文档库 最新最全的文档下载
当前位置:文档库 › 酿酒酵母、毕赤酵母表达载体

酿酒酵母、毕赤酵母表达载体

酿酒酵母、毕赤酵母表达载体

pYES2,pYES2/NT,pYES2/CT,pYES3,pYES6, pYCplac22-GFP,

酵母载体pAUR123,pRS303TEF,pRS304, pRS305,pRS306,pY13TEF,pY14TEF,pY15TEF,pY16TEF,

酵母基因重组表达载体pUG6, pSH47,

酵母单杂载体pHISi,pLacZi,pHIS2, pGAD424,

酵母双杂交系统:酿酒酵母Y187,酿酒酵母AH109;质粒pGADT7,pGBKT7;对照质粒pGBKT7-53,pGBKT7-lam,pGADT7-T,PCL1,

酿酒酵母菌株INVSc1,YM4271, AH109,Y187,Y190,

毕赤酵母表达载体pPIC9K,pPIC9K-His,pPIC3.5K,pPICZalphaA,B,C,pPICZA,B,C,pGAPZαA,pAO815,pPIC9k-His,pHIL-S1,pPink hc,配套毕赤酵母Pichiapink,

毕赤酵母宿主X33,KM71,KM71H,GS115,

毕赤酵母实验操作技巧介绍材料

毕赤酵母表达实验手册 大肠杆菌表达系统最突出的优点是工艺简单、产量高、生产成本低。然而,许多蛋白质在翻译后,需经过翻译后的修饰加工,如磷酸化、糖基化、酰胺化及蛋白酶水解等过程才能转化成活性形式。大肠杆菌缺少上述加工机制,不适合用于表达结构复杂的蛋白质。另外,蛋白质的活性还依赖于形成正确的二硫键并折叠成高级结构,在大肠杆菌中表达的蛋白质往往不能进行正确的折叠,是以包含体状态存在。包含体的形成虽然简化了产物的纯化,但不利于产物的活性,为了得到有活性的蛋白,就需要进行变性溶解及复性等操作,这一过程比较繁琐,同时增加了成本。 与大肠杆菌相比,酵母是低等真核生物,具有细胞生长快,易于培养,遗传操作简单等原核生物的特点,又具有真核生物时表达的蛋白质进行正确加工,修饰,合理的空间折叠等功能,非常有利于真核基因的表达,能有效克服大肠杆菌系统缺乏蛋白翻泽后加工、修饰的不足。因此酵母表达系统受到越来越多的重视和利用。 大肠杆菌是用得最多、研究最成熟的基因工程表达系统,当前已商业化的基因工程产品大多是通过大肠杆菌表达的,其主要优点是成本低、产量高、易于操作。但大肠杆菌是原核生物,不具有真核生物的基因表达调控机制和蛋白质的加工修饰能力,其产物往住形成没有活性的包涵体,需要经过变性、复性等处理,才能应用。近年来,以酵母作为工程菌表达外源蛋白日益引起重视,主更是因为酵母是单细胞真核生物,不但具有大肠杆菌易操作、繁殖快、易于工业化生产的特点,还具有真核生物表达系统基因表达调控和蛋白修饰功能,避免了产物活性低,包涵体变性、复性等等间题[1]。 与大肠杆菌相比,酵母是单细胞真核生物,具有比较完备的基因表达调控机制

毕赤酵母表达实验手册

xx酵母表达实验手册 (作参考) 部分试剂中英文名称: 小牛肠碱性磷酸酶(CIP)、AOX1(alcohol oxidase,醇氧化酶) 10*YNB(含有硫酸铵、无氨基酸的 13.4%酵母基础氮源培养基) 500*B( 0.02%生物素Biotin)、100*H( 0.4%Histidine组氨酸) 10*D(20%Dextrose葡萄糖)、10*M(5%Methanol甲醇) 10*GY(10%Glycerol甘油)、100*AA( 0.5% of each Amino Acid,各种氨基酸)、1M磷酸钾溶液(potassium phosphate buffer,pH 6.0) Sorbitol (山梨醇)、磷酸钾溶液(potassium phosphate buffer) YEPDM(Yeast Extract Peptone Dextrose Medium,酵母浸出粉/胰蛋白胨/右旋葡萄糖培养基) Minimal Glycerol Medium(最小甘油培养基) YPD培养基的配制: 每(L)液体预混合物(50g/L)终浓度酵母提取物10g250g1%蛋白栋 20g500g2%葡萄糖20g500g2%※注:

配制YPD培养基时,20%(10×)葡萄糖溶液最好采用单独过滤除菌或高压灭菌(在灭菌后再加入到其他各种成分),以免在高压灭菌时培养基变黑并妨碍酵母菌的最佳生长。 ※极限培养基{合成葡萄糖(SD)培养基} 每(L)液体预混合物(50g/L)终浓度YNB-AA/AS 1.7g68g 0.17%(NH 4) 2SO 45g200g 0.5%葡萄糖20g800g2%注: 这种极限培养基可以培养没有特殊营养要求的酵母菌,但更多时候这种培养基是作为一种待添加其他成分的极限培养基(见下文提到的CM省却成分培养基)。 完全极限(CM)省却成分培养基(每L中含): 省却成分粉剂 1.3g(见表 13.1.1) YNB-AA/AS 1.7g (NH 4)

