文档库 最新最全的文档下载
当前位置:文档库 › 土壤有机质分解和转化

土壤有机质分解和转化

土壤有机质分解和转化
土壤有机质分解和转化

土壤有机质如何分解和转化

土壤有机质是土壤的重要组成部分,对土壤肥力、生态环境有重要的作用。土壤有机质是指存在于土壤中所有含碳的有机物质,包括土壤中各种动物、植物残体、微生物体及其分解和合成的各种有机物质,即由生命体和非生命体两部分有机物质组成。原始土壤中微生物是土壤有机质的最早来源。随着生物的进化和成土过程的发展,动物、植物残体称为土壤有机质的基本来源。自然土壤经人为影响后,还包括有机肥料、工农业和生活废水、废渣、微生物制品、有机农药等有机物质。

土壤有机质分为新鲜有机质、半分解有机质和腐殖质三种。新鲜有机质和半分解有机质,约占有机质总量的10%~15%,易机械分开,是土壤有机质的基本组成部分和养分来源,也是形成腐殖质的原料。腐殖质约占85%~90%,常形成有机无机复合体,难以用机械方法分开,是改良土壤、供给养分的重要物质,也是土壤肥力水平的重要标志之一。耕作土壤表层的有机质含量通常<5%,一般在1%~3%之间,一般把耕作层有机质含量>20%——有机质土壤,耕作层有机质含量<20%——矿质土壤。

一、土壤有机质组成

土壤有机质由元素和化合物组成。

1、元素组成

主要元素组成是c、h、o、n,分别占52%~58%、34%~39%、3.3%~4.8%和3.7%~4.1%,其次是p、s。

2、化合物组成

(1)糖、有机酸、醛、醇、酮类及其相近的化合物,可溶于水,完全分解产生co2和h2o,嫌气分解产生ch4等还原性气体。

(2)纤维、半纤维素,都可被微生物分解,半纤维素在稀酸碱作用下易水解,纤维素在较强酸碱作用下易水解。

(3)木质素,比较稳定,不易被细菌和化学物质分解,但可被真菌和放线菌分解。

(4)肪、蜡质、树脂和单宁等,不溶于水而溶于醇、醚及苯中,抵抗化学分解和细菌的分解能力较强,在土壤中除脂肪分解较快外,一般很难彻底分解。

(5)含氮化合物,易被微生物分解。

(6)灰分物质(植物残体燃烧后所留下的灰),占植物体重的5%。主要成分有ca、mg、k、na、si、p、s、fe、al、mn等。

二、土壤有机质的分解和转化

进入土壤的有机质在微生物作用下,进行着复杂的转化过程,包括矿质化过程与腐殖化过程

(一)矿质化

微生物分解有机质,释放co2和无机物的过程称矿化作用。这一过程也是有机质中养分的释放过程。土壤有机质的矿质化过程主要有以下几种。

1、碳水化合物的分解

土壤有机质中的碳水化合物如纤维素、半纤维素、淀粉等糖类,在微生物分泌的糖类水解酶的作用下,首先水解为单糖:

(c6h10o5)n+nh2o--→nc6h12o6。

生成的单糖由于环境条件和微生物种类不同,又可通过不同的途径分解,其最终产物也不同。如果在好气条件下,有好气性微生物分解,最终产物为水和二氧化碳,放出的热量多,称氧化作用。其反应如下:

nc6h12o6+6o2—→6co2+6h20+热量

如果在通气不良的条件下,则在嫌气性微生物作用下缓慢分解,并形成一些还原性气体、有机酸,产生的热量少,称发酵作用。其反应为

c6h12o6--→ch3ch2ch2cooh+2h2+2co2+热量

4h2+co2-→ch4+2h2o

碳水化合物的分解,不仅为微生物的活动提供了碳源和能源,扩散到近地表大气层中的co2,还可供绿色植物光合作用所需要的碳素营养。co2溶于水形成碳酸,有利于土壤矿质养分的溶解和转化,丰富土壤中速效态养分。

2、含氮有机质的分解

含氮有机物是土壤中氮素的主要贮藏状态,包括蛋白质、氨基酸、腐殖质等。不经分解多数不能为植物直接利用。

(1)水解作用

蛋白质在微生物分泌的蛋白质水解酶作用下,分解成氨基酸的作用称水解作用

蛋白质

蛋白质-------→氨基酸

水解酶

氨基酸大多数溶于水,可被植物、微生物吸收利用,也可进一步分解转化。

(2)氨化作用

分解含氮有机物产生氨的生物学过程称氨化作用

氧化

ch2nh2cooh+o2-----→hcooh+co2+nh3

好气分解

还原

ch2nh2cooh+h2-----→ch3cooh+nh3

嫌气分解

水解

ch2nh2cooh+h2o-----→ch2(oh)cooh+nh3

不论土壤通气状况如何,只要微生物生命活动旺盛,氨化作用就可以在多种条件下进行。氨化作用生成的氨,在土壤溶液中与酸作用生成铰盐,植物也可以直接吸收利用,也可以nh4+吸附在土壤胶粒上,免遭淋失,也会以nh3逸入大气造成氮素的损失,或进行硝化作用,转化成硝酸。

(3)硝化作用

氨态氮被微生物氧化成亚硝酸,并进一步氧化成硝酸的过程,称硝化作用。这一作用可分为两个阶段:第一阶段,氨被亚硝酸细菌氧化成亚硝酸;第二阶段,亚硝酸被硝化细菌氧化成硝酸。其反应如下:

2nh2+3o2--→2hno2+2h2o+热量

2hno2+o2—→2hno3+热量

硝化作用是一种氧化作用,只能在土壤通气良好的条件下进行,因此适当地中耕、松土、排水、经常保持土壤疏松透气,是硝化作用顺利进行的必要条件。

硝化作用产生的硝酸与土壤中的盐基作用生成硝酸盐,no3-也可直接被植物吸收,但no3-不易被土壤胶粒吸附,易随水淋失。

(4)反硝化作用

同细菌在无氧或微氧条件下以no3-或no2-作为呼吸作用的最终电子受体生成n2o和n2的硝酸盐还原过程,称反硝化作用。其反应如下:

反硝化细菌

c6h12o6+24kno3------→24khco3+6co2+12n2↑+18h2o

反硝化作用是土壤氮素损失的过程,多发生在通气不良或富含新鲜有机质的土壤中,改善土壤的通气状况,能抑制反硝化作用的进行。

3、含磷、硫有机物的分解

(1)含磷有机物的分解

土壤中含磷有机物主要有核蛋白、卵磷脂、核酸、核素等,它们在有机磷细菌的作用下进行分解:

磷细菌k++na++ca2+

核蛋白质-------→磷酸-----------→磷酸盐

水解

产生的磷酸盐是植物可吸收的磷素养分,但在酸性或石灰性土壤中易与fe、al、ca、mg等生成难溶性的磷酸盐,降低其有效性。在缺氧条件下磷酸又被还原为磷化氢,其反应如下:

h3po4---→h3po3---→h3po2---→ph3

磷化氢有毒,在水淹条件下常会使植物根系发黑甚至死亡。

(2)含硫有机物的分解

植物残体中的硫,主要存在于蛋白质中,能分解含硫有机物的土壤微生物很多,一般能分解含氮有机物的氨化细菌,都能分解有机硫化物,产生硫化氢,其反应如下:

蛋白质——硫氨基酸——h2s

还原型的无机硫化物被硫化细菌氧化成硫酸的过程,称硫化作用。其反应如下:

