文档库 最新最全的文档下载
当前位置:文档库 › 算法合集之《动态规划算法的优化技巧》

算法合集之《动态规划算法的优化技巧》

算法合集之《动态规划算法的优化技巧》
算法合集之《动态规划算法的优化技巧》

动态规划算法的优化技巧

福州第三中学毛子青

[关键词] 动态规划、时间复杂度、优化、状态

[摘要]

动态规划是信息学竞赛中一种常用的程序设计方法,本文着重讨论了运用动态规划思想解题时时间效率的优化。全文分为四个部分,首先讨论了动态规划时间效率优化的可行性和必要性,接着给出了动态规划时间复杂度的决定因素,然后分别阐述了对各个决定因素的优化方法,最后总结全文

[正文]

一、引言

动态规划是一种重要的程序设计方法,在信息学竞赛中具有广泛的应用。

使用动态规划方法解题,对于不少问题具有空间耗费大、时间效率高的特点,因此人们在研究动态规划解题时更多的注意空间复杂度的优化,运用各种技巧将空间需求控制在软硬件可以承受的范围之内。但是,也有一部分问题在使用动态规划思想解题时,时间效率并不能满足要求,而且算法仍然存在优化的余地,这时,就需要考虑时间效率的优化。

本文讨论的是在确定使用动态规划思想解题的情况下,对原有的动态规划解法的优化,以求降低算法的时间复杂度,使其能够适用于更大的规模。

二、动态规划时间复杂度的分析

使用动态规划方法解题,对于不少问题之所以具有较高的时间效率,关键在于它减少了“冗余”。所谓“冗余”,就是指不必要的计算或重复计算部分,算法的冗余程度是决定算法效率的关键。动态规划在将问题规模不断缩小的同时,记录已经求解过的子问题的解,充分利用求解结果,避免了反复求解同一子问题的现象,从而减少了冗余。

但是,动态规划求解问题时,仍然存在冗余。它主要包括:求解无用的子问题,对结果无意义的引用等等。

下面给出动态规划时间复杂度的决定因素:

时间复杂度=状态总数*每个状态转移的状态数*每次状态转移的时间[1]

下文就将分别讨论对这三个因素的优化。这里需要指出的是:这三者之间不是相互独立的,而是相互联系,矛盾而统一的。有时,实现了某个因素的优化,另外两个因素也随之得到了优化;有时,实现某个因素的优化却要以增大另一因素为代价。因此,这就要求我们在优化时,坚持“全局观”,实现三者的平衡。

三、动态规划时间效率的优化

3.1 减少状态总数

我们知道,动态规划的求解过程实际上就是计算所有状态值的过程,因此状态的规模直接影响到算法的时间效率。所以,减少状态总数是动态规划优化的重要部分,本节将讨论减少状态总数的一些方法。

1、改进状态表示

状态的规模与状态表示的方法密切相关,通过改进状态表示减小状态总数是应用较为普遍的一种方法。

例一、Raucous Rockers 演唱组(USACO`96)

[问题描述]

现有n首由Raucous Rockers 演唱组录制的珍贵的歌曲,计划从中选择一些歌曲来发行m张唱片,每张唱片至多包含t分钟的音乐,唱片中的歌曲不能重叠。按下面的标准进行选择:

(1)这组唱片中的歌曲必须按照它们创作的顺序排序;

(2)包含歌曲的总数尽可能多。

输入n,m,t,和n首歌曲的长度,它们按照创作顺序排序,没有一首歌超出一张唱片的长度,而且不可能将所有歌曲的放在唱片中。输出所能包含的最多的歌曲数目。

(1≤n, m, t≤20)

[算法分析]

本题要求唱片中的歌曲必须按照它们创作顺序排序,这就满足了动态规划的无后效性要求,启发我们采用动态规划进行解题。

分析可知,该问题具有最优子结构性质,即:设最优录制方案中第i首歌录制的位置是从第j张唱片的第k分钟开始的,那么前j-1张唱片和第j张唱片的前k-1分钟是前1..i-1首歌的最优录制方案,也就是说,问题的最优解包含了子问题的最优解。

设n首歌曲按照写作顺序排序后的长度为long[1..n],则动态规划的状态表示描述为:g[i, j, k],0≤i≤n,0≤j≤m,0≤k

当k≥long[i],i≥1时:

g[i, j, k]=max{g[i-1,j,k-long[i]],g[i-1,j,k]}

当k

g[i, j, k]=max{g[i-1,j-1,t-long[i]],g[i-1,j,k]}

规划的边界条件为:

当0≤k

我们来分析上述算法的时间复杂度,上述算法的状态总数为O(n*m*t),每个状态转移的状态数为O(1),每次状态转移的时间为O(1),所以总的时间复杂度为O(n*m*t)。由于n,m,t均不超过20,所以可以满足要求。

[算法优化]

当数据规模较大时,上述算法就无法满足要求,我们来考虑通过改进状态表示提高算法的时间效率。

本题的最优目标是用给定长度的若干张唱片录制尽可能多的歌曲,这实际上等价于在录制给定数量的歌曲时尽可能少地使用唱片。所谓“尽可能少地使用唱片”,就是指使用的完整的唱片数尽可能少,或是在使用的完整的唱片数相同的情况下,另加的分钟数尽可能少。分析可知,在这样的最优目标之下,该问题同样具有最优子结构性质,即:设D在前i首歌中选取j首歌录制的最少唱片使用方案,那么若其中选取了第i首歌,则D-{i}是在前i-1首歌中选取j-1首歌录制的最少唱片使用方案,否则D前i-1首歌中选取j首歌录制的最少唱片使用方案,同样,问题的最优解包含了子问题的最优解。

改进的状态表示描述为:

g[i, j]=(a, b),0≤i≤n,0≤j≤i,0≤a≤m,0≤b≤t,表示在前i首歌曲中选取j 首录制所需的最少唱片为:a张唱片另加b分钟。由于第i首歌分为发行和不发行两种情况,这样我们可以得到如下的状态转移方程和边界条件:

g[i, j]=min{g[i-1,j],g[i-1,j-1]+long[i]}

其中(a, b)+long[i]=(a’, b’)的计算方法为:

当long[i]≤t-b时:a’=a; b’=b+long[i];

当long[i]>t-b时:a’=a+1; b’=long[i];

规划的边界条件:

g[i,0]=(0,0) 0≤i≤n

这样题目所求的最大值是:ans=max{k| g[n, k]≤(m-1,t)}

改进后的算法,状态总数为O(n2),每个状态转移的状态数为O(1),每次状态转移的时间为O(1),所以总的时间复杂度为O(n2)。值得注意的是,算法的空间复杂度也由改进前的O(m*n*t)降至优化后的O(n2)。

(程序及优化前后的运行结果比较见附件)

通过对本题的优化,我们认识到:应用不同的状态表示方法设计出的动态规划算法的性能也迥然不同。改进状态表示可以减少状态总数,进而降低算法的时间复杂度。在降低算法的时间复杂度的同时,也降低了算法的空间复杂度。因此,减少状态总数在动态规划的优化中占有重要的地位。

2、选择适当的规划方向

动态规划方法的实现中,规划方向的选择主要有两种:顺推和逆推。在有些情况下,选取不同的规划方向,程序的时间效率也有所不同。一般地,若初始状态确定,目标状态不确定,则应考虑采用顺推,反之,若目标状态确定,而初始状态不确定,就应该考虑采用逆推。那么,若是初始状态和目标状态都已确定,一般情况下顺推和逆推都可以选用,但是,能否考虑选用双向规划呢?

双向搜索的方法已为大家所熟知,它的主要思想是:在状态空间十分庞大,而初始状态和目标状态又都已确定的情况下,由于扩展的状态量是指数级增长的,于是为了减少状态的规模,分别从初始状态和目标状态两个方向进行扩展,并在两者的交汇处得到问题的解。

上述优化思想能否也应用到动态规划之中呢?来看下面这个例子。

例二、Divide (Merc`2000)

[问题描述]

有价值分别为1..6的大理石各a[1..6]块,现要将它们分成两部分,使得两部分价值和相等,问是否可以实现。其中大理石的总数不超过20000。(英文试题详见附件)

[算法分析]

令S=∑(i*a[i]),若S为奇数,则不可能实现,否则令Mid=S/2,则问题转化为能否从给定的大理石中选取部分大理石,使其价值和为Mid。

这实际上是母函数问题,用动态规划求解也是等价的。

m[i, j],0≤i≤6,0≤j≤Mid,表示能否从价值为1..i的大理石中选出部分大理石,使其价值和为j,若能,则用true表示,否则用false表示。则状态转移方程为:m[i, j]=m[i, j] OR m[i-1,j-i*k] (0≤k≤a[i])

规划的边界条件为:m[i,0]=true;0≤i≤6

若m[i, Mid]=true,0≤i≤6,则可以实现题目要求,否则不可能实现。

我们来分析上述算法的时间性能,上述算法中每个状态可能转移的状态数为a[i],每次状态转移的时间为O(1),而状态总数是所有值为true的状态的总数,实际上就是母函数中项的数目。

[算法优化]

实践发现:本题在i较小时,由于可选取的大理石的价值品种单一,数量也较少,因此值为true的状态也较少,但随着i的增大,大理石价值品种和数量的增多,值为true的状态也急剧增多,使得规划过程的速度减慢,影响了算法的时间效率。

另一方面,我们注意到我们关心的仅是能否得到价值和为Mid的值为true的状态,那么,我们能否从两个方向分别进行规划,分别求出从价值为1..3的大理石中选出部分大理石所能获得的所有价值和,和从价值为4..6的大理石中选出部分大理石所能获得的所有价值和。最后通过判断两者中是否存在和为Mid的价值和,由此,可以得出问题的解。

状态转移方程改进为:

当i≤3时:

m[i, j]=m[i, j] OR m[i-1,j-i*k] (1≤k≤a[i])

当i>3时:

m[i, j]=m[i, j] OR m[i+1,j-i*k] (1≤k≤a[i])

规划的边界条件为:m[i,0]=true;0≤i≤7

这样,若存在k,使得m[3,k]=true, m[4,Mid-k]=true,则可以实现题目要求,否则无法实现。

(程序及优化前后的运行结果比较见附件)

从上图可以看出双向动态规划与单向动态规划在计算的状态总数上的差异。

回顾本题的优化过程可以发现:本题的实际背景与双向搜索的背景十分相似,同样有庞大的状态空间,有确定的初始状态和目标状态,状态量都迅速增长,而且可以实现交汇的判断。因此,由本题的优化过程,我们认识到,双向扩展以减少状态量的方法不仅适用于搜索,同样适用于动态规划。这种在不同解题方法中,寻找共通的属性,从而借用相同的优化思想,可以使我们不断创造出新的方法。

