文档库

最新最全的文档下载
当前位置:文档库 > SPSS多重比较常用方法总结

SPSS多重比较常用方法总结

1. 1LSD法最小显著差异法,公式为:

它其实只是t检验的一个简单变形,并未对检验水准做出任何校正,只是在标准误的计算上充分利用了样本信息, 为所有组的均数统一估计出了一个更为稳健的标准误,其中MS误差

是方差分析中计算得来的组内均方,它一般用于计划好的多重比较。由于单次比较的检验水准仍为α,因此可认为LSD法是最灵敏的。

1. 2 Bonferroni法该法又称Bonferroni t检验,由Bonferroni提出。用t检验完成各组间均值的配对比较,但通过设置每个检验的误差率来控制整个误差率。若每次检验水准为α′,共进行m 次比较,当H0 为真时,犯Ⅰ类错误的累积概率α不超过mα′,

既有Bonferroni不等式α≤mα′成立。

α′=αm=αC2k=2αk ( k - 1), t =( …XA - …XB )S… dAB,S… dAB = MS误差1nA+1nB

但是该方法在样本组数较小时效果较好,当比较次数m 较多时,结论偏于保守。

1. 3Sidak法它实际上就是Sidak校正在LSD法上的应用,即通过Sidak校正降低每两次比较的Ⅰ类错误概率,以达到最终整个比较的Ⅰ类错误概率为α的目的。即α′= 1 - (1 -α) 2 / k ( k - 1) ; t =( …XA - …XB )S… dAB,S… dAB = MS误差1nA+1nB。计算t统计量进行多重配对比较。可以调整显著性水平,比Bofferroni方法的界限要小。

1. 4Student2Newman2Keuls法( SNK法)

q = ( …XA - …XB ) /MS误差21nA+1nB,它实质上是根据预先制定的准则将各组均数分为多个子集, 利用Studentized Range分布来进行假设检验,并根据所要检验的均数的个数调整总的Ⅰ类错误概率不超过α。用student range分布进行所有各组均值间的配对比较。如果各组样本含量相等或者选择了(差异较小的子集)的均值配对比较。在该比较过程中,各组均值从大到小按顺序排列,最先比较最末端的差异。

1. 5Dunnett2t检验

t =…Xi - …X0S…d i, S…di =MS误差21n1+1n0, 常用于多个试验组与一个对照组间的比较,根据算得的t值,误差自由度ν误差、试验组数k - 1以及检验水准α查Dunnett2t界值表,作出推断。

1. 6Duncan法(新复极差法)(SSR)指定一系列的“range”值,逐步进行计算比较得出结论。

q′= ( …XA - …XB ) /MS误差21nA+1nB算得q′值后查q′界值表。

1. 7Tukey检验

T = qa ( k,ν)MS误差n,式中qa ( k,ν) 为α水准上, 处理组数为k及误差自由度为ν时,由多重比较q界值表中查得的q临界值(表中组数a即为k) 。当比较的两组中A组的均数…XA 与B组的均数…XB 之差的绝对值大于或等于T值, 即| …XA - …XB | ≥T时,可以认为比较的两组总体均数μA 与μB 有差别;反之,尚不能认为μA 与μB 有差别。该方法要求各组样本含量相同,且一般不会增大Ⅰ型错误的概率。用student range统计量进行所有组间均值的配对比较,用所有配对比较误差率作为实验误差率。

1. 8Scheffe检验

检验统计量为F,计算公式为:F =( …XA - …XB ) 2MS误差1nA+1nB( k - 1)即当| …XA - …XB | ≥ Fα(ν1,ν2)MS误差1nA+1nB( k - 1)时,可以认为在α水准上,比较的两组总体均数μA 与μB 有差别。k为处理组数, Fα(ν1,ν2)为在α水准上,方差分析中的组间自由度为ν1 (ν1 = k - 1) ,误差自由度为ν2 (ν2 =N - k)时,由方差分析用F界值表查得的F临界值。

以上8种多重检验方法由于使用方便,计算简单而被广大科研工作者接受。