文档库 最新最全的文档下载
当前位置:文档库 › 机械原理matlab编程

机械原理matlab编程

机械原理matlab编程
机械原理matlab编程

机械原理(Matlab绘图)

专业班级

学号

姓名:

图一:导杆的角位移曲线和刨刀的位移曲线

x1=linspace(0,2*pi,100);

l1=100;

l3=360;

l4=200;

l6=200;

y=336;

w1=2*pi;

x3=atan((l6+l1*sin(x1))./(l1*cos(x1)));

for i = 1 : 100;

if x3(i)<0

x3(i)=x3(i)+pi;

end

end

S3=l1*cos(x1)./cos(x3);

V23=(-1)*w1*l1*sin(x1-x3);

w3=w1*l1*cos(x1-x3)./S3;

a23=w3.^2.*S3-w1.^2*l1*cos(x1-x3);

A3=(w1.^2.*l1.*sin(x3-x1)-2.*w3.*V23)./S3;

x4= atan((y-l3*sin(x3))./l4);

Se=l3*cos(x3)+l4*cos(x4);

w4=(-1)*w3.*l3.*cos(x3)./(l4.*cos(x4));

Ve=(-1)*w3.*l3.*sin(x3-x4)./cos(x4);

A4=(x3.^2.*l3.*sin(w3)+x4.^2.*l4.*sin(x4)-A3.*l3.*cos(x3))./(l4.*cos(x4)); ae=(-1)*(A3.*l3.*sin(x3-x4)+w3.^2.*l3.*cos(x3-x4)-w4.^2.*l4)./cos(x4); plotyy(180*x1./pi,180*x3./pi,180*x1./pi,Se/1000);

xlabel('x1/(°)'),ylabel('x3(°)');

title('导杆的角位移曲线和刨刀的位移曲线');

text(150,108,'x3');

text(200,60,'Se');

grid on;

plotedit on;

图二:导杆的角速度曲线和刨刀的速度曲线x1=linspace(0,2*pi,100);

l1=100;

l3=360;

l4=200;

l6=200;

y=336;

w1=2*pi;

x3=atan((l6+l1*sin(x1))./(l1*cos(x1)));

for i = 1 : 100;

if x3(i)<0

x3(i)=x3(i)+pi;

end

end

S3=l1*cos(x1)./cos(x3);

V23=(-1)*w1*l1*sin(x1-x3);

w3=w1*l1*cos(x1-x3)./S3;

a23=w3.^2.*S3-w1.^2*l1*cos(x1-x3);

A3=(w1.^2.*l1.*sin(x3-x1)-2.*w3.*V23)./S3;

x4= atan((y-l3*sin(x3))./l4);

Se=l3*cos(x3)+l4*cos(x4);

w4=(-1)*w3.*l3.*cos(x3)./(l4.*cos(x4));

Ve=(-1)*w3.*l3.*sin(x3-x4)./cos(x4);

A4=(x3.^2.*l3.*sin(w3)+x4.^2.*l4.*sin(x4)-A3.*l3.*cos(x3))./(l4.*cos(x4)); ae=(-1)*(A3.*l3.*sin(x3-x4)+w3.^2.*l3.*cos(x3-x4)-w4.^2.*l4)./cos(x4); plotyy(180*x1./pi,w3,180*x1./pi,Ve/1000);

xlabel('x1/(°)'),ylabel('w3(rad/s)');

title('导杆的角速度曲线和刨刀的速度曲线');

grid on;

text(100,-5,'Ve');

text(100,1.8,'w3');

axis([0 400 -7 4]);

plotedit on;

图三:导杆的角加速度曲线和刨刀的加速度曲线

x1=linspace(0,2*pi,100);

l1=100;

l3=360;

l4=200;

l6=200;

y=336;

w1=2*pi;

x3=atan((l6+l1*sin(x1))./(l1*cos(x1)));

for i = 1 : 100;

if x3(i)<0

x3(i)=x3(i)+pi;

end

end

S3=l1*cos(x1)./cos(x3);

V23=(-1)*w1*l1*sin(x1-x3);

w3=w1*l1*cos(x1-x3)./S3;

a23=w3.^2.*S3-w1.^2*l1*cos(x1-x3);

A3=(w1.^2.*l1.*sin(x3-x1)-2.*w3.*V23)./S3;

x4= atan((y-l3*sin(x3))./l4);

Se=l3*cos(x3)+l4*cos(x4);

w4=(-1)*w3.*l3.*cos(x3)./(l4.*cos(x4));

Ve=(-1)*w3.*l3.*sin(x3-x4)./cos(x4);

A4=(x3.^2.*l3.*sin(w3)+x4.^2.*l4.*sin(x4)-A3.*l3.*cos(x3))./(l4.*cos(x4)); ae=(-1)*(A3.*l3.*sin(x3-x4)+w3.^2.*l3.*cos(x3-x4)-w4.^2.*l4)./cos(x4); plotyy(180*x1./pi,A3,180*x1./pi,ae/1000);

xlabel('x1/(°)'),ylabel('A3(rad/s^2)'),grid;

title('导杆的角加速度曲线和刨刀的加速度曲线');

text(250,25,'ae');

text(300,50,'A3');

plotedit on;

图四:凸轮从动件位移曲线h=20;

F1=2*pi/3;

F2=pi/2;

i=1;

for x=0:0.01:2*pi;

if x>=0&x<=2*pi/3;

S(i)=h*(1-cos(pi*x./F1))./2;

elseif x>=2*pi/3&x<=pi;

S(i)=h;

elseif x>=pi&x<=5*pi/4;