3.2 减少每个状态转移的状态数

在使用动态规划方法解题时,对当前状态的计算都是进行一些决策并引用相应的已经计算过的状态,这个过程称为“状态转移”。因此,每个状态可能做出的决策数,也就是每

个状态可能转移的状态数是决定动态规划算法时间复杂度的一个重要因素。本节将讨论减少每个状态可能转移的状态数的一些方法。

1、四边形不等式和决策的单调性

例三、石子合并问题(NOI`95)

[问题描述]

在一个操场上摆放着一排n (n ≤20)堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。

试编程求出将n 堆石子合并成一堆的最小得分和最大得分以及相应的合并方案。

[算法分析]

这道题是动态规划的经典应用。由于最大得分和最小得分是类似的,所以这里仅对最小得分进行讨论。设n 堆石子依次编号为1,2,…..,n 。各堆石子数为d[1..n],则动态规划的状态表示为:

m[i,j],1≤i ≤j ≤n ,表示合并d[i..j]所得到的最小得分,则状态转移方程和边界条件为:

m[i,j]=0 i=j

∑=≤<++-=j

i

l j k i l d j k m k i m j i m ]}[],[]1,[{min ],[ i <j 同时令s[i,j]=k ,表示合并的断开位置,便于在计算出最优值后构造出最优解。

上式中∑=j i l l d ][的计算,可在预处理时计算∑==i

j j d i t 1][][,i=1..n ;t[0]=0, 则:

]1[][][--=∑=i t j t l d j

i l

上述算法的状态总数为O(n 2),每个状态转移的状态数为O(n),每次状态转移的时间为O(1),所以总的时间复杂度为O(n 3)。

[算法优化]

当函数w[i,j]满足]',[],'[]','[],[j i w j i w j i w j i w +≤+'',j j i i ≤≤≤时,称w 满足四边形不等式[2]。

当函数w[i,j]满足w[i’,j]≤w[i,j’] '',j j i i ≤≤≤时称w 关于区间包含关系单调。 在石子归并问题中,令w[i,j]=

∑=j

i l l d ][,则w[i,j]满足四边形不等式,同时由d[i]≥0,t[i]≥0可知w[i,j]满足单调性。 m[i,j]=0 i=j

],[]},[]1,[{min ],[j i w j k m k i m j i m j

k i ++-=≤< i

纳法证明如下:

我们对四边形不等式中“长度”l=j’-i 进行归纳:

当i=i’或j=j’时,不等式显然成立。由此可知,当l ≤1时,函数m 满足四边形不等式。 下面分两种情形进行归纳证明:

情形1:i

在这种情形下,四边形不等式简化为如下的反三角不等式:m[i,j]+m[j,j’] ≤m[i,j’],设k=max{p | m[i,j’]=m[i,p -1]+m[p,j’]+w[i,j’] },再分两种情形k ≤j 或k>j 。下面只讨论k ≤j ,k>j 的情况是类似的。

情形1.1:k ≤j ,此时:

]

',[]

',[]1,[]',[]

',[],[]1,[]',[]

',[],[]1,[],[]',[],[j i m j k m k i m j i w j j m j k m k i m j i w j j m j k m k i m j i w j j m j i m =+-+≤++-+≤++-+≤+

情形2:i

设 y=max{p | m[i’,j]=m[i’,p -1]+m[p,j]+w[i’,j] } z=max{p | m[i,j’]=m[i,p -1]+m[p,j’]+w[i,j’] }

仍需再分两种情形讨论,即z ≤y 或z>y 。下面只讨论z ≤y ,z>y 的情况是类似的。 由i

],'[]',[]

',[],[]1,[]1,'[],'[]',[]

',[],[]1,[]1,'[],'[]',[]

',[]1,'[]','[],[]1,[],[]','[],[j i m j i m j z m j y m z i m y i m j i w j i w j y m j z m z i m y i m j i w j i w j y m y i m j i w j z m z i m j i w j i m j i m +=++-+-++≤++-+-++≤+-+++-+≤+

综上所述,m[i,j]满足四边形不等式。

令s[i,j]=max{k | m[i,j]=m[i,k-1]+m[k,j]+w[i,j] }

由函数m[i,j]满足四边形不等式可以推出函数s[i,j]的单调性,即

s[i,j]≤s[i,j+1]≤s[i+1,j+1], i ≤j

当i=j 时,单调性显然成立。因此下面只讨论i

令m k [i,j]=m[i,k-1]+m[k,j]+w[i,j]。要证明s[i,j]≤s[i,j+1],只要证明对于所有i

事实上,我们可以证明一个更强的不等式

m k [i,j]-m k’[i,j]≤m k [i,j+1]-m k’[i,j+1]

也就是: m k [i,j]+m k’[i,j+1]≤m k [i,j+1]+m k’[i,j]

利用递推定义式将其展开整理可得:m[k,j]+m[k’,j+1]≤m[k’,j]+m[k,j+1],这正是k ≤k’≤j

综上所述,当w 满足四边形不等式时,函数s[i,j]具有单调性。

于是,我们利用s[i,j]的单调性,得到优化的状态转移方程为:

m[i,j]=0 i=j

],[]},[]1,[{min ],[],1[]1,[j i w j k m k i m j i m j i s k j i s ++-=+≤≤- i

用类似的方法可以证明,对于最大得分问题,也可采用同样的优化方法。

改进后的状态转移方程所需的计算时间为

()

211111]),1[],1[(])1,[],1[1(n O i n s n i s i n O j i s j i s O n i n i n i j =??? ??--++-=???? ??--++∑∑∑-=-=+= (程序及优化前后的运行结果比较见附件)

上述方法利用四边形不等式推出最优决策的单调性,从而减少每个状态转移的状态数,降低算法的时间复杂度。

上述方法是具有普遍性的。对于状态转移方程与①式类似,且w[i,j]满足四边形不等式的动态规划问题,都可以采用相同的优化方法,如最优二叉排序树(NOI`96)等。下面再举一例。

例四、邮局(IOI`2000)

[问题描述]

按照递增顺序给出一条直线上坐标互不相同的n 个村庄,要求从中选择p 个村庄建立邮局,每个村庄使用离它最近的那个邮局,使得所有村庄到各自所使用的邮局的距离总和最小。

试编程计算最小距离和,以及邮局建立方案。

[算法分析]

本题也是一道动态规划问题,详细分析请看文本附件(邮局解题报告)。将n 个村庄按坐标递增依次编号为1,2,……,n ,各个邮局的坐标为d[1..n],状态表示描述为:m[i,j]表示在前j 个村庄建立i 个邮局的最小距离和。所以,m[p,n]即为问题的解,且状态转移方程和边界条件为:

m[1,j]=w[1,j]

]},1[],1[{min ],[1

1j k w k i m j i m j k i ++-=-≤≤- i ≤j 其中w[i,j]表示在d[i..j]之间建立一个邮局的最小距离和,可以证明,当仅建立一个邮局时,最优解出现在中位数,即设建立邮局的村庄为k ,则????2/)(2/)(j i k j i k +=+=或,于是,我们有:

∑=-=j

i l k d l d j i w |][][|],[ , ????2/)(2/)(j i k j i k +=+=或

同时,令s[i,j]=k ,记录使用前i-1个邮局的村庄数,便于在算出最小距离和之后构造最优建立方案。

上述算法中w[i,j]可通过O(n)时间的预处理,在O(1)的时间内算出,所以,该算法的状态总数为O(n*p),每个状态转移的状态数为O(n),每次状态转移的时间为O(1),该算法总的时间复杂度为O(p*n 2)。

[算法优化]

本题的状态转移方程与①式十分相似,因此我们猜想其决策是否也满足单调性,即

s[i-1,j]≤s[i,j]≤s[i,j+1]

首先,我们来证明函数w 满足四边形不等式,即:

]',[],'[]','[],[j i w j i w j i w j i w +≤+ '',j j i i ≤≤≤

设??2/)'(j i y +=,??2/)'(j i z +=,下面分为两种情形,z ≤y 或z>y ,下面仅讨论z ≤y ,z>y 的情况是类似的。

由i ≤z ≤y ≤j 有:

]

',[],'[|

][][||][][||][][||][][||][][||][][||

][][||][][|]','[],['

''1'

1'''

'j i w j i w y d l d z d l d y d l d z d l d y d l d z d l d y d l d z d l d j i w j i w j i l j i l j j l j j l j i l j i

l j i l j i l +=-+-=---+

-+-≤-+-≤+∑∑∑∑∑∑∑∑==+=+===== 接着,我们用数学归纳法证明函数m 也满足四边形不等式。对四边形不等式中“长度”l=j’-i 进行归纳:

当i=i’或j=j’时,不等式显然成立。由此可知,当l ≤1时,函数m 满足四边形不等式。 下面分两种情形进行归纳证明:

情形1:i

设k=max{p | m[i,j’]=m[i,p -1]+m[p,j’]+w[i,j’] },再分两种情形k ≤j 或k>j 。下面只讨论k ≤j ,k>j 的情况是类似的。

]',[]

',1[],1[]

',[]1,1[],1[],1[]

',[],[j i m j k w k i m j j w j j m j k w k i m j j m j i m =++-≤+--+++-≤+

情形2:i

设 y=max{p | m[i’,j]=m[i’-1,p]+w[p+1,j] }

z=max{p | m[i,j’]=m[i -1,p]+w[p+1,j’] }

仍需再分两种情形讨论,即z ≤y 或z>y 。

情形2.1,当z ≤y

]

',[],'[]

',1[],1[],1[],1'[]

,1[],1[]',1[],1'[]

','[],[j i m j i m j z w j y w z i m y i m j z w z i m j y w y i m j i m j i m +=++++-+-≤++-+++-≤+

情形2.2,当i-1

',1[],1[],1'[],1[]

',1[],1'[],1[],1[]

','[],[j i m j i m j z w j y w y i m z i m j z w z i m j y w y i m j i m j i m +=++++-+-≤++-+++-≤+

最后,我们证明决策s[i,j]满足单调性。

为讨论方便,令m k [i,j]=m[i-1,k]+w[k+1,j];

我们先来证明s[i-1,j]≤s[i,j],只要证明对于所有i ≤k

类似地,我们可以证明一个更强的不等式

m k [i-1,j]-m k’[i-1,j]≤m k [i,j]-m k’[i,j]

也就是: m k [i-1,j]+m k’[i,j]≤m k [i,j]+m k’[i-1,j]