酵母表达系统使用心得

Pichia酵母表达系统使用心得 甲醇酵母表达系统有不少优点,其中以Invitrogen公司的Pichia酵母表达系统最为人熟知,并广泛应用于外源蛋白的表达。虽然说酵母表达操作简单表达量高,但是在实际操作中,并不是每个外源基因都能顺利得到高表达的。不少人在操作中会遇到这样那样的问题,收集了部分用户在使用EasySelect Pichia Expression System这个被誉为最简单的毕赤酵母表达的经典试剂盒过程中的心得体会。其中Xiang Yang是来自美国乔治城大学(Georgetown University)Lombardi癌症中心(Lombardi Cancer Center),部分用户来自国内。 甲醇酵母部分优点: 1.属于真核表达系统,具有一定的蛋白质翻译后加工,有利于真核蛋白的表达; 2.AOX强效启动子,外源基因产物表达量高,表达产物可以达到每升数克的水平; 3.酵母培养、转化、高密度发酵等操作接近原核生物,远较真核系 统简单,非常适合大规模工业化生产; 4.可以诱导表达,也可以分泌表达,便于产物纯化; 5.可以甲醇代替IPTG作为诱导物,部分甲醇酵母更可以用工业甲醇替代葡萄糖作为碳源,生产成本低。 产品性能:优点——使用简单,表达量高,His-tag便于纯化;缺点——酵母表达蛋白有时会出现蛋白切割问题。 巴斯德毕赤酵母(Pichia pastoris)是一种能高效表达重组蛋白的酵母品种,一方面由于其是属于真核生物,因此表达出来的蛋白可以进行糖基化修饰,另一方面毕赤酵母生长速度快,可以将表达的蛋白分泌到培养基中,方便蛋白纯化。 毕赤酵母表达载体pPICZ在多克隆位点(MCR)3'端带有his-tag和c-myc epitopes,这些tag有利于常规检测和纯化,而且在MCR5'端引入了alpha factor(α-factor)用以分泌表达,并且在表达后α-factor可以自动被切除。在进行克隆的时候,如果你选择的是EcoRI,那么只需在目标蛋白中增加两个氨基酸序列即可完成。另外pPICZ系列选用的是Zeocin抗生素作为筛选标记,而诱导表达的载体需要甲醇——甲醇比一般用于大肠杆菌表达诱导使用的IPTG便宜。 第一步——构建载体 Xiang Yang:pPICZ系列有许多克隆位点可供选择,同时也有三种读码框以便不用的用户需要。 红叶山庄:有关是选择pPIC9K还是pPICZ系列?pPIC9K属于穿梭质粒,也可以在原核表达,而pPICZ系列比较容易操作,大肠和毕赤酵母均用抗Zeocin筛选(PIC9K操作麻烦一点,大肠用amp抗性,而毕赤酵母先用His缺陷筛选阳性克隆,在利用G418筛选多拷贝),而且对于大小合适(30—50KD)的蛋白在产量上是pPIC9K无法比拟的。 leslie:要做毕赤酵母表达实验,首先当然就要了解这个可爱的酵母了(椭圆形,肥嘟嘟的,十分可爱),她和大肠杆菌长得有较大区别(大肠杆菌是杆状的),因此在培养的过程中要区别这两种菌体,除了气味,浓度,颜色以外,也可以取样到显微镜中观测。大家做毕赤表达的时候应该都遇过这种情况吧,表达过程中染菌(我们实验室曾经污染过各种颜色形状的细菌,那真是一段可怕的经历),如果在不知情的情况下继续做下去,那可以就是浪费大把的

BY4741酿酒酵母菌使用说明

BY4741酿酒酵母菌 BY4741Strain BY4741菌信息: 培养基:YPD 菌株类别:酵母菌 培养条件:28℃,有氧,YPD 质粒转化:电激 保存方式:30%甘油,-20℃ 基本应用:用于蛋白表达 BY4741菌使用说明: 四区划线培养,挑单菌落接种培养使用并保存甘油菌。 BY4741操作说明: 1,本品包含一份甘油菌,使用本甘油菌时可以不用完全融解,在甘油菌表面蘸取少量涂板或进行液体培养即可。也可以完全融解后使用,但随着冻融次数的增加,细菌的活力会逐渐下降。 2,为保证菌种纯正,避免其它细菌污染,尽量先划平板,然后再挑单克隆菌落进行后续操作。 冷冻管开封: 用浸过75%酒精的脱脂棉严格消毒冷冻管盖。 BY4741菌株复溶: 无菌环境中旋开装有复溶液的滴瓶盖,吸取1ml左右复溶液,加入到冷冻管中。轻轻振荡,使冻干菌株溶解呈悬浮状。 BY4741菌株复壮: 用无菌吸管吸取菌悬液,转移到复溶液滴瓶中。做好标识,在适宜温度下培养。细菌在30-35℃培养箱中培养24-48h,真菌在23-28℃培养箱中培养24-72h(必要时,可适当延长培养时间)。 BY4741菌株传代: 将得到的菌株的新鲜培养物转接到适宜的固体培养基及液体培养基中(尽量增大接种量:如用无菌吸管吸取≥50μl新鲜培养物至固体培养基,边移动边缓慢释放),适宜温度下培养,用以菌株的保藏、传代及制备工作菌株。 注意事项: 1、菌种活化前,将冷冻管保存在低温、清洁、干燥的环境中,长时间室温下放置会导致

菌种衰退; 2、冷冻管开封、冻干粉复溶、菌株恢复培养等操作应在无菌条件下进行; 3、一些菌种经过冷冻干燥保存后,延迟期较长,部分需连续两次继代培养才能正常生长; 4、苛养菌的培养需采用含特定营养成分的培养基,敬请正确选择,不清楚时来电询问; 5、某些厌氧菌的培养,自开封到接种完成,均需以无氧气体充填,以保持厌氧状态;培养过程中亦要保持厌氧状态; 6、某些菌种,如肺炎链球菌、流感嗜血杆菌、淋病奈瑟菌等需要5-10%CO2促进生长; 7、如发现冷冻管盖松动、复溶液浑浊等异常情况,应停止使用对应产品。 8、部分菌种有致病性、扩散性,请专业人员在专业环境下有保护性操作。 BY4741菌保藏条件: -20℃保存(复溶液于2-8℃保存) 保藏时间: 2-10年,应根据菌种状况及时转接

