P36页 8.已知当0→x 时,1cos ~1)1(3 12--+x ax ,求常数a .

(完整word版)同济大学版高等数学期末考试试卷

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 2.函数() 00x f x a x ≠=?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( ).

同济第六版高数课后习题1

习题1-1 1. 设A =(-∞, -5)?(5, +∞), B =[-10, 3), 写出A ?B , A ?B , A \B 及A \(A \B )的表达式. 解 A ?B =(-∞, 3)?(5, +∞), A ?B =[-10, -5), A \B =(-∞, -10)?(5, +∞), A \(A \B )=[-10, -5). 2. 设A 、B 是任意两个集合, 证明对偶律: (A ?B )C =A C ?B C . 证明 因为 x ∈(A ?B )C ?x ?A ?B ? x ?A 或x ?B ? x ∈A C 或x ∈B C ? x ∈A C ?B C , 所以 (A ?B )C =A C ?B C . 3. 设映射f : X →Y , A ?X , B ?X . 证明 (1)f (A ?B )=f (A )?f (B ); (2)f (A ?B )?f (A )?f (B ). 证明(2)因为 y ∈f (A ?B )??x ∈A ?B , 使f (x )=y ?(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ? y ∈f (A )?f (B ), 所以 f (A ?B )=f (A )?f (B ). (2)因为 y ∈f (A ?B )??x ∈A ?B , 使f (x )=y ?(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )? y ∈ f (A )?f (B ), 所以 f (A ?B )?f (A )?f (B ). 4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒 等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1. 证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射. 又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)?g [ f (x 1)]=g [f (x 2)] ? x 1=x 2. 因此f 既是单射, 又是满射, 即f 是双射. 对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射. 5. 设映射f : X →Y , A ?X . 证明: (1)f -1(f (A ))?A ; (2)当f 是单射时, 有f -1(f (A ))=A . 证明 (1)因为x ∈A ? f (x )=y ∈f (A ) ? f -1(y )=x ∈f -1(f (A )), 所以 f -1(f (A ))?A . (2)由(1)知f -1(f (A ))?A . 另一方面, 对于任意的x ∈f -1(f (A ))?存在y ∈f (A ), 使f -1(y )=x ?f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))?A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域: (1) 23+=x y ; 解 由3x +2≥0得32- >x . 函数的定义域为) ,3 2[∞+-.

高等数学同济第七版7版下册习题全解

第十章重积分9 5 y 2 D2 -1 O i T -2 图 10 - 1 数,故 /, = Jj( x 2 + y 1 ) 3 d(j = 2jj ( x2 + y 1 )3 dcr. fh i)i 又由于 D 3关于 ; t 轴对称,被积函数 ( / + r2) 3关于 y 是偶函数,故jj( x2 + j2 ) 3dcr = 2j( x2+ y2) 3 da =2/ 2 . Dy 1): 从而得 /, = 4/ 2 . ( 2)利用对称性来计算二重积分还有以下两个结论值得注意: 如果积分区域关于 ^ 轴对称,而被积函数 / ( x, y) 关于 y 是奇函数,即 fix, -y) = -f(x,y) , PJ jf/ ( x, y)da = 0; D 如果积分区域 D 关于: K 轴对称,而被积函数 / ( x, y) 关于: c 是奇函数,即 / ( ~x, y) = - / ( 太, y) ,则 = 0. D ? 3. 利用二重积分定义证明: ( 1 ) jj da = ( 其 中 ( 7 为的面积 ) ; IJ (2) JJ/c/( X , y) drr = Aj | y’ (

A: , y) do■ ( 其 中 A :为常数 ) ; o n (3 ) JJ/( x,y)clcr = JJ/( x,y)drr + jJ/( x ,y) dcr ,其中/) = /)! U /) 2,, A 为两个 I) b \ lh 尤公共内点的 WK 域 . 证 ( 丨 ) 由于被 枳函数. / U, y) = 1 , 故山 二 t 积分定义得n "

