文档库 最新最全的文档下载
当前位置:文档库 › 装配工艺优化中的可视化公差分析

装配工艺优化中的可视化公差分析

装配工艺优化中的可视化公差分析
装配工艺优化中的可视化公差分析

装配工艺优化中的可视化公差分析

合理运用以部分析因设计、完全析因设计和响应面设计为主体内容的经典DOE 试验设计理论可以帮助我们在工业运营的环境中筛选重要因素,量化描述重要因子的主效应和交互作用,乃至于推算出重要因子的最佳设置方案。这些方法论无论是在传统的质量改进,还是在现代的六西格玛活动中,均有过成功应用的实际案例。

但是,切不可因此以为经典试验设计就是包治百病的灵丹妙药。不少企业在追求产品质量、流程能力精益求精的过程中,发现单纯地依靠经典试验设计,先天性地存在着一些不可避免的风险和隐患。最常见的一类问题可以用图一表示:原本以为根据试验设计建立的统计模型,投入实际生产的产品结果将会百分百地落入规格要求之内(如图左部的理想状态所示),但真正投产后却发现产品结果的波动相当大,相当一部分的数据超出了规格要求(如图右部的现实状态所示)。产生这样的结果不仅给企业带来了经济上的损失,而且也动摇了工程师进一步应用试验设计的信心。

图一 工艺流程能力的图示

其实,深入了解试验设计领域的研究人员都基本知晓产生这个问题的一个主要原因是:误差的传递!如图二所示,工艺流程的输入变量

X 是通过根据试验设计或回归方程获取的传递函数对工艺流程的输出变量Y 发生作用。在这个传递过程中,流程自变量不仅会影响产品质量特征的均值(这是大家所熟知的),而且由于流程自变量不可避免地存在着变异(或称误差),它还会影响产品质量特征的变异,这就是所谓的“误差传递”。如果要定量地表达误差传递,可以用下列公式来表示。

其中, 表示输出变量Y 的方差, 表示输入变量X n 的方差,

表示输入变量X n 的敏感度系数,表示输入变量X n 对输出变量Y 方差的贡献程度。

图二 工艺流程的宏观统计模型

公差分析是克服误差传递干扰的一种合适方法,也是试验设计理论研究的有益扩充。通俗地说,公差

理想状态

现实状态

规格下限

规格上限

目标值

规格下限

规格上限

目标值

22

2

2

12...1n

X n X Y

X f X f σσσ???

? ????++???? ????=2Y σ2

X n σ????

????n X f 2

X 2n n σ???? ????X f

分析就是运用统计分析的方法,事先给众多输入X 设置合理的公差(而不仅仅是目标值),以保证经过工艺流程之后,产生的输出Y 对输入的变异不敏感,依然落在顾客要求或技术规范之内。这个过程往往要求减小输入的公差,而减小输入的公差往往意味着产品加工成本的提高。因此,公差分析还强调选择合适的输入变量,减小到合适的公差幅度,以确保工艺优化的成本最小化。同时,一次成功的公差分析常常不是一蹴而就的,一般需要工艺工程师和统计工程师等多方协作、不断沟通反馈后才能完成。

近年来,随着市场竞争的加剧,企业质量意识的增强,关于公差分析的研究与应用也越来越多,可视化公差分析就是其中之一。所谓才可视化公差分析,就是指通过一组特定的图形、动画、动态交互等形式实现公差分析的过程。在信息化技术日益发达、“全员参与质量管理”日益普及的今天,可视化公差分析对企业的价值也正在逐步凸现。

从理论层面看,可视化公差分析并没扩充很多复杂的公式、指标,只是增加了一些新型的图形化分析手段,比较典型的是“缺陷刻画器”和“缺陷参数刻画”,下面将逐一展开介绍。

先看如图三所示的“缺陷刻画器”。图中的横轴代表某个工艺参数,纵轴代表流程最终的缺陷率,不同颜色(如蓝色和红色)的曲线代表该工艺参数对不同输出规格限(如A 和B )要求的影响规律。当然,我们最关注的还是那条黑色的曲线,它代表的是总体缺陷率,即所有超出各个输出规格限的缺陷之和。这条黑色曲线的波谷位置就是最低总体缺陷率,与它对应的工艺参数值往往就是最我们期望找到的最理想的工艺参数设定值。

图三 缺陷刻画器示意图

再看如图四所示的“缺陷参数刻画”。同样的是,图中的横轴代表某个工艺参数,纵轴代表流程最终的缺陷率。不同的是,四种不同颜色的曲线分别代表四种不同的工艺改进方法(调整平均值、缩小标准差、设定规格下限、设定规格上限)降低缺陷率的有效程度。实际工作中,调整平均值、缩小标准差这两种方法用得较多。图中一条红色虚线代表工艺参数的当前平均值的所在位置,两条蓝色虚线代表当前的工艺参数加减一倍的当前标准差值后的位置。在该图中可以看到,整个流程的最低缺陷率出现在“缩小标准差”曲线的波谷位置,说明当工艺优化到一定程度后,通常缩小标准差是最能见效的工艺改进方法,当然其成本也很可能比其他几种方法高,使用时应当综合考虑这些改进方法的利弊。

的缺陷率 的缺陷率

图四缺陷参数刻画示意图

下面将结合一个案例分析(具体的计算分析均是通过专业统计分析软件JMP实现),说明可视化公差分析在工艺优化中的实际应用。

例:一家橡胶轮胎公司打算提高其主打产品的质量,逐步向“六西格玛水准”迈进。该产品的质量特性涉及四个方面:磨损(只有下规格限为110)、弹性(只有上规格限为2000)、延展性(上下规格限分别为[350, 550])、硬度(只有下规格限为65)。根据前期研究的结论,这些质量特性与轮胎中的硅Silica (当前公差范围为[0.95,1.55])、硅烷Silane(当前公差范围为[44,56])、硫磺Sulfur(当前公差范围为[1.8,2.7])三种成分关系密切。现在按照响应面设计的原理,又执行了20次试验(结果见图五),试用可视化公差分析方法来优化这三种橡胶成分的公差设置。

