文档库 最新最全的文档下载
当前位置:文档库 › 重大信号与系统作业

重大信号与系统作业

重大信号与系统作业
重大信号与系统作业

Signals and System

Chap1

1.6 Determine whether or not each of the following signals is periodic: (a): (/4)1()2()j t x t e u t π+= (b): 2[][][]x n u n u n =+- (c): 3[]{[4][14]}k x n n k n k δδ∞

=-∞

=

----∑

1.9 Determine whether or not each of the following signals is periodic, If a signal is periodic , specify its fundamental period:

(a): 101()j t x t je = (b): (1)2()j t x t e -+= (c):

73[]j n x n e π=

(d): 3(1/2)/54[]3j n x n e π+= (e): 3/5(1/2)5[]3j n x n e += 1.14 considera periodic signal 1,01

()2,12

t x t t ≤≤?=?

-<

derivative of this signal is related to the “impulse train”()(2)k g t t k δ∞

=-∞

=-∑,

with period T=2. It can be shown that 1122()

()()dx t A g t t A g t t dt

=-+-. Determine the values of 1A , 1t , 2A , 2t .

1.15.Consider a system S with input x[n] and output y[n].This system is obtained through a series interconnection of a system S 1 followed by a system S

2. The input-output relationships for S 1 and S 2 are S 1: ],1[4][2][111-+=n x n x n y S 2: ]3[2

1]2[][222-+-=n x n x n y

Where ][1n x and ][2n x denote input signals.

(a) Determine the input-output relationship for system S.

(b)Does the input-output relationship of system S change if the order in which S 1 and S 2 are connected in series is reversed(i e ,if S 2 follows S 1)? 1.16.Consider a discrete-time system with input x[n] and output y[n].The input-output relationship for this system is

]2[][][-=n x n x n y

(a) Is the system memoryless?

(b) Determine the output of the system when the input is ][n A δ, where A is any real or complex number. (c) Is the system invertible?

1.17.Consider a continuous-time system with input x(t) and output y(t) related by

))(sin()(t x t y =

(a) Is this system causal? (b) Is this system linear?

1.21.A continous-time signal ()x t is shown in Figure P1.21. Sketch and label carefully each of the following signals:

(a): (1)x t - (b): (2)x t - (c): (21)x t + (d): (4/2)x t - (e): [()()]()x t x t u t +- (f):

()[(3/2)(3/2)]x t t t δδ+--

1.2

2. A discrete-time signal ()x t is shown in Figure P1.22. Sketch and

label carefully each of the following signals:

(a): [4]x n - (b): [3]x n - (c): [3]x n (d): [31]x n + (e): [][3]x n u n - (f): [2][2]x n n δ-- (g):

11

[](1)[]22

n x n x n +- (h): 2[(1)]x n - 1.25.Determine whether or not each of the following continuous-time signals is periodic. If the signal is periodic, determine its fundamental period.

(a): ()3cos(4)3

x t t π

=+ (b): (1)()j t x t e π-= (c):

2()[cos(2)]3

x t t π

=-

(d): (){cos(4)()}x t t u t ενπ= (e): (){sin(4)()}x t t u t ενπ= (f): (2)

()t n n x t e

--=-∞

=

1.26. Determine whether or not each of the following discrete-time signals is periodic. If the signal is periodic, determine its fundamental period. (a):6[]sin(

1)7x n n π=+ (b): []cos()8

n

x n π=- (c): 2[]cos()8

x n n π

= (d):

[]cos()cos()

24

x n n n ππ

=

(e):

[]2cos()sin()2cos()4826

x n n n n πππ

π

=+-+

Chap 2

2.1 Let

]3[]1[2][][---+=n n n n x δδδ and ]1[2]1[2][-++=n n n h δδ

Compute and plot each of the following convolutions: (a)][*][][1n h n x n y = (b)][*]2[][2n h n x n y += (c)]2[*][][3+=n h n x n y

2.3 Consider an input x[n] and a unit impulse response h[n] given by

],2[)2

1

(][2-=-n u n x n

].2[][+=n u n h

Determine and plot the output ].[*][][n h n x n y = 2.7 A linear system S has the relationship

[][][2]

k y n x k g n k ∞

=-∞

=

-∑

Between its input x[n] and its output y[n], where g[n]=u[n]-u[n-4]. (a) Determine y[n] where ]1[][-=n n x δ (b) Determine y[n] where ]2[][-=n n x δ (c) Is S LTI?

