文档库 最新最全的文档下载
当前位置:文档库 › 中国大剧院及音乐厅声学设计(声学顾问)名单

中国大剧院及音乐厅声学设计(声学顾问)名单

中国大剧院及音乐厅声学设计(声学顾问)名单
中国大剧院及音乐厅声学设计(声学顾问)名单

中国大剧院及音乐厅声学设计(声学顾问)名单

一个经过声学设计的音质良好的观众厅,包含以下几个重点:

1、具有足够的响度和清晰度。观众做在任何位置均能感觉来自舞台的声音足够

响,同时还有清晰地听到声乐的细节。对于以自然声演出的剧场和音乐厅尤为重要。

2、具备一定的混响感,也就是一般描述声音的干或丰满。所谓“余音绕梁”。

不同观演建筑类型对干或丰满的程度要求是不一样的。

3、具有一定的空间感。就是说观众能感受到舞台上声音的分布位置,包括大小、

宽度、深度,以及各乐器的方位等。同时能感觉到来自各个方向富有层次的声音,并被它们包围。产生“身临其境”的感受。

4、亲切感,观众从声音上感觉与乐队的距离,如果观众即使坐的比较靠后,但

仍感觉自己与乐队很近,就表明空间具有好的“亲切感”。

5、在空调运行的状态下,具有较低的背景噪声。较低的背景噪声意味着演出声

压级能有较高的动态范围,动则排山倒海,静则针落可闻。

以上清单根据互联网资料收集整理,不确保信息全部完整及真实。

2017.12.10

剧院声学设计说明(供装修说明)资料讲解

电视的声学设计说明(供装饰招标用) 一.设计依据 1.XX院提供的XX广电城建筑平、剖面图纸 2.中华人民共和国行业标准“剧场建筑设计规范”JGJ 57—2000 3.中华人民共和国国家标准“剧场、电影院和多用途礼堂建筑声学设计规范”GB/T 50356—2005 4.Acoustics–measurement of the reverberation time of rooms with reference to other acoustical parameters (ISO 3382) 5.中华人民共和国国家标准“厅堂扩声系统设计规范” GB 50371—2006 6.“音乐厅和歌剧院”(白瑞纳克著) 二.功能及建筑概况 使用功能:以大型舞台剧、综艺演出、歌剧为主,兼顾音乐会和会议功能。

容座:观众厅容座为XX座,其中池座XX座(其中轮席椅4个),一层楼座XX座,二层楼座76座。 建筑概况:建筑平面呈马蹄形。 三.主要建声设计技术指标 1.中频满场混响时间: (设置可变混响装置,建议采用木格栅后藏可升降吸声帘幕) RT=1.4±0.1秒(大型舞台剧、综艺演出、歌剧演出时) RT=1.2±0.1秒(会议时) RT=1.6±0.1秒(音乐演出时,舞台设置音乐反射罩)混响时间频率特性如下: 中频基本平直,低频有一定提升(相对中频约提升20%),高频由于空气吸收,允许略有下降。 2.低频比重BR:在1.1~1.3之间 3.透明度C:在-1~3dB之间 4.清晰度D:在35% ~ 60%之间

5.重心时间t s:≤130ms 6. 侧向反射系数LF:在10% ~ 20%之间 7. 声场力度G:≥0dB 8. 初始时间延迟间隙t I:<25ms 9. 声场不均匀度ΔL P:≤±4dB 10.本底噪声:LA≤30dBA 或NR≤25曲线 四.观众厅的体形设计 1.确定观众厅的体积 为了使观众厅获得合适的混响时间,观众厅需要合适的体积。体积太小,有可能不加任何吸声材料,也难以达到需要的混响时间;体积太大,虽然通过增加较多的吸声材料,可以获得合适的混响时间,但厅内的声能密度会相应地减少。 同时由于观众和座椅具有较大的吸声量,所以每座容积是一个很重要的设计标准。对于本音乐剧剧场而言,每座容积宜控制在7~8m3/座。 本剧场的观众席座位数为XX座,故观众厅的体积宜控制在8680 ~9920m3。