毕赤酵母手册

毕赤酵母表达实验手册 作者:Jnuxz 来源:丁香园时间:2007-9-5 大肠杆菌表达系统最突出的优点是工艺简单、产量高、周期短、生产成本低。然而,许多蛋白质在翻译后,需经过翻译后的修饰加工,如磷酸化、糖基化、酰胺化及蛋白酶水解等过程才能转化成活性形式。大肠杆菌缺少上述加工机制,不适合用于表达结构复杂的蛋白质。另外,蛋白质的活性还依赖于形成正确的二硫键并折叠成高级结构,在大肠杆菌中表达的蛋白质往往不能进行正确的折叠,是以包含体状态存在。包含体的形成虽然简化了产物的纯化,但不利于产物的活性,为了得到有活性的蛋白,就需要进行变性溶解及复性等操作,这一过程比较繁琐,同时增加了成本。 大肠杆菌是用得最多、研究最成熟的基因工程表达系统,当前已商业化的基因工程产品大多是通过大肠杆菌表达的,其主要优点是成本低、产量高、易于操作。但大肠杆菌是原核生物,不具有真核生物的基因表达调控机制和蛋白质的加工修饰能力,其产物往住形成没有活性的包涵体,需要经过变性、复性等处理,才能应用。近年来,以酵母作为工程菌表达外源蛋白日益引起重视,原因是与大肠杆菌相比,酵母是低等真核生物,除了具有细胞生长快,易于培养,遗传操作简单等原核生物的特点外,又具有真核生物时表达的蛋白质进行正确加工,修饰,合理的空间折叠等功能,非常有利于真核基因的表达,能有效克服大肠杆菌系统缺乏蛋白翻译后加工、修饰的不足。因此酵母表达系统受到越来越多的重视和利用。[1]。 同时与大肠杆菌相比,作为单细胞真核生物的酵母菌具有比较完备的基因表达调控机制和对表达产物的加工修饰能力。酿酒酵母(Saccharomyces.Cerevisiae)在分子遗传学方面被人们的认识最早,也是最先作为外源基因表达的酵母宿主。1981年酿酒酵母表达了第一个外源基因----干扰素基因[2],随后又有一系列外源基因在该系统得到表达[3、4、5、6]。干扰素和胰岛素虽然已经利用酿酒酵母大量生产并被广泛应用,当利用酿酒酵母制备时,实验室的结果很令人鼓舞,但由实验室扩展到工业规模时,其产量迅速下降。原因是培养基中维特质粒高拷贝数的选择压力消失[7、8],质粒变得不稳定,拷贝数下降。拷贝数是高效表达的必备因素,因此拷贝数下降,也直接导致外源基因表达量的下降。同时,实验室用培养基成分复杂且昂贵,当采用工业规模能够接受的培养基时,导致了产量的下降[9]。为克服酿酒酵母的局限,1983年美国Wegner等人最先发展了以甲基营养型酵母(methylotrophic yeast)为代表的第二代酵母表达系统[10]。 甲基营养型酵母包括:Pichia、Candida等.以Pichia.pastoris(毕赤巴斯德酵母)为宿主

酵母表达体系

毕赤酵母是甲醇营养型,甲醇代谢的第一步是:醇氧化酶利用氧分子将甲醇氧化为甲醛和过氧化氢。为避免过氧化氢的毒性,甲醛代谢主要在过氧化物酶体里进行,使得有毒的副产物远离细胞其余组分。由于醇氧化酶与O2 的结合率较低,因而毕赤酵母代偿性地产生大量的酶。而调控产生醇氧化物酶的启动子也正是驱动外源基因在毕赤酵母中表达的启动子。 毕赤酵母含有两种醇氧化物酶,AOX1 AOX2。细胞中大多数的醇氧化酶是AOX1 基因产物。甲醇可紧密调节、诱导 AOX1 基因的高水平表达,为Mut+菌株,可占可溶性蛋白的 30%以上。AOX2 基因与 AOX1 基因有 97%的同源性,但在甲醇中带 AOX2 基因的菌株比带 AOX1 基因菌株慢得多,通过这种甲醇利用缓慢表型可分离 Muts 菌株。 毕赤酵母表达外源蛋白:分泌型和胞内表达。利用含有α因子序列的分泌型载体即可。 翻译后修饰:酿酒酵母与毕赤酵母大多数为 N-连接糖基化高甘露糖型,毕赤酵母中蛋白转录后所增加的寡糖链长度(平均每个支链 8-14 个甘露糖残基)比酿酒酵母中的(50-150 个甘露糖残基)短得多。 菌株:GS115 ( Mut+, Muts)和 KM71(Muts) 分泌型载体: pPICZα A,B,and C (5’AOX1启动子,紧密型调节,甲醇诱导表达,α分泌信号介导的分泌表达,Zeocin抗性基因,C端含有6XHis标签) 胞内表达型载体: pPICZ A,B,and C,

一:分子克隆 1.设计引物 分泌型载体图谱: 见酵母表达说明书(p13-pPICZ A,p14-pPICZ B,p15-pPICZ C) 2.PCR扩增基因 PCR反应体系(50μl) 模板DNA 1μl Forward Primer(10μM)1μl Reverse Primer(10μM)1μl dNTP Mixture(各2mM): 4μl 5×PrimerSTAR buffer(Mg2+ plus)10μl PrimerSTAR DNA Polymerase 0.5μl ddH O up to 50μl 2 PCR 反应流程 预变性98℃ 2min 变性98℃ 10sec 退火56℃ 10sec 30个循环 延伸72℃ 30sec 完全延伸72℃ 10min 保存4℃ 3.双酶切及其回收 双酶切反应体系(40μl) DNA(空载体或目的基因) 30μl BamHⅠ 1.5μl XholⅠ 1.5μl 10×Buffer K 4.0μl 4.酶连接 首先利用1%的琼脂糖电泳将双酶切后的PCR产物和载体进行分离,并通过胶回收试剂盒回收,按照目的基因和空载体的碱基摩尔比在1:3--1:9之间,一共吸取目的基因和空载体的总体积为5μl,在加入等量的5μl DNA快速连接试剂盒SolutionⅠ,16℃连接4-6h。 转化到克隆型感受态(DH5α和Top10),使用低盐LB培养基,加入25 μg/ml

pPIC9k-His酵母表达载体说明

pPIC9k-His 编号 载体名称 北京华越洋生物VECT2430 pPIC9k--‐His 载体基本信息 出品公司: Invitrogen 载体名称: pPIC9k--‐His 质粒类型: 酵母表达载体 高拷贝/低拷贝: --‐--‐ 启动子: --‐--‐ 克隆方法: 多克隆位点,限制性内切酶 载体大小: --‐--‐ 5' 测序引物及序列: --‐--‐ 3' 测序引物及序列: --‐--‐ 载体标签: --‐--‐ 载体抗性: Ampicillin 筛选标记: --‐--‐ 备注: --‐--‐ 产品目录号: --‐--‐ 稳定性: --‐--‐ 组成型: --‐--‐ 病毒/非病毒: --‐--‐ 载体质粒图谱和多克隆位点信息

其他酵母表达载体: p416GFD pPIC9 p53blue pPIC9K pACT2-AD pPIC9k-His pAD-GAL4-2.1 pPICZA pADH2 pPICZB pAUR123 pPICZC pBridge pPICZαA pCL1 pPICZαB pDEST32 pPICZαC pDisplay pPICZαD pDR195 pPICZαFC pESC-His pPICZαGB pESC-Leu pPink-HC pESC-TRP pPink-LC pESC-URA pPinkα-HC pFA6a-FGP(S65T)-kanMX6 pRS316 pFLD pRS403 pFLD/CAT pRS405 pFLDαpRS406 pGADT7-T pRS414 pGAG424 pRS415 pGAPZA pRS416 pGAPZB pRS41H pGAPZαB pRS426 pGAPZαC pRS426gal pGBKT7 pSEP1 pGBKT7-53 pSEP2 pGBKT7-Lam pSEP3 pHIC-PI pSos pHIL-D2 pSos-MAFB pHIL-S1 pUG66 pHis2 pYC2/CT pHisSi-1 pYC2/NTA