(d) Determine y[n] when x[n]=u[n] 2.10 Suppose that

?

?

?≤≤=elsewhere t t x ,01

0,1)( And )/()(αt x t h =,where 10≤<α.

(a) Determine and sketch )(*)()(t h t x t y =

(b) If dt t dy /)( contains only three discontinuities, what is the value of

α?

2.11 Let

)5()3()(---=t u t u t x and )()(3t u e t h t -=

(a) Compute )(*)()(t h t x t y =. (b) Compute )(*)/)(()(t h dt t dx t g =. (c) How is g(t) related to y(t)? 2.20 Evaluate the following integrals: (a

dt t t u )cos()(0?

-

(b)?+5

0)3()2sin(dt t t δπ (c)

?

--5

5

1)2cos()1(τπττd u

2.27 We define the area under a continuous-time signal )(t v as

?∞

∞-=dt t v A v )(

Show that if )(*)()(t h t x t y =, then

h x y A A A =

2.40 (a) an LTI system with input and output related through the equation

τττd x e t y t

t )2()()(-=?∞---

What is the impulse response h(t) for this system?

(b) Determine the response of the system when the input x(t) is as shown in Figure P2.40.

Chap 3

3.1 A continuous-time periodic signal x(t) is real value and has a fundamental period T=8. The nonzero Fourier series coefficients for x(t) are

j a a a a 4,2*

3311====--.

Express x(t) in the form

)cos()(0k k k k t A t x φω+=∑∞

=

3.2 A discrete-time periodic signal x[n] is real valued and has a fundamental period N=5.The nonzero Fourier series coefficients for x[n] are

10=a ,4/2πj e a --=,4/2πj e a =,3

/*442πj e

a a ==- Express x[n] in the form

)sin(][10k k k k n A A n x φω++=∑∞

=

3.3 For the continuous-time periodic signal

)3

5sin(4)32cos(

2)(t t t x π

π++= Determine the fundamental frequency 0ω and the Fourier series coefficients k a such that

t

jk k k

e

a t x 0)(ω∑∞

-∞

==

.

3.5 Let 1()x t be a continuous-time periodic signal with fundamental frequency 1ω and Fourier coefficients k a . Given that

211()(1)(1)x t x t x t =-+-

How is the fundamental frequency 2ω of 2()x t related to ?Also, find a relationship between the Fourier series coefficients k b of 2()x t and the coefficients k a You may use the properties listed in Table 3.1. 3.8 Suppose we are given the following information about a signal x(t): 1. x(t) is real and odd.

2. x(t) is periodic with period T=2 and has Fourier coefficients k a .

3. 0=k a for 0||>k .

4 1|)(|2

12

02=?dt t x .

Specify two different signals that satisfy these conditions.

3.13 Consider a continuous-time LTI system whose frequency response is

?∞

∞--=

ωωω)

4sin()()(dt e t h j H t j

If the input to this system is a periodic signal

?

?

?<≤-<≤=84,14

0,1)(t t t x With period T=8,determine the corresponding system output y(t). 3.15 Consider a continuous-time ideal lowpass filter S whose frequency response is

1, (100)

()0, (100)

H j ωωω?≤?=?>??

When the input to this filter is a signal x(t) with fundamental period

6/π=T and Fourier series coefficients k a , it is found that

)()()(t x t y t x S

=→.

For what values of k is it guaranteed that 0=k a ?

3.35.Consider a continuous-time LTI system S whose frequency response is 1,||250

()0,H j otherwise ωω≥?=?

?

When the input to this system is a signal x(t) with fundamental period

/7T π= and Fourier series coefficients k a ,it is found that the output y(t)

is identical to x(t).