歌剧院、音乐厅的声学设计要点

歌剧院、音乐厅的声学设计要点 专业来讲,歌剧院、音乐厅、戏剧院等观演空间实际上是音质第一的听音场所,而这些文化建筑往往投资巨大,若音质效果不佳,实乃资源、经费的巨大浪费。广州赛宾认为,注重表演厅堂的形体、容量、地面起坡、边界面的布置和表面处理等要点的设计,是保证剧院室内声学效果的重要支持。例如:要保持声音响度,需要合理的厅堂体型、观众席起坡设计及充足早期反射声;要保持声音的均匀分布,除了合理的体型还需恰当的声扩散处理配合;控制适当的每座容积及吸声、反声的正确选择、布置则是最佳混响的保证。 观众区平面设计 歌剧院、音乐厅的声学设计要点?作为表演厅堂最基本的组成部分--观众区,其体型设计是厅堂内部优良音质的先决条件。欧洲古典的歌剧院,多采用古典风格的马蹄形或接近马蹄形的“U”形平面。其特点是容量大、视距短,而设置于周边的层层包厢、繁琐浮雕装饰起到良好的声扩散作用。维也纳国家歌剧院、巴黎伽涅尔歌剧院、伦敦考文特花园皇家歌剧院等均为马蹄形平面。但其缺陷是声学处理较麻烦,容易造成沿边反射,甚至出现声聚焦,且台口两侧的观众视觉效果较差。现在使用的马蹄形是改进版,台口两侧不再设观众席,会处理成斜面,增强中前区观众席的侧墙早期反射声。美国的肯尼迪演艺中心便是采用此种方式。 现代风格剧院的观众区平面形式则有更多的选择--矩形、钟形、扇形、多边形及复合形等。如:法国巴士底歌剧院采用的是钟形;东京新国立歌剧院是矩形和扇形的结合。矩形平面的优点是规整、结构简单,声能分布均匀;但两平行侧墙之间容易产生颤动回声,不过,可通过墙面处理解决。如杭州大剧院便将矩形观众区的两侧墙面做成锯齿形状,避免可能产生的颤动回声。扇形平面的观众容量较大,但偏远座较多,后排座视距较远,难以接收直达声,且池座大部分座席几乎得不到侧墙的早期反射声。钟形平面与矩形平面基本相似,也可以说是矩形的一种改进形式。其偏座区比扇形平面少而结构可按矩形的处理(相同容量情况下)。台口两侧逐渐收拢的斜墙面为观众区提供了早期反射声。法国巴士底歌剧院、上海大剧院即是这方面的典型例子。 随着音乐、剧目的多样化发展,对剧院表演厅的要求日趋多功能化,要求有灵活变化观众厅容量空间及符合多种需要的声学效果等。由此产生的复合式平面利用高科技实现厅堂进行灵活多变的组合或拆分。但复合形平面多变的空间模式除了建声之外还需要电声系统的配合,且设备和结构等比较复杂,造价昂贵。国外很多现代多功能剧院为适应多种剧目、音乐会的表演需求,多采用此形式。 观众区容积、起坡、挑台设计 歌剧院、音乐厅的声学设计要点?自然声演出的厅堂,由于自然声源声功率有限,为确保达到一定的音节清晰度,要控制适当的厅堂容积量。当然,不同类别的声源声功率及厅堂用途,其最大容积量也不同。厅堂的总容积量也决定着观众的吸声量,进而对混响时间产生影响。适当的每座容积既可减少吸声材料的使用,也保证了最佳的混响效果。 而针对观众区容易出现的掠射吸收现象,就必须重视观众席的起坡度尺寸设置。一般情况下,池座前后排高差不小于8cm,楼座前后排高差不小于10cm。如果出于功能需求,观众席必须是水平的,可考虑抬高声源位置减少掠射吸收,并利用反射面给后排提供前次反射声,弥补后排声压级的不足;或做成可升降地面。 观众区的挑台容易对顶棚的反射声构成遮挡,虽然在声波衍射作用下,挑台下部空间在开口附近可接收到低频反射声,但缺乏高频反射声。挑台下空间深处的反射声则更少,这导致声音丰满度欠佳,这种音质缺陷称声影区。控制挑台下部空间开口高度和深度的比值,在挑台下顶棚及将后墙倾斜做反射面,补充早期反射声可以改善此缺陷,但效果有限。 反射面及扩散体的运用 当混响时间较长,声音的丰满度上升,其清晰度便会下降,这是音质设计常会遇到的矛盾。选择最佳混响时间是解决的方法之一,而设置反射面制造反射声加强直达声是另一种两全方法,这同时满足了观众对声音的丰满度与清晰度的要求。但要注意尽可能制造有益于音质表现的早期反射声,减少延时反射声,还有保证观众区的前中座接收到充足的早期反射声。 顶棚算是观众区较大的反射面。从声线分布看,锯齿式、扩散体式、浮云式三类顶棚能给全区尤其是前中座提供充足的早期反射声,其平面形状的选择自由度也较大。而平面式、折线式、弧面式三类顶棚则会将大部分声音反射至后中座,令前排缺少反射声。因此,此三类顶棚需要加入侧墙的反射声作用。除了顶棚,反射面也可设置于侧墙下部、后墙上部等位置。有需要时,跌落式挑台的栏板、观众区分割隔断也可作为专设侧向反射板。善用各方位反射面可以满足对音质要求同样严格却体型各异的厅堂。 然而,各反射面提供的定向反射声容易造成音质生硬感。这便需要扩散体进行多方位的散射,既减轻音质生硬感,又保证观众区每个座位之间不存在明显声压级差,保持了室内声场均匀。扩散体可以设置在侧墙上或悬挂在天花上,一般为大小不一的体块或是凹凸不平的墙面。例如:锯齿形墙面或墙面装饰、凸出的包厢,甚至外露的结构部件等等。像前文提到的欧洲古典剧院,其优美的音质,除了得益于厅堂的体型设计,也得益于其室内的装修处理(包厢、繁复装饰)所产生的声扩散。 细节处的噪声控制 歌剧院、音乐厅的声学设计要点?音乐厅、剧院的表演厅堂对室内背景噪声的要求很严格,因为不同程度的噪声会影响低频声的传播。观演建筑的噪声控制分为建筑噪声控制及室内噪声控制。建筑噪声控制首先涉及到建筑位置的选择,一是尽可能远离噪声与振动源;二是要进行选地环境噪声、振动测量及仿真预测。赛宾,观演建筑建设领导品牌。如此,能为建筑围护结构的隔声需要提供设计依据,达到控制室内噪声的需要及标准。而室内噪声控制是针对表演厅堂内部噪声振动源的处理。主要包括空调设备、给排水设备、变压器、机电房,

长沙音乐厅的声学设计

龙源期刊网 https://www.wendangku.net/doc/383555770.html, 长沙音乐厅的声学设计 作者:文立森杨志刚李佳菊 来源:《演艺科技》2016年第04期 [摘要]介绍长沙音乐厅交响乐大厅的建筑声学设计及音质效果,分析其主要的声学音质参量指标,并通过音质计算、音质模拟以及缩尺模型实验的结果与实际验收测试结果的对比,分析不同设计验证方式的特性及准确性。 [关键词]建筑声学;混响时间;音质参量;缩尺模型 文章编号:10.3969/j.issn.1674—8239.2016.04.006 长沙音乐厅位于湘江与浏阳河交汇的新河三角洲滨江文化园内,是滨江文化园的灵魂建筑,按照正规音乐厅标准建设,于2006年8月21日奠基施工,并于2015年12月28日首 演。音乐厅以“经典艺术的斤欠赏殿堂、群众艺术的展示舞台、高雅艺术的教育基地、文化艺术的交流平台”为目标定位,力争打造成为湖南省内顶尖、国内一流、国际知名的音乐厅。因此,其优良的音质效果是至关重要的环节。 1.建筑概述 长沙音乐厅总建筑面积约28 000 m2,建筑高度约28m,主要包括1 400余座交响乐大厅(湘江大厅)、490座多功能厅及198座室内乐厅。 主厅即交响乐大厅,1446座、总面积约1790 m2,厅内形制为不等边多边形(见图1);长约47m,最宽处约41m,最高处约17m;最远座位距离舞台指挥位置30m(见图2)。楼座呈梯田形散布在舞台四周(见图3),能满足大型多编制交响乐团的演出。下文以该厅为例介绍建筑声学的设计。 2.建筑声学设计 2.1混响时间 混响时间是建筑声学设计中最主要的声学参量。根据音乐厅主要演出大型交响乐的功能定位以及观众厅的规模和容积,中频(500H7~1000H7)混响时间(满场)RT应达到 1.9s±O.1s,且要求混响时间频率特性为中高频基本平直,但高频允许下降10%~20%,低频混响要求有10%~20%的提升,低音比BR值为1.1~1.25。各频带混响时间设计值见表1。 2.2其他主要音质参数