2h2s+o2---→2h2o+2s

2s+3o2+2h2o-→2h2so4

硫化作用产生的硫酸与土壤中的盐基物质作用,形成硫酸盐,硫酸盐是植物可吸收的养分。硫酸还可增加土壤中矿质养分的溶解度,提高其有效性。

细菌在无氧条件下,以so42-作呼吸作用的最终电子受体产生s或h2s的硫酸盐还原过程,称反硫化作用。硫化氢对根系有毒害作用,能造成根系腐烂。因此,应排除土壤多余水分,改善土壤通气条件,抑制反硫化作用进行。

(二)腐殖化

腐殖化指有机质被分解后再合成新的较稳定的复杂的有机化合物,并使有机质和养分保蓄起来的过程。一般认为腐殖质的形成要经过两个阶段:

第一阶段:微生物将动植物残体转化为腐殖质的组分,如芳香族化合物(多元酚)和含氮的化合物(氨基酸和多肽);

第二阶段:在微生物的作用下,各组分通过缩合作用合成腐殖质的过程。在第二阶段中,微生物分泌的酚氧化化酶,将多元酚氧化为醌,醌与其它含氮化合物合成腐殖质。即1)多元酚氧化为醌;2)醌和氨基酸或肽缩合。

腐殖化系数:单位重量的有机物质碳在土壤中分解一年后的残留碳量。

激发作用:土壤中加入新鲜有机物质会促进土壤原有有机质的降解,这种矿化作用称之激发作用。激发效应可正可负。

矿质化和腐殖化两个过程互相联系,随条件改变相互转化,矿化的中间产物是形成腐殖质的原料,腐殖化过程的产物,再经矿化分解释放出养分,通常需调控两者的速度,使其能供应作物生长的养分同时又使有机质保持在一定的水平。

土壤有机质

土壤有机质 土壤有机质含量代表土壤肥力水平。它可以促进土壤团聚体结构的形成,改善土壤物理,化学和生物过程的条件,并改善土壤的吸收和缓冲性能。如果土壤有机质过低,土壤免疫力就会降低,容易硬化和酸化,农作物容易生病。增加土壤有机质可以使根系更多、更健康。 土壤有机质具体指什么呢?土壤有机物(SOM)是指源自土壤中生命的物质。它主要来自植物,动物和微生物残留,其中高等植物是主要来源。从狭义上讲,土壤有机质通常是指通过微生物作用形成的一种特殊,复杂和稳定的高分子有机化合物。 土壤有机质不仅是一种具有生命功能的稳定长期物质。它几乎包含了农作物和微生物所需的所有营养。土壤有机质可以丰富土壤中的养分并改善土壤物理性质。在有机物分解过程中会产生二氧化碳,这会导致土壤pH值暂时下降,从而可以提高磷酸盐和某些微量元素的利用率。有机物分解过程的中间产物,微生物代谢和自溶物质可以在土壤中与多价金属离子形成稳定的络合物,从而增强不溶性物质在土壤中的溶解度, 在有机物分解过程中合成的腐殖质和其他有机胶体可以与土壤中的粘土矿物混合形成胶体,从而可以改善土壤结构和理化性质,增加水稳性团聚体和孔隙率,降低堆积密度,改善土壤水肥保持性能,增加土壤缓冲能力,加速盐碱土壤的脱盐,减少红壤中活性铝和游离铁的危害。有机质包含植物生长发育所需的各种营养元素,尤其是土

壤中的氮。土壤中有机态氮含量超过95%。除了施用氮肥外,土壤氮的主要来源还来自有机物的分解。土壤有机物分解产生的二氧化碳可以为绿色植物提供光合作用。此外,有机物还是土壤中磷,硫,钙,镁和微量元素的重要来源。因此,有机质含量较高的土壤中的养分含量较高,可以减少化肥的施用。 有机质中的腐殖酸可以增强植物的呼吸作用,提高细胞膜的通透性,并增强养分的吸收。同时,有机物中的维生素和一些激素可以促进植物的生长发育。 土壤有机质中的有机胶体,带大量负电荷,吸附能力强,能吸附大量的阳离子和水,其阳离子交换能力和吸水率是几十倍甚至几十倍比粘土颗粒大两倍,因此它可以提高土壤保留肥料和水的能力,还可以提高土壤对酸和碱的缓冲能力。土壤有机质提供土壤微生物所需的能量和养分,微生物的活动和繁殖不能与土壤有机质分开。

土壤有机质测定方法

土壤有机质的测定(重铬酸钾容量法) 土壤有机质既是植物矿质营养和有机营养的源泉,又是土壤中异养型微生物的能源物质,同时也是形成土壤结构的重要因素。测定土壤有机质含量的多少,在一定程度上可说明土壤的肥沃程度。因为土壤有机质直接影响着土壤的理化性状。 测定原理 在加热的条件下,用过量的重铬酸钾—硫酸(K2Cr2O7-H2SO4)溶液,来氧化土壤有机质中的碳,Cr2O-27等被还原成Cr+3,剩余的重铬酸钾(K2Cr2O7)用硫酸亚铁(FeSO4)标准溶液滴定,根据消耗的重铬酸钾量计算出有机碳量,再乘以常数1.724,即为土壤有机质量。其反应式为: 重铬酸钾—硫酸溶液与有机质作用: 2K2Cr2O7+3C+8H2SO4=2K2SO4+2Cr2(SO4)3+3CO2↑+8H2O 硫酸亚铁滴定剩余重铬酸钾的反应: K2Cr2O7+6FeSO4+7H2SO4=K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H2O 测定步骤: 1.在分析天平上准确称取通过60目筛子(<0.25mm)的土壤样品0.1—0.5g(精确到0.0001g),用长条腊光纸把称取的样品全部倒入干的硬质试管中,用移液管缓缓准确加入0.136mol/L重铬酸钾—硫酸(K2Cr2O7-H2SO4)溶液10ml,(在加入约3ml时,摇动试管,以使土壤分散),然后在试管口加一小漏斗。 2.预先将液体石蜡油或植物油浴锅加热至185—190℃,将试管放入铁丝笼中,然后将铁丝笼放入油浴锅中加热,放入后温度应控制在170—180℃,待试管中液体沸腾发生气泡时开始计时,煮沸5分钟,取出试管,稍冷,擦净试管外部油液。 3.冷却后,将试管内容物小心仔细地全部洗入250ml的三角瓶中,使瓶内总体积在60—70ml,保持其中硫酸浓度为1—1.5mol/l,此时溶液的颜色应为橙黄色或淡黄色。然后加邻啡罗啉指示剂3—4滴,用0.2mol/l的标准硫酸亚铁(FeSO4)溶液滴定,溶液由黄色经过绿色、淡绿色突变为棕红色即为终点。 4.在测定样品的同时必须做两个空白试验,取其平均值。可用石英砂代替样品,其他过程同上。 结果计算 在本反应中,有机质氧化率平均为90%,所以氧化校正常数为100/90,即为1.1。有机质中碳的含量为58%,故58g碳约等于100g有机质,1g碳约等于1.724g有机质。由前面的两个反应式可知:1mol的K2Cr2O7可氧化3/2mol的C,滴定1molK2Cr2O7,可消耗6mol FeSO4,则消耗1molFeSO4即氧化了3/2×1/6C=1/4C=3 计算公式为:

土壤有机质分解和转化

土壤有机质如何分解和转化 土壤有机质是土壤的重要组成部分,对土壤肥力、生态环境有重要的作用。土壤有机质是指存在于土壤中所有含碳的有机物质,包括土壤中各种动物、植物残体、微生物体及其分解和合成的各种有机物质,即由生命体和非生命体两部分有机物质组成。原始土壤中微生物是土壤有机质的最早来源。随着生物的进化和成土过程的发展,动物、植物残体称为土壤有机质的基本来源。自然土壤经人为影响后,还包括有机肥料、工农业和生活废水、废渣、微生物制品、有机农药等有机物质。 土壤有机质分为新鲜有机质、半分解有机质和腐殖质三种。新鲜有机质和半分解有机质,约占有机质总量的10%~15%,易机械分开,是土壤有机质的基本组成部分和养分来源,也是形成腐殖质的原料。腐殖质约占85%~90%,常形成有机无机复合体,难以用机械方法分开,是改良土壤、供给养分的重要物质,也是土壤肥力水平的重要标志之一。耕作土壤表层的有机质含量通常<5%,一般在1%~3%之间,一般把耕作层有机质含量>20%——有机质土壤,耕作层有机质含量<20%——矿质土壤。 一、土壤有机质组成 土壤有机质由元素和化合物组成。 1、元素组成 主要元素组成是c、h、o、n,分别占52%~58%、34%~39%、3.3%~4.8%和3.7%~4.1%,其次是p、s。 2、化合物组成 (1)糖、有机酸、醛、醇、酮类及其相近的化合物,可溶于水,完全分解

产生co2和h2o,嫌气分解产生ch4等还原性气体。 (2)纤维、半纤维素,都可被微生物分解,半纤维素在稀酸碱作用下易水解,纤维素在较强酸碱作用下易水解。 (3)木质素,比较稳定,不易被细菌和化学物质分解,但可被真菌和放线菌分解。 (4)肪、蜡质、树脂和单宁等,不溶于水而溶于醇、醚及苯中,抵抗化学分解和细菌的分解能力较强,在土壤中除脂肪分解较快外,一般很难彻底分解。 (5)含氮化合物,易被微生物分解。 (6)灰分物质(植物残体燃烧后所留下的灰),占植物体重的5%。主要成分有ca、mg、k、na、si、p、s、fe、al、mn等。 二、土壤有机质的分解和转化 进入土壤的有机质在微生物作用下,进行着复杂的转化过程,包括矿质化过程与腐殖化过程 (一)矿质化 微生物分解有机质,释放co2和无机物的过程称矿化作用。这一过程也是有机质中养分的释放过程。土壤有机质的矿质化过程主要有以下几种。 1、碳水化合物的分解 土壤有机质中的碳水化合物如纤维素、半纤维素、淀粉等糖类,在微生物分

茶园土壤有机质提升的方法与研究

龙源期刊网 https://www.wendangku.net/doc/3815792170.html, 茶园土壤有机质提升的方法与研究 作者:张学勇 来源:《农家科技下旬刊》2017年第08期 摘要:土壤有机质是土壤肥力的基础,提升茶园土壤有机质是提高茶叶品质和产量的重 要手段。本文在阐述提升茶园土壤有机质重要性的基础上,结合茶园发展实际,探索提升茶园土壤有机质的有效方法,以期为相关人士提供借鉴和参考。 关键词:茶园土壤;有机质;提升方法 随着经济的迅速发展,茶园种植在我国发展迅速,在增加了人民经济收入的同时也带来了许多问题,如土壤有机质含量过低,土壤肥力下降、土壤酸化严重等问题,对发展茶叶种植业形成阻碍。因此,提升茶园土壤的有机质含量,能够有效提高茶叶的品质和产量,延长茶树的寿命,对发展绿色生态农业,建设社会主义新农村具有十分重要的现实意义。 一、提升茶园土壤有机质的重要性 1.提升茶园土壤有机质有利于提高产业的品质和产量 茶园多建在山地和丘陵地区,土壤涵养水源,防止水土流失和保持土壤肥力的能力较差,特别是沙地土壤种茶,土壤的有机质含量低,无法满足种茶对土壤的需要,极大地影响了茶的产量和质量。因此提升茶园土壤有机质含量,对提高茶园土壤的肥力,具有重要作用,能够有效提高茶叶的品质和产量。 2.提升茶园土壤有机质有利于延长茶树的寿命 茶树生长主要依靠人工施肥和落叶养护两种途径,随着茶园的集约化经营,茶叶更多地被生产加工并包装远销,导致落叶对茶树的养护作用减少,降低了土壤有机质含量,如若不能及时为土壤补充有机质,就会导致土壤肥力下降,茶树不能够获得足够的营养就会逐渐枯萎,在一定程度上影响了茶树的寿命。因此,提升茶园土壤有机质对延长茶树寿命具有重要作用。 3.提升茶园土壤有机质有利于实现绿色生态农业 引导茶农充分利用山区的自然资源,增加土壤有机质的含量,有利于节约种茶成本,增加茶农的收入。同时,就地取材也能避免茶农利用焚烧秸秆等方式增加土壤肥力的弊端,降低秸秆焚烧引起的空气污染和森林火灾,有利于实现绿色生态农业。 二、茶园土壤有机质提升的方法 1.合理种植和套种

土壤有机质

土壤有机质 什么是土壤有机质? 土壤有机质是泛指土壤中来源于生命的物质,是土壤中除土壤矿物质以外的物质,它是土壤中最活跃的部分,是土壤肥力的基础,可以说没有土壤有机质就没有土壤肥力。 土壤有机质是指土壤中有机化合物,包括含碳化合物、木素、蛋白质、树脂、蜡质等。土壤中有机质的来源十分广泛,比如动植物及微生物残体、排泄物和分泌物、废水废渣等。微生物是土壤有机质的最早来源。 土壤有机质的含量在不同土壤中差异很大,含量高的可达20%或30%以上(如泥炭土,肥沃的森林土壤等),含量低的不足1%或0.5%(如荒漠土和风沙土等)。 一、土壤有机质有什么用 土壤有机质含有植物生长发育所需要的各种营养元素,也是土壤中磷、硫、钙、镁以及微量元素的重要来源。 1、促进作物的生长发育。 有机质中的胡敏酸,可以增强植物呼吸,提高细胞膜的渗透性,增强对营养物质的吸收,同时有机质中的维生素和一些激素能促进植物的生长发育。 2、改良土壤结构。

有机质中的腐植质是土壤团聚体的主要胶结剂,一方面,它能降低黏性土壤的黏性,减少耕作阻力,提高耕作质量;另一方面它可以提高砂土的团聚性,改善其过分松散的状态。 3、提高土壤的保水保肥能力。 土壤有机质中的有机胶体,具有强大的吸附能力,它能提高土壤保肥蓄水的能力,同时也能提高土壤对酸碱的缓冲性。 4、促进土壤微生物的活动。 土壤有机质供应土壤微生物所需的能量和养分,有利于微生物的活动。土壤微生物生命活动所需的能量物质和营养物质均直接和间接来自土壤有机质,并且腐殖质能调节土壤的酸碱反应,促进土壤结构等物理性质的改善,使之有利于微生物的活动。这样就促进了各种微生物对物质的转化能力。土壤微生物生物量是随着土壤有机质质量分数的增加而增加,两者具有极显着的正相关。但因土壤有机质矿化率低,所以不像新鲜植物残体那样会对微生物产生迅猛的激发效应,而是持久稳定地向微生物提供能源。正因为如此,含有机质多的土壤肥力平稳而持久,不易产生作物猛发或脱肥等现象。 5、提高土壤温度。 有机质为暗色物质,一般是棕色到黑褐色,吸热能力强,可以提高地温。可改善土壤热状况。 6、提高土壤养分性。 有机质中腐植质具有络合作用,腐植质能和磷、铁、铝离子形成络合物或螯合物,避免难溶性磷酸盐的沉淀,提高有效养分的数量。