S(i)=h-2*h*(x-pi).^2./(F2.^2);

elseif x>=5*pi/4 &x<=3*pi/2;

S(i)= 2*h*(F2-x+pi).^2./(F2.^2); elseif x>=3*pi/2 &x<=2*pi;

S(i)=0;

end

i=i+1;

x=0:0.01:2*pi;

plot(x,S);

title('从动件位移曲线');

axis([0 7 0 25]);

xlabel('x/(rad)');

ylabel('S/(mm)');

grid on;

图五:凸轮的理论轮廓曲线和实际轮廓曲线

e=10;

Rt=10;

Rb=25;

w=2*pi;

F1=2*pi/3;

F2=pi/2;

i=1;

for f=0:0.01:2*pi;

if f>=0&f<=2*pi/3;

S(i)=h*(1-cos(pi*f./F1))./2;

elseif f>=2*pi/3&f<=pi;

S(i)=h;

elseif f>=pi&f<=5*pi/4;

S(i)=h-2*h*(f-pi).^2./(F2.^2);

elseif f>=5*pi/4 &f<=3*pi/2;

S(i)= 2*h*(F2-f+pi).^2./(F2.^2);

elseif f>=3*pi/2 &f<=2*pi;

S(i)=0;

end

i=i+1;

end

f=0:0.01:2*pi;

s0=sqrt((Rb.^2)-(e.^2));

x =e*cos(f)+(s0+S).*sin(f);

y =(s0+S).*cos(f)-e*sin(f);

d1=e*(-1).*sin(f).*w+(s0+S).*cos(f).*w;

d2=(s0+S).*sin(f).*(-1).*w-e*cos(f).*w;

x1=x+Rt*d2./sqrt((d1.^2)+(d2.^2));

y1=y-Rt*d1./sqrt((d1.^2)+(d2.^2));

plot(x,y,'k-',x1,y1,'k-.');

title('凸轮的理论轮廓曲线和实际轮廓曲线'); text(-10,-30,'实际轮廓曲线');

text(-10,-40,'理论轮廓曲线');

axis([-40 50 -55 40 ]);

hold on;

plot(0,0);

text(0,-3,'O');

基于matlab的GUI设计——机械原理教学演示系统

机械原理教学演示系统——基于matlab的GUI设计 xxx 指导老师: 20年月日

目录 一、功能简介 (3) 二、总界面 (3) 三、凸轮模块 (4) 四、齿轮模块 (6) 五.参考书目 (6) 六.附录(部分程序源代码) (7)

一、功能简介 本系统能实现机械原理教学过程中凸轮模块与齿轮模块的设计与运动仿真,加深对机械原理课程学习的理解。 二、总界面 总界面标题设置:set(gcf,'name','机械原理教学演示系统 made by 翟鲁鑫'); 背景图片设置:ximg=imread('机械原理课本.jpg'); imshow(ximg); 背景声音播放:Fs=44100; [ywav,Fs]=wavread('夜的钢琴曲 - 六3.wav'); sound(ywav,Fs); 到各个模块:到凸轮模块 clc close(gcf); clear all

GUItulun 到齿轮模块 clc close(gcf); clear all GUIchilun 关闭系统:clc question='真的要退出吗?'; title='确认退出?'; button=questdlg(question,title,'是','否','是'); switch button case'是' clear all close case'否' return end 三、凸轮模块 设计要点: 1.背景声音设置方法同主界面

2.推程角、远休角、回程角之和不能大于360度的判别条件;基圆半径、滚子半径、行程不能为0的判别条件 sr0=get(handles.edit2,'string'); r0=str2num(sr0); if isequal(r0,0) errordlg('基圆半径不能为0,请重新输入','出错'); return end srr=get(handles.edit3,'string'); rr=str2num(srr); if isequal(rr,0) errordlg('滚子半径不能为0,请重新输入','出错'); return end sh=get(handles.edit4,'string'); h=str2num(sh); if isequal(h,0) errordlg('行程不能为0,请重新输入','出错'); return end n3=phi01+phi02+phi03; %推程角、远休止角与回程角的总和 if n3>360 errordlg('角度之和大于360,请重新输入','出错'); end 3.仿真程序。采用for 循环以及m(j)=getframe之前要先使用moviein函数Initialize movie frame memory,否则要提示错误 4.仿真之前要先清除绘图时留下的图像,命令如下cla(handles.axes1); 5.回主界面之前要先clear all,关闭音乐、清空global定义的全局变量,以防全局变量影响下一程序 6.图像保存。绘制出的图像可以保存供以后查看。主要命令有uiputfile()、imwrite() [sfilename,sfilepath]=uiputfile({'*.jpg';'*.bmp';'*.tif';'*.*'},... '保存图像文件','unititled.jpg'); if ~isequal([sfilename,sfilepath],[0,0]) sfilefullname=[sfilepath ,sfilename]; h_tulun = getframe(handles.axes1); imwrite(h_tulun.cdata,sfilefullname); else msgbox('您按了取消,保存失败','保存失败','error'); end

机械原理大作业

机械原理大作业 This model paper was revised by the Standardization Office on December 10, 2020

机械原理大作业三 课程名称:机械原理 设计题目:齿轮传动设计 院系: 班级: 设计者: 学号: 指导教师: 设计时间: 1、设计题目 机构运动简图 机械传动系统原始参数