图五试验方案与数据结果

在计算和检验回归模型(过程略)之后,假定三种橡胶成分在生产过程中的变异服从正态分布,其均值等于上下公差的平均值,其标准差为公差范围的1/6,则可以进行计算机模拟,得到与图六类似的结果。由图可知,在公差改进之前,流程的总体缺陷率高达4.823%。

那么,如何选择合适的输入变量进行公差优化呢?无论是从图七显示的缺陷刻画器,还是从图八显示的缺陷参数刻画上,都可以明显地发现:调整硅Silica的平均值,总体缺陷率下降得最快,而最低总体缺陷率大约出现在硅Silica的平均值等于1的位置上。

图六公差改进前的统计模型模拟结果

图七公差改进前的缺陷刻画器

图八公差改进前的缺陷参数刻画

因此,我们找到了改进的方向,在将硅Silica的平均值减小到1后,重新进行计算机模拟,得到与图九类似的结果。由图可知,在将硅Silica的公差范围改为[0.7,1.3],而硅烷Silane和硫磺Sulfur的公差范围保持不变后,流程的总体缺陷率变为0.184%,一下子就降低了4个百分点,成果非常明显。

当然,这并不是该流程所能达到的极限最佳状态。如果进一步观察公差改进之后重新绘制的缺陷刻画器(见图十)和缺陷参数刻画(见图十一),不难发现:工艺流程的公差范围还可以继续优化下去,只是这时调整平均值已经收效甚微,而采用缩小标准差(尤其是硅Silica和硫磺Sulfur的标准差)的方法将会显著地降低总体缺陷率。这个现象也从侧面反映了只要企业追求精益求精的质量目标不动摇,可视化公差分析必将具有长久的生命力,持续不断地在工艺优化中发挥作用。

图九公差改进后的统计模型模拟结果

图十公差改进后的缺陷刻画器

图十一公差改进后的缺陷参数刻画

总之,公差分析的实质是研究在改进成本最低的条件下实现输出响应的最优化,它常常会在试验设计的结尾阶段起到画龙点睛的效果,两者在现代工业的工艺优化中相得益彰。而可视化公差分析则在统计科学和专业工程技术之间搭建了一座沟通的桥梁,提高了统计技术人员的分析效率、便于非统计专业背景的工程技术人员理解分析思路,为积极探索实现完美品质的现场工作人员指明了切实可行的改进方向。笔者水平有限,谨以此文抛砖引玉,希望有更多的试验设计专家能够将成熟的统计理论转化为有形的生产力,为提高中国制造业的核心竞争能力创造更大的价值。

公差分析

例子1公差(Tolerancing) 1-1概论 公差分析将有系统地分析些微扰动或色差对光学设计性能的影响。公差分析的目的在于定义误差的类型及大小,并将之引入光学系统中,分析系统性能是否符合需求。Zemax内建功能强大的公差分析工具,可帮助在光学设计中建立公差值。公差分析可透过简易的设罝分析公差范围内,参数影响系统性能的严重性。进而在合理的费用下进行最容易的组装,并获得最佳的性能。 1-2公差 公差值是一个将系统性能量化的估算。公差分析可让使用者预测其设计在组装后的性能极限。设罝公差分析的设罝值时,设计者必须熟悉下述要点: ●选取合适的性能规格 ●定义最低的性能容忍极限 ●计算所有可能的误差来源(如:单独的组件、组件群、机械组装等等…) ●指定每一个制造和组装可允许的公差极限 1-3误差来源 误差有好几个类型须要被估算 制造公差 ●不正确的曲率半径 ●组件过厚或过薄 ●镜片外型不正确 ●曲率中心偏离机构中心

●不正确的Conic值或其它非球面参数 材料误差 ●折射率准确性 ●折射率同质性 ●折射率分布 ●阿贝数(色散) 组装公差 ●组件偏离机构中心(X,Y) ●组件在Z.轴上的位置错误 ●组件与光轴有倾斜 ●组件定位错误 ●上述系指整群的组件 周围所引起的公差 ●材料的冷缩热胀(光学或机构) ●温度对折射率的影响。压力和湿度同样也会影响。 ●系统遭冲击或振动锁引起的对位问题 ●机械应力 剩下的设计误差 1-4设罝公差 公差分析有几个步骤须设罝: ●定义使用在公差标准的」绩效函数」:如RMS光斑大小,RMS波前误差,MTF需求, 使用者自定的绩效函数,瞄准…等 ●定义允许的系统性能偏离值 ●规定公差起始值让制造可轻易达到要求。ZEMAX默认的公差通常是不错的起始点。 ●补偿群常被使用在减低公差上。通常最少会有一组补偿群,而这一般都是在背焦。 ●公差设罝可用来预测性能的影响 ●公差分析有三种分析方法: ?灵敏度法 ?反灵敏度法

统计公差分析方法概述

统计公差分析方法概述(2012-10-23 19:45:32) 分类:公差设计统计六标准差 统计公差分析方法概述 一.引言 公差设计问题可以分为两类:一类是公差分析(Tolerance Analysis ,又称正计算) ,即已知组成环的尺寸和公差,确定装配后需要保证的封闭环公差;另一类是公差分配(Tolerance Allocation ,又称反计算) ,即已知装配尺寸和公差,求解组成环的经济合理公差。 公差分析的方法有极值法和统计公差方法两类,根据分布特性进行封闭环和组成环公差的分析方法称为统计公差法.本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。 二.Worst Case Analysis 极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100% 落入合成后的公差范围内。 <例>Vector loop:E=A+B+C,根据worst case analysis可得 D(Max.)=(20+0.3)+(15+0.25)+(10+0.15)=45.7,出现在A、B、C偏上限之状况 D(Min.)=(20-0.3)+(15-0.25)+(10-0.2)=44.3,出现在A,B、C偏下限之状况 45±0.7适合拿来作设计吗? Worst Case Analysis缺陷: ?设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难; ?公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。