土壤有机质的七大作用

1、是土壤养分的主要来源 有机质中含有作物生长所需的各种养分,可以直接或简接地为作物生长提供氮、磷、钾、钙、镁、硫和各种微量元素。特别是土壤中的氮,有95%以上氮素是以有机状态存在于土壤中的。因为土壤矿物质一般不含氮素,除施入的氮肥外,土壤氮素的主要来源就是有机质分解后提供的。土壤有机质分解所产生的二氧化碳,可以供给绿色植物进行光合作用的需要。此外,有机质也是土壤中磷、硫、钙、镁以及微量元素的重要来源。 2、促进作物的生长发育 有机质中的胡敏酸,可以增强植物呼吸,提高细胞膜的渗透性,增强对营养物质的吸收,同时有机质中的维生素和一些激素能促进植物的生长发育。 3、促进改善土壤性质,结构 有机质中的腐殖质是土壤团聚体的主要胶结剂,土壤有机胶体是形成水稳性团粒结构不可缺少的胶结物质,所以有助于黏性土形成良好的结构,从而改变了土壤孔隙状况和水、气比例,创造适宜的土壤松紧度。土壤有机质的黏性远远小于黏粒的黏性,只是黏粒的几分之一。一方面,它能降低黏性土壤的黏性,减少耕作阻力,提高耕作质量;另一方面它可以提高砂土的团聚性,改善其过分松散的状态。 4、提高土壤的保肥能力和缓冲性能 土壤有机质中的有机胶体,带有大量负电荷,具有强大的吸附能力,能吸附大量的阳离子和水分,其阳离子交换量和吸水率比黏粒要大几倍、甚至几十倍,所以它能提高土壤保肥蓄水的能力,同时也能提高土壤对酸碱的缓冲性。 5、促进土壤微生物的活动 土壤有机质供应土壤微生物所需的能量和养分,有利于微生物活动。 6、提高土壤温度 有机质颜色较暗,一般是棕色到黑褐色,吸热能力强,可以提高地温。可改善土壤热状况。 7、提高土壤养分性

土壤有机质平衡与地球温室效应

土壤有机质平衡与地球温室效应 摘要:土壤有机质在培肥土壤,调节土壤的理化性质,营养作物及改良耕性等各方面都有重要作用。长期农业生产实践证明,维持土壤有机质平衡及稳定增长是土地生产力持续利用的基础,努力增加及多途径归还土壤有机质是维持与改善土壤肥力的关键,要提高和发挥土集肥力,合理调控土壤有机质的积累与分解这一对立统一过程,建立适宜的转化平衡是非常必要的。土壤碳库为地球表层生态系统中最大的碳储库。土壤中的有机碳库与无机碳库都是陆地生态系统重要的碳库,对于温室效应与全球气候变化同样有着重要的控制作用。全球土壤有机碳库(SOC pool)达到1.5×103~2×103Pg,是大气碳库的3倍,约是陆地生物量的2.5倍 [1]。可见,土壤有机质的损失对地球自然环境具有重大影响。从全球来看,土壤有机碳的不断下降,对全球气候变化的影响非常大。 关键词:土壤有机质作用平衡温室效应 一、土壤有机质作用与平衡管理 (一)、土壤有机质作用 1、提供植物需要的养分 土壤有机质是作物所需的氮、磷、硫、微量元素等各种养分的主要来源。大量资料表明,我国主要土壤表土中大约80%以上的氮、20%—76%的磷以有机态存在,随着土壤有机质的逐步矿化,这些养分可以直接通过微生物的的降解与转化,以一定速率不断释放出来,供作物及微生物生长发育之需。同时,土壤有机质分解与合成过程中,产生的多种有机酸和腐殖酸对土壤矿质部分有一定溶解能力,可以促进矿物风化,有利于某些养料的有效化。 2、改善土壤肥力特征 土壤有机质能改善土壤物理性质土壤有机质几乎对所有的土壤物理性质都有良好的影响,腐殖质是很好的胶结剂,能使土粒形成良好的团粒结构,从而使土壤通透疏松,减少粘着性,改善耕性。腐殖质色暗,可加深土壤颜色,增强土壤吸热能力,同时其导热性小,有利于保温,使土温变化缓和。另外,土壤有机质具有离子代换作用、络合作用和缓冲作用土壤有机质的羧基、酚羟基、烯醇或羟基使有机胶体带负电荷,具有较强的代换

土壤有机质消煮方法的改进

土 壤 (Soils), 2003, 35 (4): 349~350 土壤有机质消煮方法的改进①   宗海宏  (中国科学院南京土壤研究所 南京 210008) IMPROVEMENT IN THE DIGESTION METHOD FOR DETERMINING SOIL ORGANIC MATTER Zong Haihong ( Institute of Soil Science, Chinese Academy of Sciences ,Nanjing 210008 ) 摘 要 本文是在原电热板加热法的基础上作了一些改进,将电热板四周加上保温墙,电热板上铺以细小玻璃珠和简易导轨,三角瓶在电热板上易于滑动,使其在各不同位置上进行消煮。同时,还做了温度试验和水分蒸发试验,并用国家一级标准物质做了检验。 关键词 土壤有机质;消煮方法;改进 中图分类号 S151.9+5 现行的土壤有机质测定方法采用油浴法和电热板法,但二者都有不足之处。油浴法易引起环境污染、试管上粘附的油难以擦干净、操作烦琐等;传统的电热板法消化时样品受热不均匀,温度难以控制,温度控制不好时,样品间因为沸腾时间不一致,导致测定结果无法比较,结果重现性差。为了克服土壤有机质测定方法的上述缺点,对电热板法进行了改进,本文报导这一结果。    1 设备及装置  1. 长方形20cm×40cm自动控温电热板,四周有5cm 高保温墙,电热板上铺一层直径2mm 左右小玻璃珠,并用粗铁丝做一个导轨(图1)。 2. 100mL 标准磨口三角瓶,要求大小、厚薄一致,瓶底平整。 3. 标准磨口球泡式空气冷凝管,其长短与球泡大小、厚薄一致。 4. 计时表;0~250 温度计。

土壤有机质测定

土壤有机质测定 5.2.1重铬酸钾容量法——外加热法 5.2.1.1方法原理在外加热的条件下(油浴的温度为180,沸腾5 分钟), 用一定浓度的重铬酸钾——硫酸溶液氧化土壤有机质(碳),剩余的重铬酸钾用硫酸亚铁来滴定,从所消耗的重铬酸钾量,计算有机碳的含量。本方法测得的结果,与干烧法对比,只能氧化90%的有机碳,因此将得的有机碳乘以校正系数,以计算有机碳量。在氧化滴定过程中化学反应如下: 2K2Cr2O7+8H2SO4+3C→2K2SO4+2Cr2(SO4)3+3CO2+8H2O K2Cr2O7+6FeSO4→K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H20 在1mol·L-1H2SO4 溶液中用Fe2+滴定Cr2O72-时,其滴定曲线的突跃范围为1.22~0.85V。 从表5—4中,可以看出每种氧化还原指示剂都有自己的标准电位(E0),邻啡罗啉(E0=1.11V),2-羧基代二苯胺(E0=1.08V),以上两种氧化还原指示剂的标准电位(E0),正落在滴定曲线突跃范围之内,因此,不需加磷酸而终点容易掌握,可得到准确的结果。 例如:以邻啡罗啉亚铁溶液(邻二氮啡亚铁)为指示剂,三个邻啡罗啉(C2H8N2)分子与一个亚铁离子络合,形成红色的邻啡罗啉亚铁络合物,遇强氧化剂,则变为淡蓝色的正铁络合物,其反应如下: [(C12H8N2)3Fe]3++e [(C12H8N2)3Fe]2+ 淡蓝色红色 滴定开始时以重铬酸钾的橙色为主,滴定过程中渐现Cr3+的绿色,快到终点变为灰绿色,如标准亚铁溶液过量半滴,即变成红色,表示终点已到。 但用邻啡罗啉的一个问题是指示剂往往被某些悬浮土粒吸附,到终点时颜色变化不清楚,所以常常在滴定前将悬浊液在玻璃滤器上过滤。 从表5-4 中也可以看出,二苯胺、二苯胺磺酸钠指示剂变色的氧化还原标准电位(E0)分别为0.76V、0.85V。指示剂变色在重铬酸钾与亚铁滴定曲线突跃范围之外。因此使终点后移,为此,在实际测定过程中加入NaF或H3PO4络合Fe3+,