2、传动比的分配计算 电动机转速min /745r n =,输出转速m in /1201r n =,min /1702r n =, min /2303r n ,带传动的最大传动比5.2max =p i ,滑移齿轮传动的最大传动比4m ax =v i ,定轴齿轮传动的最大传动比4m ax =d i 。 根据传动系统的原始参数可知,传动系统的总传动比为: 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。设带传动的传动比为5.2max =p i ,滑移齿轮的传动比为321v v v i i i 、、,定轴齿轮传动的传动比为f i ,则总传动比 令 4max 1==v v i i 则可得定轴齿轮传动部分的传动比为 滑移齿轮传动的传动比为 设定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 3、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、7、8、9和10为角度变位齿轮,其齿数: 35,18,39,14,43,111098765======z z z z z z ;它们的齿顶高系数1=* a h ,径向间 隙系数25.0=*c ,分度圆压力角020=α,实际中心距mm a 51'=。

机械原理大作业

Harbin Institute of Technology 机械原理大作业(一) 课程名称:机械原理 设计题目:连杆机构运动分析 院系:机电工程学院 班级: 设计者: 学号: 指导教师:

一、题目(13) 如图所示机构,已知各构件尺寸:Lab=150mm;Lbc=220mm;Lcd=250mm;Lad=300mm;Lef=60mm;Lbe=110mm;EF⊥BC。试研究各杆件长度变化对F点轨迹的影响。 二、机构运动分析数学模型 1.杆组拆分与坐标系选取 本机构通过杆组法拆分为: I级机构、II级杆组RRR两部分如下:

2.平面构件运动分析的数学模型 图3 平面运动构件(单杆)的运动分析 2.1数学模型 已知构件K 上的1N 点的位置1x P ,1y P ,速度为1x v ,1Y v ,加速度为1 x a ,1y a 及过点的1N 点的线段12N N 的位置角θ,构件的角速度ω,角加速度ε,求构件上点2N 和任意指定点3N (位置参数13N N =2R ,213N N N ∠=γ)的位置、 速度、加速度。 1N ,3N 点的位置为: 211cos x x P P R θ=+ 211sin y y P P R θ=+ 312cos()x x P P R θγ=++ 312sin()y y P P R θγ=++ 1N ,3N 点的速度,加速度为: 211211sin ()x x x y y v v R v P P ωθω=-=-- 211121sin (-) y y y x x v v R v P P ωθω=-=- 312131sin() () x x x y y v v R v P P ωθγω=-+=--312131cos()() y y y x x v v R v P P ωθγω=-+=-- 2 212121()()x x y y x x a a P P P P εω=---- 2 212121()() y y x x y y a a P P P P εω=+--- 2313131()()x x y y x x a a P P P P εω=---- 23133(1)(1) y y x x y y a a P P P P εω=+--- 2.2 运动分析子程序 根据上述表达式,编写用于计算构件上任意一点位置坐标、速度、加速度的子程序如下: 1>位置计算 function [s_Nx,s_Ny ] =s_crank(Ax,Ay,theta,phi,s) s_Nx=Ax+s*cos(theta+phi); s_Ny=Ay+s*sin(theta+phi); end 2>速度计算 function [ v_Nx,v_Ny ] =v_crank(s,v_Ax,v_Ay,omiga,theta,phi) v_Nx=v_Ax-s*omiga.*sin(theta+phi); v_Ny=v_Ay+s*omiga.*cos(theta+phi); end 3>加速度计算 function [ a_Nx,a_Ny ]=a_crank(s,a_Ax,a_Ay,alph,omiga,theta,phi) a_Nx=a_Ax-alph.*s.*sin(theta+phi)-omiga.^2.*s.*cos(theta+phi);

MATLAB程序:已知三个位置设计平面四杆机构求解程序(位移矩阵法)

%MATLAB程序:已知三个位置设计平面四杆机构求解程序(位移矩阵法) clear;clc; %凡是变量名前带v的为数值变量,不带的是符号变量 vxp1=0; vyp1=0; vsita1=0*pi/180; vxp2=-2; vyp2=6; vsita2=40*pi/180; vxp3=-10; vyp3=8; vsita3=90*pi/180; %精确位置P1,P2,P3及各角度 vsita12=vsita2-vsita1; vsita13=vsita3-vsita1; vxa=-10; vya=-2; vxd=-5; vyd=-2; %选定A,D点 %所有数值均在此确定,更改此处即可解出不同数值的四杆机构位移矩阵方程 syms xp1 yp1 xp2 yp2 xp3 yp3 sita12 sita13; syms xa ya xb1 yb1 xb2 yb2 xb3 yb3; f1='(xb2-xa)^2+(yb2-ya)^2=(xb1-xa)^2+(yb1-ya)^2'; f2='(xb3-xa)^2+(yb3-ya)^2=(xb1-xa)^2+(yb1-ya)^2'; %前两个机构方程 f3='xb2=cos(sita12)*xb1-sin(sita12)*yb1+xp2-xp1*cos(sita12)+yp1*sin(sita12)'; f4='yb2=sin(sita12)*xb1+cos(sita12)*yb1+yp2-xp1*sin(sita12)-yp1*cos(sita12)'; %由第一个位移矩阵方程得出 f5='xb3=cos(sita13)*xb1-sin(sita13)*yb1+xp3-xp1*cos(sita13)+yp1*sin(sita13)'; f6='yb3=sin(sita13)*xb1+cos(sita13)*yb1+yp3-xp1*sin(sita13)-yp1*cos(sita13)'; %由第二个位移矩阵方程得出 f1=subs(f1,{xa,ya},{vxa,vya}); f2=subs(f2,{xa,ya},{vxa,vya}); f3=subs(f3,{xp1,xp2,yp1,sita12},{vxp1,vxp2,vyp1,vsita12}); f4=subs(f4,{xp1,yp1,yp2,sita12},{vxp1,vyp1,vyp2,vsita12}); f5=subs(f5,{xp1,xp3,yp1,sita13},{vxp1,vxp3,vyp1,vsita13}); f6=subs(f6,{xp1,yp1,yp3,sita13},{vxp1,vyp1,vyp3,vsita13}); %代入具体数值 [xb1,xb2,xb3,yb1,yb2,yb3]=solve(f1,f2,f3,f4,f5,f6); %解方程 vxb1=vpa(xb1); vyb1=vpa(yb1); vxb2=vpa(xb2); vyb2=vpa(yb2); vxb3=vpa(xb3); vyb3=vpa(yb3); (vxb1-vxa)^2+(vyb1-vya)^2; (vxb2-vxa)^2+(vyb2-vya)^2; (vxb3-vxa)^2+(vyb3-vya)^2; %去掉这三行分号可验证B点三个位置是否距离A点相等 syms xd yd xc1 yc1 xc2 yc2 xc3 yc3;