For what values of k is it guaranteed that 0k a =?

Chap 4

4.1 Use the Fourier transform analysis equation(4.9)to calculate the Fourier transforms of;

(a))1()1(2---t u e t (b)|1|2--t e

Sketch and label the magnitude of each Fourier transform.

4.2 Use the Fourier transform analysis equation(4.9) to calculate the Fourier transforms of: (a))1()1(-++t t δδ (b)

)}2()2({-+--t u t u dt

d

Sketch and label the magnitude of each Fourier transform.

4.5 Use the Fourier transform synthesis equation(4.8) to determine the inverse Fourier transform of ()()|()|j X j X j X j e ωωω= ,where

|()|2{(3)(3)}X j u u ωωω=+-- 3

()2

X j ωωπ=-+

Use your answer to determine the values of t for which x(t)=0. 4.6 Given that x(t) has the Fourier transform ()X j ω, express the Fourier transforms of the signals listed below in the terms of ()X j ω.You may find useful the Fourier transform properties listed in Table4.1. (a))1()1()(1t x t x t x --+-= (b))63()(2-=t x t x

(c) )1()(22

3-=t x dt

d t x

4.11 Given the relationships

)()()(t h t x t y *=

And

)3()3()(t h t x t g *=

And given that x(t) has Fourier transform )(ωj X and h(t) has Fourier

transform )(ωj H ,use Fourier transform properties to show that g(t) has the form

)()(Bt Ay t g =

Determine the values of A and B.

4.13 Let x(t) be a signal whose Fourier transform is

()()()(5)X j ωδωδωπδω=+-+-

And let

()()(2)h t u t u t =--

(a) Is x(t) periodic? (b) Is ()*()x t h t periodic?

(c) Can the convolution of two aperiodic signals be periodic?

4.14 Consider a signal x(t) with Fourier transform )(ωj X .Suppose we are given the following facts: 1. x(t) is real and nonnegative.

2. ),()}()1{21t u Ae j X j F t --=+ωωwhere A is independent of t.

3.?∞

∞-=πωω2|)(|d j X .

Determine a closed-form expression for x(t).

Chap 6

6.1 Consider a continuous-time LTI system with frequency response

()()|()|H j H j H j e ωωω= and real impulse response h(t). Suppose

that we apply an input 00()cos()x t t ωφ=+ to this system .The resulting output can be shown to be of the form

0()()y t Ax t t =-

Where A is a nonnegative real number representing an amplitude-scaling factor and 0t is a time delay. (a)Express A in terms of |()|H j ω. (b)Express 0t in terms of 0()H j ω

6.3 Consider the following frequency response for a causal and stable LTI system:

1()1j H j j ω

ωω

-=

+ (a) Show that |()|H j A ω=,and determine the values of A.

(b)Determine which of the following statements is true about ()τω,the group delay of the system.(Note ()(())/d H j d τωωω=- ,where ()H j ω is expressed in a form that does not contain any discontinuities.) 1.()0 0for τωω=> 2.()0 0for τωω>> 3 ()0 0for τωω<>

6.5 Consider a continuous-time ideal bandpass filter whose frequency response is

??

?≤≤=elsewhere

j H c

c ,03||,1)(ωωωω (a) If h(t) is the impulse response of this filter, determine a function g(t) such that

)(sin )(t g t

t

t h c πω=

(b) As c ω is increased, dose the impulse response of the filter get more concentrated or less concentrated about the origin?

Chap 7

7.1 A real-valued signal x(t) is know to be uniquely determined by its samples when the sampling frequency is 10,000s ωπ=.For what values of

ω is ()X j ω guaranteed to be zero?