毕赤酵母表达手册

版权声明: 本站几乎所有资源均搜集于网络,仅供学习参考,不得进行任何商业用途,否则产生的一切后 果将由使用者本人承担! 本站仅仅提供一个观摩学习与交流的平台, 将不保证所提供资源的完 整性,也不对任何资源负法律责任。所有资源请在下载后 24 小时内删除。如果您觉得满意, 请购买正版,以便更好支持您所喜欢的软件或书籍! ☆☆☆☆☆生物秀[https://www.wendangku.net/doc/3810952247.html,] ☆☆☆☆☆中国生物科学论坛[https://www.wendangku.net/doc/3810952247.html,/bbs/] ☆☆☆☆☆生物秀下载频道[https://www.wendangku.net/doc/3810952247.html,/Soft/] 生物秀——倾力打造最大最专业的生物资源下载平台! ■■■ 选择生物秀,我秀我精彩!!■■■ 欢迎到生物秀论坛(中国生物科学论坛)的相关资源、软件版块参与讨论,共享您的资源,获 取更多资源或帮助。

毕赤酵母多拷贝表达载体试剂盒 用于在含多拷贝基因的毕赤酵母菌中表达并分离重组蛋白 综述: 基本特征: 作为真核生物,毕赤酵母具有高等真核表达系统的许多优点:如蛋白加工、折叠、翻译后修饰等。不仅如此,操作时与E.coli及酿酒酵母同样简单。它比杆状病毒或哺乳动物组织培养等其它真核表达系统更快捷、简单、廉价,且表达水平更高。同为酵母,毕赤酵母具有与酿酒酵母相似的分子及遗传操作优点,且它的外源蛋白表达水平是后者的十倍以至百倍。这些使得毕赤酵母成为非常有用的蛋白表达系统。 与酿酒酵母相似技术: 许多技术可以通用: 互补转化基因置换基因破坏另外,在酿酒酵母中应用的术语也可用于毕赤酵母。例如:HIS4基因都编码组氨酸脱氢酶;两者中基因产物有交叉互补;酿酒酵母中的一些野生型基因与毕赤酵母中的突变基因相互补,如HIS4、LEU2、ARG4、TR11、URA3等基因在毕赤酵母中都有各自相互补的突变基因。 毕赤酵母是甲醇营养型酵母: 毕赤酵母是甲醇营养型酵母,可利用甲醇作为其唯一碳源。甲醇代谢的第一步是:醇氧化酶利用氧分子将甲醇氧化为甲醛,还有过氧化氢。为避免过氧化氢的毒性,甲醛代谢主要在一个特殊的细胞器-过氧化物酶体-里进行,使得有毒的副产物远离细胞其余组分。由于醇氧化酶与O2的结合率较低,因而毕赤酵母代偿性地产生大量的酶。而调控产生醇过氧化物酶的启动子也正是驱动外源基因在毕赤酵母中表达的启动子。 两种醇氧化酶蛋白: 毕赤酵母中有两个基因编码醇氧化酶-AOX1及AOX2。细胞中大多数的醇氧化酶是AOX1基因产物。甲醇可紧密调节、诱导AOX1基因的高水平表达,较典型的是占可溶性蛋白的30%以上。AOX1基因已被分离,含AOX1启动子的质粒可用来促进编码外源蛋白的目的基因的表达。AOX2基因与AOX1基因有97%的同源性,但在甲醇中带AOX2基因的菌株比带AOX1基因菌株慢得多,通过这种甲醇利用缓慢表型可分离Muts菌株。 表达: AOX1基因的表达在转录水平受调控。在甲醇中生长的细胞大约有5%的polyA+ RNA 来自AOX1基因。AOX1基因调控分两步:抑制/去抑制机制加诱导机制。简单来说,在含葡萄糖的培养基中,即使加入诱导物甲醇转录仍受抑制。为此,用甲醇进行优化诱导时,推荐在甘油培养基中培养。注意即使在甘油中生长(去抑制)时,仍不足以使AOX1基因达到最低水平的表达,诱导物甲醇是AOX1基因可辨表达水平所必需的。 AOX1突变表型: 缺失AOX1基因,会丧失大部分的醇氧化酶活性,产生一种表型为Muts的突变株(methanol utilization slow),过去称为Mut,而Muts可更精确地描述突变子的表型。结果细胞代谢甲醇的能力下降,因而在甲醇培养基中生长缓慢。Mut+(methanol utilization plus)指利用甲醇为唯一碳源的野生型菌株。这两种表型用来检测外源基因在毕赤酵母转化子中的整合方式。 蛋白胞内及分泌表达: 外源蛋白可在毕赤酵母胞内表达或分泌至胞外。分泌表达需要蛋白上的信号肽序列,将外源蛋白靶向分泌通路。几种不同的分泌信号序列已被成功应用,包括几种外源蛋白本身分 制作者:陈苗商汉桥