机械原理大作业3 凸轮结构设计

机械原理大作业(二) 作业名称:机械原理 设计题目:凸轮机构设计 院系:机电工程学院 班级: 设计者: 学号: 指导教师:丁刚陈明 设计时间: 哈尔滨工业大学机械设计

1.设计题目 如图所示直动从动件盘形凸轮机构,根据其原始参数设计该凸轮。 表一:凸轮机构原始参数 序号升程 (mm) 升程运动 角(o) 升程运动 规律 升程许用 压力角 (o) 回程运动 角(o) 回程运动 规律 回程许用 压力角 (o) 远休止角 (o) 近休止角 (o) 12 80 150 正弦加速 度30 100 正弦加速 度 60 60 50 2.凸轮推杆运动规律 (1)推杆升程运动方程 S=h[φ/Φ0-sin(2πφ/Φ0)]

V=hω1/Φ0[1-cos(2πφ/Φ0)] a=2πhω12sin(2πφ/Φ0)/Φ02 式中: h=150,Φ0=5π/6,0<=φ<=Φ0,ω1=1(为方便计算) (2)推杆回程运动方程 S=h[1-T/Φ1+sin(2πT/Φ1)/2π] V= -hω1/Φ1[1-cos(2πT/Φ1)] a= -2πhω12sin(2πT/Φ1)/Φ12 式中: h=150,Φ1=5π/9,7π/6<=φ<=31π/18,T=φ-7π/6 3.运动线图及凸轮线图 运动线图: 用Matlab编程所得源程序如下: t=0:pi/500:2*pi; w1=1;h=150; leng=length(t); for m=1:leng; if t(m)<=5*pi/6 S(m) = h*(t(m)/(5*pi/6)-sin(2*pi*t(m)/(5*pi/6))/(2*pi)); v(m)=h*w1*(1-cos(2*pi*t(m)/(5*pi/6)))/(5*pi/6); a(m)=2*h*w1*w1*sin(2*pi*t(m)/(5*pi/6))/((5*pi/6)*(5*pi/6)); % 求退程位移,速度,加速度 elseif t(m)<=7*pi/6 S(m)=h; v(m)=0; a(m)=0; % 求远休止位移,速度,加速度 elseif t(m)<=31*pi/18 T(m)=t(m)-21*pi/18; S(m)=h*(1-T(m)/(5*pi/9)+sin(2*pi*T(m)/(5*pi/9))/(2*pi)); v(m)=-h/(5*pi/9)*(1-cos(2*pi*T(m)/(5*pi/9))); a(m)=-2*pi*h/(5*pi/9)^2*sin(2*pi*T(m)/(5*pi/9)); % 求回程位移,速度,加速度

机械原理大作业

机械原理大作业 二、题目(平面机构的力分析) 在图示的正弦机构中,已知l AB =100 mm,h1=120 mm,h2 =80 mm,W1 =10 rad/s(常数),滑块2和构件3的重量分别为G2 =40 N和G3 =100 N,质心S2 和S3 的位置如图所示,加于构件3上的生产阻力Fr=400 N,构件1的重力和惯性力略去不计。试用解析法求机构在Φ1=60°、150°、220°位置时各运动副反力和需加于构件1上的平衡力偶M 。 b Array 二、受力分析图

三、算法 (1)运动分析 AB l l =1 滑块2 22112112/,/s m w l a s m w l v c c == 滑块3 21113113/cos ,sin s m l w v m l s ??== 212 113/sin s m w l a ?-= (2)确定惯性力 N w l g G a m F c 2 1122212)/(== N w l g G a m F 121133313sin )/(?-== (3)受力分析 i F F i F F x R D R x R C R 43434343,=-= j F j F F R R R 232323-==

j F i F j F i F F R x R y R x R R 2121121212--=+= j F F F y R x R R 414141+= 取移动副为首解副 ① 取构件3为分离体,并对C 点取矩 由0=∑y F 得 1323F F F r R -= 由0=∑x F 得 C R D R F F 4343= 由 ∑=0C M 得 2112343/cos h l F F R D R ?= ②取构件2为分离体 由0=∑x F 得 11212cos ?R x R F F = 由0 =∑y F 得 1123212sin ?F F F R y R -= ③取构件1为分离体,并对A 点取矩 由0=∑x F 得 x R x R F F 1241= 由0 =∑ y F 得 y R y R F F 1241= 由0=A M 得 1132cos ?l F M R b = 四、根据算法编写Matlab 程序如下: %--------------已知条件---------------------------------- G2=40; G3=100; g=9.8; fai=0; l1=0.1; w1=10; Fr=400; h2=0.8; %--------分布计算,也可将所有变量放在一个矩阵中求解------------------- for i=1:37 a2=l1*(w1^2); a3=-l1*(w1^2)*sin(fai); F12=(G2/g)*a2;