土壤中有机质和全氮的空间分布规律

长丰县土壤中有机质和全氮的 空间分布规律研究 作者:指导老师:胡宏祥 (安徽农业大学资源与环境学院 2004级农业资源与环境合肥 230036) 摘要:探明土壤有机质和全氮的空间分布,是科学配方施肥的重要依据。通过对长丰县8个乡镇土壤样品的化验测定,并对样品中有机质和全氮的含量进行统计分析。结果表明,长丰县土壤中全氮含量属中等水平,变异系数为中等程度变异;有机质含量偏低,变异系数也为中等程度变异。同时,该县土壤有机质和全氮含量的空间差异显著,有机质和全氮呈显著的正相关性,说明增加土壤有机质不仅能改良土质,而且能增加土壤肥力。 关键词:长丰县土壤全氮有机质空间分布 1.引言 我国要以占世界不足7%的耕地,养活占世界近22%的人口,为满足如此众多的人口对物质不断增加的需求,必须在有限的耕地上生产更多的产品[1]。要想在有限的耕地上生产更多的产品,增施化肥是提高农作物产量的重要措施。但是,盲目增施化肥已导致地区间土壤养分差异变大。在我国经济发达地区化肥施用明显过量,平均达339kg/hm2,是全国平均用量(262 kg/hm2)的1.29倍,而经济发展相对落后地区施肥量则仅为178kg/hm2,是全国平均的67.8%[2]。其结果是一些地区使有限的肥料资源大量浪费,且导致环境污染。为了解决这些问题,我国在上个世纪就引入了“精准农业”理念[3],并以北方土壤及种植管理模式为对象,开展了大量有关土壤养分状况的研究,对作物实施平衡施肥并在贵州、甘肃、广西、湖南、湖北、江西、四川等省份都得到实施,带来了经济、生态和社会效益[4]。 测土配方施肥是以土壤测试和肥料田间试验为基础,根据作物需肥规律,土壤供肥性能和肥料效应,在合理施用有机肥料的基础上,提出氮、磷、钾及中、微量元素等肥料的施用数量、施肥时期和施用方法。通俗地讲,就是在农业科技人员指导下科学施用配方肥。测土配方施肥技术的核心是调节和解决作物需肥与

提升土壤有机质方法

提升土壤有机质方法 土壤有机质指土壤中以各种形式存在的含碳有机化合物,是土壤的重要组成部分,是衡量土壤肥力高低的重要指标,对土壤的理化性状及肥力具有较大的影响。近年来,大量施用化肥,少施或不施用有机肥,严重影响了养分对农作物的有效供给,粮食产量难以提高。因此,提升土壤有机质势在必行。具体可采用以下方法: 1、增施有机肥 有机肥是很好的土壤改良剂,它既能熟化土壤,保持土壤的良好结构,又能增强土壤的保肥供肥和缓冲能力,不断供给作物生长需要的养分,为作物生长创造良好的土壤条件。 2、推广秸秆还田 推广以小麦、水稻、玉米等秸秆还田及喷施腐化剂技术,既能有效地利用有机肥资源,又能改善土壤结构,增强土壤保肥供肥性能,节约化肥投入,降低生产成本,增加农民收入。 3、实施间套种和轮作 近年来,农作物复种指数越来越高,致使许多土壤有机质含量降低,肥力下降。实行轮作、间作制度,调整种植结构,做到用地与养地相结合,不仅可以保持和提高土壤有机质含量,而且还能改善农产品品质,对促进农业可持续发展具有重要意义。 4、因地制宜种植绿肥 种植绿肥可为土壤提供丰富的有机质和氮素,促进用地与养地结合,减少连作障碍及下茬化肥用量,提高土壤有机质含量。 5、测土配方施肥 测土配方施肥是以土壤养分测试和肥料田间试验为基础,根据作物需肥规律、土壤供肥性能和肥料效应,在合理施用有机肥的基础上,提出氮、磷、钾及中、微量元素的施用量、施肥时期和施肥。 北京光禾生物科技有限公司是在北京农学院和北农科技产业集团的共同支持下创立的一家现代化生物类高新技术企业。公司以微生物技术作为产业核心,业务板块覆盖农业生产、环境治理、生物制药三大领域。目前已经在生物肥料、生物农药、生物保鲜剂、污水处理、土壤修复、生物医药等诸多方向开发出了拥有独立自主知识产权的10余款产品,技术水平国内领先。公司现拥有独立的应用微生物研发中心、大型微生物菌

土壤全氮的测定—凯氏定氮法

土壤学实验讲义 (修订版) 吴彩霞王静李旭东 2012年10月

目录 实验一、土壤分析样品采集与制备 实验二、土壤全氮的测定—凯氏定氮法实验三、土壤速效钾的测定 实验四、土壤有效磷的测定 实验五、土壤有机质的测定 实验六、土壤酸度的测定

实验一土壤分析样品采集与制备 一、实验目的和说明 为开展土壤科学实验,合理用土和改土,除了野外调查和鉴定土壤基础性状外,还须进行必要的室内常规分析测定。而要获得可靠的科学分析数据,必须从正确地进行土壤样品(简称土样)的采集和制备做起。一般土样分析误差来自采样、分样和分析三个方面,而采样误差往往大于分析误差,如果采样缺乏代表性即使室内分析人员的测定技术如何熟练和任何高度精密的分析仪器,测定数据相当准确,也难于如实反映客观实际情况。故土样采集和制备是一项十分细致而重要的工作。 二、实验方法步骤 (一)土样采集 分析某一土壤或土层,只能抽取其中有代表性的少部份土壤,这就是土样。采样的基本要求是使土样具有代表性,即能代表所研究的土壤总体。根据不同的研究目的,可有不同的采样方法。 1.土壤剖面样品 土壤剖面样品是为研究土壤的基本理化性质和发生分类。应按土壤类型,选择有代表性的地点挖掘剖面,根据土壤发生层次由下而上的采集土样,一般在各层的典型部位采集厚约l0厘米的土壤,但耕作层必须要全层柱状连续采样,每层采一公斤;放入干净的布袋或塑料袋内,袋内外均应附有标签,标签上注明采样地点、剖面号码、土层和深度。 图1 土壤剖面坑示意图