利用递推定义式展开整理的:m[i-2,k]+m[i-1,k’]≤m[i-1,k]+m[i-2,k’],这就是i-2

我们再来证明s[i,j]≤s[i,j+1],与上文类似,设k

也就是: m k [i,j]+m k’[i,j+1]≤m k [i,j+1]+m k’[i,j]

利用递推定义式展开整理的:w[k+1,j]+w[k’+1,j+1]≤w[k+1,j+1]+w[k’+1,j],这就是k+1

综上所述,该问题的决策s[i,j]具有单调性,于是优化后的状态转移方程为:

m[1,j]=w[1,j]

]},1[],1[{min ],[]1,[],1[j k w k i m j i m j i s k j i s ++-=+≤≤- i ≤j

s[i,j]=k

同上文所述,优化后的算法时间复杂度为O(n*p)。

(程序及优化前后的运行结果比较见附件)

四边形不等式优化的实质是对结果的充分利用。它通过分析状态值之间的特殊关系,推出了最优决策的单调性,从而在计算当前状态时,利用已经计算过的状态所做出的最优决策,减少了当前的决策量。这就启发我们,在应用动态规划解题时,不仅可以实现状态值的充分利用,也可以实现最优决策的充分利用。这实际上是从另一个角度实现了“减少冗余”。

2、决策量的优化

通过分析问题最优解所具备的性质,从而缩小有可能产生最优解的决策集合,也是减少每个状态可能转移的状态数的一种方法。

大家所熟悉的NOI`96中的添加号问题,正是从“所得的和最小”这一原则出发,仅在等分点的附近添加号,从而大大减少了每个状态转移的状态数,降低了算法的时间复杂度。让我们在再来看一例。

例五、石子归并的最大得分问题

[问题描述]

见例三,本例只考虑最大得分问题。

[算法分析]

设n 堆石子依次编号为1,2,…..,n 。各堆石子数为d[1..n],则动态规划的状态表示为:

m[i,j],1≤i ≤j ≤n ,表示合并d[i..j]所得到的最大得分,则状态转移方程和边界条件为:

m[i,j]=0 i=j

∑=≤<++-=j

i

l j k i l d j k m k i m j i m ]}[],[]1,[{max ],[ i <j 同时令s[i,j]=k ,表示合并的断开位置,便于在计算出最优值后构造出最优解。

该算法的时间复杂度为O(n 3)。

[算法优化]

仔细分析问题,可以发现:s[i,j]要么等于i+1,要么等于j ,即:

j i j i m j i m j k m k i m j

k i <+-=+-≤<]},,1[],1,[max{]},[]1,[{max

证明可以采用反证法,设使m[i,j]达到最大值的断开位置为p ,且i+1

p l l a z ][,下面分为2种情形讨论。

情形1、y ≥z

由p

( (a[i]…a[p -1]) ( (a[p]...a[k-1]) (a[k]..a[j]) ) )

相应的得分为:z z y j k m k p m p i m T ++++-+-=],[]1,[]1,[…………①

下面考虑另一种合并方案s’[i,j]=k ,s’[i,k]=p ,表示为:

( ( (a[i]…a[p-1]) (a[p]...a[k-1]) ) (a[k]..a[j]) )

相应的得分为:∑-=+++++-+-=1][],[]1,[]1,['k p

l l a z y y j k m k p m p i m T …………②

由y ≥z 可得,T

情形2、y

于是,状态转移方程优化为:

m[i,j]=0 i=j

∑=+++-=j

i

l l d j i m j i m j i m ][]},1[]1,[max{],[ i <j

优化后每个状态转移的状态数减少为O(1),算法总的时间复杂度也降为O(n 2)。

(程序及优化前后的运行结果比较见附件)

本题的优化过程是通过对问题最优解性质的分析,找出最优决策必须满足的必要条件,这与搜索中的最优性剪枝的思想十分类似,由此我们再次看到了相同的优化思想应用于不同的算法设计方法。同时,我们也认识到:动态规划的优化必须建立在全面细致分析问题的基础上,只有深入分析问题的属性,挖掘问题的实质,才能实现算法的优化。

3、合理组织状态

在动态规划求解的过程中,需要不断地引用已经计算过的状态。因此,合理地组织已经计算出的状态有利于提高动态规划的时间效率。

例六、求最长单调上升子序列

[问题描述]

给出一个由n 个数组成的序列x[1..n],找出它的最长单调上升子序列。即求最大的m 和a 1,a 2……,a m ,使得a 1

[算法分析]

这也是一道动态规划的经典应用。动态规划的状态表示描述为:

m[i],1≤i ≤n ,表示以x[i]结尾的最长上升子序列的长度,则问题的解为 max{m[i],1≤i ≤n},状态转移方程和边界条件为:

m[i]=1+max{0, m[k]|x[k]

同时当m[i]>1时,令p[i]=k ,表示最优决策,以便在计算出最优值后构造最长单调上升子序列。

上述算法的状态总数为O(n),每个状态转移的状态数最多为O(n),每次状态转移的

时间为O(1),所以算法总的时间复杂度为O(n2)。

[算法优化]

我们先来考虑以下两种情况:

1、若x[i]j,k>i),必有x[k]>x[j]>x[i],则m[k]也能由m[i]转移得到;另一方面,可以由状态m[i]转移得到的状态m[k] (k>j,k>i),当x[j]>x[k]>x[i]时,m[k]就无法由m[j]转移得到。

由此可见,在所有状态值相同的状态中,只需保留最后一个元素值最小的那个状态即可。

2、若x[i]m[j],则m[j]这个状态不必保留。因为,可以由状态m[j]转移得到的状态m[k] (k>j,k>i),必有x[k]>x[j]>x[i],则m[k]也能由m[i]转移得到,而且m[i]>m[j],所以m[k]≥m[i]+1>m[j]+1,则m[j]的状态转移是没有意义的。

综合上述两点,我们得出了状态m[k]需要保留的必要条件:不存在i使得:x[i]

也就是说,设当前保留的状态集合为S,则S具有以下性质D:

对于任意i∈S, j∈S, i≠j有:m[i]≠m[j],且若m[i]x[j]。

下面我们来考虑状态转移:假设当前已求出m[1..i-1],当前保留的状态集合为S,下面计算m[i]。

1、若存在状态k∈S,使得x[k]=x[i],则状态m[i]必定不需保留,不必计算。因为,不妨设m[i]=m[j]+1,则x[j]

2、否则,m[i]=1+max{m[j]| x[j]

3、若2成立,则我们往S中增加了一个状态,为了保持S的性质,我们要对S进行维护,若存在状态k∈S,使得m[i]=m[k],则我们有x[i]x[i], j∈S}。于是状态k应从S中删去。

于是,我们得到了改进后的算法:

For i:=1 to n do

{

找出集合S中的x值不超过x[i]的最大元素k;

if x[k]

{

m[i]:=m[k]+1;

将状态i插入集合S;

找出集合S中的x值大于x[i]的最小元素j;

if m[j]=m[i] then 将状态j从S中删去;

}

}

从性质D和算法描述可以发现,S实际上是以x值为关键字(也是以m值为关键字)的有序集合。若使用平衡树实现有序集合S,则该算法的时间复杂度为O(n*log2n)。本题优化后,每个状态转移的状态数仅为O(1),而每次状态转移的时间变为O(log2n),这也体现了上文所提到的优化中不同因素之间的矛盾,但从总体上看,算法的时间复杂度是降低了。

(程序及优化前后的运行结果比较见附件)

回顾本题的优化过程,首先通过分析状态之间的分析,减少需要保留的状态数,同时发现需要保留状态的单调性,从而减少了每个状态可能转移的状态数,并通过高效数据结构平衡树组织当前保留的状态,实现算法的优化。

通过对本题的优化,我们认识到减少保留的状态数,合理组织已经计算出的状态可以实现减少每个状态可能转移的状态数,同时,选取恰当的数据结构也是算法优化的一个重要原则,在下文的阐述中,还会看到借助数据结构实现算法优化。

4、细化状态转移

所谓“细化状态转移”,就是将原来的一次状态转移细化成若干次状态转移,其目的在于减少总的状态转移的次数。在优化前,问题的决策一般都是复合决策,也就是一些子决策的排列,因此决策的规模较大,每个状态可能转移的状态数也就较多,优化的方法就是将每个复合决策细化成若干个子决策,并在每个子决策后面增设一个状态,这样,后面的子决策只在前面的子决策达到最优解时才进行转移,因此在优化后,虽然,状态总数增加了,但是总的状态转移次数却减少了,算法总的复杂度也就降低了。

应该注意的是:上述优化应该满足一个条件,即原来每个复合决策的各个子决策之间也满足最优化原理和无后效性,也就是说:复合最优决策的子决策也是最优决策;前面的子决策不影响后面的子决策。

上述优化方法再一次体现了实现一个因素的优化要以增大另一个因素作为代价,但是,算法总的时间复杂度的降低才是我们的真正目的。

3.3 减少状态转移的时间

我们知道,状态转移是动态规划的基本操作,因此,减少每次状态转移所需的时间,对提高算法的时间效率具有重要的意义。

状态转移主要有两个部分构成:

1.进行决策:通过当前状态和选取的决策计算出需要引用的状态。

2.计算递推式:根据递推式计算当前状态值。其中主要操作是常数项的计算。

本节将分别讨论提高这两部分时间效率的一些方法。

1、减少决策时间

例七、LOSTCITY (NOI`2000)

[问题描述]

现给出一张单词表、特定的语法规则和一篇文章:

文章和单词表中只含26个小写英文字母a…z。

单词表中的单词只有名词,动词和辅词这三种词性,且相同词性的单词互不相同。单词的长度均不超过20。

语法规则可简述为:名词短语:任意个辅词前缀接上一个名词;动词短语:任意个辅词前缀接上一个动词;句子:以名词短语开头,名词短语与动词短语相间连接而成。

文章的长度不超过1000。且已知文章是由有限个句子组成的,句子只包含有限个单词。

编程将这篇文章划分成最少的句子,在此前提之下,要求划分出的单词数最少。

[算法分析]

这是也是一道动态规划问题。我们分别用v,u,a表示动词,名词和副词,给出的文章用L[1..M]表示,则状态表示描述为:

F(v,i):表示L前i个字符划分为以动词结尾(当i<>M时,可带任意个辅词后缀)的最优分解方案下划分的句子数与单词数;