剧场建筑声学设计规范

剧场建筑声学设计规范 声学 一、剧场设计应包括建筑声学设计;建筑声学设计应参与建筑、装饰设计全过程。 二、扩声设计应与建筑声学设计密切配合;装饰设计应符合声学设计要求。 三、自然声演出的剧场,声学设计应以建筑声学为主。 观众厅体形设计 一、观众厅每座容积宜符合下列规定: 剧场类别容积指标(m3/座) 歌剧 4.5~7.0 戏曲、话剧 3.5~5.5 多用途(不包括电影) 3.5~5.5 设置扩声系统时,每座容积可适当提高。 二、观众厅体形设计,应符合下列规定: 1、观众厅体形设计,应使早期反射声声场分布均匀、混响声场扩散,避免声聚焦、回声等声学缺陷。电声设计应避免电声源的声聚焦、回声等声学缺陷。 声学装饰应防止共振缺陷。 2、楼座下挑台开口的高度与挑台深度比,宜大于或等于1:1.2,楼、池座后排净高应大于或等于2.8m。 三、观众厅声学设计应包括伸出式舞台空间。 四、剧场作音乐演出时,宜设置舞台声反射罩或声反射南。 观众厅混响设计 一、观众厅满场混响时间设定宜符合下列规定: 1、根据使用要求及不同体积,在500~1000HZ范围内宜符合下表规定: 使用条件观众厅混响时间设置 歌舞 1.3~1.6s 话剧 (2000~10000m3) 1.1~1.4s 戏曲 多用途、会议 2、混响时间频率特性,相对于500~1000HZ的比值宜符合下表规定: 使用条件 125Hz 250Hz 2000Hz 4000Hz 8000Hz 歌舞 1.00~1.35 1.00~1.15 0.90~1.00 0.80~1.00 0.70~1.00 话剧 1.00~1.20 1.00~1.10 戏曲 多用途、会议 上列混响时间及其频率特性,适用于600~1600座观众厅。 二、混响时间设计,采用125、250、500、1000、2000、4000、8000Hz等七个频率;设计与实测值的允许偏差,宜控制在10%以内。

音乐厅吸音声学设计分析

音乐厅吸音声学设计分析 音乐厅吸音声学设计的室内吸音程度,是以吸音力或平均吸音率来表示,吸音力是以将材料的吸音率除以材料的使用面积所求得之值来表示,平均吸音率在因墙壁、天花板等材料之不同。而使吸音率因场所不同而产生差异时,则以各自吸音力加总后的总吸音除以总面积之值来表示。赛宾:音乐厅声学建设专家。 音乐厅吸音声学设计分析。在隔音计划中吸音之任务为,吸收噪音以免其影响到其他方面,例如,在噪音产生源之周围配置吸音材时,能谋求噪音水平之降低;音乐厅吸音。或者在房间的壁面上使用吸音材时,能降低从外部侵入的噪音。但是,须注意的是仅仅使用吸音材时无法完全达到隔音的效果。 例如,在打开窗户的那一面,由于完全不反射它所碰到的声音能源,因而吸音率为100%,亦即该面为完全吸音面,但同时也可能有完全无法隔音的面存在。室内之吸音程度大时,即能压制室内的扩散音幷降低噪音水平。此方法是远离噪声源和影响点时会有效果,但若室内各处都有噪声源且和影响点之距离相近时,例如窗边的座位对由窗户入侵的声音,因为噪音的直接影响太大,故而其借由吸音所产生的隔音效果不会太显着。 音乐厅吸音声学设计分析。同时音乐厅设计要考虑: 1.混响时间:混响时间设计合理,观众听起来声音厚重雄浑。音质丰富饱满。 2.结构吸音:材料和结构、构造吸音,避免回声。吸收噪声。 3.设计力求圆形,使声音达到个个席位距离基本接近。 4.音乐厅设计,要追求光线明亮,照度合理。使观众能看得亲切。 5.要设计观众席噪声尽可能被就地吸收。或被结构反射,避免向舞台和其他观众方向传播。 6.座位垫加橡胶垫,避免噪声。 7.设置休息室,会朋友或场间休息,有旁厅、耳厅。 8.要设置自然通风,避免集中空调噪声干扰。 9.舞台设计要有现代理念,要能运用现代电子技术,达到多层次、多功能全方位的舞台自动化系统。

浅谈剧院观众厅设计资料

浅谈剧院观众厅设计 观演建筑按其声学特性可分为两大类:音乐类与语言类,无论是哪一类设计,观众厅均为其核心空间。观众厅的空间形态决定了一座观演建筑的定位及质量,观演建筑建设领导品牌——赛宾(中国)对其空间形态设计作一些探讨和总结。 一、观众厅的空间模式 浅谈剧院观众厅设计。观众厅的空间模式,亦即观众厅的体形设计,对大厅的声音质量起着重要作用,是观众厅设计的基础环节。观众厅发展至今有多种模式,最早的观众厅形式是矩形;传统歌剧院以马蹄形或接近马蹄形的U形平面为主,也有少量扇形平面;现代剧院,尤其是20世纪中叶以后,产生了较多新的平面形式,主要包括了椭圆形、钟形、多边形和不规则形等。 1.马蹄形平面 这种经典的平面对于大容量歌剧院是比较合适的。它的内部空间围合,增加了演出的气氛,同时观众视距短,视觉质量较高;明显的缺陷是台口两侧观众的视觉效果差。马蹄形的改进型平面则通过将台口两侧做成斜面,不设观众席,增强了中前区观众席的侧向早期反射声。美国的肯尼迪演艺中心及建设中的国家大剧院、温州大剧院均采用此种方式。 2.扇形平面 扇形平面最大的优点是观众席充分利用了舞台120°的展开角范围,以达到较大的观众容量。当扇形角度比较小时,会使大量座席远离舞台,后排视距较远,直达声弱,且池座大部分座席几乎得不到来自侧墙的早期反射声。因而,这种平面较适合于可用电声补充的会议中心观众厅,作为剧院使用则较少。 3.多边形平面 多边形平面一般在侧墙设多层包厢或逐层向台口伸展的跌落包厢,加之其侧墙的倾斜增加了侧向早期反射声,不仅视觉、声学效果好,同时观众包厢与楼池座一起形成对舞台的围合效果,提高了观演的亲切感。悉尼歌剧院是这方面的典型例子。我们完成的温州会议中心、东莞大剧院也采用了这种平面方式。 4.不规则形平面 不规则形平面较适合音乐厅、会议中心,在歌剧院中采用较少。东莞大剧院观众厅在主体为多边形平面的基础上,后部根据平面条件层层后退,形成不规则形空间,增加了空间的趣味性。在国内剧院设计中,这是第一例采用不规则形平面的案例。 5.钟形平面 钟形平面的结构简单,台口两侧的斜墙面为观众厅提供了早期反射声,有较好的声学和视觉效果。法国巴士底歌剧院、上海大剧院即是这方面的典型例子。 二、观众厅设计的技术特征 浅谈剧院观众厅设计。随着各种技术的成熟、材料的完善及现代计算机智能控制的引入,观众厅设计日趋成熟,并表现出如下几方面的特征: (1)现代剧院更注重自然声演出的效果。从自然声的实效出发,一般座位数控制在1800座以下,而不再追求过大的容量。这也是综合建筑声学、视觉效果各方面平衡的结果。 (2)计算机智能化设计控制引入剧院设计。通过计算机三维模型,可以模拟实际剧院的声场分布、视觉情况,大大提高了设计效率。 (3)灯具及调光设备的突破性进展。长距离、高亮度的射灯和可控硅调光技术的发展,满足了多道面光及远距离追光的要求。同时,灯具的使用寿命和安全性有了保证。 (4)计算机控制下的舞台机械设备已趋于成熟和完善,基本上可以满足多种演出的特殊需求。国内新建剧院大多采用欧洲经典的品字形舞台,舞台面可以平移、升降、旋转、倾斜,适应多功能需要。 (5)现代结构计算水平的提高,产生了许多新颖的建筑造型及布局。两个观众厅空间可以上下重迭设置,并将两部分结构截然分开,以切断声桥的联系,保证了声学效果。 (6)舒适性设计被日益重视,更强调以人为本的设计理念。 三、观众厅的视线设计 剧院观众厅设计的关键在于视觉质量。 东莞大剧院歌剧院观众厅人数为1605座,为了有热烈的演出气氛,便于观众参与到演出中来,设计中采用了大面宽小进深平面,两侧另设计了三层侧包厢。用这种布置方法,观众从三面包围舞台,演员与观众融为一体,缩短了视距,营造出良好的空间效果。但是,大面宽亦造成两侧观众的视角较小,侧包厢里视线遮挡严重的负面影响。另外,观众厅的耳光室突出的后边墙亦对侧包厢观众席形成严重的遮挡。 在初步设计开始的阶段,我们就视线的硬遮挡、视角以及耳光室设计问题进行了反复论证,并请清华大学建筑设计院作了专门的视线分析报告。根据视线分析结果,我们发现问题的焦点在台口两侧的“金三角”地区。首先,我们以保证视线质量为出发点,界定了以观众能看到舞台面表演区的80%为视角限制的最低条件。以16m边界的台口为界,与80%表演区一起限定了侧边座位的范围,从而保证了座位视线