以上例Part A +Part B+ Part C,假设A、B、C三个部材,相对于公差规格都有3σ的制程能力水平,则每个部材的不良机率为1-0.9973=0.0027;在组装完毕后所有零件都有缺陷的机率为:0.0027^3=0.000000019683。这表明几个或者多个零件在装配时,同一部件的各组成环,恰好都是接近极限尺寸的情况非常罕见。 三.统计公差分析法 ?由制造观点来看,零件尺寸之误差来自于制程之变异,此变异往往呈现统计分布的型态,因此设计的公差规格常被视为统计型态。 ?统计公差方法的思想是考虑零件在机械加工过程中尺寸误差的实际分布,运用概率统计理论进行公差分析和计算,不要求装配过程中100 %的成功率(零件的100 %互换) ,要求在保证一定装配成功率的前提下,适当放大组成环的公差,降低零件(组成环) 加工精度,从而减小制造和生产成本。 ?在多群数据的线性叠加运算中,可以进行叠加的是『变异』值。 四.方和根法 计算公式(平方相加开根号) 假设每个尺寸的Ppk 指标是1.33并且制程是在中心

proe tol组装公差分析

組裝公差分析 公差分析主要是探討一個描述工件組合後,其公差變動模式,一個好的公差 分析模式可以預測組件公差能吻合實際組件公差界限有多少,其預測之機率 愈大愈好。組裝公差分析可分成三種模式:最壞狀況模式(Worst-case model)、統計模式(Statistical model)和蒙地卡羅模式(Monte Carlo model). 概念 Dimension chain (sometimes called tolerance chain) is a closed loop of interrelated dimensions. It consists of increasing, decreasing links and a single concluding link. In figures 2-4 and 2-5, link i is the increasing link, d is a decreasing link and c is the concluding link. Apparently, the concluding link c is the one whose tolerance is of interest and which is produced indirectly. Increasing and decreasing links (both called contributing links) are the ones that by increasing them, concluding link increases and decreases; respectively.

公差模型和公差分析方法的研究

生 产现场 S H O P S O L U T I O N S 金属加工 汽车工艺与材料 A T&M 2009年第7期 50 机械装配过程中,在保证各组成零件适当功能的前提下,各组成零件所定义的、允许的几何和位置上的误差称为公差。公差的大小不仅关系到制造和装配过程,还极大影响着产品的质量、功能、生产效率以及制造成本。公差信息是产品信息库中的重要 内容,公差模型就是为表示公差信息而建立的数学及物理模型,它是进行公差分析的理论基础。 公差分析或称偏差分析,即通过已知零部件的尺寸分布和公差,考虑偏差的累积和传播,以计算装配体的尺寸分布和装配公差的过程。公差分析的目的在于判断零部件的公差分布是否满足装配功能要求,进而评价整个装配的可行性。早期公差分析方法面向的是一维尺寸公差的分析与计算。Bjorke 则将公差分析拓展到三维空间。Wang 、C h a s e 、P a b o n 、H o f f m a n 、Lee 、Turner 、Tsai 、Salomons 、Varghese 、Connor 等许多学者也分别提出了各自的理论和方法开展公差分析的研究。此后,人工智能、专家系统、神经网络、稳健性理论等工具被引入公差分析领域当中,并分别构建了数学模型以解决公差分析问题。 1 公差模型 公差模型可分为零件层面的公差信息模型和装配层面的公差拓扑关系模型。Shan 提出了完整公差模型的建模准则,即兼容性和可计算性准则。兼容性准则是指公差模型满足产品设计过程的要求,符合ISO 和ASME 标准,能够完整表述所有类型的公差。可计算性准则是指公差模型可实现与CAD 系统集成、支持过/欠约束、可提取隐含尺寸信息、可识别公差类型,以检查公差分配方案的可行性等。目前已经提出了很多公差模型表示法,但每一种模型都是基于一些假设,且只部分满足了公差模型的建模准则,至今尚未出现统一的、公认的公差模型。以下将对几种典型的公差模型加以介绍和评价。1.1 尺寸树模型 Requicha 最早研究了零件层面的公差信息表示,并首先提出了应用于一维公差分析的尺寸树模型。该模型中,每一个节点是一个水平特征,节点间连线表示尺寸,公差值附加到尺寸值后。由于一维零件公差不考虑旋转偏差,所有公差都可表示为尺寸值加公差值的形式。该模型对于简单的一维公差分析十 分有效,但却使尺寸和公差的概念模糊不清,而且没有考虑到形状和位置公差的表示。1.2 漂移公差带模型 Requicha 从几何建模的角度,于20世纪80年代提出了漂移公差带模型以定义形状公差。在这个模型中,形状公差域定义为空间域,公差表面特征需位于此空间域中,同时采用边界表示法(Breps )建立传统的位置和尺寸公差模型。对于表面特征和相关公差信息则运用偏差图(VGraph )来表示。VGraph 主要是作为一种分解实体表面特征的手段,将实体的边界部分定义为特征,公差信息则封装在特征的属性中。漂移公差带模型很好地表达了轮廓公差,轮廓公差包含了所有实际制造过程中的偏差。该模型提供了公差的通用理论且易于实现,但是不能区分不同类型的形状公差。1.3 矢量空间模型 Hoffmann 提出了矢量空间模型,Turner 扩展了这一模型。矢量空间模型首先需要定义公差变量、设计变量和模型变量。公差变量表示零件名义尺寸的偏差。设计变量由设计者确定,用以表示最终装配体的多目标优化函数。模型变量是控制零件各个公差的独立变量。由 公差模型和公差分析方法的研究 讨论了目前工程设计、制造中具有代表性的公差模型的建模、描述和分析的方法。在此基础上,对于面向刚性件和柔性件装配的公差分析方法的研究现状分别进行了综述和评价,通过对比说明各种分析方法的算法、应用范围及不足。最后,展望了公差模型和公差分析方法的研究方向及其发展动态。 奇瑞汽车股份有限公司 葛宜银 李国波

codev公差分析

问题背景 对于任何需要制造的系统,公差分析都是一个必需的复杂的互动过程。包括:?确定制造和装配公差目标?确定制造和调校补偿器,以及补偿方案 成功公差分析需要能够精确预测单个公差的灵敏度和整个系统的实际加工性能,包括补偿器的影响。当使用了合适的工具,公差分析能够降低:?非重复成本如设计时间,定义装调过程?重复性成本如系统制造,装配和调校因此公差分析可以帮助降低成本。 显微物镜案例?数值孔径0.65?放大率40倍?筒长180mm?视场直径0.5mm?可见光波长(d,F,C)?目标分辨率450线对每毫米 系统结构图