2. 土壤混合样品 混合土样多用于耕层土壤的化学分析,一般根据不同的土壤类型和土壤肥力状况,按地块分别采集混合土样。一般要求是: (1)采样点应避免田边、路旁、沟侧、粪底盘以及一些特殊的地形部位。 (2)采样面积一般在20—50亩的地块采集一个混合样可根据实际情况酌情增加样品数。 (3)采样深度依不同分析要求而定,一般土壤表层取0-10cm,取样点不少于5点。可用土钻或铁铲取样,特殊的微量元素分析,如铁元素需改用竹片或塑料工具取样,以防污染。 (4)每点取样深度和数量应相当,集中放入一土袋中,最后充分混匀碾碎,用四分法取对角二组,其余淘汰掉。取样数量约1公斤左右为宜。 (5)采样线路通常采用对角线、棋盘式和蛇形取样法。 (6)装好袋后,栓好内外标签。标签上注明采样地点、深度、采集人和日期,带回室内风干处理 (二)土壤样品制备 样品制备过程中的要求: (1)样品处理过程中不能发生任何物理和化学变化,以免造成分析误差。 (2)样品要均一化,使测定结果能代表整个样品和田间状态。 (3)样品制备过程包括:风干一分选一去杂一磨碎一过筛—混匀一装瓶一保存一登记。 风干一将取回的土样放在通风、干燥和无阳光直射的地方,或摊放在油布、牛皮纸、塑料布上,尽可能铺平并把大土块捏碎,以便风干快些。 分选一若取的土样太多,可在土样均匀摊开后,用“四分法”去掉一部分,留下1000克左右供分析用。 去杂、磨细和过筛一将风干后土样先用台称称出总重量,然后将土样倒在橡皮垫上,碾碎土块,并尽可能挑出样品中的石砾、新生体、侵入体、植物根等杂质,分别放入表面皿或其它容器中;将土样铺平,用木棒轻轻辗压,将辗碎的土壤用带有筛底和筛盖的0.25mm 筛孔的土筛过筛,并盖好盖、防止细土飞扬。不能筛过的部分,再行去杂,余下的土壤铺开再次碾压过筛,直至所有的土壤全部过筛,只剩下石砾为止。(样品通过多大筛孔、应依不同分析要求而定)。 混匀装瓶一将筛过的土壤全部倒在干净的纸上,充分混匀后装入500~1000ml磨口瓶中保存。每个样品瓶上应贴两个标签,大标签贴在瓶盖上。书写标签用HB铅笔或圆珠笔填

土壤有机质

从广义上讲,土壤有机物是指土壤中各种含碳有机物,包括各种动植物残留物,微生物及其分解和合成的各种有机物质。 从狭义上讲,土壤有机质(SOM)通常是指由有机残留物通过微生物作用而形成的一种特殊,复杂和稳定的大分子有机化合物(腐殖酸)。 土壤有机质是土壤固相的重要组成部分,也是植物营养的主要来源之一。它可以促进植物的生长发育,改善土壤的物理性质,促进微生物和土壤生物的活性,促进土壤中营养元素的分解,并提高土壤肥力和缓冲作用。它与土壤的结构,通气,渗透性,吸附和缓冲密切相关。通常,当其他条件相同或相似时,有机物的含量在一定范围内与土壤肥力成正相关。 土壤有机质主要来自植物,动物和微生物残留,其中高等植物是主要来源。微生物是最早出现在原始土壤母体材料中的生物。随着生物的进化和土壤形成过程的发展,动植物残留物及其分泌物已成为土壤有机质的基本来源。在天然土壤中,土壤有机质的主要来源是地面植被残留物和根,例如树木,灌木,草及其残留物,它们每年为土壤提供大量有机残留物。在农业土壤中,土壤有机质的来源广泛,主要包括作物残茬,秸秆还田和绿肥。人畜粪便,工农业副产品的废料(如酒糟,亚硫酸铵造纸废液等);城市生活垃圾和污水;土壤微生物,动物(例如earth,昆虫等)的残留物和分泌物;人工施用各种有机肥料(肥料,腐殖酸,肥料,污泥,土壤和杂肥等)。其中,耕种土壤中的自然植被已不存在,主要是人们每年使用的作物根系分泌物,

残茬,垃圾和有机肥料(绿肥,堆肥,堆肥和肥料等)。 尽管进入土壤的有机残留物来源不同,但从化学角度来看,它们主要是碳水化合物(包括一些简单的糖和多糖,例如淀粉,纤维素和半纤维素),含氮化合物(主要是蛋白质),木质素和其他物质。此外,还有一些脂溶性物质(例如树脂,蜡等)。土壤有机质的基本元素是C,O,h和N,其中C占52%-58%,O占34%-39%,H占3.3%-4.8%,N占3.7。%-4.1%。第二个是p和s,其次是K,CA,Mg,Si,Fe,Zn,Cu,B,Mo,Mn和其他灰分元素,C / N通常为10-12。这些有机成分在有机残留物中的含量随植物种类,器官和年龄的变化而变化

土壤有机质的作用及调节

土壤有机质的作用及调节 一、土壤有机质的作用 土壤有机质在土壤肥力和植物营养中具有多方面的重要作用。主要包括以下几个方面: (一)提供作物需要的各种养分 土壤有机质不仅是一种稳定而长效的氮源物质,而且它几乎含有作物和微生物所需要的各种营养元素。大量资料表明,我国主要土壤表土中大约80%以上的氮、20%~76%的磷以有机态存在,在大多数非石灰性土壤中,有机态硫占全硫的75%~95%。随着有机质的矿质化,这些养分都成为矿质盐类(如铵盐、硫酸盐、磷酸盐等),以一定的速率不断地释放出来,供作物和微生物利用。 ,另外,据估计土壤有机质的分解以及微生物和根系呼吸作用所产生的CO 2 每年可达1.35*1011t,大致相当于陆地植物的需要量,可见土壤有机质的矿化分的重要来源,也是植物碳素营养的重要来源. 解是大气中CO 2 此外,土壤有机质在分解过程中,还可产生多种有机酸(包括腐殖酸本身),这对土壤矿质部分的一定溶解能力,促进风化,有利于某些养分的有效化,还能络合一些多价金属离子,使之在土壤溶液中不致沉淀而增加了有效性。 (二)增强土壤的保水保肥能力和缓冲性 腐殖质疏松多孔,又是亲水胶体,能吸持大量水分,故能大大提高土壤的保水能力。此外腐殖质改善了土壤渗透性,可减少水分的蒸发等,为作物提供更多的有效水。 腐殖质因带有正负两种电荷,故可吸咐阴、阳离子;又因其所带电性以负电 +、Ca2+、荷为主,所以它具有较强的吸咐阳离子的能力,其中作为养料的K+、NH 4 Mg2+等阳离子一旦被吸咐后,就可避免随水流失,而且能随时被根系附近的其他阳离子交换出来,供作物吸收,仍不失其有效性。 腐殖质保存阳离子养分的能力,要比矿质胶体大许多倍至几十倍。一般腐殖质的吸收量为150~400cmol(+)/kg。因此,保肥力很弱的砂土中增施有机肥料后,不仅增加了土壤中养分分数,改良砂土的物理性质,还可提高其保肥能力。

第三章、土壤生物及土壤有机质

第三章、土壤生物及土壤有機質 第一節、土壤生物與土壤的關係 一、土壤生物的種類 1.大型生物 土壤中大型生物如:齧齒類及食蟲動物、昆蟲類、木蝨、蟎、蝸蝓、蝸牛、蜘蛛、百足蟲、蚯蚓、千足蟲等。土壤中大型生物的活動對土壤的影響包括: (1)齧齒類常搗碎土塊,變成團粒狀,且搬運土塊。進而使土壤中有機質團結,且促進空氣 流通及排水良好,但其害處在傷害農作物。 (2)昆蟲類能搬運或消化土壤,常把地面植物及動物遺體物質帶入土中,對土壤有機質的移 動與破壞有很大的影響,其作穴對土壤通氣亦有影響。此類動物繁殖力大,其遺體對土壤有機物生成頗有影響。 (3)蚯蚓及蝸牛為土壤中最重要的腹足動物,常以腐朽植物體為食物。蚯蚓常吃食土壤而再 排泄出來,據估計每年每英畝有15噸之乾土穿過蚯蚓之體。土壤之穿過其體不僅是可作其食物之有機質部份,且有礦物成分,均受其體內消化酵素之作用,又能弄碎土粒,使有機質、氮素、交換性鈣及鎂、有效磷、p H、鹽基飽和度及陽離子交換能量,均有顯著增加,故可增進土壤肥力。 土壤中的無機元素對動物的分布和數量亦有一定影響。由於石灰質土壤對蝸牛殼的形成很重要,所以在石灰質地區的蝸牛數量往往比其它地區多。 2.土壤微生物 (1)線蟲:分為雜食性、肉食性、寄生類等。 (2)原生動物:即單細胞動物,土壤中常見者有三種,變形蟲、纖毛蟲、鞭毛蟲等。原生動 物之主要食物為有機物,故對有機物的分解頗有影響。而有一部份原生動物以細菌為食物,對於限制細菌之繁殖頗有影響。 3.土壤植物 土壤植物可分為:土壤藻類、土壤蕈類、土壤放射菌類、土壤細菌等四類。 (1)土壤藻類可分為:綠藻、藍綠藻、黃綠藻、細藻等。藻類對土壤性質及植物生長可能的 影響如下: ?增加土壤有機質,因其能行光合作用製造有機質。 ?增進土壤通氣,因其行光合作用能放出氧氣。 ?已知有固氮能力之細菌和藻類(如藍綠藻)很多,稱為「固氮生物」,能吸收氮氣,進 行固碳作用(nitrogen fixation)。