7.2 A continuous-time signal x(t) is obtained at the output of an ideal lowpass filter with cutoff frequency 1,000c ωπ=.If impulse-train sampling is performed on x(t), which of the following sampling periods would guarantee that x(t) can be recovered from its sampled version using an appropriate lowpass filter? (a) 30.510T -=? (b) 3210T -=? (c) 410T -=

7.3 The frequency which, under the sampling theorem, must be exceeded by the sampling frequency is called the Nyquist rate. Determine the Nyquist rate corresponding to each of the following signals: (a)()1cos(2,000)sin(4,000)x t t t ππ=++

(b)sin(4,000)

()t x t t

ππ=

(c) 2

sin(4,000)()(

)t x t t

ππ= 7.4 Let x(t) be a signal with Nyquist rate 0ω. Determine the Nyquist rate for each of the following signals: (a)()(1)x t x t +- (b)

()

dx t dt

(c)2()x t (d)0()cos x t t ω

7.9 Consider the signal

2

sin 50()(

)t x t t

ππ= Which we wish to sample with a sampling frequency of 150s ωπ= to obtain a signal g(t) with Fourier transform ()G j ω.Determine the maximum value of 0ω for which it is guaranteed that

0()75() ||G j X j for ωωωω=≤

Where ()X j ω is the Fourier transform of x(t).

Chap 8

8.1 Let x(t) be a signal for which M ()0 when ||> X j ωωω=.Another signal y(t)

is

specified

as

having

the

Fourier

transform

()2(())c Y j X j ωωω=-.Determine a signal m(t) such that

8.3 Let x(t) be a real-valued signal for which

()0 ||2,000X j when ωωπ=>.Amplitude modulation is performed to

produce the signal

()()sin(2,000)g t x t t π=

A proposed demodulation technique is illustrated in Figure P8.3 where g(t) is the input, y(t) is the output, and the ideal lowpass filter has cutoff frequency 2,000π

and passband gain of 2. Determine y(t).

FigureP8.3

8.22 In Figure P8.22(a), a system is shown with input signal x(t) and output signal y(t).The input signal has the Fourier transform ()X j ω shown in Figure P8.22(b). Determine and sketch ()Y j ω, the spectrum of y(t).

8.28 In Section 8.4 we discussed the implementation of single-sideband modulation using 090 phase-shift networks, and in Figure8.21 and 8.22 we specifically illustrated the system and associated

()()()

x t y t m t =

spectra required to retain the lower sidebands.

Figure P8.28(a) shows the corresponding system required to retain the upper sidebands. (a) With the same

()

X j ω illustrated in Figure8.22, sketch

12(),()Y j Y j ωω,and ()Y j ω for the system in FigureP8.28(a), and

demonstrate that only the upper sidebands are retained.

(b) F or ()X j ω imaginary, as illustrated in FigureP8.28(b), sketch

12(),()Y j Y j ωω and ()Y j ω for the system in FigureP8.28(a), and

demonstrate that , for this case also, only the upper sidebands are retained.

Chap 9

9.2 Consider the signal 5()(1)t x t e u t -=- and denote its Laplace transform by X(s).

(a)Using eq.(9.3),evaluate X(s) and specify its region of convergence. (b)Determine the values of the finite numbers A and 0t such that the Laplace transform G(s) of 50()()t g t Ae u t t -=-- has the same algebraic form as X(s).what is the region of convergence corresponding to G(s)? 9.5 For each of the following algebraic expressions for the Laplace transform of a signal, determine the number of zeros located in the finite s-plane and the number of zeros located at infinity:

(a)

1113s s +++ (b) 211

s s +-

(c) 3211

s s s -++

9.7 How many signals have a Laplace transform that may be expressed as

2(1)

(2)(3)(1)

s s s s s -++++ in its region of convergence?

Solution:

There are 4 poles in the expression, but only 3 of them have

different real part.

The s-plane will be divided into 4 strips which parallel to the

jw-axis and have no cut-across.

∴ There are 4 signals having the same Laplace transform

expression.

9.8 Let x(t) be a signal that has a rational Laplace transform with exactly two poles located at s=-1 and s=-3. If 2()() ()t g t e x t and G j ω=[ the Fourier transform of g(t)] converges, determine whether x(t) is left sided, right sided, or two sided. 9.9 Given that

1

(),{}Re{}s

at e u t Re s a s a

-?