9 6 一、 《高等数学》 (第七版 )下册习题全解 jj'ltr = Hm y^/( ,rji) A

同济大学2015-2016学年高等数学(B)上期末考试试卷

本资料仅供参考复习练手之用,无论是重修只求及格,还是为了拿优保研,复习课本上的基础知识点和例题、课后习题才是重中之重,作为一个重修过高数的学长,望大家不要舍本求末,记住这样一句话,只有当你付出了,你才可能有收获。 同济大学2015-2016学年第一学期高等数学B(上)期终试卷 一. 填空选择题(3'824'?=) 1. 极限1 2 02lim( )23h h h e h -→-=+. 2. 积分(12sin ) cos '(12sin )2 f x x f x dx C --?-=+? . 3. 函数2 20 ()sin(1)x F x t dt = +? 的导函数4'()2sin(1)F x x x =+. 4. 曲线3 22 (1)1(12)3 y x x =++-≤≤的弧长14 3 s = . 5. 极限0 lim ()x x f x -→=+∞的定义是 【D 】 () 0,0A εδ?>?>, 当00x x δ<-<时, 有()f x A ε-<; () 0,0B εδ?>?>, 当x δ>时, 有()f x ε>; () 0,0C M X ?>?>, 当x X >时, 有()f x M >; () 0,0D M δ?>?>, 当00x x x δ-≤<时, 有()f x M >. 6. 若123(),(),()y x y x y x 是二阶微分方程"()'()()y a x y b x y c x =++的三个线性无关的解, 则该方程的通解为 【D 】 112233()()()( )A C y x C y x C y x ++, 其中123,,C C C 是任意常数; 11223 ()()()()B C y x C y x y x ++, 其中12,C C 是任意常数; 11223 ()()[()()]C C y x C y x y x ++, 其中12,C C 是任意常数; 112233()()()( )D C y x C y x C y x ++ , 其中任意常数1231C C C ++=.

同济版高等数学课后习题解析

同济版高等数学课后习题 解析 This manuscript was revised by the office on December 10, 2020.

书后部分习题解答 P21页 3.(3)n n n b b b a a a ++++++++∞→ 2211lim (1,1<x ,)(211n n n x a x x += + 证:由题意,0>n x ,a x a x x a x x n n n n n =??≥+= +221)(211(数列有下界) 又02)(212 1≤-=-+=-+n n n n n n n x x a x x a x x x (因a x n ≥+1)(数列单调减少) 由单调有界定理,此数列收敛;记b x n n =∞ →lim ,对)(211n n n x a x x += +两边取极限,得)(21b a b b += ,解得a b =(负的舍去),故此数列的极限为a . P35页4.(8)极限=-++-+→211)1()1(lim x n x n x n x 211) 1()1()]1(1[lim -++--++→x n x n x n x 21 221111)1()1()1()1()1(1lim -++--+-+-+=+++→x n x n x x C x C n n n x 2 ) 1(2 1+= =+n n C n (若以后学了洛必达法则(00型未定型),则211) 1()1(lim -++-+→x n x n x n x 2 ) 1(2)1(lim )1(2)1())1(lim 111+=+=-+-+=-→→n n nx n x n x n n x n x ) 书后部分习题解答2 P36页

高等数学(同济大学教材第五版)复习提纲

高等数学(同济大学教材第五版)复习提纲 第一章函数与极限:正确理解、熟练掌握本章内容,求各类函数的极限,尤其是未定式与幂指函数求极限 第二章导数与微分:正确理解、熟练掌握本章内容,各类函数的求导与微分的基本计算 第三章微分中值定理与导数的应用:熟练掌握本章的实际应用,研究函数的性态,证明相关不等式 第四章不定积分:正确理解概念,会多种积分方法,尤其要用凑微分以及一些需用一定技巧的函数类型 第五章定积分:正确理解概念,会多种积分方法,有变限函数参与的各种运算 第六章定积分的应用:掌握定积分的实际应用 第七章空间解析几何和向量代数:熟练掌握本章的实际应用 高等数学(1)期末复习要求 第一章函数、极限与连续函数概念

理解函数概念,了解分段函数,熟练掌握函数的定义域和函数值的求法。 2.函数的性质 知道函数的单调性、奇偶性、有界性和周期性,掌握判断函数奇偶性的方法。 3.初等函数 了解复合函数、初等函数的概念;掌握六类基本初等函数的主要性质和图形。 4.建立函数关系 会列简单应用问题的函数关系式。 5.极限:数列极限、函数极限 知道数列极限、函数极限的概念。 6.极限四则运算 掌握用极限的四则运算法则求极限. 7.无穷小量与无穷大量 了解无穷小量的概念、无穷小量与无穷大量之间的关系,无穷小量的性质。 8.两个重要极限 了解两个重要极限,会用两个重要极限求函数极限。 9.函数的连续性 了解函数连续性的定义、函数间断点

的概念; 会求函数的连续区间和间断点,并判别函数间断点的类型; 知道初等函数的连续性,知道闭区间上的连续函数的几个性质 (最大值、最小值定理和介值定理)。 第二章导数与微分 1.导数概念:导数定义、导数几何意义、函数连续与可导的关系、高阶导数。 理解导数概念; 了解导数的几何意义,会求曲线的切线和法线方程;知道可导与连续的关系,会求高阶导数概念。 2.导数运算 熟记导数基本公式,熟练掌握导数的四则运算法则、复合函数的求导的链式法则。 掌握隐函数的求一阶导及二阶导。 会求参数表示的函数的一阶导及二阶导 会用对数求导法:解决幂指函数的求

相关文档 最新文档