哈工大机械原理大作业_凸轮机构设计(第3题)

机械原理大作业二 课程名称:机械原理 设计题目:凸轮设计 院系:机电学院 班级: 1208103 完成者: xxxxxxx 学号: 11208103xx 指导教师:林琳 设计时间: 2014.5.2

工业大学 凸轮设计 一、设计题目 如图所示直动从动件盘形凸轮,其原始参数见表,据此设计该凸轮。 二、凸轮推杆升程、回程运动方程及其线图 1 、凸轮推杆升程运动方程(6 50π?≤ ≤) 升程采用正弦加速度运动规律,故将已知条件mm h 50=,6 50π =Φ带入正弦加速度运动规律的升程段方程式中得: ??? ?? ???? ??-=512sin 215650?ππ?S ;

?? ? ?????? ??-= 512cos 1601ππωv ; ?? ? ??= 512sin 1442 1?π ωa ; 2、凸轮推杆推程远休止角运动方程( π?π ≤≤6 5) mm h s 50==; 0==a v ; 3、凸轮推杆回程运动方程(9 14π ?π≤≤) 回程采用余弦加速度运动规律,故将已知条件mm h 50=,9 5'0π= Φ,6 s π = Φ带入余弦加速度运动规律的回程段方程式中得: ?? ? ???-+=)(59cos 125π?s ; ()π?ω--=59 sin 451v ; ()π?ω-=59 cos 81-a 21; 4、凸轮推杆回程近休止角运动方程(π?π 29 14≤≤) 0===a v s ; 5、凸轮推杆位移、速度、加速度线图 根据以上所列的运动方程,利用matlab 绘制出位移、速度、加速度线图。 ①位移线图 编程如下: %用t 代替转角 t=0:0.01:5*pi/6; s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5)); hold on plot(t,s); t=5*pi/6:0.01:pi; s=50; hold on plot(t,s); t=pi:0.01:14*pi/9; s=25*(1+cos(9*(t-pi)/5));

机械原理大作业

机械原理大作业三 课程名称: 机械原理 级: 者: 号: 指导教师: 设计时间: 1.2机械传动系统原始参数 设计题目: 系: 齿轮传动设计 1、设计题 目 1.1机构运动简图 - 11 7/7777777^77 3 UtH TH7T 8 'T "r 9 7TTTT 10 12 - 77777" 13 ///// u 2

电动机转速n 745r/min ,输出转速n01 12r/mi n , n02 17r /mi n , n°323r/min,带传动的最大传动比i pmax 2.5 ,滑移齿轮传动的最大传动比 i vmax 4,定轴齿轮传动的最大传动比i d max 4。 根据传动系统的原始参数可知,传动系统的总传动比为: 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实 现。设带传动的传动比为i pmax 2.5,滑移齿轮的传动比为9、心、「3,定轴齿轮传动的传动比为i f,则总传动比 i vi i vmax 则可得定轴齿轮传动部分的传动比为 滑移齿轮传动的传动比为 设定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 3、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、 7、8 9和10为角度变位齿轮,其齿数: Z5 11,Z6 43,Z7 14,Z8 39,Z9 18,乙。35 ;它们的齿顶高系数0 1,径向间隙

系数c 0.25,分度圆压力角200,实际中心距a' 51mm。 根据定轴齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮11、12、13和14为角度变位齿轮,其齿数:Z11 z13 13,乙 2 z14 24。它们的齿顶高系数d 1,径向间隙系数c 0.25,分度圆压力角200,实际中心距 a' 46mm。圆锥齿轮15和16选择为标准齿轮令13,乙 6 24,齿顶高系数 h a 1,径向间隙系数c 0.20,分度圆压力角为200(等于啮合角’)。 4、滑移齿轮变速传动中每对齿轮几何尺寸及重合度的计算 4.1滑移齿轮5和齿轮6

机械原理课程设计Matlab编程

/*Matlab程序*/ l1 = 59.1000; l2 = 263.9000; l3=120; l4=266.83; l5=180; l6=45; x2=170; y2=132.7289; w1=9.4248; N=42:10:402; ay=119:10:479 a=2*l1*l3*sin(N/180*pi); b=2*l3*(l1*cos(N/180*pi)-l4); c=l2^2-l1^2-l3^2-l4^2+2*l1*l4*cos(N/180*pi); jiao3=2*atan((a- sqrt(a.^2+b.^2-c.^2))./ (b-c))/pi*180+77 g=2*l1*l2*sin(N/180*pi); h=2*l2*(l1*cos(N/180*pi)-l4); m=l1^2+l2^2+l4^2-l3^2-2*l1*l4*cos(N/180*pi); jiao2=2*atan((g- sqrt(g.^2+h.^2-m.^2))./ (h-m))/pi*180+77 lof=-sqrt(l6^2-x2^2-l5^2+2*l5*x2*cos((180+jiao3)/180*pi)+l5^2*sin(j iao3/180*pi).^2)+y2-l5* sin((180+jiao3)/180*pi)