>-+ Determine the inverse Laplace transform of

22(2)

(),Re{}3712

s X s s s s +=

>-++

9.10 Using geometric evaluation of the magnitude of the Fourier transform from the corresponding pole-zero plot ,determine, for each of the following Laplace transforms, whether the magnitude of the corresponding Fourier transform is approximately lowpass, highpass, or bandpass. (a): 11

(),{}1(2)(3)

H s e s s s =?>-++

(b): 221

(),{}12

s H s e s s s =

?>-++

(c): 2

32

(),{}121

s H s e s s s =?>-++ 9.13 Let ()()()g t x t x t α=+- ,Where ()()t x t e u t β-=. And the Laplace transform of g(t) is 2

(),1{}11

s

G s e s s =-

信号与系统大作业

中北大学 信号与系统综合性报告 学院:仪器与电子学院 专业:电子科学与技术 学号姓名:王鹏 学号姓名:张艺超 学号姓名:郭靖锋 学号姓名:蔡宪庆 学号姓名: 指导教师: 张晓明 2019年5 月13 日

1 设计题目时频域语音信号的分析与处理 2 设计目标对语音信号进行时频域分析和处理的基本方法 3 设计要求 1)分别录制一段男生和女生语音文件及相应有明显高频或低频干扰的语音文件*.wav,并将文件导入Matlab中; 2)分别分析各段语音的频谱,绘制其频谱图,分析语音信号和干扰信号的频段; 3)设计相应的滤波器,剔除含干扰的语音段的干扰信号,并分析滤波信号的频谱; 4)生成滤波后的语音文件,分析听觉效果。 4 理论分析 声音作为一种波,频率在20 Hz~20 kHz之间的声音是可以被人耳识别的 通过查阅资料显示,实际人声频率范围 男:低音82~392Hz,基准音区64~523Hz 男中音123~493Hz,男高音164~698Hz 女:低音82~392Hz,基准音区160~1200Hz 女低音123~493Hz,女高音220~1.1KHz 声音作为波的一种,频率和振幅就成了描述波的重要属性,频率的大小与我们通常所说的音高对应,而振幅影响声音的大小。声音可以被分解为不同频率不同强度正弦波的叠加。这种变换(或分解)的过程,称为傅立叶变换(Fourier Transform)。傅里叶变换之后可以得到男女声的频谱,从而分析男女声的特点,观察男女声频率集中的区域,在声音中加入高频噪声,分析高频噪声频率的分布,从而设计巴特沃斯滤波器进行滤波。 5 实验内容及步骤 5.1 获取音频文件 5.1.1 通过手机录音可直接获取wav音频文件,对于噪声的添加,我们选择单独录制高频 件,读取音频数据,在时域领域上相加,便获取到含有高频噪声的音频 5.2 音频的时域处理 5.2.1 wav属于无损音乐格式的一种,其文件包含采样频率,左右声道数据,在处理时, 由于我们使用的是matlab2012a,且录制时只有一个声道,可使用函数wavread()读取到一个一维数组,使用plot函数即可获取其音频时域图像 5.3 音频的频域处理 5.3.1 对于音频数组,我们采用fft函数进行傅里叶变换,获取到的是对称的复数数组,数组的前一半即为其频域,同样使用plot将其画出。 5.3.2 观察频域图,分析男女声特点。 5.4 噪声的去除 5.4.1 分析高频噪声频谱,找到合适的截止频率,设计巴特沃斯滤波器对高频噪声进行过滤。 5.4.2 将去除噪声的数组转换成音频文件