CHO细胞表达系统与酵母细胞表达系统比较

CHO细胞表达系统与酵母细胞表达系统比较 CHO细胞表达系统与毕赤酵母表达系统是当前发展前景看好的两个表达系统,为了能够更加直观地对两个表达系统有一定的认识,特意在此篇中对两个表达系统作一定的比较,从而能够更进一步的对两个表达系统有更深的了解 1.CHO细胞表达系统 (1)优点 CHO细胞属于成纤维细胞,既可以贴壁生长。也可以悬浮生长。目前常用的CHO细胞包括原始CHO和二氢叶酸还原酶双倍体基因缺失型(DHFR-)突变株CHO。近年来,为降低生产成本和减少血制品带来的潜在危害性,动物细胞生产开始使用无血清培养基(SFM),但SFM往往导致细胞活力差,贴壁性差,分泌外源蛋白的能力差等缺点。另有研究者尝试将类胰岛素生长因子IGF基因和转铁蛋白基因转入CHO细胞获得能自身分泌必需蛋白的“超级CHO”,无需在培养基中转铁蛋白和胰岛素,细胞可在SFM 中生长良好。与其他表达系统相比,CHO表达系统具有以下的优点: (1)具有准确的转录后修饰功能,表达的蛋白在分子结构、理化特性和生物学功能方面最接近于天然蛋白分子; (2)既可贴壁生长,又可以悬浮培养,且有较高的耐受剪切力和渗透压能力; (3)具有重组基因的高效扩增和表达能力,外源蛋白的整合稳定; (4)具有产物胞外分泌功能,并且很少分泌自身的内源蛋白,便于下游产物分离纯化; (5)能以悬浮培养方式或在无血清培养基中达到高密度培养。且培养体积能达到1000L以上,可以大规模生产。 (2)存在的问题 在过去的几十年里,人类对动物细胞的培养技术进行了大量的研究开发,取得了很大进展,但是利用CHO细胞表达外源基因的技术水平尚不能满足生物药品的开发和生产的要求,目前上游工作中主要存在以下问题: ①构建的重组CHO细胞生产效率低,产物浓度亦低; ②某些糖基化表达产物不稳定,不易纯化; ③重组CHO细胞上游构建与下游分离纯化脱节,主要表现在上游构建时着重考虑它的高效表达,而对高教表达的产物是否能有效地提取出来,即分离纯化过程考虑较少; ④重组细胞培养费用昂贵,自动化水平低下。 2.毕赤酵母细胞表达系统 (1)特点 自1987年Gregg等首次在毕赤酵母中表达乙型肝炎表面抗原(HBsAg)到1995年,已有四十多种外源蛋白在毕赤酵母宿主菌中获得表达。而最近几年每年报道的在毕赤酵母中表达的外源基因就有几十种,且一年比一年多,与其它表达系统相比,毕赤酵母表达系统具有以下优势: 1)含有特有的强有力的AOX(醇氧化酶基因)启动子,用甲醇可严格地调控外源基因的表达; 2)表达水平高,即可在胞内表达,又可分泌型表达。毕赤酵母中,报道的最高表达量为破伤风毒素C为12g/l,一般大于1g/l。绝大多数外源基因比在细菌、酿酒酵母、动物细胞中表达水平高。一般毕赤酵母中外源基因都带有指导分泌的信号肽序列,使表达的外源目的蛋白分泌到发酵液中,有利于分离纯化; 3)发酵工艺成熟,易放大。已经有大规模工业化高密度生产的发酵工艺,且细胞干重达100g/l 以上,表达重组蛋白时,已成功放大到10000升; 4)培养成本低,产物易分离。毕赤酵母所用发酵培养基十分廉价,一般碳源为甘油或葡萄糖及甲

酵母表达系统使用心得

精心整理 Pichia酵母表达系统使用心得 甲醇酵母表达系统有不少优点,其中以Invitrogen公司的Pichia酵母表达系统最为人熟知,并广泛应用于外源蛋白的表达。虽然说酵母表达操作简单表达量高,但是在实际操作中,并不是每个外源基因都能顺利得到高表达的。不少人在操作中会 这个 是来中心( 1. 3. 4. 5. 产品性能:优点——使用简单,表达量高,His-tag便于纯化;缺点——酵母表达蛋白有时会出现蛋白切割问题。 巴斯德毕赤酵母(Pichiapastoris)是一种能高效表达重组蛋白的酵母品种,一方面由

于其是属于真核生物,因此表达出来的蛋白可以进行糖基化修饰,另一方面毕赤酵母生长速度快,可以将表达的蛋白分泌到培养基中,方便蛋白纯化。 毕赤酵母表达载体pPICZ在多克隆位点(MCR)3'端带有his-tag和c-mycepitopes,这些tag有利于常规检测和纯化,而且在MCR5'端引入了alphafactor(α-factor)用以 的是系 PIC9K G418无 leslie:要做毕赤酵母表达实验,首先当然就要了解这个可爱的酵母了(椭圆形,肥嘟嘟的,十分可爱),她和大肠杆菌长得有较大区别(大肠杆菌是杆状的),因此在培养的过程中要区别这两种菌体,除了气味,浓度,颜色以外,也可以取样到显微

镜中观测。大家做毕赤表达的时候应该都遇过这种情况吧,表达过程中染菌(我们实验室曾经污染过各种颜色形状的细菌,那真是一段可怕的经历),如果在不知情的情况下继续做下去,那可以就是浪费大把的时间了。 基本熟悉了毕赤酵母,了解了她生长的喜好(多糖偏酸环境),生长的周期等等 有 的 余的 (起始密码子),有人认为酵母启动子与外源基因的ATG之间的距离越短对于表达的该基因越有利; ⑤如果不希望有c-myc和His-tag,可以在基因片段末尾加入终止密码子;

毕赤酵母表达操作手册(精译版)