土壤有机质含量偏低的原因及提高途径

土壤有机质含量偏低的原因及提高途径 摘要以土壤有机质的重要作用为切入点,通过农民的种植习惯,分析土壤有机质下降的原因,并提出提高土壤有机质含量的建议和途径。 关键词土壤有机质;降低原因;秸秆还田;有机肥 土壤有机质不仅是植物营养元素的重要组成部分,而且对土壤的物理和化学性质有很大影响。有机质中的化合物在土壤肥力上具有多方面的重要作用,其分离出的土壤多糖具有较腐殖酸更为强大的团聚土壤颗粒的能力,是水稳性团聚体的主要胶结剂,对促进水稳性团粒结构的形成具有重要作用。从物质转化的角度来看,碳水化合物是微生物的能源物质。所以,土壤的生物学特性也会随土壤有机质数量和质量的变化而变化。有机质中的腐殖酸既是一种疏散剂,又是一种絮凝剂,腐殖酸钠和腐殖酸钾不仅对粘土矿物有分散作用和选择性絮凝作用,而且阴阳离子都能被作物吸收利用,同时能提高农产品品质。另外,腐殖酸以及包括氨基酸在内的各种有机酸、多糖等含有多种功能团,能与环境中的金属离子发生吸附、交换和络合作用,控制环境污染,这也是无公害农产品生产基地倡导施用有机肥的重要原因[1-2]。除此之外,腐殖酸还有很大的缓冲作用,是土壤具有缓冲性能的原因之一。正是由于有机质在土壤结构和土壤肥力上具有上述不可替代的作用,所以在土壤普查过程中有机质常被作为衡量土壤肥力水平高低的重要指标。不容忽视的是大量土壤普查的化验结果表明,许多地区的土壤有机质不但没有提高,而且有下降趋势。 据辽宁省土壤肥料工作站统计,以2001—2003年化验的3 653个土样为例,辽中平原土壤有机质平均含量为1.76%,与1979年第2次土壤普查结果(1.93%)相比平均含量下降了0.17个百分点,下降幅度为8.81%。 近几年,随着测土配方施肥工作的开展,土壤有机质含量逐年下降的趋势又进一步得到证实。仅新民地区而言,以2006年兴隆镇班屯村采集的48个土样为例,土壤有机质含量高于1.0%的不足8.4%,最低的仅为0.32%,最高的只有1.87%。究其原因,主要有以下几个方面:一是越来越多的化肥使用和高产量品种的推广及复种指数的提高造成土壤中的养分耗竭,只用地、不养地已成为我国农业生产的普遍现象。二是省时、省力已成为我国当代农民选择生产方式时所考虑的首要因素,出现大面积的秸秆焚烧和全方位的化学除草现象,降低了土壤碳回归指数,而且严重污染了环境。三是有机肥投入的减少是土壤有机质降低的重要原因。 根据目前我国农民的劳动习惯和农村青壮年劳动力奇缺的状况,原始有机肥施用方法与当代农民的劳动观念形成极大的反差,因此,再像20世纪70年代那样号召农民大面积增施有机肥及用秸秆去堆沤大寨肥已不太符合农村实际,必须在现有的农业生产方式上,推广新的土壤有机质提高途径[3]。综上所述,可以考虑从以下几方面提高土壤的有机质含量。

土壤全氮测定方法

土壤全氮的测定—凯氏定氮法 一、目的 1、掌握土壤中全氮含量测定的方法。 2、了解测定土壤全氮的原理 二、原理 土壤中的氮大部分以有机态(蛋白质、氨基酸、腐殖质、酰胺等)存在,无 机态(NH 4+ 、NO 3 -、NO 2 -)含量极少,全氮量的多少决定于土壤腐殖质的含量。 土壤中含氮有机化合物在还原性催化剂的作用下,用浓硫酸消化分解,使其中所含的氮转化为氨,并与硫酸结合为硫酸铵。 给消化液加入过量的氢氧化钠溶液,使铵盐分解蒸馏出氨,吸收在硼酸溶液中,最后以甲基红-溴甲酚绿为指示剂,用标准盐酸滴定至粉红色为终点,根据标准盐酸的用量,求出分析样品中的含氮全量。 三、试剂: 1、混合催化剂:称取硫酸钾100g、五水硫酸铜10g、硒粉1g。均匀混合后研细。贮于瓶中。 2、比重1.84浓硫酸。 3、40%氢氧化钠:称400g氢氧化钠于烧杯中,加蒸馏水600ml,搅拌使之全部溶解。 4、2%硼酸溶液:称20g硼酸溶于1000ml水中,再加入2.5ml混合指示剂。(按体积比100:0.25加入混合指示剂) 5、混合指示剂:称取溴甲酚绿0.5g和甲基红0.1克,溶解在100ml95%的乙醇中,用稀氢氧化钠或盐酸调节使之呈淡紫色,此溶液pH应为4.5。 6、0.01的盐酸标准溶液:取比重1.19的浓盐酸0.84ml,用蒸馏水稀释至1000ml,用基准物质标定之。 四、操作步骤 1、消煮:在分析天平上准确称取通过60号筛的风干土0.5000g左右,移入干燥的凯氏瓶中,加入1.5g的还原性混合催化剂。用注射器加入4ml浓硫酸,放到通风柜内的消煮器上消煮1.5h左右。直至内容物呈清彻的淡蓝色为止。 2、蒸馏:消煮完毕后冷却。 将三角瓶置于冷凝管的承接管下,管口淹没在硼酸溶液中(三角瓶用2%的硼酸20ml作吸收剂),然后打开冷凝器中的水流,进行蒸馏。在整个蒸馏过程中注意冷凝管中水不要中断,当接受液变蓝后蒸馏5min,将冷凝管下端离开硼酸液面,再用蒸馏水冲净管外。 3、滴定:用0.01当量的盐酸标准溶液滴定至红色为止。记录所消耗的盐酸标准溶液的体积。 4、空白:除不加试样外其余步骤完全相同。 五、计算: 土壤含氮量(%)=(V-V )*N*0.014*100/W