j12=N-(jiao2-77); j32=jiao3-jiao2; j13=(N-(jiao3-77)); j23=(jiao2-jiao3); w3=(w1*l1*sin(j12/180*pi))./ (l3*sin(j32/180*pi)) w2=(-1*w1*l1*sin(j13/180*pi))./(l2*sin(j23/180*pi)) a3=(w1^2*l1*cos(j12/180*pi)+w2.^2*l2-(w3.^2).*(l3*cos(j32/180*pi)) )./ (l3*sin(j32/180*pi)) a2=(-w1^2*l1*cos(j13/180*pi)-(w2.^2).*(l2*cos(j23/180*pi))+l3*w3.^ 2)./ (l3*sin(j23/180*pi)) jiao4=acos((x2-l5*cos((180+jiao3)/180*pi))/l6)/pi*180 w4=((-l5*sin((pi+jiao3)/180*pi)).*w3)./ (l6*sin(jiao4/180*pi)) vof=((l5*sin((180+jiao3-jiao4)/180*pi)).*w3).* sin(jiao4/180*pi) aof=(l6*w4.^2+(l5*w3.^2).*(cos((180+jiao3-jiao4)/180*pi))+l5*a3.*si n((180+jiao3-jiao4)/180*pi))./sin(jiao4/180*pi) 作图程序: /*F点的位移*/ plot(N+77,lof,'-xk') xlabel('AB杆的角度'),ylabel('F点的位移/(mm)') title('F点的位移曲线图') text(100, 171.3339,'初始值= 171.3339')

机械原理课程设计matlab程序及成果图

Wjr_main.m %1.输入已知数据 clear; l2=0.1605;%AB的长度单位m l4=0.6914;%CD的长度单位m l5=0.2074;%DE的长度单位m l1=0.370;%AC的长度单位m l1p=0.6572;%CF的长度单位m omg2=8.378; af2=0; hd=pi/180; du=180/pi; %2.调用子函数abc.m计算牛头刨机构位移,角速度,角加速度for n1=1:689; tt2(n1)=-0.4488+(n1-1)*hd; ll=[l2,l4,l5,l1,l1p]; [tt,omg,af]=abc(tt2(n1),omg2,af2,ll); s4(n1)=tt(1); tt4(n1)=tt(2); tt5(n1)=tt(3); sE(n1)=tt(4);

v34(n1)=omg(1); omg4(n1)=omg(2); omg5(n1)=omg(3); vE(n1)=omg(4); a3(n1)=af(1); af4(n1)=af(2); af5(n1)=af(3); aE(n1)=af(4); end %3.位移,角速度,角加速度 figure(1); n1=1:689; t=(n1-1)*pi/180; subplot(2,2,1); %绘角位移及位移线图plot(t,tt4*du,'r-.'); grid on; hold on; axis auto; [haxes,hline1,hine2]=plotyy(t,tt5*du,t,sE);

grid on; hold on; xlabel('时间/份'); axes(haxes(1)); ylabel('角位移/\circ'); axes(haxes(2)); ylabel('位移/m'); hold on; grid on; text(1.15,-0.65,'tt_4'); text(3.4,0.27,'tt_5'); text(2.25,-0.15,'s_E'); subplot(2,2,2); %绘角速度及速度线图plot(t,omg4,'r-.'); grid on; hold on; axis auto; [haxes,hline1,hline2]=plotyy(t,omg5,t,vE); grid on; hold on; xlabel('时间/份') axes(haxes(1));

哈工大机械原理大作业

连杆的运动的分析 一.连杆运动分析题目 图1-13 连杆机构简图 二.机构的结构分析及基本杆组划分 1.。结构分析与自由度计算 机构各构件都在同一平面内活动,活动构件数n=5, PL=7,分布在A、B、C、E、F。没有高副,则机构的自由度为 F=3n-2PL-PH=3*5-2*7-0=1 2.基本杆组划分 图1-13中1为原动件,先移除,之后按拆杆组法进行拆分,即可得到由杆3和滑块2组成的RPR II级杆组,杆4和滑块5组成的RRP II级杆组。机构分解图如下:

图二 图一 图三 三.各基本杆组的运动分析数学模型 图一为一级杆组, ? c o s l A B x B =, ? sin lAB y B = 图二为RPR II 杆组, C B C B j j B E j B E y y B x x A A B S l C E y x S l C E x x -=-==-+=-+=0000 )/a r c t a n (s i n )(c o s )(?? ? 由此可求得E 点坐标,进而求得F 点坐标。 图三为RRP II 级杆组, B i i E F i E F y H H A l E F A l E F y y l E F x x --==+=+=111)/a r c s i n (s i n c o s ??? 对其求一阶导数为速度,求二阶导数为加速度。

lAB=108; lCE=620; lEF=300; H1=350; H=635; syms t; fai=(255*pi/30)*t; xB=lAB*cos(fai); yB=lAB*sin(fai); xC=0; yC=-350; A0=xB-xC; B0=yB-yC; S=sqrt(A0.^2+B0.^2); zj=atan(B0/A0); xE=xB+(lCE-S)*cos(zj); yE=yB+(lCE-S)*sin(zj); a=0:0.0001:20/255; Xe=subs(xE,t,a); Ye=subs(yE,t,a); A1=H-H1-yB; zi=asin(A1/lEF); xF=xE+lEF*cos(zi); vF=diff(xF,t); aF=diff(xF,t,2); m=0:0.001:120/255; xF=subs(xF,t,m); vF=subs(vF,t,m); aF=subs(aF,t,m); plot(m,xF) title('位移随时间变化图像') xlabel('t(s)'),ylabel(' x') lAB=108; lCE=620; lEF=300; H1=350; H=635; syms t; fai=(255*pi/30)*t; xB=lAB*cos(fai); yB=lAB*sin(fai); xC=0;

机械原理matlab分析大作业3-28

机械原理 第一题: 求C点的位移、速度及加速度。 由封闭形ABCDEA与AEFA得: L6+L4+L3 =L1+L2 L1’=L6+L4’ (1)位置分析 机构的封闭矢量方程式写成在两坐标上的投影表达式: 由以上方程求出θ2 、θ3 、θ4 、L1’ 1.主程序:

%输入已知数据 l2=60; l3=35; l4=75; l5=50; l6=40; l7=70; hd=pi/180; du=180/pi; omega1=10; alpha1=0; %调用子函数计算角位移,角速度及角加速度 for n1=1:66 %曲柄转角范围 theta1(n1)=(n1-1)*hd; ll=[l2,l3,l4,l5,l6,l7]; [theta,omega,alpha]=six_bar(theta1(n1),omega1,ll); l1(n1)=theta(1); theta2(n1)=theta(2); theta4(n1)=theta(3); theta3(n1)=theta(4); v1(n1)=omega(1); omega2(n1)=omega(2); omega3(n1)=omega(3); omega4(n1)=omega(4); a1(n1)=alpha(1); alpha2(n1)=alpha(2); alpha3(n1)=alpha(3); alpha4(n1)=alpha(4); e nd %图像输出 figure(1); n1=1:66; t=(n1-1)*2*pi/360; subplot(2,2,1); %滑块F线位移L1图像输出 plot(theta1*du,l1,'k'); title('L1线位移图'); xlabel('角位移\theta_1/\circ') ylabel('线位移/mm') grid on;

机械原理大作业

机械原理大作业 课程名称:机械原理 设计题目:连杆机构运动分析 院系:机械工程院 班级: xxxx 学号: xxxxx 设计者: xx 设计时间:2016年6月

一、题目 1-12:所示的六连杆机构中,各构件尺寸分别为:lAB =200mm,lBC=500mm,lCD=800mm,xF=400mm,xD=350mm,yD=350mm,w1=100rad/s,求构件5上的F点的位移、速度和加速度。 二、数学模型 1.建立直角坐标系 以F点为直角坐标系的原点建立直角坐标系X-Y,如下图所示。

2.机构结构分析 该机构由I级杆组RR(原动件AB)、II级杆组RRR(杆2、3)、II级杆组PRP (杆5、滑块4)组成。 3.各基本杆组运动分析 1.I级杆组RR(原动件AB) 已知原动件AB的转角

φ=0-2Π 原动件AB的角速度 w=10rad/s 原动件AB的角加速度 α=0 运动副A的位置 xA=-400,yA=0 运动副A的速度 vA=0,vA=0 运动副A的加速度 aA=0,aA=0 可得: xB=xA+lAB*cos(φ) yB=yA+lAB*sin(φ) 速度和加速度分析: vxB=vxA-wl*AB*sin(Φ) vyB=vyA+w*lAB*sin(φ) axB=axA-w2*lAB*cos(φ)-e*lAB*sin(φ) ayB=ayA-w2*lAB*sin(φ)+e*lAB*cos(φ)

2.II级杆组RRR(杆2、3) 杆2的角位置、角速度、角加速度 lBC=500mm,lCD=800mm,xD=350mm,yD=350mm, ψ2=arctan﹛[Bo+﹙Ao2+Bo2-Co2﹚?]/﹙Ao+Bo﹚﹜ ψ3=arctan[﹙yC-yD)/(xC-xD)] Ao=2*LBC(xD-xB) Bo=2*LBC(yD-yB) lBD2=(xD-xB)2+(yD-yB)2 Co=lBC2+lBD2-lCD2 xC=xB+lBC*cos(ψ2) yC=xB+lBC*sin(ψ2) 求导可得C点的角速度和角加速度。

机械原理matlab编程

机械原理(Matlab绘图) 专业班级 学号 姓名: 图一:导杆的角位移曲线和刨刀的位移曲线 x1=linspace(0,2*pi,100); l1=100; l3=360; l4=200; l6=200; y=336; w1=2*pi; x3=atan((l6+l1*sin(x1))./(l1*cos(x1))); for i = 1 : 100; if x3(i)<0 x3(i)=x3(i)+pi; end end S3=l1*cos(x1)./cos(x3); V23=(-1)*w1*l1*sin(x1-x3); w3=w1*l1*cos(x1-x3)./S3; a23=w3.^2.*S3-w1.^2*l1*cos(x1-x3); A3=(w1.^2.*l1.*sin(x3-x1)-2.*w3.*V23)./S3; x4= atan((y-l3*sin(x3))./l4); Se=l3*cos(x3)+l4*cos(x4); w4=(-1)*w3.*l3.*cos(x3)./(l4.*cos(x4)); Ve=(-1)*w3.*l3.*sin(x3-x4)./cos(x4); A4=(x3.^2.*l3.*sin(w3)+x4.^2.*l4.*sin(x4)-A3.*l3.*cos(x3))./(l4.*cos(x4)); ae=(-1)*(A3.*l3.*sin(x3-x4)+w3.^2.*l3.*cos(x3-x4)-w4.^2.*l4)./cos(x4); plotyy(180*x1./pi,180*x3./pi,180*x1./pi,Se/1000); xlabel('x1/(°)'),ylabel('x3(°)'); title('导杆的角位移曲线和刨刀的位移曲线'); text(150,108,'x3'); text(200,60,'Se'); grid on; plotedit on;