信号与系统作业作业答案

信号与系统作业作业答 案 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-

第二章 作业答案 2–1 已知描述某LTI 连续系统的微分方程和系统的初始状态如下,试求此系统的零输入响应。 (1))()(2)(2)(3)(t e t e t y t y t y +'=+'+'' 2)0(=-y ,1)0(-='-y 解: 根据微分方程,可知特征方程为: 0)2)(1(0232=++?=++λλλλ 所以,其特征根为: 1,221-=-=λλ 所以,零输入响应可设为:0)(221≥+=--t e C e C t y t t zi 又因为 ?? ?=-=????-=--='=+=--31 12)0(2)0(2 12121C C C C y C C y 所以,03)(2≥-=--t e e t y t t zi (2))(2)()(6)(5)(t e t e t y t y t y -'=+'+'' 1)0()0(=='--y y 。 解: 根据微分方程,可知特征方程为: 0)3)(2(0652=++?=++λλλλ 所以,其特征根为: 3,221-=-=λλ 所以,零输入响应可设为:0)(3221≥+=--t e C e C t y t t zi

又因为 ???-==??? ?=--='=+=--3 4 132)0(1)0(21 2121C C C C y C C y 所以,034)(32≥-=--t e e t y t t zi 2–2 某LTI 连续系统的微分方程为 )(3)()(2)(3)(t e t e t y t y t y +'=+'+'' 已知1)0(=-y ,2)0(='-y ,试求: (1) 系统的零输入响应)(t y zi ; (2) 输入)()(t t e ε=时,系统的零状态响应)(t y zs 和全响应)(t y 。 解: (1)根据微分方程,可知特征方程为: 0)2)(1(0232=++?=++λλλλ 所以,其特征根为: 1,221-=-=λλ 所以,零输入响应可设为:0)(221≥+=--t e C e C t y t t zi 又因为 ???=-=??? ?=--='=+=--43 22)0(1)0(2 12121C C C C y C C y 所以,034)(2≥-=--t e e t y t t zi (2) 可设零状态响应为:0)(221>++=--t p e C e C t y t x t x zs 其中p 为特解,由激励信号和系统方程确定。 因为)()(t t e ε= 所以,p 为常数,根据系统方程可知,23=p 。

西电数字信号处理大作业

第二章 2.25 已知线性时不变系统的差分方程为 若系统的输入序列x(x)={1,2,3,4,2,1}编写利用递推法计算系统零状态响应的MATLAB程序,并计算出结果。 代码及运行结果: >> A=[1,-0.5]; >> B=[1,0,2]; >> n=0:5; >> xn=[1,2,3,4,2,1]; >> zx=[0,0,0];zy=0; >> zi=filtic(B,A,zy,zx); >> yn=filter(B,A,xn,zi); >> figure(1) >> stem(n,yn,'.'); >> grid on;

2.28图所示系统是由四个子系统T1、T2、T3和T4组成的,分别用单位脉冲响应或差分方程描述为 T1: 其他 T2: 其他 T3: T4: 编写计算整个系统的单位脉冲响应h(n),0≤n≤99的MATLAB程序,并计算结果。 代码及结果如下: >> a=0.25;b=0.5;c=0.25; >> ys=0; >> xn=[1,zeros(1,99)]; >> B=[a,b,c]; >> A=1; >> xi=filtic(B,A,ys); >> yn1=filter(B,A,xn,xi); >> h1=[1,1/2,1/4,1/8,1/16,1/32]; >> h2=[1,1,1,1,1,1]; >> h3=conv(h1,h2); >> h31=[h3,zeros(1,89)]; >> yn2=yn1+h31; >> D=[1,1];C=[1,-0.9,0.81]; >> xi2=filtic(D,C,yn2,xi); >> xi2=filtic(D,C,ys); >> yn=filter(D,C,yn2,xi); >> n=0:99; >> figure(1) >> stem(n,yn,'.'); >> title('单位脉冲响应'); >> xlabel('n');ylabel('yn');

信号与系统课后答案.doc

1-1 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 1-3 1-5 判别下列各序列是否为周期性的。如果是,确定其周期。 (2))6 3cos()443cos()(2π πππ+++=k k k f (5))sin(2cos 3)(5t t t f π+= :