光扇图和场曲图 轴上视场和全视场点列图 MTF曲线和数值

从上面的图形可以看出,标称系统受限于:?轴向色差?横向色差?色球差?场曲 预期的公差分配目标:?限制450线对多色MTF下降■0.7视场内最大下降0.1■全视场最大下降0.15 公差方案?以默认TOR分析起始,确立基准性能并找出问题所在■默认反灵敏度模式计算引起相同性能下降的每个公差值?根据中间结果,执行额外分析■添加或删除被偿器■调整公差极限■固定单个公差到指定值■修改公差,符合光机模型 操作步骤1)运行默认公差,确定问题所在 轴上视场TOR结果

2)尝试替代偏心补偿偏心由表面8..9构成的透镜, 轴上视场TOR结果 3)确定可以修改的公差极限对于回滚和元件偏心,优质的制造设备可以保证±0.0065mm的总体指示偏差

对于此显微物镜,我们允许元件偏心和胶合元件回滚公差比默认值更严格一些,同样允许0.25环的不规则度。 保持套样板公差,最后一个透镜的厚度和偏心公差。此时,公差设置已经在轴上和全视场达到目标要求,但是在0.7视场依然不达标。

CETOL在公差设计的解决方案 - 汽车

CETOL软件在三维公差设计 的解决方案 莎益博工程系统开发(上海)有限公司

1.三维公差 1.1. 传统设计的不足 国内的大部分企业,对于公差分析还是存在模糊的认识,即公差分配是设计人员的任务。设计人员在做公差分析的时候,大多数时候参照已有产品的公差分配,公差无法参照的地方,多采用手工画一维尺寸链图,粗略的得出封闭换尺寸公差。上述情况存在诸多不足,第一,当设计人员在设计公差时参照老产品,并不能提高设计人员对公差分配原理的理解,当遇到和老产品不一样的产品,设计人员就失去了参照的依据。第二,手工计算一维尺寸链很容易出错,当这种错误发生时,又不容易检查。第三,手工计算效率较低,当尺寸链包含非常长时,需要大量的公差计算时间。第四,手工方法计算一维尺寸链比较容易,但是对于二维或三维的尺寸链计算就更加复杂。 1.2. 使用公差分析软件的优势 公差分析软件为设计人员提供了一个公差分析与综合的平台,使设计人员通过它实现在设计阶段对关键零件尺寸进行公差分析,结合实际的工艺加工能力,选择制造成本最低,又能保证满足设计要求的最优公差,分析的结果也可以为设计提供参考。具体来说,公差分析与综合系统为设计人员提供了评估公差状况的手段,通过该系统,给出了可靠、准确、合理的公差分配的依据。总结来说,使用公差分析软件有如下优势: 一.在CAD环境下模拟三维零件的装配过程。它可以直接读取CAD系统的设计参数,当设计参数更新时,公差分析的数据也一起更新。 图1 Solidworks公差分析界面

图2 CATIA公差分析界面 图3 Cre/Proe 公差分析界面 二.自动计算三维尺寸链误差的传播。下图是V形块和圆柱销的装配,公差分析软件不仅能计算沿着尺寸方向的尺寸对圆柱销高度的影响,还可以计算V形块的宽度和夹角对圆柱销高度的影响。

装配工艺优化中的可视化公差分析

装配工艺优化中的可视化公差分析 合理运用以部分析因设计、完全析因设计和响应面设计为主体内容的经典DOE 试验设计理论可以帮助我们在工业运营的环境中筛选重要因素,量化描述重要因子的主效应和交互作用,乃至于推算出重要因子的最佳设置方案。这些方法论无论是在传统的质量改进,还是在现代的六西格玛活动中,均有过成功应用的实际案例。 但是,切不可因此以为经典试验设计就是包治百病的灵丹妙药。不少企业在追求产品质量、流程能力精益求精的过程中,发现单纯地依靠经典试验设计,先天性地存在着一些不可避免的风险和隐患。最常见的一类问题可以用图一表示:原本以为根据试验设计建立的统计模型,投入实际生产的产品结果将会百分百地落入规格要求之内(如图左部的理想状态所示),但真正投产后却发现产品结果的波动相当大,相当一部分的数据超出了规格要求(如图右部的现实状态所示)。产生这样的结果不仅给企业带来了经济上的损失,而且也动摇了工程师进一步应用试验设计的信心。 图一 工艺流程能力的图示 其实,深入了解试验设计领域的研究人员都基本知晓产生这个问题的一个主要原因是:误差的传递!如图二所示,工艺流程的输入变量 X 是通过根据试验设计或回归方程获取的传递函数对工艺流程的输出变量Y 发生作用。在这个传递过程中,流程自变量不仅会影响产品质量特征的均值(这是大家所熟知的),而且由于流程自变量不可避免地存在着变异(或称误差),它还会影响产品质量特征的变异,这就是所谓的“误差传递”。如果要定量地表达误差传递,可以用下列公式来表示。 其中, 表示输出变量Y 的方差, 表示输入变量X n 的方差, 表示输入变量X n 的敏感度系数,表示输入变量X n 对输出变量Y 方差的贡献程度。 图二 工艺流程的宏观统计模型 公差分析是克服误差传递干扰的一种合适方法,也是试验设计理论研究的有益扩充。通俗地说,公差 理想状态 现实状态 规格下限 规格上限 目标值 规格下限 规格上限 目标值 22 2 2 12...1n X n X Y X f X f σσσ??? ? ????++???? ????=2Y σ2 X n σ???? ????n X f 2 X 2n n σ???? ????X f