F(u,i):表示L前i个字符划分为以名词结尾(当i<>M时,可带任意个辅词后缀)的最优分解方案下划分的句子数与单词数。

过去的分解方案仅通过最后一个非辅词的词性影响以后的决策,所以这种状态表示满足无后效性,

状态转移方程为:

F(v,i)=min{ F(n,j)+(0,1),L(j+1..i)为动词;

F(v,j)+(0,1),L(j+1..i)为辅词,i<>M;}

F(n,i)=min{ F(n,j)+(1,1), L(j+1..i)为名词;

F(v,j)+(0,1), L(j+1..i)为名词;

F(n,j)+(0,1), L(j+1..i)为辅词,i<>M;}

边界条件:F(v,0)=(1,0);F(n,0)=(∞, ∞);

问题的解为:min{ F(v,M), F(u,M) };

上述算法中,状态总数为O(M),每个状态转移的状态数最多为20,在进行状态转移时,需要查找L[j+1..i]的词性,根据其词性做出相应的决策,并引用相应的状态。下面就通过不同的方法查找L[j+1..i]的词性,比较它们的时间复杂度。

[算法实现]

设单词表的规模为N,首先我们对单词表进行预处理,将单词按字典顺序排序并合并具有多重词性的单词。在查找词性时有以下几种方法:

方法1、采用顺序查找法。最坏情况下需要遍历整个单词表,因此最坏情况下的时间复杂度为O(20*N*M),比较次数最多可达1000*5k*20=108,当数据量较大时效率较低。

方法2、采用二分查找法。最坏情况下的时间复杂度为O(20*M*log2N),最多比较次数降为5k*20*log21000=106,完全可以忍受。

集合查找最为有效的方法要属采用哈希表了。

方法3、采用哈希表查找单词的词性。首先将字符串每四位折叠相加计算关键值k,然后用双重哈希法计算哈希函数值h(k)。采用这种方法,通过O(N)时间的预处理构造哈希表,每次查找只需O(1)的时间,因此,算法的时间复杂度为O(20*M+N)=O(M)。

采用哈希表是进行集合查找的一般方法,对于以字符串为元素的集合还有更为高效的方法,即采用检索树[3]。

方法四、采用检索树查找单词的词性。由于每个状态在进行状态转移时需要查找的所有单词都是分布在同一条从树根到叶子的路径上的,因此,如果选取从树根走一条路径到叶子作为基本操作,则每个状态进行状态转移时的最多20次单词查找只需O(1)的时间,另外,建立检索树需要O(N)的时间,因此,算法总的时间复杂度虽然仍为O(M),但是由于时间复杂度的常数因子小于方法三,因此实际测试的速度也最快。

(程序及四种方法的运行结果的比较见附件)

从本题的优化过程可以看出:采用正确的数据结构是算法优化的重要原则,在动态规划算法的优化中也同样适用。方法3使用了哈希表这一高效的集合查找数据结构,方法四使用的针对性更强的检索树,使得算法的时间效率得到了提高。

2、减少计算递推式的时间

计算递推式的主要操作是对常数项的计算,因此减少计算递推式所需的时间主要是指减少计算常数项的时间。

例八、公路巡逻 (CTSC`2000)

[问题描述]

在一条没有分岔的公路上有n (n ≤50)个关口,相邻两个关口之间的距离都是10km 。所有车辆在这条公路上的最低速度为60km/h ,最高速度为120km/h ,且只能在关口出改变速度。

有m(m ≤300)辆巡逻车分别在时刻T i 从第n i 个关口出发,匀速行驶到达第n i +1个关口,路上耗费时间为t i 秒。

两辆车相遇指他们之间发生超车现象或同时到达某个关口。

求一辆于6点整从第1个关口出发去第n 个关口的车(称为目标车)最少会与多少辆巡逻车相遇,以及在此情况下到达第n 个关口的最早时刻。

假设所有车辆到达关口的时刻都是整秒。

[算法分析]

本题也是用动态规划来解。问题的状态表示描述为:

F(i,T)表示在时刻T 到达第i 个关口的途中最少已与巡逻车相遇的次数。则状态转移方程和边界条件为:

F(i,T)=min{F(i-1,T-Tk)+w(i-1,T-Tk,T),300≤Tk ≤600} 2≤i ≤n

边界条件:F(1,06:00:00)=0;

问题的解为:min{F(n,T)}

其中,函数w(i-1,T-Tk,T)是计算目标车于时刻T-Tk 从第i-1个关口出发,于时刻T 到达第i 个关口,途中与巡逻车相遇的次数。

下面来分析上述算法的时间复杂度,问题的阶段数为n ,第i 个阶段的状态数为(i-1)*300,则状态总数为:)150()2

)1(**

300()300*)1((21n O n n O i O n i ∑==-=-,每个状态转移的状态数为300,每次状态转移所需的时间关键取决与函数w 的计算。下面比较采用不同的计算方法时,时间复杂度的差异。

[函数w 的计算]

方法1、在每个决策中都进行一次计算,对所有从第i 个关口出发的巡逻车进行判断,这样平均每次状态转移的时间为O(1+m/n),由M 的最大值为300,算法总的时间复杂度为:

()

n m O n m n m O n m n O 3322222)1(*300*150=???? ??+=??? ??+ 方法2、仔细观察状态转移方程可以发现,在对状态F(i,T)进行转移时,所计算的函数w 都是从第i 个关口出发的,而且出发时刻都是T ,只是相应的到达时刻不同,我们考虑能否找出它们之间的联系,从而能够利用已经得出的结果,减少重复运算。

我们来考虑w(i,T ,k)与w(i,T ,k+1)之间的联系:

对于每辆从第i 个关口出发的巡逻车,设其出发时刻和到达时刻分别为Stime 和Ttime ,则:

若Ttimek+1,则目标车A 、目标车B 与该巡逻车的相遇情况相同; 若Ttime=k ,则目标车A 与该巡逻车相遇,对目标车B 的分析又分为:若Stime ≤T ,则目标车B 不与该巡逻车相遇,否则目标车B 也与该巡逻车相遇;

若Ttime=k+1,则目标车B 与该巡逻车相遇,对目标车A 的分析又分为:若 Stime ≥T ,则目标车A 不与该巡逻车相遇,否则目标车A 也与该巡逻车相遇;

我们令⊿[k]=w[i,T ,k+1]-w[i,T ,k],由上述讨论得:

⊿[k]=G((Ttime=k+1) and (Stime ≥T)) –G((Ttime=k) and (Stime ≤T)). 其中函数G(P)表示所有从i 个关口出发,且满足条件P 的巡逻车的数目。

这样我们就找到了函数w 之间的联系。于是,我们在对状态F(i,T)进行转移时,先对所有从第i 个关口出发的巡逻车进行一次扫描,在求出w[i,T ,T+300]的同时求出⊿

[T+301..T+600],这一步的时间复杂度为O(m/n)。在以后的状态转移中,由w[i,T ,k+1]=w[i,T ,k]+⊿[k],仅需O(1)的时间就可以求出函数值w ,状态转移时间仅为O(1)。则算法总的时间复杂度为:

()

22222222)300(*150n m O n m n m O n m n O =???? ??+=??? ??+ 虽然,算法时间复杂度的阶并没有降低,但由于M 的最大值为300,N 的最大值为50,所以实际测试中,优化的效果还是十分明显的。

(程序及两种方法的运行结果比较见附件)

本题对动态规划的优化实际上是应用了动态规划本身的思想,在计算递推式的常数项时,引进了函数⊿,利用了过去的计算结果,避免了重复计算,消除了“冗余”,从而提高算法的时间效率。上文邮局问题中函数w 的计算也是通过预处理减少了重复计算,近来新出现的双重动态规划也是应用这个思想,利用动态规划计算递推式的常数项。可见,这种优化方法是很有普遍性的。

四、结语

本文主要从减少状态总数,减少每个状态转移的状态数和减少状态转移的时间这三个方面讨论了对动态规划时间效率的优化,同时也间接地讨论了对一般算法进行优化的方法。

在优化的过程,我认识到:对算法的优化一方面要深入分析问题的属性,挖掘问题的本质,另一方面要从原有算法的不足之处入手,不断优化、精益求精。

动态规划的算法设计具有很大的灵活性,需要具体模型具体分析。算法设计如此,算法优化也是如此,本文所述只是一些一般性的方法,许多优化技巧还需要选手们在平时的训练比赛中深入挖掘。

动态规划作为一种高效的算法,仍有许多优化的余地。不断提高算法的性能,使其适应于更大的规模,我想这是广大信息学选手共同的愿望,希望大家共同研究探讨动态规划算法的优化,这也是本文创作的初衷。

参考文献

[1] 吴文虎、赵鹏,1993-1996美国计算机程序设计竞赛试题与解析,清华大学出版社,1999。

[2] 吴文虎、王建德,国际国内青少年信息学(计算机)竞赛试题解析,清华大学出版社,1997。

[3] 傅清祥、王晓东,算法与数据结构,电子工业出版社,1998。

[4] 全国青少年信息学(计算机)奥林匹克分区联赛组织委员会,信息学奥林匹克(季刊),1999.3,2000.2。

附录

[1] 这个式子只是直观描述了动态规划的时间复杂度的决定因素,并不能作为普遍的计算公式。

[2] 四边形不等式是Donald E. Knuth从最优二叉搜索树的数据结构中提出的,这里被运用于证明动态规划中决策的单调性。

[3] 采用检索树查找字符串只要从树根出发走到叶结点即可,需要的时间正比于字符串的长度。如果哈希函数确实是随机的,那么哈希函数的值与字符串中的每一个字母都有关系。所以,计算哈希函数值的时间与检索树执行一次运算的时间大致相当。但计算出哈希函数值后还要处理冲突。因此,一般情况下,在进行字符串查找时,检索树比哈希表省时间。

小学数学速算技巧汇总

加法的神奇速算法 一、加大减差法 1、口诀 前面加数加上后面加数的整数,减去后面加数与整数的差等于和。 2、例题 1376+98=1474 计算方法:1376+100-2 3586+898=4484 计算方法:3586+1000-102 5768+9897=15665 计算方法:5768+10000-103 二、求只是数字位置颠倒两个两位数的和 1、口诀 一个数的十位数加上它的个位数乘以11等于和 2、例题 47+74=121 计算方法:(4+7)×11=121 68+86=154 计算方法:(6+8)× 11=154 58+85=143 计算方法:(5+8)× 11=143 三、一目三行加法 1、口诀 提前虚进一,中间弃9,末位弃10 2、例题 365427158 644785963 +742334452