1-9 已知信号的波形如图1-11所示,分别画出 )(t f和 dt t df)( 的波形。 解:由图1-11知,) 3(t f-的波形如图1-12(a)所示() 3(t f-波形是由对) 2 3(t f- 的波形展宽为原来的两倍而得)。将) 3(t f-的波形反转而得到)3 (+ t f的波形,如图1-12(b)所示。再将)3 (+ t f的波形右移3个单位,就得到了)(t f,如图1-12(c)所示。dt t df)(的波形如图1-12(d)所示。 1-23 设系统的初始状态为)0(x,激励为)(? f,各系统的全响应)(? y与激励和初始状态的关系如下,试分析各系统是否是线性的。 (1)?+ =-t t dx x xf x e t y ) ( sin )0( )((2)?+ =t dx x f x t f t y ) ( )0( )( )( (3)?+ =t dx x f t x t y ) ( ])0( sin[ )((4))2 ( ) ( )0( )5.0( ) (- + =k f k f x k y k (5)∑=+ = k j j f kx k y ) ( )0( ) (

信号与系统习题答案

《信号与系统》复习题 1. 已知f(t)如图所示,求f(-3t-2)。 2. 已知f(t),为求f(t0-at),应按下列哪种运算求得正确结果?(t0和a 都为正值) 3.已知f(5-2t)的波形如图,试画出f(t)的波形。 解题思路:f(5-2t)?????→?=倍 展宽乘22/1a f(5-2×2t)= f(5-t) ??→?反转f(5+t)??→?5 右移 f(5+t-5)= f(t) 4.计算下列函数值。 (1) dt t t u t t )2(0 0--?+∞ ∞-) (δ (2) dt t t u t t )2(0 --?+∞ ∞-) (δ (3) dt t t e t ?+∞ ∞ --++)(2)(δ

5.已知离散系统框图,写出差分方程。 解:2个延迟单元为二阶系统,设左边延迟单元输入为x(k) 左○ ∑:x(k)=f(k)-a 0*x(k-2)- a 1*x(k-1)→ x(k)+ a 1*x(k-1)+ a 0*x(k-2)=f(k) (1) 右○ ∑: y(k)= b 2*x(k)- b 0*x(k-2) (2) 为消去x(k),将y(k)按(1)式移位。 a 1*y(k-1)= b 2* a 1*x(k-1)+ b 0* a 1*x(k-3) (3) a 0*y(k-2)= b 2* a 0*x(k-2)-b 0* a 0*x(k-4) (4) (2)、(3)、(4)三式相加:y(k)+ a 1*y(k-1)+ a 0*y(k-2)= b 2*[x(k)+ a 1*x(k-1)+a 0*x(k-2)]- b 0*[x(k-2)+a 1*x(k-3)+a 0*x(k-4)] ∴ y(k)+ a 1*y(k-1)+ a 0*y(k-2)= b 2*f(k)- b 0*f(k-2)═>差分方程 6.绘出下列系统的仿真框图。 )()()()()(10012 2t e dt d b t e b t r a t r dt d a t r dt d +=++ 7.判断下列系统是否为线性系统。 (2) 8.求下列微分方程描述的系统冲激响应和阶跃响应。 )(2)(3)(t e dt d t r t r dt d =+

哈工大测试大作业——信号的分析与系统特性——锯齿波

1 题目: 写出下列信号中的一种信号的数学表达通式,求取其信号的幅频谱图(单边谱和双边谱)和相频谱图,若将此信号输入给特性为传递函数为)(s H 的系统,试讨论信号参数的取值,使得输出信号的失真小。 (选其中一个信号) 000 2=tan ,=45,=1w 2K T s T π ααπ= =假设锯齿波的斜取周期,则圆周率,A=1 2 幅频谱和相频谱 00()(+nT )(

所以0001111 (t)=(sin(w t)+sin(2w t)+sin(3w t)+223 w π-…) 转换为复指数展开式的傅里叶级数: 0000000-20 2 1-0 --1 00-02222 0001= (t)e =e 11 =e e |11 = e (2) T jnw t T n jnw t jnw t jnw t jnw t c w dt T t dt t jnw jnw jnw n w n w w π-??-+? ???+-=? ? 其中 当n=0时,01 = =22 A c ,0=0? ; =1,2,3,n ±±±当… 时, 111 222n n c A n π=== , 1,2,32 =1,2,32 n n n π ?π?=??? ?-=---?? 等 等 用Matlab 做出其双边频谱 图 1锯齿波双边幅频谱 A = 1 T0 = 1