音乐厅吸音声学设计

音乐厅吸音声学设计 的室內的吸音程度,是以吸音力或平均吸音率來表示,吸音力是以将材料的吸音率除以材料的使用面积所求得之值来表示,平均吸音率在因墙壁、天花板等材料之不同,音乐厅吸音。而使吸音率因场所不同而产生差异时,则以各自吸音力加总后的总吸音除以总面积之值来表示。音乐厅吸音。在隔音计划中吸音之任务为,吸收噪音以免其影响到其他方面,例如,在噪音产生源之周围配置吸音材时,能谋求噪音水平之降低;音乐厅吸音。或者在房間的壁面上使用吸音材时,能降低从外部侵入的噪音。音乐厅吸音。但是,须注意的是仅仅使用吸音材时无法完全达到隔音的效果。音乐厅吸音。例如,在打开窗戶的那一面,于完全不反射它所碰到的声音能源,因而吸音率為100%,亦即该面为完全吸音面,但同时也可能有完全无法隔音的面存在。室內之吸音程度大时,即能压制室內的扩散音並降低噪音水平。音乐厅吸音。此方法是远离噪音源和影响点时会有效果,但若室內各处都有噪音源且和影响点之距离相近时,例如窗边的座位对窗戶入侵的声音,因为噪音的直接影响太大,故而其借吸音所产生的隔音效果不会太显著。天津润生。 1 、的台口 音乐厅的舞台口对厅内池座前中座席获得早期反射声

起到重要作用。音乐厅吸音。台口前侧墙和顶板所构成的反射面应针对池座前中区获得反射声进行设计,这是厅内其他界面所无法替代的。 2、楼座和包厢栏板 音乐厅通常要兼顾自然声和扩声演出的两种形式,声源处于舞台上和台口上部声桥两个不同的位置,音乐厅吸音。楼座栏板通常又是凹弧形。音乐厅吸音。因此,栏板上应做扩散设计,形式可采用凸弧形的圆挂面、三角形体、锥状体等。 3、楼座下的天花 . 楼座下的座席,通常离舞台较远,为了获得均匀的声场分布,在自然声演出的条件下,开花应起到加强后座声强的作用;音乐厅吸音。当采用扩声时,天花应使扬声器组的声音顺利进入楼座下的空间。 4、音乐场馆的后墙 音乐厅后墙的装修要根据厅堂的使用功能和演出方式而定。音乐厅吸音。对于自然声演出的音乐厅和歌剧院,后墙应作声反射和扩散处理,而采用扩声系统的厅堂,可以选用吸声构造,同时要防止产生回声。 5、扬声器组的装修饰面 音乐场馆扬声器组的饰面构造要满足透声和美观两方面的要求。音乐厅吸音。 饰面构造必须有尽可能大的透声率,不得小于50%;内衬喇叭布应尽可能薄,以免影响高频声的输出;构造必须有足够的刚度,不致引起共振。

剧院声学设计

剧院声学设计 1.建声设计目标 2.建声设计依据 3.体型设计 对于演出的歌剧院来说,体形设计至关重要,它要解决响度(音量)、声场分布、声扩散、早期反射声的分布和消除音质缺陷等问题。 剧院平面、剖面图分别如图一、图二所示。 图一:观众厅池座平面图 图二:观众厅剖面图 剧院的室内设计阶段,我方会和装修方积极协调解决声学装修工作的问题,提出合理化建议和提供声学方面的数据。 为对声学设计进行验证,对剧院观众厅进行了计算机模型进行室内音质预测。 计算机模拟通过建立三维模型,通过计算机模拟软件对大剧院观众厅的室内音质进行模拟分析。 EASE模拟计算分析:

3.1 观众厅声学设计和室内各界面材料控制 根据剧院观众厅的混响时间要求,在声学设计初期,根据室内装修中使用材料和构造的声学特性进行分析,选择合适的数据进行混响时间计算。 观众厅两侧墙面采用15mm厚木饰面高密度板,为减小材料的低频吸声特性,建议安装过程中,增加龙骨密度,以增强板材的刚度。在台口两侧部分采用18mm 厚高密度板,表面安装50mmX100mm木饰面条。该做法有两个用途,一是起到装饰美观的效果,二是增加板材的刚度,减小低频吸收。 观众厅吊顶设计 该观众厅的吊顶造型设计兼顾剧院的其他功能(如音箱桥、面光桥等)和声学要求。暂定为折线型吊顶。通过调整吊顶的倾角,达到前部吊顶为池座中前部观众席提供有益的早期反射声;中后部吊顶增强后部观众席声级。控制吊顶标高,防止出现长延时反射声;将近次反射声相对于直达声的初始时间间隙控制在 35ms以内。为了避免低频被吊顶吸收,观众厅的吊顶可采用了35mm厚GRG增强型反声板。 3.2台口侧墙设计 台口侧墙采用大号角形,可以将演员声反射并导向观众席,让池座中前区观众席得到较多的早期反射声;另外利于耳光、扬声器的布置。由于受座椅布置影响,只能将一层位置台口处理成直角形(但还是建议减少前排边座椅,实现扩声需求)。 3.3后墙设计 观众厅后墙使用弧形扩散吸声构造,一是控制厅内混响时间,二是防止舞台发出的声音从观众厅后墙反射回前排观众席和舞台,形成回声或扩声系统的反馈啸叫。该剧院的后墙为控制室,若有太强的回声,容易引起音质缺陷。厅堂后墙