——————— 1752547573 方法:从左到右,提前虚进1;第1列:中间弃9(3和6)直接写7;第2列:6+4-9+4=5 以此类推...最后1列:末位弃10(8和2)直接写3。 注意:中间不够9的用分段法,直接相加,并要提前虚进1;中间数字和大于19的,弃19,前边多进1,末位数字和大于19的,弃20,前边多进1。 减法的神奇速算法 一、减大加差法 1、例题 321-98=223 计算方法:321-100+2(减100,加2) 8135-878=7257 计算方法:8135-1000+122(减1000,加122) 91321-8987= 82334 计算方法:91321-10000+1013(减10000,加1013) 2、总结 被减数减去减数的整数,再加上减数与整数的差,等于差。 二、求只是数字位置颠倒两个两位数的差 1、例题 74-47=27

最新设计方案范文合集6篇

1 建设物流实训室的必要性 在社会需求的推动下,20xx年起,全国部分学校开始试办“物流管理”等相关专业,为企业培养和输送物流专业人才。这在一定程度上对物流知识和思想的传播起到了很好的作用,也的确培养了一些物流人才。他们在相关的物流岗位上发挥了作用,有效地促进了企业物流运作的变革和进步。 但是,其中反映出的问题也不少,主要体现在以下几个方面: 1.1 偏重理论培训,缺少实践环节 目前在各种认证体系中,基本上以知识性学习为主,只有少量的实际操作环节。 现代物流业很注重实际操作经验,仅有理论知识难以解决企业的实际业务问题,物流培训也必须以此为重要原则,加强实训功能,注重对实际业务的理解和对实际操作技能的掌握,才能培养出符合企业需求的人才。 1.2 教学手段单一,感性认识与理性认识不能有机结合 目前无论是高校的物流学历教育还是职业培训,普遍存在一个问题,就是教学主要以教师分散授课为主,辅以少量甚至没有参观。学员们无法全面系统地了解物流运作的整个过程,除少量悟性较高的学员外,大多数学员的物流知识结构比较凌乱。 1.3 传统实训方式已不能满足学生和企业的需要 学生实训要求在类似企业实际的环境下,并且实训的设备、软件必须是企业实际应用的,或在企业实际应用基础上改造过来。 随着国内教育教学改革的深入,实训方式创新层出不穷,旧有的实训方式尤其是模拟仿真远远不能满足现有教学的需要。 2 物流实训室设计理念 通过实训室对各节点模拟,从而展现货物的入库、仓储、流通加工、配送、出库等第三方物流企业的供应链流程。在此模拟的供应链上,配备一系列模块化的现代物流设施,如:全自动立体仓库、电子标签辅助拣货系统、电子看板,RF手持设备等,它们各自独立,又互为联系,充分体现了传统的物流运行过程通过信息化实现其战略决策系统化,管理现代化和作业自动化这一现代物流的时代特征,从而在学校实训室内营造了一个类似真实的集物资流和信息流于一体的实训教学环境。 3 实训室方案规划设计 物流实训室平面布局 主要组成部分: 全自动立体仓库及自动分拣:立体货架、全自动堆垛机及输送装置等; 普通仓储货架:重型及轻型货架; 电子标签拣货系统:重力式货架、电子标签分拣系统及拣货台等; 打包封装:多种款式的打包设备; 条码及射频系统:RF手持终端、条码打印机及多种条码阅读设备; 管理岗位:物流软件、PC及桌椅。 4 实训系统功能 之所以要在学校实训室条件下,构建一个类似真实的以第三方物流服务单元为核心的供应链仿真系统,其真实目的是想以此为学校进行现代供应链物流运作管理等相关课程的课堂理论教学提供一个有效的辅助教学手段,并为学生掌握各种现代化,自动化的物流设施设备的操作技能,提供一个实实在在的实训平台。 所以从这个意义上说,我们这套实训系统应具有以下教学实训功能: 4.1 了解和学习物流管理的内容和技术 1、仓储管理系统的操作训练

深入探究多项式乘法的快速算法

深入探究多项式乘法的快速算法 焦作市第一中学 闵梓轩 一、 高精度、多项式与生成函数 1.1 高精度 在OI 中我们有时会碰到一些问题的必要数值超出64位整形的范围,这个时候我们就需要用到高精度方式存储。而高精度数的思想是进制思想的一个具体体现,出于正常人类的习惯,我们所使用的高精度数都采用10进制,即每一位都表示十进制上的一个数,从0~9,更进一步,为了优化高精度数运算所花费的时间与空间,我们采用了万进制,即每一位存0~9999的数,这样同时优化了程序效率,同时在输出上也没有什么太大的问题(每一位不足1000补0即可)。 当然,我们也可以用三进制、五进制、450进制,8964进制的高精度数,虽然因为在输出时会变得非常麻烦而没有人去用,但是它们的可行性正对应了进制的一种思想,比如一个十进制数12450,它的算数含义是0123410*010*510*410*210*1++++二进制数10010,它的算数含义是1 42*12*1+(把为0的位忽略),这样形如 ),0(*0N a x a x a i i n i i i ∈<≤∑=的每一位上的数字在数值表示上都乘上了某个数的一个幂的数正是进制思想的基础。在编程实现上这样的一个数我们通常用整形数组来表示,a[i]表示i 次项的系数,如果数组长度为n ,那么学过高精度的人都知道两个数相加的时间复杂度是θ(n),两个数相乘的时间复杂度是O(n^2),在信息学竞赛中,这样的时间复杂度足以满足大部分题目的需求,因为一般来说我们的数值都不会达到10^100000次方这么大。 1.2多项式 熟悉数学的我们能够发现上面这样的一个式子,如果忽略了括号中的内容的限制,那么 我们可以发现这样的式子其实就是我们所学的n 次多项式∑∞==0*)(i i i x a x A , 比如十进制数12450就是05421234++++x x x x 当x=10的时候的数值嘛。所以,当一个值b 代入多项式A(x)时,这个式子也就变成了一个值A(b)。但是要注意的是多项式的系数是没有限制的,所以多项式可以用浮点数组表示,而且我们可以惊奇地发现多项式的加法和乘法在代码上除了不需要进位之外和高精度是一样的。所以说,我们所见的b 进制数值,就是一个当x=b 的多项式的取值而已。但是在多项式中,x 的意义仅仅是一个符号而已,ai*x^i 你可以理解为ai 在数组的第i 个位置。 我们需要注意的是,n 次多项式的数组表示需要用到n+1个数,为什么?因为有n 个含x 的项和一个常数项,所以我们一般把多项式A(x)的最高次项的次数+1称作为这个多项式的次数界(次数界的真正意义是系数不为零的最高次项的次数+1,下文中提到的“次数界“为

算法合集之《左偏树的特点及其应用》

左偏树的特点及其应用 广东省中山市第一中学黄源河 【摘要】 本文较详细地介绍了左偏树的特点以及它的各种操作。 第一部分提出可并堆的概念,指出二叉堆的不足,并引出左偏树。第二部分主要介绍了左偏树的定义和性质。第三部分详细地介绍了左偏树的各种操作,并给出时间复杂度分析。第四部分通过一道例题,说明左偏树在当今信息学竞赛中的应用。第五部分对各种可并堆作了一番比较。最后总结出左偏树的特点以及应用前景。 【关键字】左偏树可并堆优先队列 【目录】 一、引言 (2) 二、左偏树的定义和性质 (2) 2.1 优先队列,可并堆 (2) 2.1.1 优先队列的定义 (2) 2.1.2 可并堆的定义 (2) 2.2 左偏树的定义 (3) 2.3 左偏树的性质 (4) 三、左偏树的操作 (6) 3.1 左偏树的合并 (6) 3.2 插入新节点 (8) 3.3 删除最小节点 (9) 3.4 左偏树的构建 (9) 3.5 删除任意已知节点 (10) 3.6 小结 (13) 四、左偏树的应用 (15) 4.1 例——数字序列(Baltic 2004) (15) 五、左偏树与各种可并堆的比较 (18) 5.1 左偏树的变种——斜堆 (18) 5.2 左偏树与二叉堆的比较 (19) 5.3 左偏树与其他可并堆的比较 (19) 六、总结 (22) 在线代理|网页代理|代理网页|https://www.wendangku.net/doc/382962087.html,

【正文】 一、引言 优先队列在信息学竞赛中十分常见,在统计问题、最值问题、模拟问题和贪心问题等等类型的题目中,优先队列都有着广泛的应用。二叉堆是一种常用的优先队列,它编程简单,效率高,但如果问题需要对两个优先队列进行合并,二叉堆的效率就无法令人满意了。本文介绍的左偏树,可以很好地解决这类问题。 二、左偏树的定义和性质 在介绍左偏树之前,我们先来明确一下优先队列和可并堆的概念。 2.1优先队列,可并堆 2.1.1优先队列的定义 优先队列(Priority Queue)是一种抽象数据类型(ADT),它是一种容器,里面有一些元素,这些元素也称为队列中的节点(node)。优先队列的节点至少要包含一种性质:有序性,也就是说任意两个节点可以比较大小。为了具体起见我们假设这些节点中都包含一个键值(key),节点的大小通过比较它们的键值而定。优先队列有三个基本的操作:插入节点(Insert),取得最小节点(Minimum) 和删除最小节点(Delete-Min)。 2.1.2可并堆的定义 可并堆(Mergeable Heap)也是一种抽象数据类型,它除了支持优先队列的三个基本操作(Insert, Minimum, Delete-Min),还支持一个额外的操作——合并操作: H ← Merge(H1,H2) Merge( ) 构造并返回一个包含H1和H2所有元素的新堆H。 前面已经说过,如果我们不需要合并操作,则二叉堆是理想的选择。可惜合并二叉堆的时间复杂度为O(n),用它来实现可并堆,则合并操作必然成为算法的瓶颈。左偏树(Leftist Tree)、二项堆(Binomial Heap) 和Fibonacci堆(Fibonacci Heap) 都是十分优秀的可并堆。本文讨论的是左偏树,在后面我们将看到各种可并堆的比较。 在线代理|网页代理|代理网页|https://www.wendangku.net/doc/382962087.html,

小学数学加减法速算方法

小学数学加减法速算技巧_小学数学加减法速算方 法 (2)买一台电冰箱和一台洗衣机需要多少钱? (3)如果有200元钱买一只书包还剩多少钱? 他们调动了自己的经验和原有的知识结构去探究这个情境中所蕴涵的数学问题,并积极地从多角度去思考问题,发现问题,达到了 很好的教学效果。 我们知道,数学本来就是从客观世界的数量关系与空间形式中抽象、概括出来的。当学生从问题情境中,体会出一些数学思想时, 教师应以引导者、鉴赏者的身份,即教师只是提供一些建议或信息,而不是代替学生做出判断,同时鼓励学生有创造的想法,使学生在 最大的空间去学习、去思考、去探索。在教学加法时,可以分成了 两个步骤: 1、独立探索阶段 教师提出问题:“营业员很快地算出买一套运动服(113元)和一 个书包(59元)共需要172元,你们知道这是为什么吗?”学生想出 了很多计算方法: 113+59=113+60-1=172。 113+59=113+50+9=172。 113+59=112+(1+59)=172。 2、合作探讨阶段 ①每一种方法为什么这样做?请讲讲你的道理? ②这几种方法哪一种比较简便?为什么?