公差分析

美国戴克伊公司(Tec-Ease, Inc.) 戴克伊35年,美国著名GD&T培训机构,拥有美国强大的GD&T专家团队,是美国ASME标准列出的GD&T 培训机构。总部在美国纽约州罗切斯特,在加拿大,英国,巴西和中国设有分支机构。为北美和世界数千家企业包括500强,提供GD&T系列培训和咨询。戴克伊颁发的培训证书在全球被广泛认可。 戴克伊有10位ASME-Y14系列标准委员,其中ASME-Y14.5标准有4位,Y14.43和Y14.8标准6位,委员是标准作者。戴克伊创始人Don Day是Y14.8标准主席,戴克伊首席咨询师Frank Bakos是Y14系列 GD&T标准主席,是1983年ASME-Y14.5标准创始人之一,戴克伊35年深度参与制定标准,戴克伊是标准创始人和标准作者,为您提供世界一流培训。 作者介绍:龙东飞 (Mike Long) 美国戴克伊公司亚洲区代表,美国ASME-Y14.43 GD&T检具设计标准(标准委员),Y14.8 GD&T铸造、锻造和注塑标准(标准支持委员),Y14.48 GD&T方向符号标准(标准委员),Y14.5 GD&T标准(参与制定标准),中国国标SAC/TC240产品几何技术规范ISO-GPS(标准委员),ASME认证GDTP高级专家(国内获证第一人), 北美15年,美国堪萨斯州立大学机械工程硕士和MBA(完成GD&T硕士课程),美国国家航空研究院(研究助理),美国高斯印刷机系统公司(设计工程师),北美通用汽车和德尔福汽车公司(北美10年设计和GD&T高级工程师),美国德尔福认证GD&T专家(美国本土专家),美国ASME-Y14系列GD&T标准首位华人委员,国内唯一美国ASME-Y14系列GD&T标准委员,为亚洲600多家包括许多世界500强企业培训和咨询,有5本GD&T著作。 内容简介: GD&T的GD定义完美的零件,只能从几何理论上能满足装配功能要求,GD&T 的GT定义几何理论上允许偏差的范围,具体说就是公差值给多少,才能满 足实际功能要求,这就需要做尺寸链公差叠加分析,决定在一个零件或一个 装配,两个形体之间理论上最大或最小距离,也就是从几何形状的角度,保 证零件能装配或满足间距要求。尺寸链公差叠加分析是一个数学方法,用来 评估零件或装配件的尺寸和几何公差,来确保实现形状,装配和功能要求, 确保产品设计良好,实现稳健性设计,获得最好的成本效率设计,研究一个 装配尺寸关系决定零件公差,决定分配零件或装配允许的制造公差。

组装公差分析

组装公差分析 公差分析主要是探讨一个描述工件组合后,其公差变动模式,一个好的公差分析模式可以预测组件公差能吻合实际组件公差界限有多少,其预测之机率愈大愈好。组装公差分析可分成三种模式:最坏状况模式(Worst-case model)、统计模式(Statistical model)和蒙地卡罗模式(Monte Carlo model). 概念 Dimension chain (sometimes called tolerance chain) is a closed loop of interrelated dimensions. It consists of increasing, decreasing links and a single concluding link. In figures 2-4 and 2-5, link i is the increasing link, d is a decreasing link and c is the concluding link. Apparently, the concluding link c is the one whose tolerance is of interest and which is produced indirectly. Increasing and decreasing links (both called contributing links) are the ones that by increasing them, concluding link increases and decreases; respectively. Figure 1. Dimension Chain of c, 2 links, 1D Figure 2.: Dimension Chain of c, 4 links, 1D The equation for evaluating the concluding link dimension is [Lin and Zhang (2001)]: ---------(1) Where: Σi: The summation of the increasing link dimensions. Σd: The summation of the decreasing link dimensions. j: increasing links index. k: decreasing links index. l: number of increasing links. m: number of decreasing links. For figure 1 ,c can be found as: c = i - d ------(2) As for chain in figure 2, c can be found as: c = (i1 + i2)-( d1 + d2) ------(3) 1. 最坏状况模式(Worst-case model) 最坏状况模式又称上下偏差模式、极限模式、完全互换模式,此模式是以工件的最大及最小状况组合,可以满足完全互换性、组件公差最大. In worst-case method, the concluding dimension’s tolerance Δc can be found as following: ------(4) Referring to figure 2 and equations (3 and 4), the deviation of the concluding link is: Δc = Δi1 + Δi2 + Δd1 + Δd2------(5) T0: 总公差

装配工艺规范(20210130024917)

本技术规范适合于公司从事机械装配作业之员工或技术人员一、作业前准备 1、作业资料:包括总装配图、部件装配图、零件图、物料BOM 表等,直至项目结束,必须保证图纸的完整性、整洁性、过程信息记录的完整性。 2、作业场所:零件摆放、部件装配必须在规定作业场所内进行,整机摆放与装配的场地必须规划清晰,直至整个项目结束,所有作业场所必须保持整齐、规范、有序。 3、装配物料:作业前,按照装配流程规定的装配物料必须按时到位,如果有部分非决定性材料没有到位,可以改变作业顺序,然后填写材料催工单交采购部。 4、装配前应了解设备的结构、装配技术和工艺要求。 二、基本规范 1、机械装配应严格按照设计部提供的装配图纸及工艺要求进行装配,严禁私自修改作业内容或以非正常的方式更改零件。 2、装配的零件必须是质检部验收合格的零件,装配过程中若发现漏检的不合格零件,应及时上报。 3、装配环境要求清洁,不得有粉尘或其它污染,零件应存放在干燥、无尘、有防护垫的场所。 4、装配过程中零件不得磕碰、切伤,不得损伤零件表面,或使零件明显弯、扭、变形,零件的配合表面不得有损伤。 5、相对运动的零件,装配时接触面间应加润滑油(脂)。 6、相配零件的配合尺寸要准确。 7、装配时,零件、工具应有专门的摆放设施,原则上零件、工具不允许摆放在机器上或直接放在地上,如果需要的话,应在摆放处铺设防护垫或地毯。 8、装配时原则上不允许踩踏机械,如果需要踩踏作业,必须在机械上铺设防护垫或地毯,重要部件及非金属强度较低部位严禁踩踏。 三、联接方法 1、螺栓联接 A ?螺栓紧固时,不得采用活动扳手,每个螺母下面不得使用1个以上相同的垫圈,沉 头螺钉拧紧后,钉头应埋入机件内,不得外露。 B?—般情况下,螺纹连接应有防松弹簧垫圈,对称多个螺栓拧紧方法应采用对称顺序逐步拧紧,条形连接件应从中间向两方向对称逐步拧紧。 C?螺栓与螺母拧紧后,螺栓应露出螺母1-2个螺距;螺钉在紧固运动装置或维护时无须拆卸部件的场合,装配前螺丝上应加涂螺纹胶。 D ?有规定拧紧力矩要求的紧固件,应采用力矩扳手,按规定拧紧力矩紧固。未规定拧 紧力矩的螺栓,其拧紧力矩可参考《附表》的规定。 2、销连接 A ?定位销的端面一般应略高出零件表面,带螺尾的锥销装入相关零件后,其大端应沉入孔内。 B ?开口销装入相关零件后,其尾部应分开60°-90° 3、键联接 A. 平键与固定键的键槽两侧面应均匀接触,其配合面间不得有间隙。 B. 间隙配合的键(或花键)装配后,相对运动的零件沿着轴向移动时,不得有松紧不均现象。C?钩头键、锲键装配后其接触面积应不小于工作面积的70%,且不接触部分不得集中于一处;外露部分的长度应为斜面长度的10%-15%。 4、铆接