毕赤酵母多拷贝表达载体试剂盒 用于在含多拷贝基因的毕赤酵母菌中表达并分离重组蛋白 综述: 基本特征: 作为真核生物,毕赤酵母具有高等真核表达系统的许多优点:如蛋白加工、折叠、翻译后修饰等。不仅如此,操作时与E.coli及酿酒酵母同样简单。它比杆状病毒或哺乳动物组织培养等其它真核表达系统更快捷、简单、廉价,且表达水平更高。同为酵母,毕赤酵母具有与酿酒酵母相似的分子及遗传操作优点,且它的外源蛋白表达水平是后者的十倍以至百倍。这些使得毕赤酵母成为非常有用的蛋白表达系统。 与酿酒酵母相似技术: 许多技术可以通用: 互补转化基因置换基因破坏另外,在酿酒酵母中应用的术语也可用于毕赤酵母。例如:HIS4基因都编码组氨酸脱氢酶;两者中基因产物有交叉互补;酿酒酵母中的一些野生型基因与毕赤酵母中的突变基因相互补,如HIS4、LEU2、ARG4、TR11、URA3等基因在毕赤酵母中都有各自相互补的突变基因。 毕赤酵母是甲醇营养型酵母: 毕赤酵母是甲醇营养型酵母,可利用甲醇作为其唯一碳源。甲醇代谢的第一步是:醇氧化酶利用氧分子将甲醇氧化为甲醛,还有过氧化氢。为避免过氧化氢的毒性,甲醛代谢主要在一个特殊的细胞器-过氧化物酶体-里进行,使得有毒的副产物远离细胞其余组分。由于醇氧化酶与O2的结合率较低,因而毕赤酵母代偿性地产生大量的酶。而调控产生醇过氧化物酶的启动子也正是驱动外源基因在毕赤酵母中表达的启动子。 两种醇氧化酶蛋白: 毕赤酵母中有两个基因编码醇氧化酶-AOX1及AOX2。细胞中大多数的醇氧化酶是AOX1基因产物。甲醇可紧密调节、诱导AOX1基因的高水平表达,较典型的是占可溶性蛋白的30%以上。AOX1基因已被分离,含AOX1启动子的质粒可用来促进编码外源蛋白的目的基因的表达。AOX2基因与AOX1基因有97%的同源性,但在甲醇中带AOX2基因的菌株比带AOX1基因菌株慢得多,通过这种甲醇利用缓慢表型可分离Muts菌株。 表达: AOX1基因的表达在转录水平受调控。在甲醇中生长的细胞大约有5%的polyA+ RNA 来自AOX1基因。AOX1基因调控分两步:抑制/去抑制机制加诱导机制。简单来说,在含葡萄糖的培养基中,即使加入诱导物甲醇转录仍受抑制。为此,用甲醇进行优化诱导时,推荐在甘油培养基中培养。注意即使在甘油中生长(去抑制)时,仍不足以使AOX1基因达到最低水平的表达,诱导物甲醇是AOX1基因可辨表达水平所必需的。 AOX1突变表型: 缺失AOX1基因,会丧失大部分的醇氧化酶活性,产生一种表型为Muts的突变株(methanol utilization slow),过去称为Mut,而Muts可更精确地描述突变子的表型。结果细胞代谢甲醇的能力下降,因而在甲醇培养基中生长缓慢。Mut+(methanol utilization plus)指利用甲醇为唯一碳源的野生型菌株。这两种表型用来检测外源基因在毕赤酵母转化子中的整合方式。 蛋白胞内及分泌表达: 外源蛋白可在毕赤酵母胞内表达或分泌至胞外。分泌表达需要蛋白上的信号肽序列,将外源蛋白靶向分泌通路。几种不同的分泌信号序列已被成功应用,包括几种外源蛋白本身分

2020年毕赤酵母表达系统资料整理

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 毕赤酵母表达系统 Mut+和Muts 毕赤酵母中有两个基因编码醇氧化酶——AOX1及AOX2,细胞中大多数的醇氧化酶是AOX1基因产物,甲醇可紧密调节、诱导AOX1基因的高水平表达,较典型的是占可溶性蛋白的30%以上。AOX1基因调控分两步:抑制/去抑制机制加诱导机制。简单来说,在含葡萄糖的培养基中,即使加入诱导物甲醇转录仍受抑制。为此,用甲醇进行优化诱导时,推荐在甘油培养基中培养。注意即使在甘油中生长(去抑制)时,仍不足以使AOX1基因达到最低水平的表达,诱导物甲醇是AOX1基因可辨表达水平所必需的。AOX1基因已被分离,含AOX1启动子的质粒可用来促进编码外源蛋白的目的基因的表达。AOX2基因与AOX1基因有97%的同源性,但在甲醇中带AOX2基因的菌株比带AOX1基因菌株慢得多,通过这种甲醇利用缓慢表型可分离Muts菌株。在YPD(酵母膏、蛋白胨、葡萄糖)培养基中,不论是Mut+还是Muts其在对数期增殖一倍的时间大约为2h。Mut+和Muts菌株在没有甲醇存在的情况下生长速率是一样的,存在甲醇的情况下,Mut+在对数期增殖一倍的时间大约为4至6个小时,Muts在对数期增殖一倍的时间大约为18个小时。 菌株GS115、X-33、KM71和SMD1168的区别 GS115、KM71和SMD1168等是用于表达外源蛋白的毕赤酵母受体菌,与酿酒酵母相比,毕赤酵母不会使蛋白过糖基化,糖基化后有利于蛋白的溶解或形成正确的折叠结构。GS115、KM71、SMD1168在组氨酸脱氢酶位点(His4)有突变,是组氨酸缺陷型,如果表达载体上携带有组氨酸基因,可补偿宿主菌的组氨酸缺陷,因此可以在不含组氨酸的培养基上筛选转化子。这些受体菌自发突变为组氨酸野生型的概率一般低于10-8。GS115表型为Mut+,重组表达载体转化GS115后,长出的转化子可能是Mut+,也可能是Muts(载体取代AXO1基因),可以在MM和MD培养基上鉴定表型。SMD1168和GS115类似,但SMD1168基因组中的Pep4基因发生突变,是蛋白酶缺陷型,可降低蛋白酶对外源蛋白的降解作用。 其中X-33由于是野生型,因此耐受性比较好,如果担心转化率的话可以考虑这种酵母菌,而X33与GS115一样都是属于MUT+表现型,也就是说可以在含甲醇的培养基中快速生长,但是据说会对外源基因表达有影响, KM71的亲本菌在精氨酸琥珀酸裂解酶基因(arg4)有突变,在不含精氨酸的培养基中不能生长。用野生型ARG4基因(约2kb)插入到克隆的野生型AOX1基因的BamHI(AOX1基因15/16密码子)及SalI(AOX1基因227/228密码子)位点,取代了AOX1基因16-227密码子,此结构转化至KM71亲本菌(arg4his4)中,分离产生KM71 MutsArg+His-菌株,Arg+转化子遗传分析显示野生型AOX1被aox1::ARG4结构所取代,所以KM71所有转化子都是Muts 表型。AOX1位点没有被完全缺失,理论上可用你的目的结构通过基因取代方法替换