通过合作交流,学生各抒己见,这样既达到了增强学生合作意识地目的,又培养了学生的主体意识。从而归纳出多加几,减去几;先 凑整,再相加这两种方法。 在教孩子学减法时,可以让学生运用原型来揭示算理,探究规律。小学数学的内容大都可以直接在客观世界中找到它的原型。减数接 近整十、整百、整千数时,把它看作整十、整百、整千数,多减几,加上几这个数学知识我们可以在生活中找到一个合适的原型——收 付钱款时常常发生地“付整找零”的活动,并且在课堂中展示这个 活动:妈妈带了165元,其中有一张百元纸币,到商店买钱包花了 97元,妈妈怎样给钱呢?由老师扮妈妈,一名学生扮售货员,妈妈 拿出一百元钱给售货员,售货员找给妈妈3元。这里的道理明明白白,是学生所熟悉的常识。这个活动是原始的、最低层次的减法速 算法,是学习数学的原型。再引导学生摆这个过程用算式表示出来:165-100+3,从而概括出速算的方法。这样,由常识上升到了数学, 学生的学习由低层次上升到了高层次。 多种速算方法的学习使我们的速算更加完美无瑕。 1、运用数的特征“凑整” 我们认识物体都要抓住物体的特征,特征是它与别人不一样的地方,数字在数学王国中也有自己的一些特征,今天我们说的特征是 指这些数字都接近整十、整百、整千,像98、1002等等,在计算时 只要把这些数看成整十、整百、整千数,就能使计算简便。 2、移位“凑整” 3、定律:“凑整” 像乘法口诀一样,定律、规律、法则都是前人给我们创造和积累的财富,我们可以直接拿来使用,这样可以节省我们很多的时间。 定律“凑整”指在计算中运用我们平时学过的一些定律、规律和法 则进行“凑整”。 例:计算364+72+46+128378-57-43482-(39+82)

设计方案范文合集八篇

设计方案范文合集八篇 设计方案范文合集八篇 为了确保事情或工作有序有力开展,常常需要预先准备方案,方案属于计划类文书的一种。方案应该怎么制定呢?以下是收集整理的设计方案8篇,仅供参考,希望能够帮助到大家。 设计方案篇1 一、活动目的 1、培养学生合作探究的精神与分析问题、解决问题的能力。 2、培养和增强学生的地理学习兴趣,关注身边的地理知识。 3、懂得多渠道收集课外资料。 二、活动时间及地点 三、活动方式 根据课室座位安排情况,以小组为单位,每两排组成一组,共分为四大组。以“野外考察员的困难”为主要内容,展开几个阶段的小组间的地理知识竞赛。 四、参与人员 全体同学 五、活动流程 活动刚开始,教师以一名“地理野外考察员”的身份登场,讲述他一天所遇到的困难。困难一:迷失了方向 1、活动准备

在活动前的地理课,向学生提出“当你迷失野外,你该如何来辨别方向”这一问题,让学生课后根据自己的生活经验或向有经验的长辈请教等各类方式收集有关方法,并以作业形式上交。 2、活动过程 学生以小组为单位,全组成员上交一份解决方法,教师当场逐一宣读,答对1个得1分,答错不得分。 3、活动小结 教师讲解野外辨别方向常用的几种方法。 附: 1)平时参考地图和指南针,同时积极观察周围的地形以及身边的植物来判断正确位置。 2)利用太阳 ①冬季日出位置是东偏南,日落位置是西偏南;夏季日出位置是东偏北,日落位置是西偏北;春分、秋分前后,日出正东,日落正西。 ②只要有太阳,就可以使用手表来辨别方向。按24小时制读出当时的时刻,将小时数除以二,将得到一个小时数。把手表水平放在手上或者地上,让手表的这个时刻对准太阳所在的方位,这时手表表面12点所指的方向是北方,6点所指的方向是南方。 设计方案篇2 1、幼儿园的功能组成 包括幼儿生活用房、服务用房、和供应用房三部分。 2、幼儿园的功能分析

计划方案合集10篇

计划方案合集10篇 计划方案合集10篇 为了确保我们的努力取得实效,通常会被要求事先制定方案,方案是在案前得出的方法计划。那么什么样的方案才是好的呢?下面是小编帮大家整理的计划方案10篇,仅供参考,大家一起来看看吧。计划方案篇1 各林场(所):为进一步深入贯彻《甘肃省自然保护区条例》及《XX市人民政府关于进一步加强封山禁牧工作的通知》和《XX林业总场封山禁牧管理暂行办法》精神,巩固XX林区近年来的封山禁牧成果,加快生态环境建设步伐,现就我场XX年封山禁牧工作安排如下:一、明确指导思想我场的封山禁牧工作,坚持统筹规划,以封为主,禁牧与圈养、恢复生态和保护林农利益相结合的指导思想,按照《森林法》、《森林法实施条例》及市局、总场关于封山禁牧工作的总体部署和要求,坚持把加强封山禁牧工作作为恢复植被、改善生态、提高林木尽快成林的重要措施,作为改善人居环境,促进人与自然和谐相处,构建和谐林区的重要保障。各林场(所)要从促进林区经济社会可持续发展的大局出发,切实增强责任感和紧迫感,采取切实有效的措施,加大工作力度,真正把封山禁牧工作抓紧抓好,确保取得实效。二、细化工作任务一要提高认识,统筹安排,强化责任,分解任务。各林场(所)主要领导要切实提高认识,将封禁工作放在同林业生产同等重要的位置上,同安排同部署,并根据市局、总场封禁工作会议精神,延伸签订封禁工作目标管理责任书,确保封禁工作责任分解到站,细化到人。二要广泛宣传动员,营造良好舆论氛围。各林场(所)要采取召开干部会、群众大会、养殖户专题会、管护人员工作会、发放宣传资料、刷写宣传标语、悬挂横幅、制做固定宣传碑等多种形式,广泛宣传《森林法》、《森林法实施条例》、《XX 市人民政府关于进一步加强封山禁牧工作的通知》《XX、林业总场封山禁牧管理暂行办法》等有关政策法规文件,教育林区群众充分认识封山禁牧的重大意义,明确封山禁牧的范围、措施和责任,引导群众正确处理长远利益与当前利益、整体利益与局部利益、封山禁牧与畜牧养殖的关系,真正把封山禁牧工作变为广大群众的自觉行动,为封山禁牧创造良好的舆论氛围。三要详细调查摸底,掌握

浙教版七年级数学下册多项式的乘法作业练习

3.3 多项式的乘法 一.选择题(共4小题) 1.已知(x﹣m)(x+n)=x2﹣3x﹣4,则m﹣n的值为() A.1 B.﹣3 C.﹣2 D.3 2.(x2+ax+8)(x2﹣3x+b)展开式中不含x3和x2项,则a、b的值分别为()A.a=3,b=1 B.a=﹣3,b=1 C.a=0,b=0 D.a=3,b=8 3.若2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,其中a、b为整数,则a+b之值为何?()A.﹣4 B.﹣2 C.0 D.4 4.下列计算错误的是() A.(x+a)(x+b)=x2+(a+b)x+ab B.(x+a)(x﹣b)=x2+(a+b)x+ab C.(x﹣a)(x+b)=x2+(b﹣a)x+(﹣ab) D.(x﹣a)(x﹣b)=x2﹣(a+b)x+ab 二.填空题(共8小题) 5.若(x+1)(x+a)展开是一个二次二项式,则a= 6.定义运算:a⊕b=(a+b)(b﹣2),下面给出这种运算的四个结论:①3⊕4=14;②a⊕b=b⊕a; ③若a⊕b=0,则a+b=0;④若a+b=0,则a⊕b=0.其中正确的结论序号为.(把 所有正确结论的序号都填在横线上) 7.已知m+n=3,mn=﹣6,则(1﹣m)(1﹣n)= . 8.已知(3x﹣p)(5x+3)=15x2﹣6x+q,则p+q= . 9.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+3b),宽为(2a+b)的长方形,则需要C类卡片张. (第9题图) 10.一个三角形的底边长为(2a+6b),高是(3a﹣5b),则这个三角形的面积是.11.计算下列各式,然后回答问题. (a+4)(a+3)= ;(a+4)(a﹣3)= ; (a﹣4)(a+3)= ;(a﹣4)(a﹣3)= .

几种简单的数学速算技巧窍门

几种简单的数学速算技巧 一、一种做多位乘法不用竖式的方法。我们都可以口算1X1 10X1,但是,11X12 12X13 12X14呢? 这时候,大家一般都会用竖式,通过竖式计算,得数是132、156、168。其中有趣的规律:积个位上的 数字正好是两个因数个位数字的积。十位上的数字是两个数字个位上的和。百位上的数字是两个因数十 位数字的积。例如: 12X14=168 1=1X1 6=2+4 8=2X4 如果有进位怎么办呢?这个定律对有进位的情况同样适用,在竖式时只要~满几时,就向下一位进几。 ~例如: 14X16=224 4=4X6的个位 2=2+4+6 2=1+1X1 试着做做看下面的题: 12X15= 11X13= 15X18= 17X19= 二、几十一乘以几十一的速算方法 例如:21×61=41×91=41×91= 51×61= 81×91= 41×51= 41×81= 71×81= 这些算式有什么特点呢?是“几十一乘以几十一”的乘法算式,我们可以用:先写十位积,再写十位 和(和满10 进1),后写个位积。“先写十位积,再写十位和(和满10 进1),后写个位积”就是一见到 几十一乘以几十一的乘法算式,如果十位数的和是一位数,我们先直接写十位数的积,再接着写十位数的 和,最后写上1 就一定正确;如果十位数的和是两位数,我们先直接写十位数的积加1 的和,再接着写十 位数的和的个位数,最后写一个1 就一定正确。 我们来看两个算式: 21×61=