产品装配设计工艺技术规范

产品装配设计工艺规范 1前言 产品装配设计是产品制作的重要环节。其合理性与否不仅关系到产品在装配、焊接、调试和检修过程中是否方便,而且直接影响到产品的质量与电气性能,甚至影响到电路功能能否实现,因此,掌握产品装配设计工艺是十分重要的。 本标准就规范产品装配设计工艺,满足产品可制造性设计的要求,为设计人员提供产品装配设计工艺要求,为工艺人员审核产品装配可制造性提供工艺审核内容。 2名称解释 2.1装配 2.2对机器、仪器等的零部件进行必要的配合和联接,使成为成品的过程。装配可分为部件装配和总(产品)装配二个阶段。 2.2.1部件装配 根据一定的技术要求,将两个或两个以上的零件结合成一个装配单元,并完成局部功能组合体的过程。 2.2.2总(产品)装配 根据一定的技术要求,将若干个零件和部件结合成为一个总体(产品),

并完成一定功能组合体产品的过程。 2.2.3装配单元 在装配过程中,以一个装配基准件为基础,可以独立组装达到规定的尺寸链与技术要求,作为进一步装配的独立组件、部件、总成或最终整机的一组构件。 2.2.4装配基准件 在一组装配构件中,其装配尺寸链的共同基准面或线所在的构件。2.3工艺 劳动者利用生产工具对各种原材料、半成品进行加工或处理后成为产品的方法和过程。 2.4装配层: 在装配过程中,为了便于作业划分,对类似作业的装配阶段的划分,如总装层、部装层。一个装配层,可以是一个装配单元,也可以是几个装配单元所组成。 3装配设计的一般原则 装配设计在科研和生产中起着十分重要的作用。在产品设计时,装配图是设计者把装配设计思路落实在文件上的具体表现,它表达产品或部件的工作原理、装配关系、传动路线、连接方式及零件的基本结构的图样。因此,在装配设计时必须遵循以下一般原则:

统计公差分析方法概述

统计公差分析方法概述 一、引言 公差设计问题可以分为两类:一类就是公差分析(Tolerance Analysis ,又称正计算) ,即已知组成环的尺寸与公差,确定装配后需要保证的封闭环公差;另一类就是公差分配(Tolerance Allocation ,又称反计算) ,即已知装配尺寸与公差,求解组成环的经济合理公差。 公差分析的方法有极值法与统计公差方法两类,根据分布特性进行封闭环与组成环公差的分析方法称为统计公差法、本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。 二、Worst Case Analysis 极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100% 落入合成后的公差范围内。 <例>Vector loop:E=A+B+C,根据worst case analysis可得 D(Max、)=(20+0、3)+(15+0、25)+(10+0、15)=45、7,出现在A、B、C偏上限之状况 D(Min、)=(20-0、3)+(15-0、25)+(10-0、2)=44、3,出现在A,B、C偏下限之状况 45±0、7适合拿来作设计不? Worst Case Analysis缺陷: ?设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难; ?公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。 以上例Part A +Part B+ Part C,假设A、B、C三个部材,相对于公差规格都有3σ的制程能力水平,则每个部材的不良机率为1-0、9973=0、0027;在组装完毕后所有零件都有缺陷的机率为:0、0027^3=0、3。这表明几个或者多个零件在装配时,同一部件的各组成环,恰好都就是接近极限尺寸的情况非常罕见。 三、统计公差分析法 ?由制造观点来瞧,零件尺寸之误差来自于制程之变异,此变异往往呈现统计分布的型态,因此设计的公差规格常被视为统计型态。?统计公差方法的思想就是考虑零件在机械加工过程中尺寸误差的实际分布,运用概率统计理论进行公差分析与计算,不要求装配过程中100 %的成功率(零件的100 %互换) ,要求在保证一定装配成功率的前提下,适当放大组成环的公差,降低零件(组成环) 加工精度,从而减小制造与生产成本。 ?在多群数据的线性叠加运算中,可以进行叠加的就是『变异』值。

统计公差分析方法概述

统计公差分析方法概述 一.引言 公差设计问题可以分为两类:一类是公差分析(Tolerance Analysis ,又称正计算) ,即已知组成环的尺寸和公差,确定装配后需要保证的封闭环公差;另一类是公差分配(Tolerance Allocation ,又称反计算) ,即已知装配尺寸和公差,求解组成环的经济合理公差。 公差分析的方法有极值法和统计公差方法两类,根据分布特性进行封闭环和组成环公差的分析方法称为统计公差法.本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。 二.Worst Case Analysis 极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100% 落入合成后的公差范围内。 <例>Vector loop:E=A+B+C,根据worst case analysis可得 D(Max.)=(20+0.3)+(15+0.25)+(10+0.15)=45.7,出现在A、B、C偏上限之状况 D(Min.)=(20-0.3)+(15-0.25)+(10-0.2)=44.3,出现在A,B、C偏下限之状况 45±0.7适合拿来作设计吗? Worst Case Analysis缺陷: ?设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难; ?公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。 以上例Part A +Part B+ Part C,假设A、B、C三个部材,相对于公差规格都有3σ的制程能力水平,则每个部材的不良机率为1- 0.9973=0.0027;在组装完毕后所有零件都有缺陷的机率为:0.0027^3=0.000000019683。这表明几个或者多个零件在装配时,同一部件的各组成环,恰好都是接近极限尺寸的情况非常罕见。 三.统计公差分析法 ?由制造观点来看,零件尺寸之误差来自于制程之变异,此变异往往呈现统计分布的型态,因此设计的公差规格常被视为统计型态。?统计公差方法的思想是考虑零件在机械加工过程中尺寸误差的实际分布,运用概率统计理论进行公差分析和计算,不要求装配过程中100 %的成功率(零件的100 %互换) ,要求在保证一定装配成功率的前提下,适当放大组成环的公差,降低零件(组成环) 加工精度,从而减小制造和生产成本。 ?在多群数据的线性叠加运算中,可以进行叠加的是『变异』值。