音乐厅声学设计的思考

音乐厅声学设计的思考 专业来讲,音乐厅的声学设计毫无疑问是各类厅堂中对音质要求最高、难度最大也是最难把握的设计工程,从19世界后期至今一百多年以来,国外设计建设了数十个专业音乐厅,其中音质优秀和优良的仅占约20%,满意和基本满意的约占50%,而较差或褒贬不一的约占30%。而我国在近158年左右先后也设计建设了约20个各类音乐厅,其音质效果有满意的,也有不甚满意、褒贬不一的,尚待组织开展必要的客观音质测量与主观音质评价工作。 赛宾(中国)认为国内在音乐厅设计建设中存在最大的问题还是业主对声学的重视不够,和建筑师、室内装修设计师对声学设计的配合不佳,甚至一切要服从建筑和装修。下面,根据赛宾(中国)十多年来在专业声学及文体会馆建设的经历上简单谈几点思考: 1、音乐厅的单座容积控制问题 音乐厅声学设计。这是一个与音乐厅音质设计直接相关的问题,有的领导、业主和建筑师要追求高大空间和建筑气魄,往往提出不合理的净高和单座容积要求,近年来在音乐厅建筑设计中也存在追求大空间大容积的倾向,其实单位容积大,音质不一定就好,对节能也不利。世界公认音质优良为A+级、A级的多个音乐厅其单座容积大多为7-9平米/人,专家建议对于中小型音乐厅可取7-9平米/人为宜,而千座以上的大型音乐厅则可取9-11平米/人为宜。 2、音乐厅体型设计问题 西方传统古典音乐厅的平面体型多以矩形为主,多年来国内外很多建筑师也将所谓“鞋盒形”作为音乐厅设计的主要平面体型,随着时代的变化和技术的进步,我们认为只要满足在厅内声场扩散分布、无声缺陷,有足够早期反射声和侧向反射声条件下,很多平面体型都可公供音乐厅设计选择,如多边形、椭圆形、马蹄形、梯田式等都可由业主方与建筑设计师和声学工程师共同研究确定,也不必像录音室、播音室和琴房等设计中追求厅内空间的长宽高的比例要求,给建筑体型设计以更多的自由度。 3、音乐厅内混响时间参量的选择问题 音乐厅声学设计。混响时间是音乐厅的重要音质参量但也不是唯一音质指标,混响时间的选择与音乐厅的容座和容积,厅内建筑装修、观众席吸声量及乐队规模和音乐内容等直接相关,通常国内外将1.8-2.0s的混响时间成为音乐厅的黄金时间,而据白瑞纳克调研评价为优秀和优良音乐厅的平均混响时间为1.7-1.9s,国内早年设计的音乐厅常有混响时间实测偏短现象,而近几年又常见有混响时间偏长的实测结果,分析原因主要是厅内容积偏大、内装修设计施工偏厚重光硬和观众席座椅吸声控制不当导致,应该予以注意。笔者建议对中小型音乐厅、中频满场混响宜为1.7-1.8s,大型交响音乐厅的中频混响满场混响宜1.9-2.0s为妥。 4、音乐厅内声场扩散处理问题 传统及古典风格的音乐厅内,顶部采用藻井形式,墙面有古典窗框形凹凸和各种大小雕塑装饰,对厅内声音扩散起到很好的作用,如今有的音乐厅墙顶设计均采用所谓为微扩散形式,其凹凸尺度均偏小,对低频声扩散作用甚少;也有设计成全曲线状墙面,大片连续光硬圆弧形式,使听众产生高音发毛有刺耳之感而影响音质效果。所以在音乐厅墙面和天花设计中建筑和室内装修设计师应与声学设计充分协调研究,必要时通过声学试验再确认设计以确保得到满意的音质效果。 5、音乐厅室内装修的材料选择 音乐厅声学设计。一百多年前设计建设如今仍誉为音质甚佳的维也纳、波士顿、阿姆斯特丹及卡内基音乐厅的墙面、顶面很多采用粉刷材料,而如今随着建材的发展,又大量采用大理石、石材、石膏板、实木板,甚至采用不锈钢板、玻璃板以及GRG板、GRC板等面层装饰材料,有的因板后空腔偏大产生低频吸收、影响低音比值;有的因厚重硬实反射过多,导致混响偏长。如体型设计不当加上选材不合适,还会产生回声、震动声及“眩声”等声缺陷而导致音质问题。因此室内设计和建筑设计必须尊重声学设计的意见和建议,即使音乐厅内美观新颖,也符合音质设计要求,使之音质优良。

剧场、电影院和多用途厅堂建筑声学设计规范)

费钱、费工的事,这种情况应尽量避免。 标准把噪声控制作为专门的章节进行了规范,关于噪声控制是剧场建声设计的重点和难点。 根据实际的测试结果,剧场的静态噪声往往达不到NR30曲线的要求。究其原因主要是: 1、剧场的xx的隔声量不达标。 2、空调盘管风机噪声过高。 3、消防机械排烟风道未做隔声降噪处理。 4、规划布局不合理,离主要街道过近,未利用走道等过渡降噪。 这些是老问题了,但国内的大量多功能剧场就是很难达标,这应该引起设计者、业主等的共同重视。 当然,建声设计离不开工艺设计,工艺设计的达标合理与否也可以影响到剧场的声学环境,作为声学专家,应该熟读标准,多跟装修设计其他工种的设计人员多沟通,选取最合理的方式,满足设计规范的要求。 剧场的建声设计中,舞台的声学处理往往被忽略,结果舞台上的混响时间太长,大大超过观众厅而影响到观众席的听音效果。舞台上的布景等装置并非固定,设计者就要对舞台空间及固定装置(如大幕、侧幕、天幕、等)作一估计,根据选取的材质,确保不要比观众厅的混响时间更长,标准中只提供舞台中频混响时间是因为低频部分较难达到,而高频部分往往影响不大。关于乐池的声学设计主要为乐队人员提供良好听闻条件作考虑,不要有强反射声存在即可。这里还要注意的是有关音箱的摆位,看似是电声系统的问题,其实与建声设计的声场分布有密切的关系。主要是音箱的位置、投射角度、音箱外的装修网罩等,都要与电声系统技术人员沟通才能合理解决,获得满意的声场分布效果,这也是目前建声设计中的普遍未予重视的方面。 GB/T50356H2005的提出,为剧场建筑声学设计提出了明确可行的依据,问题 是如何逐条的加以落实,这是对声学设计者理论、实际、沟通能力的考验。