土壤化学课程论述题-土壤有机碳和土壤酸化

一、论述不同生态、耕作管理条件下土壤有机碳的含量、组成和性质特征 一、论述不同生态、耕作管理条件下土壤有机碳的含量、组成和性质特征。 土壤有机碳(SOC)包括植物、动物及微生物遗体、排泄物、分泌物及其部分分解产物和土壤腐殖质。土壤有机碳量是进入土壤的植物残体量以及在土壤微生物作用下分解损失的平衡结果。土壤有机碳量(1500Pg)约为陆地生物量碳(620Pg)的2.4倍,其动态平衡不仅直接影响土壤肥力和作物产量,而且其固存与排放对温室气体含量、全球气候变化也有重要影响。然而,不同生态系统的土壤有机态组成和转化有所差别。(一)森林生态系统 森林生态系统作为陆地生物圈的主体,不仅本身维持着大量的碳库(约占全球植被碳库的86%以上),同时也维持着巨大的土壤碳库(约占全球土壤碳库的73%)。森林植被下,进入土壤的有机物质主要为地表的凋落物。因此,其表土层很薄,一般仅2~7 cm,此层中有机碳含量可达到368mg/kg,其下虽有一深厚的腐殖质层(约40~70cm),但其含量已较上层急剧减少。森林土壤中的有机碳主要来自于森林凋落物的分解补充与累积,是进入土壤中的植物残体量以及在土壤微生物作用下分解损失量的平衡结果。 (二)草地生态系统 在草地生态系统中,草地植物通过光合作用吸收大气中的CO2,合成有机物质,植物枯死后凋落于土壤表面,形成凋落物层进入土壤库,其中一部分凋落物经腐殖化作用,形成土壤有机碳固定在土壤中,这部分有机碳经土壤动物和微生物的矿化作用,部分分解产物被植物再次利用,构成了生态系统内部碳的生物循环。此外,植物光合作用固定的有机碳还有一部分通过植物自身的呼吸作用(自养呼吸)、草原动物呼吸、凋落物层的异养呼吸以及土壤的呼吸代谢作用将碳以CO2的形式重新释放到大气中,构成了草地植被-土壤-大气间的生物地球化学循环。在草地生态系统中,植物、凋落物、土壤腐殖质构成了系统的三大碳库。 (三)湿地生态系统 全球变化背景下陆地生态系统碳循环研究是其中重要的核心内容之一。湿地作为一个水陆相互作用形成的独特生态系统,具有季节或常年积水、生长或栖息喜湿动植物和土壤发育潜育化3个基本特征。湿地虽然只占地球陆地表面的很小部分,但在陆地碳库中却占有显著的份额。据估算,湿地占了全球陆地碳库的12%~20%。 一旦有机物质沉积在湿地土壤表层或矿物土壤中,便成为湿地生态系统异养食物链的一部分,在土壤性质、水文和土地利用活动的影响下,通过生物地球化学过程影

精选-土壤有机质分解和转化

土壤有机质如何分解和转化

土壤有机质是土壤的重要组成部分,对土壤肥力、生态环境有重要的作用。土壤有机质是指存在于土壤中所有含碳的有机物质,包括土壤中各种动物、植物残体、微生物体及其分解和合成的各种有机物质,即由生命体和非生命体两部分有机物质组成。原始土壤中微生物是土壤有机质的最早来源。随着生物的进化和成土过程的发展,动物、植物残体称为土壤有机质的基本来源。自然土壤经人为影响后,还包括有机肥料、工农业和生活废水、废渣、微生物制品、有机农药等有机物质。 土壤有机质分为新鲜有机质、半分解有机质和腐殖质三种。新鲜有机质和半分解有机质,约占有机质总量的10%~15%,易机械分开,是土壤有机质的基本组成部分和养分来源,也是形成腐殖质的原料。腐殖质约占85%~90%,常形成有机无机复合体,难以用机械方法分开,是改良土壤、供给养分的重要物质,也是土壤肥力水平的重要标志之一。耕作土壤表层的有机质含量通常<5%,一般在1%~3%之间,一般把耕作层有机质含量>20%——有机质土壤,耕作层有机质含量<20%——矿质土壤。 一、土壤有机质组成 土壤有机质由元素和化合物组成。 1、元素组成 主要元素组成是c、h、o、n,分别占52%~58%、34%~39%、3.3%~4.8%和3.7%~4.1%,其次是p、s。 2、化合物组成 (1)糖、有机酸、醛、醇、酮类及其相近的化合物,可溶于水,完全分解产生co2和h2o,嫌气分解产生ch4等还原性气体。

(2)纤维、半纤维素,都可被微生物分解,半纤维素在稀酸碱作用下易水解,纤维素在较强酸碱作用下易水解。 (3)木质素,比较稳定,不易被细菌和化学物质分解,但可被真菌和放线菌分解。 (4)肪、蜡质、树脂和单宁等,不溶于水而溶于醇、醚及苯中,抵抗化学分解和细菌的分解能力较强,在土壤中除脂肪分解较快外,一般很难彻底分解。 (5)含氮化合物,易被微生物分解。 (6)灰分物质(植物残体燃烧后所留下的灰),占植物体重的5%。主要成分有ca、mg、k、na、si、p、s、fe、al、mn等。 二、土壤有机质的分解和转化 进入土壤的有机质在微生物作用下,进行着复杂的转化过程,包括矿质化过程与腐殖化过程 (一)矿质化 微生物分解有机质,释放co2和无机物的过程称矿化作用。这一过程也是有机质中养分的释放过程。土壤有机质的矿质化过程主要有以下几种。 1、碳水化合物的分解 土壤有机质中的碳水化合物如纤维素、半纤维素、淀粉等糖类,在微生物分泌的糖类水解酶的作用下,首先水解为单糖:

土壤全氮测定方法

一、土壤全氮的测定—凯氏定氮法 一、目的 1、掌握土壤中全氮含量测定的方法。 2、了解测定土壤全氮的原理 二、原理 土壤中的氮大部分以有机态(蛋白质、氨基酸、腐殖质、酰胺等)存在,无 机态(NH 4+ 、NO 3 -、NO 2 -)含量极少,全氮量的多少决定于土壤腐殖质的含量。 土壤中含氮有机化合物在还原性催化剂的作用下,用浓硫酸消化分解,使其中所含的氮转化为氨,并与硫酸结合为硫酸铵。 给消化液加入过量的氢氧化钠溶液,使铵盐分解蒸馏出氨,吸收在硼酸溶液中,最后以甲基红-溴甲酚绿为指示剂,用标准盐酸滴定至粉红色为终点,根据标准盐酸的用量,求出分析样品中的含氮全量。 三、试剂: 1、混合催化剂:称取硫酸钾100g、五水硫酸铜10g、硒粉1g。均匀混合后研细。贮于瓶中。 2、比重1.84浓硫酸。 3、40%氢氧化钠:称400g氢氧化钠于烧杯中,加蒸馏水600ml,搅拌使之全部溶解。 4、2%硼酸溶液:称20g硼酸溶于1000ml水中,再加入2.5ml混合指示剂。(按体积比100:0.25加入混合指示剂) 5、混合指示剂:称取溴甲酚绿0.5g和甲基红0.1克,溶解在100ml95%的乙醇中,用稀氢氧化钠或盐酸调节使之呈淡紫色,此溶液pH应为4.5。 6、0.01的盐酸标准溶液:取比重1.19的浓盐酸0.84ml,用蒸馏水稀释至1000ml,用基准物质标定之。 四、操作步骤 1、消煮:在分析天平上准确称取通过60号筛的风干土0.5000g左右,移入干燥的凯氏瓶中,加入1.5g的还原性混合催化剂。用注射器加入4ml浓硫酸,放到通风柜内的消煮器上消煮1.5h左右。直至内容物呈清彻的淡蓝色为止。 2、蒸馏:消煮完毕后冷却。 将三角瓶置于冷凝管的承接管下,管口淹没在硼酸溶液中(三角瓶用2%的硼酸20ml作吸收剂),然后打开冷凝器中的水流,进行蒸馏。在整个蒸馏过程中注意冷凝管中水不要中断,当接受液变蓝后蒸馏5min,将冷凝管下端离开硼酸液面,再用蒸馏水冲净管外。 3、滴定:用0.01当量的盐酸标准溶液滴定至红色为止。记录所消耗的盐酸标准溶液的体积。 4、空白:除不加试样外其余步骤完全相同。 五、计算: 土壤含氮量(%)=(V-V )*N*0.014*100/W

相关文档
相关文档 最新文档