电子产品总装工艺规范

电子产品总装工艺规范 整机装配就是将机柜、设备、组件以及零、部件按预定的设计要求装配在机箱、车厢、平台,再用导线将它们之间进行电气连接,它是电子产品生产中一个重要的工艺过程。 1 整机装配的顺序和基本要求 图1 整机结构树状图 1.1整机装配的基本顺序 电子设备的整机装配有多道工序,这些工序的完成顺序是否合理,直接影响到设备的装配质量、生产效率和操作者的劳动强度。 电子设备整机装配的基本顺序是:先轻后重、先小后大、先铆后装、先装后焊、先里后外、先平后高,上道工序不得影响下道工序。

1.2整机装配的基本要求 电子设备的整机装配是把半成品装配成合格产品的过程。对整机装配的基本要求如下: 1)整机装配前,对组成整机的有关零部件或组件必须经过调试、检验,不合格的零部件或组件不允许投入生产线。检验合格的装配件必须保持清洁。 2)装配时要根据整机的结构情况,应用合理的安装工艺,用经济、高效、先进的装配技术,使产品达到预期的效果,满足产品在功能、技术指标和经济指标等方面的要求。 3)严格遵循整机装配的顺序要求,注意前后工序的衔接。 4)装配过程中,不得损伤元器件和零部件,避免碰伤机壳、元器件和零部件的表面涂敷层,不得破坏整机的绝缘性。保证安装件的方向、位置、极性的正确,保证产品的电性能稳定,并有足够的机械强度和稳定度。 5)小型机大批量生产的产品,其整机装配在流水线上按工位进行。每个工位除按工艺要求操作外,要求工位的操作人员熟悉安装要求和熟练掌握安装技术,保证产品的安装质量,严格执行自检、互检与专职调试检查的“三检”原则。装配中每一个阶段的工作完成后都应进行检查,分段把好质量关,从而提高产品的一次通过率。 2 整机装配中的流水线

统计公差分析方法概述

统计公差分析方法概述(总5 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

统计公差分析方法概述(2012-10-23 19:45:32) 分类:公差设计统计六标准差 统计公差分析方法概述 一.引言 公差设计问题可以分为两类:一类是公差分析(Tolerance Analysis ,又称正计算) ,即已知组成环的尺寸和公差,确定装配后需要保证的封闭环公差;另一类是公差分配(Tolerance Allocation ,又称反计算) ,即已知装配尺寸和公差,求解组成环的经济合理公差。 公差分析的方法有极值法和统计公差方法两类,根据分布特性进行封闭环和组成环公差的分析方法称为统计公差法.本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。 二.Worst Case Analysis 极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100% 落入合成后的公差范围内。 <例>Vector loop:E=A+B+C,根据worst case analysis可得 D(Max.)=(20++(15++(10+=,出现在A、B、C偏上限之状况 D(Min.)=++=,出现在A,B、C偏下限之状况 45±适合拿来作设计吗 Worst Case Analysis缺陷: 设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难; 公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。

公差分析的方法与比较

公差分析的方法與比較 PSBU-RDD4-MDD 工程師朱誠璞 alex.chu@https://www.wendangku.net/doc/3810726527.html, 2002/11/14 PM 04:32 version 1.1 A.公差分析的傳統方法( I)----Worst Case 法 首先,必須解釋在公差分析時所用的兩種方法: 公差合成與公差分配. 而在以下兩個例子中用來運算公差範圍的數學方法為 Worst Case 法,這是傳統的做法 : 1.公差的合成(使用Worst Case 法運算) Part A 與 Part B 必須接合在一起,合成後的尺寸與公差範圍會是如何呢? 在這個例子中,可以得到一個很直觀的結果------當Part A 與 Part B相接後所得到的 Part A+B 長度和公差範圍都是Part A + Part B 的結果. 也就是說:合成後的公差範圍會包括到每個零件的最極端尺寸,無論每個零件的尺寸在其公差範圍內如何變化,都會 100% 落入合成後的公差範圍內. 聽起來相當合理,不是嗎? 稍後會解釋這樣做的缺點.

2.公差的分配(使用Worst Case 法運算) 現在 Part A+B 必須放入 Part C 的開口處,而開口的尺寸與公差如圖所示,那麼 Part A 與 B 的分別的公差範圍又應該是多少呢? 我們以最簡單的方法 : 平均分配給其中所有的零件,所以 Part A 與 B 各得50 %,當然也可以按照其他的比例來調整,並沒有絕對的優劣之分. B. Worst Case法的問題 1.控制公差範圍難以被控制在設計的需求範圍中. 由於 Worst Case 法合成時要求100 % 的可以容許單一零件的公差變化,會造成合成後的公差範圍變的較大,對設計者而言,是非常容易造成零件組裝後相互干涉或間隙過大. 在以上的例子中,如果要將 Part A+B 放入 Part C 時,會發生過緊干涉的情況,因為 Part C 最窄只有 10.75 mm,但是 Part A+B 卻可能有 11.50 mm的情況則有 0.75 mm 的干涉;另一方面,當 Part C 最寬11.25 mm,而 Part A+B 為10.5 mm 的最小值時,又有 0.75 mm的間隙產生.由此可知公差範圍過大所造 成的難以控制的缺點. 2.決定公差範圍的過程缺乏客觀及合邏輯的程序 以此類方式決定的公差範圍尺寸,必須仰賴設計者的經驗,且必須經過多次的試作才可真正決定;若生產條件改變:如更換生產廠商,模具修改…等,皆有可能使原訂之公差範圍無法達成,而被迫放寬或產生大量不良品的損失.