41×91= 用“先写十位积,再写十位和(和满10 进1),后写个位积”这种速算方法直接写得数时的思维过程。 第一个算式,21×61=?思维过程是:2×6=12,2+6=8,21×61 就等于1281。 第二个算式,41×91=?思维过程是:4×9=36,4+9=13,36+1=37,41×91 就等于3731。 试试上面题目吧!然后再看看下面几题 61×91=81×81=31×71=51×41= 一、10-20的两位数乘法及乘方速算 方法:尾数相乘,被乘数加上乘数的尾数(满十进位) 【例1】 1 2 X 1 3 ---------- 1 5 6 (1)尾数相乘2X3=6 (2)被乘数加上乘数的尾数12+3=15 (3)把两计算结果相连即为所求结果 【例2】 1 5 X 1 5 ------------ 2 2 5 (1)尾数相乘5X5=25(满十进位) (2)被乘数加上乘数的尾数15+5=20,再加上个位进上的2即20+2=22 (3)把两计算结果相连即为所求结果 二、两位数、三位数乘法及乘方速算

精选方案策划合集5篇

精选方案策划合集5篇 方案策划篇1 一、日本寿司店的总体目标 2. 产品定价及收入目标 产品定价寿司:甜鸡蛋寿司 12元加州反卷寿司12元烤鳗鱼寿司 12元樱花反卷寿司12元香辣牛肉寿司12元鱼松蟹棒寿司12元鱼松火腿寿司12元金枪鱼寿司8元球生菜寿司8元紫薯红薯寿司8元鱼松寿司 8元红心蛋黄寿司 8元飞鱼子寿司8元什锦色拉寿司 7元水果寿司 7元果冻寿司 6元火腿寿司 6元手卷:黄瓜手卷 5元/2个鱼松手卷 7元/2个金枪鱼手卷7元/2个色拉手卷 7元/2个烤鳗鱼手卷7元/2个饭团:红心蛋黄饭团 5元/2个紫薯饭团 5元/2个鱼松饭团 7元/2个金枪鱼饭团7元/2个火腿饭团 7元/2个预计每日将会有50份订单,每份订单平均10元,平均每份订单成本3元利润7元。每日将获得利润10x50=500元每日将获纯利润7x50=350元 收入目标 月收入:20190.00元年收入:240000.00元 员工工资以及支出经费:40000.00元年净收入:201900.00元 3. 发展目标 将日本寿司店发展成特色小资情调的店子。主要顾客为情侣、中

高消费水平学生、喜爱日韩的女生等。 本店以优雅的环境,日本特色的风味为主打。在提供就餐的同时能享受到不一样的优质服务。且寿司分为中高档,既能满足高消费水平学生的消费欲望,同时满足一般学生的购买能力。 立志将日本寿司店在我校附近立足,并以优质传统的特色服务收揽各新老顾客。 二、市场状况分析 1. 市场需求 自然生长的稻米和最新鲜的鱼生,用极致简单又饶有趣味的生食方式组合在一起,寿司已经迅速发展成为全世界都无法抗拒的美味新宠。寿司风潮正全面来袭。走进店堂,就可以看到一碟碟的寿司由传送带传送着,从眼前回转而过。自己伸手从传送带上取下自己爱吃的寿司,最后根据所吃的碟数来结账,这就是寿司。因其价格低廉、轻松随意,已经越来越受到普通消费者的欢迎。 作为全世界正越来越风行的日本寿司,正被越来越多追求品位和健康的人所钟爱。纽约、巴黎、伦敦、悉尼、香港,时髦都市中的寿司店,门前永远不缺时髦男女耐心排长队。寿司经营店也在中国不断增长。什么原因呢?它的魅力在于:第一、口味鲜美, 而且丰富多样的品种满足了不同口味、不同喜好的人们。寿司的制作原料可谓包罗万象, 不拘一格,从鱼类、贝类到牛肉、禽蛋甚至蔬菜、瓜果都可以制成风味各异的寿司。 第二、寿司符合人们健康饮食的标准。日本饮食在养生方面具有

多项式的乘法典型例题(整理)

多项式的乘法 多项式的乘法的法则: 一般地,多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项。然后把所得的积相加。 整式的乘法运算与化简 多项式的乘法 转化为单项式 与多项式相乘 代数式的化简求值 典型例题 一.整式的计算 1.)1-n -m )(n 3m (+ 2.若c bx ax x x ++=+-2 )3)(12(,求c b a ,,的值. 二.确定多项式中字母的值 1.多项式)32)(8x mx -+(中不含有x 的一次项,求m 的值? 2.若))(23(22q px x x x +++-展开后不含3x 和2x 项,求q p ,的值。

三.与方程相结合 解方程:8)2)(2(32-=-+x x x x 四.化简求值: 化简并求值:)3(2)42)(2(2 2--++-m m m m m ,其中2=m 五.图形应用 1.有若干张如图所示的正方形A 类、B 类卡片和长方形C 类卡片,如果要拼成一个长为(2a +b ),宽为(a +2b )的大长方形,则需要C 类卡片 张. 2.如图所示的正方形和长方形卡片若干张,拼成一个长为(a+3b ),宽为(2a+b )的矩形,需要这三类卡片共________ 张. 3.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形,把余下的部分剪成两个直角梯形后,再拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,这个等式是( ) A .a 2-b 2=(a +b )(a -b ) B .(a +b )2=a 2+2ab +b 2 C .(a -b )2=a 2-2ab +b 2 D .a 2-ab =a (a -b )

【实用】工作计划合集六篇

【实用】工作计划合集六篇 工作计划篇1 为了贯彻落实“安全第一,预防为主,综合治理”的方针,强化安全生产目标管理。结合工厂实际,特制定20xx年安全生产工作计划,将安全生产工作纳入重要议事日程,警钟长鸣,常抓不懈。 一、下半年目标 实现下半年无死亡、无重伤、无重大生产设备事故,无重大事故隐患,工伤事故发生率低于厂规定指标,综合粉尘浓度合格率达80%以上(如下表)。 二、指导思想 要以公司对20xx年安全生产目标管理责任为指导,以工厂安全工作管理制度为标准,以安全工作总方针“安全第一,预防为主。”为原则,以车间、班组安全管理为基础,以预防重点单位、重点岗位重大事故为重点,以纠正岗位违章指挥,违章操作和员工劳动保护穿戴为突破口,落实各项规章制度,开创安全工作新局面,实现安全生产根本好转。 三、牢固树立“安全第一”的思想意识 各单位部门要高度重视安全生产工作,把安全生产工作作为重要的工作来抓,认真贯彻“安全第一,预防为主”的方针,进一步增强安全生产意识,出实招、使真劲,把“安全第一”的方

针真正落到实处,通过进一步完善安全生产责任制,首先解决领导意识问题,真正把安全生产工作列入重要议事日程,摆到“第一”的位置上,只有从思想上重视安全,责任意识才能到位,才能管到位、抓到位,才能深入落实安全责任,整改事故隐患,严格执行“谁主管,谁负责”和“管生产必须管安全”的原则,力保安全生产。 四、深入开展好安全生产专项整治工作 根据工厂现状,确定出20xx年安全生产工作的重点单位、重点部位,完善各事故处理应急预案,加大重大隐患的监控和整改力度,认真开展厂级月度安全检查和专项安全检查,车间每周进行一次安全检查,班组坚持班中的三次安全检查,并要求生产科、车间领导及管理人员加强日常安全检查,对查出的事故隐患,要按照“三定四不推”原则,及时组织整改,暂不能整改的,要做好安全防范措施,尤其要突出对煤气炉、锅炉、硫酸罐、液氨罐等重要部位的安全防范,做好专项整治工作,加强对易燃易爆、有毒有害等危险化学品的管理工作,要严格按照《安全生产法》、《危险化学品安全管理条例》强化专项整治,加强对岗位现场的安全管理,及时查处违章指挥,违章操作等现象,限度降低各类事故的发生,确保工厂生产工作正常运行。 五、继续加强做好员工安全教育培训和宣传工作 工厂采取办班、班前班后会、墙报、简报等形式,对员工进行安全生产教育,提高员工的安全生产知识和操作技能,定期或

数据结构 多项式乘法

实习报告 一、实习题: 请写出计算两个以单链接表表示的多项式相乘的程序。 1.需求分析和说明 两个多项式相乘,可以利用两个多项式的加法来实现,因为乘法运算可以分 解为一系列的加法运算:C(x)=A(x)*B(x)=A(x)*(b1x+b2x2+…+b n x n)=∑ = n i i i x b x A 1 ) ( 先用其中一个多项式去乘以另一个多项式的每一项,得出的若干个多项式按照一定的顺序相加,即幂不同的按照升幂排列,幂相同的将系数相加。 例如: 对于(X->1+2X->2)*(2X->2+4X->3). X->1*(2X->2+4X->3)=2X->3+4X->4; 2X->2*(2X->2+4X->3)=4X->4+8X->5; 排列结果:2X->3+8X-4+8X->5 2.设计 用两个单链表的存储两个多项式,每个结点包含单项式的系数,幂和指向下一个元素地址的指针。用其中的一个多项式乘以另一个多项式的每一项,随后将所得结果按照升幂顺序排列,最后得到结果。 存储结构: //单项式结构 struct Term { float coef; // 系数。 int exp; // 幂指数。 Term( float c, int e) { coef = c; exp = e;} Term( ) { } friend int operator == (const Term & L, const Term & T ) { return L.exp == T.exp; } friend int operator > (const Term & L, const Term & T ) { return L.exp > T.exp; } friend int operator < (const Term & L, const Term & T ) { return L.exp < T.exp; } friend Term & operator += ( Term & L, const Term & T ) { L.coef += T.coef; return L; } //幂指数相同,则系数相加。 friend Term & operator *=(Term &L, const Term &T){ //实现单项式乘法 L.coef*=T.coef; L.exp+=T.exp;