某校音乐厅设计方案

某校装饰设计方案 第一章初步概览分析 第二章装饰效果图设计方案 第三章特殊声学设计分析 第四章专业材料说明

第五章音响系统 第六章灯光系统 第七章舞台机械系统 第一章-----初步概览分析 1、简述: 一个音乐厅的声学设计主要包括对噪声的处理,实现声均匀度,解决聚焦、共振反馈等问题,同时还有对室内混响时间的正确计算。在音乐厅的音质设计中,隔音设计也是一个需要考虑的地方,隔音效果的好坏直接影响后期音乐厅的使用的效果。 2、建筑结构比例:

座位数:约700座音乐厅结构比例:长33.3米*宽29.7米*高12米面积约860平米 结合CAD平面图分析,该音乐厅现状比例为椭圆形。圆形空间的声学缺陷通常主要包括两个问题:一是混响时间过长,二是存在较严重的声聚焦和颤动回声。解决第一个问题的难度不算很大,只需在厅内增加适量的吸声材料(充分利用墙面和顶部),即可把混响时间缩短。其中的技术难点是设计算的精确性和施工工艺的严谨性。其第二个声学缺陷的较大难点在于:如何消除圆形墙体所引起的声聚焦和颤动回声,而又无法改变该厅原建筑设计所定下来的的整体造型,这才是建声设计中最具挑战性和创造性的关键。 3、隔音现状:

该音乐厅墙体为该建筑内部新建墙体,外侧还有建筑外墙。因此外界的生活噪音对此几乎无影响。主要解决的还是建筑内部公共空间与音乐厅之间的噪音干扰,既要避免公共区域噪音传到音乐厅内部,也要避免音乐厅演出时的音频扩声极大的干扰到临近空间。因此主要应在门窗及孔洞密封隔音上考虑,采用专业的隔声门处理。 第二章-----装饰效果图设计方案 在设计上,顶部根据地面台阶坡度做了叠级处理,增加了空间的层次感。同时在顶部设置灯槽,当关闭主灯打开灯带时,气氛舒适惬意,带来适宜的亮度。墙、地面设计风格现代简洁,用色沉稳大气,配合红色的座椅,让人一进入音乐厅就能做好欣赏演出的心理准备。完全满足一般音乐厅的装饰设计要求 (见下翻页) 第三章-----特殊声学设计分析

剧场的声学设计

第五章剧场的声学设计 厅堂的形状、体积、边界面的布置和表面处理、地面起坡、座位排列、观众容量以及装修材料的选择等,在很大程度上影响着观众厅的声学效果。因此声学处理不应当是建筑设计的追加手段,而应该融于建筑整体设计之中。 第一节室内声波传播特性 声波在传播过程中,当遇到障碍物,如墙、孔洞等,将产生反射、吸收、穿透、绕射现象,在室内由于多次反射会引起混响。 1.声波的反射 声波在传播过程中遇到不同的介质时,波速将发生突变(空气中为340m/s,砖和砼中约为4000m/s)。在波速突变的分界面上,入射波的一部分返回原介质继续传播,这部分叫反射波。这种现象叫做波的反射。 ◇反射声比直达声总是要延迟一定的时间到达接收处,其延迟的时间叫做时差。 ◇时差在5毫秒以内的反射声叫做短延时反射声,能使人产生声源位移的感觉。 ◇延迟时差为5~50毫秒,即声程差1.7~17米的反射声,叫做前次反射声。这种反射声好象使原来直达声的延续,听起来相当于加强了直达声的强度。这是影剧院建筑中所需要的。 ◇反射声的延迟时差超过50毫秒,且声压级较强,能听到两个声音,这就是回声,应避免。 ◇延迟时差虽然超过50毫秒,但声压级较低,湮没在一个接一个的反射声中,分辨不出单个声音,也就是听不到回声,称为混响声。在影剧院建筑中,根据观众厅的容积等情况,需要保证一定的时间。 2.吸声系数和吸声量 不同介质对声的吸收是不同的,吸声能力较高的建筑材料称为吸声材料,一般,坚硬光滑,结构紧密和重的材料吸声能力差;反射能力强;粗糙松软,具相互贯穿的内外微孔的多孔材料则相反,如玻璃棉、矿棉、泡沫塑料、木丝板、微孔砖等,都是这类材料。 吸声系数:是表示材料吸声能力大小的量,用〆表示。 〆=吸收声能/入射声能数值在0~1。 〆同样也表示某材料单位面积的吸声量。 吸声量:用A表示。 A=S?〆单位:m2

厅堂建筑声学设计的要求标准及设计方法

厅堂建筑空间都比较大,所以在设计上尤其是保证其内部声学设计合理到位,吸音材料以及其他的各种声学材料不可缺少,所以合理的设计及材料设备的正确使用才能确保其音质效果,只有了解厅堂上的声学要求和设计方法才能保障有效的音质设计。 一、建筑声学设计的要点 一般而言,建筑声学设计的要点主要包括噪声控制和音质设计两大部分。 (一)噪声控制 通常音乐厅、剧场等厅堂都要求很低的室内背景噪声,因此,这些厅堂的选址很重要,应尽可能远离户外的噪声与振动源。另外,还要进行场地环境噪声与振动调查、测量与仿真预测,目的是为进行厅堂建筑围护结构的隔声设计提供依据。保证厅堂建成后能达到预定的室内噪声标准。此外,建筑声学设计的另一个重要任务就是进行室内音质设计。 (二)音质设计 音质设计通常包括下述工作内容: 1.确定厅堂体型及体量。 2.确定音质设计指标及其优选值。根据厅堂的使用功能选择混响时间、明晰度、强度指数、侧向能量因子、双耳互相关系数等音质评价指标,并确定各指标的优选值,是音质设计的重要任务。 3.对乐池、乐台、包厢、楼座及厅堂各界面进行声学设计。 4.计算厅堂音质参量。当厅堂的平、剖面及楼座、包厢、乐池、乐台等设计方案拟定以后,就可开始计算厅堂音质参量。 5.进行声学构造设计。厅堂音质除了受前述建筑因素影响之外,还与室内装修材料与构造密切相关。声学装修构造设计通常包括各界面材料的选择和绘制构造设计图,需详细规定材料的面密度、表观密度、厚度、穿孔率、孔径、孔距、背后空气层厚度以及龙骨的间距等技术参数。