哈工大-机械原理大作业3-齿轮-23题完整

1、设计题目 1.1机构运动简图 1.2机械传动系统原始参数 2、传动比的分配计算 电动机转速n=970r/min,输出转速n1=41 r/min,n2=37 r/min,n3=33 r/min,带传动的最大传动比i pmax=2.5,滑移齿轮传动的最大传动比i vmax=4,定轴齿轮传动的最大传动比i dmax=4。 根据传动系统的原始参数可知,传动系统的总传动比为 i1=n n1=970/41=23.659i2=n n2 =970/37=26.216i3=n n3 =970/33=29.394 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。设带传动的传动比为i pmax=2.5,滑移齿轮的传动比为i v1、i v2和i v3,定轴齿轮传动的传动比为i f,则总传动比 i1=i pmax i v1i f i2=i pmax i v2i f

i 3=i pmax i v3i f 令i v3=i vmax =4 则可得定轴齿轮传动部分的传动比为i f = i 3 i pmax ×i vmax = 29.3942.5×4 =2.939 滑移齿轮传动的传动比i v1 = i 1 i pmax ×i f = 23.659 2.5×2.939 =3.220 i v2=i 2i pmax ×i f =26.216 2.5×2.939 =3.568 定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 i d = i f 3= 2.9393 =1.432≤i dmax =4 3、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、7、8、9和10为角度变位齿轮,其齿数:z 5=12,z 6=38,z 7=11,z 8=39,z 9=10,z 10=40;它们的齿顶高系数h a ?=1,径向间隙系数c ?=0.25,分度圆压力角α=20°,实际中心距a '=52mm 。 根据定轴齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮11、12、13和14为角度变位 齿轮,其齿数:z 11=z 13=12,z 12=z 14=17。它们的齿顶高系数h a ? =1,径向间隙系数c ?=0.25, 分度圆压力角α=20°,实际中心距a '=45mm 。圆锥齿轮15和16选择为标准齿轮z 15=17,z 16=25, 齿顶高系数h a ?=1,径向间隙系数c ?=0.2,分度圆压力角α=20°(等于啮合角α') 。

机械原理matlab作业

1.在图示的铰链四杆机构中,AB 为主动杆,以s rad /47.10=ω匀角速度逆时针旋 转,各杆长度分别为mm l mm l mm l mm l 80,100,120,404321====,连杆点F 的 位置是FE ⊥BC ,BE 长mm S 60=,EF 长mm T 10=,选取直角坐标系如图所示。求当曲 柄1与 x 轴正向夹角为 360~01=?时,连杆2和摇杆3所转过的角度2?、3?以及它们 的角速度和角加速度2ω、3ω、2α、3α,并求出连杆点F 的各位置坐标、速度和加速度。 规定 ? 角从轴 x 正向测量时,逆时针为正,反之为负。 y 机械原理作业撰写要求 机械原理电算分析是机械原理课程学习的重要环节,是检验学生综合素质与实践能力培养的手段。 1、作业内容顺序 作业内容顺序一般为:题目、数学模型、程序设计、计算结果和附件M 文件。 2、作业格式要求 作业格式要求见摸板,纸张大小一律使用A4复印纸。 3. 书写规定 3.1公式 公式号按顺序编号,如(2)表示第2个公式。 公式应采用公式编辑器输入,选择默认格式,公式号右对齐,公式调整至基本居中。 3.2 插表 每个表格均应有标题(由表序和表名组成),如第一个插表的序号为“表1”。表格统一用三线表,表序与表名之间空一格,表名中不允许使用标点符号,表名后不加标点。标题置于表上,要求用5号字(包括表中的内容)。 3.3 插图 插图应与文字紧密配合,文图相符,内容正确。图题置于图的下方,要求用5号字。 插图应采用AutoCAD 绘制,然后拷贝粘贴到Word 文档,以利于以后编辑。 3.4物理量的名称、符号和计量单位

机械原理大作业一

连杆机构的运动分析 一.题目 如图所示是曲柄摇杆机构,各构件长度分别为a,b,c,d,试研究各构件长度的变化对机构急回特性的影响规律。 二.机构分析 四连杆机构可分为如下两个基本杆组 Ⅰ级杆组 RRRⅡ级杆组 AB为曲柄,做周转运动;CD为摇杆,做摆动运动; BC为连杆;AB,CD均为连架杆,AB为主动件。

三.建立数学模型 θ为极位夹角,φ为最大摆角 必须满足条件为:1.a≤b,a≤c,a≤d(a为最短杆); 2.L min+L max≤其他两杆之和。 下面分析杆长和极位夹角的关系: 在△AC2B中, =; 在△AC1B中, =。 θ=- K=

最后分以下四种情况讨论: 1.机架长度d变化 令a=5,b=30,c=29 d由6开始变化至54,步长为1 输出杆长a,b,c,d和K。 2.连杆长度b变化 令a=5,b=29,d=30 b由6开始变化至54,步长为1 输出杆长a,b,c,d和K。 3.摇杆长度c变化 令a=5,b=29,d=30 c由6开始变化至54,步长为1 输出杆长a,b,c,d和K。 4.曲柄长度a变化 令b=29,c=28,d=30 a由5开始变化至27,步长为1 输出杆长a,b,c,d和K。

四.MATLAB计算编程a=5;b=30;c=29; d=6:1:54; m=(d.^2-216)./(50.*d); n=(384+d.^2)./(70.*d); p=acos(m); q=acos(n); w=p-q; o=(w.*180)/3.14; K=(180+o)./(180-o); fprintf('%.6f\n',K); plot(d,K,'b') xlabel('机架长度d变化时 '); ylabel('极位夹角/度'); tilte('极位夹角变化图'); ———————————————————————————————————— ——— a=5;d=30;c=29; b=6:1:54; m=((b-5).^2+59)./(60.*(b- 5)); n=(59+(b+5).^2)./(60.*(b+ 5)); p=acos(m); q=acos(n); w=p-q; o=(w.*180)/3.14; K=(180+o)./(180-o); fprintf('%.6f\n',K); plot(b,K,'b') xlabel('连杆长度b变化时'); ylabel('极位夹角/度'); tilte('极位夹角变化图');

相关文档
相关文档 最新文档