【精选】计划方案合集9篇

【精选】计划方案合集9篇 计划方案合集9篇 为有力保证事情或工作开展的水平质量,时常需要预先制定一份周密的方案,方案是从目的、要求、方式、方法、进度等方面进行安排的书面计划。那么大家知道方案怎么写才规范吗?以下是小编为大家收集的计划方案9篇,仅供参考,大家一起来看看吧。计划方案篇1 一指导思想深入学习《幼儿园教育指导纲要》,深刻把握《纲要》精髓,高举素质教育的旗帜,扮演好教师的多重角色,充分认知和尊重幼儿生命特性,遵循幼儿身心发展规律和学习特点,自觉创造与生命相和谐、与个体生命相一致的教育;在“存精、吸纳、创新”的课程研究总原则下,突显语言特色,坚持课程与课题研究整合相融求效益,不断深化园本课程建设,推动教育科研向纵深发展。 二、工作目标 1、立足实际,深入课改,把《纲要》精神转化为实际的、科学的教育实践能力,促进教师专业化成长。 2、突显我园语言教育特色,向全市展示教育成果。 3、开拓教育资源,在有目的、有准备的生活实践中提高幼儿语言交往能力。三、具体内容及措施(一)立足实际,在课改中促进教师的专业化成长以本园实际为基点的课程改革和课程实施是最具说服力和生命力的,脚踏实地研究课程的过程本身就是一个促进教师专业化成长的过程。 1、咀嚼消化有关理论,厚实实践基础随着终身教育的提出和学习化社会的到来,基础教育的功能正在被重新定义。我们必须根据新的基础教育理念来调整幼儿教育的价值取向,在社会和教育的整体结构中,正确而清醒地把握幼教的实践方向。要求教师根据新的基础教育理念来审视和反思自己的工作,自觉地规范自己的教育行为,理性地构建自己的教育观念。学习重点:《从理念到行为——幼儿园教育指导纲要行动指南》、《儿童的一百种语言解读》、有关幼儿语言教育的最新理论等。学习形式:自学——小组研讨——园部主题性“头脑风暴”——教育实例 2、反思总结,创造性实施课程以主题形式组织、实施课程是课程实践的主要形式。我园一直使用南师大与信谊基金出版社共同出版的《幼儿园活动整合课程》,这一课程是帮助我们更好落实新《纲要》精神、将先进教育观念落实到教育行为中去

多项式算法

#include #include #include #include #include #define NULL 0 //************************************************** typedef struct LNode { float coef;//系数 int exp;//指数 struct LNode *next; }LNode, *Polyn; //************************************************** //销毁传递过来的链表【多项式】 void DestroyPolyn(Polyn &L) { Polyn p; p=L->next; while(p) { L->next=p->next; free(p); p=L->next; } free(L); } //************************************************** /*判断指数是否与多项式中已存在的某项相同*/ int JudgeExp(Polyn L,Polyn e) { Polyn p; p=L->next; while(p!=NULL&&(e->exp!=p->exp)) p=p->next; if(p==NULL) return 0; else return 1; } //******************************************************** //创建一个项数为n的多项式,有头结点 void CreatePolyn(Polyn &L,int n)

(完整版)常用的巧算和速算方法

小学数学速算与巧算方法例解【转】 速算与巧算 在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。 一、“凑整”先算 1.计算:(1)24+44+56 (2)53+36+47 解:(1)24+44+56=24+(44+56) =24+100=124 这样想:因为44+56=100是个整百的数,所以先把它们的和算出来. (2)53+36+47=53+47+36 =(53+47)+36=100+36=136 这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来. 2.计算:(1)96+15 (2)52+69 解:(1)96+15=96+(4+11) =(96+4)+11=100+11=111 这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算. (2)52+69=(21+31)+69 =21+(31+69)=21+100=121 这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算. 3.计算:(1)63+18+19 (2)28+28+28 解:(1)63+18+19 =60+2+1+18+19 =60+(2+18)+(1+19) =60+20+20=100 这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算. (2)28+28+28 =(28+2)+(28+2)+(28+2)-6 =30+30+30-6=90-6=84 这样想:因为28+2=30可凑整,但最后要把多加的三个2减去. 二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变 计算:(1)45-18+19 (2)45+18-19 解:(1)45-18+19=45+19-18 =45+(19-18)=45+1=46 这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1. (2)45+18-19=45+(18-19)

办公室工作计划和思路合集7篇

办公室工作计划和思路合集7篇 办公室工作计划篇1 秋风习习,满怀美好的憧憬,我们迎来了崭新的学年。在新的学年里,在学院老师的正确指导下,我自律委员会办公室将继续发扬“脚踏实地,在平凡中追求进步”的精神,始终秉着“为同学服务”的宗旨,以高度的工作热情和认真负责的工作态度,团结合作、锐意进取,做好办公室的本职工作,同时进行工作上的创新,以迎接新一学年的工作。本学期的工作计划如下: 一、坚持不懈,继续稳步推进各项常规工作我部门的工作主要可以分为两类:对内工作和对外工作A.对外工作——做好自律委的宣传工作及纳新工作(1)制作迎接新生需要的宣传海报,摆放在各寝室楼下和文楼大厅处。更换文楼四楼的橱窗内容,将其更换为新生军训常识,为10届新生提供参考。 (2)制作红榜,公布我自律委换届改选结果,将其张贴在文楼四楼宣传栏处。 (3)在今年国庆十一放假之前,制作有关“十一假期”的安全海报,提醒大家注意各方面的问题,并张贴在文楼一楼大厅展板处。 (4)根据自律委其他四个部门本学年要举办的活动,对活动进行活动前的宣传以及活动后的总结,以及负责活动会场的布置。对于我自律委举办的每一次活动,做到活动前一张宣[本文来自]传海报,活动后一期橱窗总结。在活动举办期间,我办公室还负责会场布置,人员位置安排等,协助各部门把活动办好。

(5)根据生活部对教室的卫生检查情况,及时更替检查结果公布。 (6)根据舍务部对寝室的检查结果,每月制作两张白榜,公布本月优秀寝室和不达标寝室。 (7)对自律委办公室每部的墙面进行重新装饰。 (8)纳新前,制作海报,对我组织进行宣传,并组织有意愿加入我组织的同学进行报名以及面试。 B.对内工作——做好自律委内部事务管理工作(1)根据换届改选结果,统计每个人的联系方式,建立内部成员新档案。 (2)为我自律委全体例会找好会议地点,并进行通知。 (3)每次例会,做好会议记录,记录人员出勤情况。 (4)随时及时的传达我自律委内部的各项通知。 二、以服务同学为依托,开展特色活动(1)初定于11月份,举办一次手工艺品大赛。 (2)做自律委发展历程的总结书。搜集自律委成立以来的文字资料以及照片,形成文字版的自律委发展历程总结书。 新学期里,我部门将始终以饱满的工作热情和认真负责的态度完成各项工作,团结一致,开拓创新,力求做到更好。我们始终坚信,在大家的共同努力下,我们的学生工作一定能交上一份满意的答卷。 办公室工作计划篇2 根据学校新学期的工作思路,发扬团结协作、敬业奉献精神,以促进学生发展、教师发展、学校发展为根本,加强信息工作,加强制度建设,提高工作效率,推进学校各项工

算法合集之《对块状链表的一点研究》

在线代理|网页代理|代理网页|https://www.wendangku.net/doc/382962087.html, 1 对块状链表的一点研究 山西大学附中 苏煜 【摘要】 本文主要介绍了块状链表的概念,如何扩展块状链表,讨论了块状链表的性能以及在信息学竞赛中应用块状链表的利与弊,最后简要介绍了块状链表思想在实际生活中的应用。 【关键词】 块状链表 分块大小 性能 块状链表的扩展 模拟 骗分 一、什么是块状链表 我们先从题目入手,看看什么是块状链表: NOI2003 editor 【题目大意】 一些定义: 文本:由0个或多个ASCII 码在闭区间[32, 126]内的字符(即空格和可见字符)构成的序列。 光标:在一段文本中用于指示位置的标记,可以位于文本首部,文本尾部或文本的某两个字符之间。 文本编辑器:为一个包含一段文本和该文本中的一个光标的,并可以对其进行如下六条操作的程序。如果这段文本为空,我们就说这个文本编辑器是空的。 操作名称 输入文件中的格式 功能 MOVE(k) Move k 将光标移动到第k 个字符之后,如果k =0,将光标移 到文本开头 INSERT(n, s) Insert n ? S 在光标处插入长度为n 的字符串s ,光标位置不变,n ≥ 1 DELETE(n) Delete n 删除光标后的n 个字符,光标位置不变,n ≥ 1 GET(n) Get n 输出光标后的n 个字符,光标位置不变,n ≥ 1 PREV() Prev 光标前移一个字符 NEXT() Next 光标后移一个字符 比如一个空的文本编辑器依次执行操作INSERT(13, “Balanced tree ”),MOVE(2),DELETE(5),NEXT(),INSERT(7, “ editor ”),MOVE(0),GET(16)后,会输出“Bad editor tree ”。

多项式乘以多项式及乘法公式习题

多项式乘以多项式及乘法公式 副标题 题号一二三总分 得分 一、选择题(本大题共12小题,共36.0分) 1.若(x-1)(x+3)=x2+mx+n,则m+n=() A.-1 B.-2 C.-3 D.2 2.若,则p、q的值为() A.p=-3,q=-10 B.p=-3, q=10 C.p=7,q=-10 D.p=7,q=10 3.若代数式的结果中不含字母x的一次项,那么a的值是 A.0 B.2 C. D.- 4.(x-2)(x+3)的运算的结果是() A.x2-6 B.x2+6 C.x2-5x-6 D.x2+x-6 5. 如果(x+1)(x2-5ax+a)的乘积中不含x2项,则a为() A. B. - C. -5 D. 5 6.若代数式x2+kxy+9y2是完全平方式,则k的值是() A.3 B.±3 C.6 D.±6 7.9x2-mxy+16y2是一个完全平方式,那么m的值是() A.12 B.-12 C.±12 D.±24 8.下列多项式乘法,能用平方差公式计算的是() A.(-3x-2)(3x+2) B.(-a-b)(-b+a) C.(-3x+2)(2-3x) D.(3x+2)(2x-3)

9.若x2-nx+16是一个完全平方式,则n等于( ) A.4 B.±4 C.8 D.±8 10. 若 -ax+x2是一个完全平方式,则常数a的值为() A. B. C. 1 D. ±1 11. 已知,,则的值为() A.7 B.5 C.3 D.1 12. 下列各式能用平方差公式计算的是() ①② ③④ A.①② B.②③ C.①③ D.③④ 二、填空题(本大题共7小题,共21.0分) 13.若(x-5)(x+20)=x2+mx+n,则m= ______ ,n= ______ . 14.已知(x-1)(x+3)=ax2+bx+c,则代数式9a-3b+c的值为 ______ . 15.在x+p与x2﹣2x+1的积中不含x,则p的值为. 16.多项式x2-6x+9因式分解的结果为________. 17.(2a-b)(-2a-b)= ______ ;(3x+5y)( ______ )=25y2-9x2. 18.已知,那么. 19.若是一个完全平方式,则▲ . 三、计算题(本大题共7小题,共42.0分) 20.若(x2+mx-8)(x2-3x+n)的展开式中不含x2和x3项,求m和n的值. 21.

相关文档
相关文档 最新文档