6.声场计算机仿真。对厅堂建筑进行仔细的声场分析和音质参量计算,有赖于声场三维计算机仿真。 7.缩尺模型试验。对于重要的厅堂,除了计算机仿真外,通常还须建立一定缩尺比的厅堂模型,进行缩尺模型声学试验。 8.可听化主观评价。可听化技术是通过仿真计算。或者通过模型试验测量获得双耳脉冲响应,将之与在消声室中录制的音乐或语言“干信号”卷积,输出已加入厅堂影响的声音信号,供受试者预先聆听建成后的厅堂音质效果。这是近年发展起来的建筑声学领域一项高新技术。 9.建筑声学测量。建筑声学测量包括噪声与振动测量,围护构造隔声测量,重要材料与构造的吸声量测量以及厅堂音质参量的测量等。 11.组织主观评价。对于重要厅堂,在工程落成后,组织专门的演出和主观评价,来检验建成后厅堂的音质效果,是建筑声学设计最后一个重要环节。 二、声学设计的手段 准确地预测房间的音质效果一直是建筑声学研究者追求的理想。 厅堂音质模型测定是建筑声学设计的重要手段。随着软件技术的发展,使用计算机进行声场的模拟研究成为现实。近年来,使用基于有限元理论的方法模拟声音的高阶波动特性,在低频模拟上获得了一些进展。 厅堂中短延时反射声的分布,是决定音质的重要因素。在缩尺模型中,用电火花作为脉冲声源测得的短延时反射声分布,与实际大厅的短延时反射声分布有良好的对应,对在设计阶段确定厅堂的大小、体型等有重要参考意义。混响时间是公认的一个可定量的音质参数,通过模型试验可以预测所要兴建厅堂的混响时间。声场不均匀度也是一个重要的音质参数。 模型试验的测量系统、测量方法和结果的表达与实际厅堂相同,但需要根据厅堂模型的缩尺比s,在混响时间测量和声场不均匀度测量时对测量频率作相应改变。不同频率的声波,在空气介质中传播,特别是高频声波,它的由空气吸收引起的衰减在不同温、湿度条件下差别很大,对混响时间测量结果,需采取对空气吸收的影响作相应的修正,且有足够的精度。

建筑声学设计

建筑声学设计 建筑声学设计的要点: 一般而言,建筑声学设计的要点主要包括噪声控制和音质设计两大部分。 (一)噪声控制 通常音乐厅、剧场等厅堂都要求很低的室内背景噪声,因此,这些厅堂的选址很重要,应尽可能远离户外的噪声与振动源。另外,还要进行场地环境噪声与振动调查、测量与仿真预测,目的是为进行厅堂建筑围护结构的隔声设计提供依据。保证厅堂建成后能达到预定的室内噪声标准。此外,建筑声学设计的另一个重要任务就是进行室内音质设计。 (二)音质设计 音质设计通常包括下述工作内容: 1.确定厅堂体型及体量。 2.确定音质设计指标及其优选值。根据厅堂的使用功能选择混响时间、明晰度、强度指数、侧向能量因子、双耳互相关系数等音质评价指标,并确定各指标的优选值,是音质设计的重要任务。 3.对乐池、乐台、包厢、楼座及厅堂各界面进行声学设计。 4.计算厅堂音质参量。当厅堂的平、剖面及楼座、包厢、乐池、乐台等设计方案拟定以后,就可开始计算厅堂音质参量。 5.进行声学构造设计。厅堂音质除了受前述建筑因素影响之外,还与室

内装修材料与构造密切相关。声学装修构造设计通常包括各界面材料的选择和绘制构造设计图,需详细规定材料的面密度、表观密度、厚度、穿孔率、孔径、孔距、背后空气层厚度以及龙骨的间距等技术参数。 6.声场计算机仿真。对厅堂建筑进行仔细的声场分析和音质参量计算,有赖于声场三维计算机仿真。 7.缩尺模型试验。对于重要的厅堂,除了计算机仿真外,通常还须建立一定缩尺比的厅堂模型,进行缩尺模型声学试验。 8.可听化主观评价。可听化技术是通过仿真计算。或者通过模型试验测量获得双耳脉冲响应,将之与在消声室中录制的音乐或语言“干信号”卷积,输出已加入厅堂影响的声音信号,供受试者预先聆听建成后的厅堂音质效果。这是近年发展起来的建筑声学领域一项高新技术。9.建筑声学测量。建筑声学测量包括噪声与振动测量,围护构造隔声测量,重要材料与构造的吸声量测量以及厅堂音质参量的测量等。 10.对电声系统设计提供咨询意见。对于需要安装电声系统的厅堂,建筑声学专家尚需与音响工程师配合,对电声系统的设备选型、设计与安装提供咨询意见。 11.组织主观评价。对于重要厅堂,在工程落成后,组织专门的演出和主观评价,来检验建成后厅堂的音质效果,是建筑声学设计最后一个重要环节。

广东星海音乐厅的声学设计

广东星海音乐厅的声学设计 星海音乐厅是以人民音乐家冼星海的名字命名的。音乐厅建于珠江之畔风光旖旎的二沙岛上。它与已建成的美术馆和正在建设中的博物馆等建筑构成广东省相当规模的文化中心。 星海音乐厅包括1437座的交响乐大厅,462座的室内乐厅,96座的视听音乐欣赏室,排练室,琴房和音乐资料馆,以及水上演奏台和音乐喷泉、各种配套用房。建筑面积1800m2,是我国目前规模最大、设备先进和音质优异的现代化音乐厅。也是我国第一座采用“葡萄园” 形(或称山谷梯田形)配置方式的音乐厅。 星海音乐厅交响乐厅、室内乐厅的各项声学设计指标* 星海音乐厅于1998年6月13日――冼星海诞生日正式使用。广州交响乐团和中国交响乐团合唱团进行首场演出。演奏了钢琴协奏曲《黄河》和贝多芬第九交响曲《欢乐颂》,获得成功,著名音乐家、指挥家和教育家李德伦、吴祖强出席了首演式。相继一周内,中国交响乐团,以色列交响乐团,澳大利亚交响乐团和德国管风琴演奏家,在该厅献艺。音乐家们对大厅良好的音质均给予高度的评价。 一、星海音乐厅的设计宗旨和各项声学指标 星海音乐厅这座华丽的艺术殿堂是为满足广大观众欣赏高雅音乐的殷切的需求、并作为国内外文化交流的基地和窗口而建造的。音乐厅设计始终把音质效果放在首位,以继承传统音乐厅的良好品质、而又能适应现代生活提出的各种需求为设计的宗旨。 声学设计指标是根据国际上获得“顶级”音质效果的音乐厅为参照对象,广泛听取我国音乐家和声学家的意见确定的。交响乐厅、室内乐厅的各项“最佳”。 为实现上述指标、确保获得良好的音质,分别在设计、施工、竣工后调试的不同阶段,采取了一系列的保证措施: ·初步设计阶段:通过计算机模型和1/40缩尺实体声学模型试验与声学估算相结合,分析体形、了解声场状况和可能出现音质缺陷的部位; ·技术设计和施工图阶段:用1/10缩尺实体声学模型试验和围护结构的隔声量试验,以及各种声学构件声学性能的实验室测定,确定声学构造的部位、尺度和装修用材。并进行较为详细的声学计算; ·施工阶段:在没有专业施工队的条件下,主要是施工交底和监理,检查隐蔽工程,并在交响乐大厅主体结构完成后,进行首次混响和声场分布的现场测定; ·竣工调试阶段:用以解决声学计算、缩尺模型试验与实际效果存在的差距。要修正客观存在的偏差,就必须采用声学测定与乐团试用的主观感受相结合的方法。作多次调试、修改装修、直至达到预期的效果。星海音乐厅通过三个月的调试工作,才实现所要求的演奏和听闻效果。