酿酒酵母

酿酒酵母 酿酒酵母(saccharomyces cerevisiae)又称麫包酵母或者出芽酵母。 形态及大小:是一种直径为5微米 所属分类 域:真核域(Eukarya) 界:真菌界(Fungi) 门:子囊菌门(Ascomycota) 纲:半子囊菌纲(Hemiascomycetes) 目:酵母目(Saccharomycetales) 科:酵母科(Saccharomycetaceae) 属:酵母属(Saccharomyces) 种:酿酒酵母(S. cerevisiae) 酿酒酵母介绍 酿酒酵母(Saccharomyces cerevisiae),又称麫包酵母或者出芽酵母。酿酒酵母是与人类关系最广泛的一种酵母,不仅因为传统上它用于制作面包和馒头等食品及酿酒,在现代分子和细胞生物学中用作真核模式生物,其作用相当于原核的模式生物大肠杆菌。酿酒酵母是发酵中最常用的生物种类。酿酒酵母的细胞为球形或者卵形,直径5–10 μm。其繁殖的方法为出芽生殖。 酵母生活史 酵母的细胞有两种生活形态,单倍体和二倍体。单倍体的生活史较简单,通过有丝分裂繁殖。在环境压力较大时通常则死亡。二倍体细胞(酵母的优势形态)也通过简单的有丝分裂繁殖,但在外界条件不佳时能够进入减数分裂,生成一系列单倍体的孢子。单倍体可以交配,重新形成二倍体。酵母有两种交配类型,称作a和α,是一种原始的性别分化,因此很有研究价值。 酿酒酵母基因组 酿酒酵母是第一个完成基因组测序的真核生物,测序工作于1996年完成。 酿酒酵母的基因组包含大约1200万碱基对,分成16组染色体,共有6275个基因,其中可能约有5800个真正具有功能。据估计其基因约有23%与人类同源。酵母基因组数据库包含有酵母基因组的详细注释(annotation),是研究真核细胞遗传学和生理学的重要工具。另一个重要的酿酒酵母数据库[1]由慕尼黑蛋白质序列信息中心维护。 在科学中的作用 因为酿酒酵母与同为真核生物的动物和植物细胞具有很多相同的结构,又容易培养,酵母被用作研究真核生物的模式生物,也是目前被人们了解最多的生物之一。在人体中重要的蛋白质很多都是在酵母中先被发现其同源物的,其中包括有关细

Pichia酵母表达系统使用心得

Pichia酵母表达系统使用心得 摘要:Pichia酵母表达系统广泛应用于外源基因表达。 生物通编者按:甲醇酵母表达系统有不少优点,其中以Invitrogen公司的Pichia酵母表达系统最为人熟知,并广泛应用于外源蛋白的表达。虽然说酵母表达操作简单表达量高,但是在实际操作中,并不是每个外源基因都能顺利得到高表达的。不少人在操作中会遇到这样那样的问题,生物通编者特地收集了部分用户在使用EasySelect Pichia Expression System这个被誉为最简单的毕赤酵母表达的经典试剂盒过程中的心得体会。其中Xiang Yang是来自美国乔治城大学(Georgetown University)Lombardi癌症中心(Lombardi Cancer Center),部分用户来自国内。 + 表示优胜于;- 表示不如;= 表示差不多 EasySelect Pichia Expression System

产品性能: 优点——使用简单,表达量高,His-tag便于纯化 缺点——酵母表达蛋白有时会出现蛋白切割问题 全面产品报告及心得体会: 巴斯德毕赤酵母(Pichia pastoris)是一种能高效表达重组蛋白的酵母品种,一方面由于其是属于真核生物,因此表达出来的蛋白可以进行糖基化修饰,另一方面毕赤酵母生长速度快,可以将表达的蛋白分泌到培养基中,方便蛋白纯化。 毕赤酵母表达载体pPICZ在多克隆位点(MCR)3'端带有his-tag和c-myc epitopes,这些tag有利于常规检测和纯化,而且在MCR5'端引入了alpha factor(α-factor)用以增加表达,并且在表达后α-factor可以自动被切除。在进行克隆的时候,如果你选择的是EcoRI,那么只需在目标蛋白中增加两个氨基酸序列即可完成。另外pPICZ系列选用的是Zeocin抗生素作为筛选标记,而诱导表达的载体需要甲醇——甲醇比一般用于大肠杆菌表达诱导使用的IPTG便宜。 第一步构建载体 Xiang Yang:pPICZ系列有许多克隆位点可供选择,同时也有三种读码框以便不用的用户需要。 红叶山庄:有关是选择pPIC9K还是pPICZ系列?pPIC9K属于穿梭质粒,也可以在原核表达,而pPICZ系列比较容易操作,大肠和毕赤酵母均用抗Zeocin筛选(PIC9K操作麻烦一点,大肠用amp抗性,而毕赤酵母先用His缺陷筛选阳性克隆,在利用G418筛选多拷贝),而且对于大小合适(30—50KD)的蛋白在产量上是pPIC9K 无法比拟的。 leslie:要做毕赤酵母表达实验,首先当然就要了解这个可爱的酵母了(椭圆形,肥嘟嘟的,十分可爱),她和大肠杆菌长得有较大区别(大肠杆菌是杆状的),因此在培养的过程中要区别这两种菌体,除了气味,浓度,颜色以外,也可以取样到显微镜中观测。大家做毕赤表达的时候应该都遇过这种情况吧,表达过程中染菌(我们实验室曾经污染过各种颜色形状的细菌,那真是一段可怕的经历),如果在不知情的情况下继续做下去,那可以就是浪费大把的时间了。 基本熟悉了毕赤酵母,了解了她生长的喜好(多糖偏酸环境),生长的周期等等情况后,当然更多的精力还是应该花在表达的目的蛋白上,我的表达蛋白有些恐怖,有100KD,本来当然应该放在大肠杆菌中表达,但是为了分泌表达(其实后来发现大肠杆菌pET系列分泌表达系列也不错)和糖基化修饰(主要是这个方面,因