线性尺寸的公差分析方法概述

Tolerance Analysis of Linear Dimensional Chains
Page 1 of 13
线性尺寸链公差分析. 性尺寸链公差分析
程序设计用于(1D)线性尺寸链公差分析。程序解决以下问题: 1. 公差分析,使用算术法"WC"(最差条件worst case)综合和最优化尺寸链,也可以使用统计学计算"RSS"(Root Sum Squares)。 2. 温度变化引起的尺寸链变形分析。 3. 使用"6 Sigma"的方法拓展尺寸链统计分析。 4. 选择装配的尺寸链公差分析,包含组装零件数的最优化。 所有完成的任务允许在额定公差值内运行,包括尺寸链的设计和最优化。 计算中包含了ANSI, ISO, DIN以及其他的专业文献的 数据,方法,算法和信息。标准参考表: ANSI B4.1, ISO 286, ISO 2768, DIN 7186
计算的控制,结构及语法。 算的控制,
计算的控制与语法可以在此链接中找到相关信息 "计算的控制,结构与语法".
项目信息。 目信息。
“项目信息”章节的目的,使用和控制可以在"项目信息"文档里找到.
理论-原理。 原理。
一个线性尺寸链是由一组独立平行的尺寸形成的封闭环。他们可以是一个零件的相互位置尺寸(Fig.A)或是组装单元中各 个零件尺寸 (Fig. B).
一个尺寸链由分开的部分零件(输入尺寸)和一个封闭零件(结果尺寸)组成。部分零件(A,B,C...)可以是图面中的直 接尺寸或者是按照先前的加工工艺,组装方式。 所给尺寸中的封闭零件(Z)表现为加工工艺或组装尺寸的结果,结果 综合了部分零件的加工尺寸,组装间隙或零件的干涉。结果尺寸的大小,公差和极限直接取决于部分尺寸的大小和公 差,取决于部分零件的变化对封闭零件变化的作用大小,在尺寸链中分为两类零件: - 增加零件 - 部分零件,该零件的增加导致封闭零件的尺寸增加 - 减少零件 - 部分零件,封闭零件尺寸随着该零件的尺寸增加而减小 在解决尺寸链公差关系的时候,会出现两类问题: 1. 公差分析 - 直接任务,控制 使用所有已知极限偏差的部分零件,封闭零件的极限偏差被设置。直接任务在计算中是明确的同时通常用于在给 定图面下检查零件的组装与加工。 2. 公差合成 - 间接任务,设计 出于功能需要使用封闭零件的极限偏差,来设计部分零件的极限偏差。间接任务用来解决设计功能组及组装。 公差计算方法的选择以及尺寸链零件的极限偏差影响组装精度和零件的组装互换性。因此,产品的经济性和运转性取决 于此。在尺寸链中解决公差关系,工程实践使用三个基本方法: 算数计算法 统计学计算法 成组交替性计算方法 术计算方法 算术计算方法 - WC method (Worst Case). 最常使用的方法,有时叫做最大-最小计算方法。它用于在任何部分零件的实际尺寸的任意组合下保证封闭零件的所需 极限偏差,也就是最大和最小极限尺寸。 这个方法保证了零件的完全装配和工作交替性。但是,由于封闭零件的高精 度要求,导致部分零件的公差值太极限,因此带来高的加工成本。因此WC方法主要适合用于计算小数量零件尺寸链或 结果尺寸的公差是可以接受的 情况。最常用于单间或小批量生产。 WC 方法计算得出的结果尺寸是部分尺寸的算术和。因此封闭零件的尺寸决定于其中心值:
2013/4/7

机械装配工艺规范标准

机械结构件装配工艺标准 机械结构装配施工工艺标准 1适用范围 本工艺适用于公司产品机械结构件装配加工的过程,本标准规定了一般机械结构,比如孔轴配合,螺丝、螺栓连接等等装配要求。 本标准适用于机械产品的装配。 2引用标准 (1)JB T5994 机械装配基础装配要求 (2)GB 5226 机床电气设备通用技术条件 (3)GB 6557 挠性转子的机械平衡 (4)GB 6558 挠性转子的平衡评定准则 (5)GB 7932 气动系统通用技术条件 (6)GB 7935 液压元件通用技术条件 (7)GB 9239 刚性转子品质许用不平衡的确定 (8)GB 10089 圆柱蜗杆蜗轮精度 (9)GB 10095 渐开线圆柱齿轮精度 (10)GB 10096 齿条精度 (11)GB 11365 锥齿轮和准双曲面齿轮精度 (12)GB 11368 齿轮传动装置清洁度 3 机械装配专业术语 3.1.1 工艺使各种原材料、半成品成为产品的方法和过程。 3.1.2 机械制造工艺各种机械的制造方法和制造过程的总称。 3.1.3 典型工艺根据零件的结构和工艺特征进行分类、分组,对同组零件制订的统一加工方法和过程。 3.1.4 产品结构工艺性所设计的产品在能满足使用要求的前提下,制造、维修的可行性和经济性。 3.1.5 零件结构工艺性所设计的产品在能满足使用要求的前提下,制造的可行性和经济性。 3.1.6 工艺性分析在产品技术设计阶段,工艺人员对产品和零件结构工艺性进行全面审查并提出意见或建议的过程。 3.1.7 工艺性审查在产品工作图设计阶段,工艺人员对产品和零件结构工艺性进行全面审查并提出意见或建议的过程。 3.1.8 可加工性在一定生产条件下,材料加工的难易程度。 3.1.9 生产过程将原材料转变为成品的全过程. 3.1.10 工艺过程改变生产对象的形状、尺寸、相对位置和性质等,使其成为成品或半成品的过程。 3.1.11 工艺文件指导工人操作和用于生产、工艺管理等和各种技术文件。 3.1.12 工艺方案根据产品设计要求、生产类型和企业的生产能力,提出工艺技术准备工作具体任务和措施的指导性文件。

相关文档