浅谈音乐厅声学设计发展史

浅谈音乐厅声学设计发展史 舞台在音乐厅当中扮演着不可替代的角色,重要之性无需多言,早期的舞台声学设计侧重考虑改善观众席的声学环境,合理的舞台声学设计不仅可以改善观众厅的听闻环境,更可改善舞台本身的声学环境,创造出有利于演奏者的声学条件,演的高质量才可达到听闻的高质量。赛宾:专业做音乐厅声学设计。本文通过回顾厅堂舞台声学的实践与理论研究成果,解读有利于演奏者声学条件的舞台声学设计方法。 1 引言 浅谈音乐厅声学设计发展史。自1895年赛宾发现混响时间,人们开始科学地对待室内声学。而在很长一段时间内,其焦点都是围绕观众厅的声学特性,以及听众的听闻效果,而对表演者的听闻条件,舞台声学设计则有所忽视。毫无疑问,表演者与听众,舞台与观众厅共同构成观演主体与观演空间,二者的配合才能达到完美的观演、视听效果。 音乐厅是供交响乐(包括民族音乐)、室内乐及声乐演出的专用厅堂,它是音质要求最高的观演场所,由于音乐厅建筑投资维护费用较高,也有多功能剧场设可移动乐罩兼音乐演奏功能。本文通过回顾音乐厅堂舞台声学的实践与理论研究成果,解读有利于演奏者的舞台声学设计的方法。 2 舞台演奏直达声的分布与衰减 据统计,古典音乐厅舞台(乐台)面积平均约为158m2,近现代音乐厅乐台面积平均为203m2,交响乐演奏时乐队乐器人数较多。我们按宽18m,深10m考虑,舞台对角线约为20m,乐师间最近与最远距离的比值可以达1:20,我们知道乐师间听闻的直达声随距离增大而衰减,乐师间相互的遮挡引起进一步的衰减,特别是在高频段,同时乐队中不同乐器的声功率级有差异,因此,相邻、相隔乐师间的听闻效果相差较大,若舞台上无任何反射界面,乐师间的相互听闻条件与整体感很难保证。 3 早期古典“鞋盒”式音乐厅尽端式舞台“乐罩” 浅谈音乐厅声学设计发展史。在长期经验与技术限制的基础上,古典音乐厅多为“鞋盒”式,矩形平面形体且相对窄而高,具有混响时间长,早期反射声丰富,音质效果良好,由于理论研究的滞后,在较长一段时间很多人认为只有“鞋盒式”音乐厅才能获得完美音质。古典音乐厅均采用尽端式舞台设计,即演奏台设在观众厅的尽端部位,舞台除面向观众席开口一侧,均有建筑界面包围。其中包括世界公认的三座音质最好的音乐厅:维也纳音乐厅,阿姆斯特丹音乐厅以及波士顿音乐厅,它们的舞台均为尽端式,舞台侧墙为八字形,向观众席倾斜,开口宽度比观众席稍窄,舞台面积在150~160m2,乐队布置紧凑,顶板面向观众席方向微倾斜,舞台侧墙和顶板均可给舞台反射声,有利于乐师相互听闻,并把部分声能反射给观众席,使前排听众获得较好的融合声。其中波士顿音乐厅舞台深约10m,舞台平均宽度约15~16m、顶部平均高度约12~13m。尽端式舞台至今仍然是现代音乐厅常用的舞台形式,特别是对于容量不大的厅堂。 4 环绕式厅中心式舞台与“浮云式”反射板 1963年,由德国建筑师Hans Scharoun和声学家L.Cremer设计的柏林爱乐音乐厅,采用山地葡萄园式座位布置,即中心式环绕舞台形式,并获得了优良的音质效果,从此动摇了只有“鞋盒”式厅才能产生完美音质的神话。中心式舞台的布置方式为观众席环绕舞台四周,这种形式能够使大容量厅堂内的后排听众尽可能接近演奏者,从而获得足够强度的直达声,但相对于舞台空间,中心式舞台四周均为观众席,缺乏反射接口,通常只能通过顶部悬吊反射板未改善乐师间的相互听闻。 1965年,美国声学家L.L.Beranek和T.J.Schultz对早期声能与混响声能的比值对音质的重要影响做了新的论述,研究了声能比对音乐丰满度、温暖度及清晰度的影响,他们还通过人工合成声场试验发现早期声中以高频成份对清晰度、丰满度起主要作用,而只要后期混响能中有丰富的低频成份就能得到温暖感。这一发现对于舞台反射板设计,尤其是“浮云式”舞台反射板设计具有很重要的意义。舞台上空采用非连续声反射板(“浮云式”反射板),在中高频具有良好反射性能,同时可使低频声在反射板后面的舞台空间里充分地混响,从而给音乐增加了温暖感。1989年丹麦声学家J.H.Rinde研究表明,对于浮云式反射板,低频反射特性主要取决于反射板的相对密度,而与单个反射板的大小关系不大;高频反射特性则主要取决于反射板的尺寸以及板间的距离,为舞台反射板设计提供进一步的理论基础。 5 有利于演奏者的声学条件实验与舞台音质评价研究 浅谈音乐厅声学设计发展史。从19世纪70年代末开始声学家们开始对有利于演奏者的舞台声学进行系统的研究。典型的研究有,新西兰声学家MarshalI.A.H于1978通过对已建成的若干大厅进行分析,并且做了一系列的仿真实验,在消声室对演奏声用录音,再经过适当的处理用扬声器重放,模拟不同时间序列、频率特性的反射声回馈给演奏者(三重奏组),并记录演奏者的主观感受,较为系统地提出有利于舞台音乐演奏的声学条件,具体内容为:1)舞台早期反射声对演奏的支持是很重要的,且反射声延时不能过长,有利于相互听闻的延时范围是17~35ms;2)反射声中的高频成分对音乐演出至为重要。500HZ以下的反射声对演奏支持是有害的,建议对500Hz以下的声音相对降低3dB;3)当演奏者之间的反射声声压级超过4dB,演奏的不平衡将被察觉,建议以3dB为标准设计不同乐器之间的反射声声压级差。 1989年,声学家GADE.A.C以演奏者为研究对象,对丹麦和英国各8个厅堂做了舞台音质评价的实验,其中主观评价参数有:混响感、演唱演奏支持感、音色质量、活跃感、相互听闻以及整体感觉,研究指出,演奏者在自己熟悉的厅堂,关注的是早期声能的支持,而在不熟悉的厅堂演出,首先关注的是厅堂混响感的支持。客观评价主要包括有混响时间RT、早期衰变时间EDT、舞台支持因子ST(E)、以及低音比EDTF。GADE,A.C在对16个厅堂的测量分析后,指出:演奏者的主观感受,包括自身演奏的轻松感、支持感以及整体演奏的协调轻松感与

相关文档
相关文档 最新文档