毕赤酵母表达经验总结

毕赤酵母表达经验总结 甲醇酵母表达系统有不少优点,其中以Invitrogen公司的Pichia酵母表达系统最为人熟知,并广泛应用于外源蛋白的表达。虽然说酵母表达操作简单表达量高,但是在实际操作中,并不是每个外源基因都能顺利得到高表达的。不少人在操作中会遇到这样那样的问题,生物通编者特地收集了部分用户在使用EasySelect Pichia Expression System这个被誉为最简单的毕赤酵母表达的经典试剂盒过程中的心得体会。其中Xiang Yang是来自美国乔治城大学(Georgetown University)Lombardi癌症中心(Lombardi Cancer Center),部分用户来自国内。 甲基酵母部分优点与其他真核表达系统比较与原核表达系统比较 1.属于真核表达系统,具有一定的蛋白质翻译后加工,有利于真核蛋白的表达优点-+ 2.AOX强效启动子,外源基因产物表达量高,可以达到每升数克表达产物的水平++++ 3.酵母培养、转化、高密度发酵等操作接近原核生物,远较真核系统简单,非常适合大规模工业化生产。+++= 4.可以诱导表达,也可以分泌表达,便于产物纯化。=+ 5.可以甲醇代替IPTG作为诱导物,部分甲醇酵母更可以甲醇等工业产物替代葡萄糖作为碳源,生产成本低++++ + 表示优胜于;- 表示不如;= 表示差不多 EasySelect Pichia Expression System 产品性能: 优点——使用简单,表达量高,His-tag便于纯化 缺点——酵母表达蛋白有时会出现蛋白切割问题 全面产品报告及心得体会: 巴斯德毕赤酵母(Pichia pastoris)是一种能高效表达重组蛋白的酵母品种,一方面由于其是属于真核生物,因此表达出来的蛋白可以进行糖基化修饰,另一方面毕赤酵母生长速度快,可以将表达的蛋白分泌到培养基中,方便蛋白纯化。 毕赤酵母表达载体pPICZ在多克隆位点(MCR)3'端带有his-tag和c-myc epitopes,这些tag有利于常规检测和纯化,而且在MCR5'端引入了alpha factor(α-factor)用以增加表达,并且在表达后α-factor 可以自动被切除。在进行克隆的时候,如果你选择的是EcoRI,那么只需在目标蛋白中增加两个氨基酸序列即可完成。另外pPICZ系列选用的是Zeocin抗生素作为筛选标记,而诱导表达的载体需要甲醇——甲醇比一般用于大肠杆菌表达诱导使用的IPTG便宜。 第一步——构建载体 Xiang Yang:pPICZ系列有许多克隆位点可供选择,同时也有三种读码框以便不用的用户需要。 红叶山庄:有关是选择pPIC9K还是pPICZ系列?pPIC9K属于穿梭质粒,也可以在原核表达,而pPICZ系列比较容易操作,大肠和毕赤酵母均用 抗Zeocin筛选(PIC9K操作麻烦一点,大肠用amp抗性,而毕赤酵母先用His缺陷筛选阳性克隆,在利用G418筛选多拷贝),而且对于大小合适(30—50KD)的蛋白在产量上是pPIC9K无法比拟的。leslie:要做毕赤酵母表达实验,首先当然就要了解这个可爱的酵母了(椭圆形,肥嘟嘟的,十分可爱),她和大肠杆菌长得有较大区别(大肠杆菌是杆状的),因此在培养的过程中要区别这两种菌体,除了气味,浓度,颜色以外,也可以取样到显微镜中观测。大家做毕赤表达的时候应该都遇过这种情况吧,表达过程中染菌(我们实验室曾经污染过各种颜色形状的细菌,那真是一段可怕的经历),如果在不知情的情况下继续做下去,那可以就是浪费大把的时间了。 基本熟悉了毕赤酵母,了解了她生长的喜好(多糖偏酸环境),生长的周期等等情况后,当然更多的精力还是应该花在表达的目的蛋白上,我的表达蛋白有些恐怖,有100KD,本来当然应该放在大肠杆菌中表达,但是为了分泌表达(其实后来发现大肠杆菌pET系列分泌表达系列也不错)和糖基化修饰(主要是这个方面,因为我的蛋白是人源的,表达出来用于酵母双杂,因此需要有完备的糖基化修饰)。这样我的DNA片段由于较长,所以在做克隆的时候也要非常小心,需要注意的是: ①酶切位点不能出现在目的DNA片段中——如果片段长无法避免,可以采用平末端连接; ②虽然α-factor可以自动切除,但是在设计表达的时候,如果在N端不能出现任何多余的aa(比如药物蛋白表达),需要特别留意(说明书上有详细说明:P13); ③有三种不同的读码框(对于pPICZα系列来说就是对上α-factor序列),在设计克隆的时候要反复确

hITF毕赤酵母表达载体的构建及分泌表达.

hITF毕赤酵母表达载体的构建及分泌表达 孙勇,彭曦,张勇,吕尚军,汪仕良(第三军医大学西南医院全军烧伤研究所,创伤、烧伤与复合伤国家重点实验室,重庆400038) 提要:目的构建hITF毕赤酵母分泌型表达载体,表达重组hITF,为功能研究奠定基础。方法通过PCR获得 hITFcDNA片段,将目的基因插入酵母表达载体pGAPZαA分泌信号下游,得到重 组载体pGAPZαA-hITF。BspHⅠ线性化 后氯化锂转化进入X-33, Zeocin筛选转化酵母菌, PCR鉴定目的基因。阳性转化子经摇瓶表达,取上清TCA沉淀后做 Tricine SDS-PAGE分析及Western blot检测。结果经测序及PCR证实, hITFcDNA准确插入酵母表达载体pGAPZαA中,氯化锂转化后,重组载体通过同 源重组整合进入酵母基因组中。Tricine SDS-PAGE分析证明hITF的分子量约 为10×103,Western blot分析表明,表达蛋白具有良好的抗原性和特异性。结论成功构建出酵母表达载体pGAPZαA-hITF,获得重组hITF,为深入研究hITF 奠定了基础。 关键词:人肠三叶因子;毕赤巴斯德酵母;分泌表达 中图法分类号:R379;R394-33;R394. 3文献标识码:A Construction of hITF yeast expression vector and secreted expression of hITF inPichia pastoris SUN Yong,PENG Xi,ZHANGYong,LU Shang-jun,WANG Shi- liang(StateKeyLaboratory ofTrauma,Burns and CombinedInjury,Institute ofBurns,SouthwestHospital,ThirdMilitaryMedicalUniversity,Chongqing 400038,China) Abstract:Objective To constructPichia pastorissecreted expression vector of hITF,express recombinanthITF and underlie the base of function analyses.Methods The hITF gene encodingmature peptidewasamplified by polymerase chain reaction,and then inserted into the downstream of the alpha-mating factor signalof theP. pastorisexpression vector pGAPZαA. Recombinantplasmid pGAPZαA-hITF was linearized byBspHⅠand transform ed into theP. pastorisstrainX- 33with lithium chloride. Zeocin resistantcloneswere chosen byYPD plates containing 100μg/ml Zeocin and the presence of insertwas identified using PCR. The positivetransformantswere fermented in flask and the proteins in the culture supernatantwere deposited with TCA andassayedwithTricine SDS-PAGE andWestern blotting.Results Itwas proved that the fragmentamplifiedwasinserted into theP. pastorisexpression vector pGAPZαA correctly by PCR and gene sequencing. After lithiumchloride transformation,the recombinantplasmidwas integrated into the regionsofhomologywithin the yeastgenome. Tricine SDS-PAGE analysis proved that the molecularweight of hITF was about10×103andWesternblotting demonstrated that the expression proteinshave good antigenicity and

相关文档
相关文档 最新文档