信号与系统综合作业

13级 工程信号与系统大作业题目语音信号的采集与频谱分析 成绩 班级 学号 姓名 日期2015-06-22

语音信号的采集与频谱分析 【摘要】本设计采集了一段语音,对其进行了时域分析,频谱分析,分析语音信号的特性。并应用matlab 平台对语音信号加入噪声,进一步设计了一个的低通滤波器,然后对加噪的语音信号进行滤波处理。 【关键词】语音信号;时域特性;频域特性; 滤波器 1绪论 1.1题目介绍 利用本课程中关于信号处理的相关内容,进行简单的语音信号采集及频谱分析工作,已达到加深对本课程信号与系统相关知识的理解,熟悉matlab工具的目的,并初步建立系统设计的概念。 1.2具体要求 (1)自己语音采集 自己唱一首歌,利用相关工具采集并存储为MATLAB可处理格式。 (2)歌星语音采集 将自己翻唱歌曲原曲处理为matlab可处理格式。 注意:自己语音与歌星语音应具有可比性,曲目、伴奏、时长等应相同 (3)频谱分析 利用matlab软件对两段音乐分别进行频谱分析,分析特性。 2基本原理 2.1 语音信号概述 语言是人类创造的,是人类区别于其他地球生命的本质特征之一。人类用语言交流的过程可以看成是一个复杂的通信过程,为了获取便于分析和处理的语音信源,必须将在空气中传播的声波转变为包含语音信息并且记载着声波物理性质的模拟(或数字)电信号,即语音信号,因此语音信号就成为语音的表现形式或载体。 语音学和数字信号处理的交叉结合便形成了语音信号处理。语音信号处理建立在语音学和数字信号处理基础之上。 2.2数字滤波器原理 2.2.1数字滤波器的概念

数字滤波器的实质是用一有限精度算法实现的离散时间线性时不变系统,以完成对信号进行滤波处理的过程。它是数字信号处理的一个重要分支,具有稳定性好、精度高、灵活性强、体积小、质量轻等诸多优点。 2.2.2数字滤波器的分类 数字滤波器根据不同的分类标准可以将滤波器分成不同的类别。 (1)根据单位冲激响应h(n)的时间特性分类 无限冲激响应(IIR)数字滤波器 有限冲激响应(FIR)数字滤波器 (2)根据实现方法和形式分类 递归型数字滤波器 非递归型数字滤波器 快速卷积型 (3)根据频率特性分类 低通数字滤波器、高通数字滤波器、带通数字波器、带阻数字滤波器 3具体实现 3.1声音信号获取 使用软件COOK EDIT PRO进行声音信号采集。对于44100Hz、22050Hz、11025Hz三种不同采样率共进行三次采集。采集完毕后使用COOL EDIT PRO软件进行后期处理,加入背景音乐。原唱音乐通过网络获得 所有音乐信号通过COOL EDIT PRO处理,统一音量大小、起始位置、时间长度并转换为matlab 可处理格式。 3.2声音信号的读取与打开 MATLAB中,[x,Fs,bits]=wavread('DATA');用于读取语音,采样值放在向量y中,fs表示采样频率(Hz),bits表示采样位数。 wavplay(x,Fs); 用于对声音的回放。向量x则就代表了一个信号,也即一个复杂的“函数表达式”,也可以说像处理一个信号的表达式一样处理这个声音信号。

西电信号大作业(歌曲人声消除)

信号与系统课程实践报告

1 内容与要求 通过信号分析的方法设计一个软件或者一个仿真程序,程序的主要功能是完成对歌曲中演唱者语音的消除。试分析软件的基本设计思路、基本原理,并通过MA TLAB 程序设计语言完成设计。更进一步地,从理论和实用的角度改善软件性能的方法和措施。 2 思路与方案 歌曲的伴奏左右声道相同,人声不同。所以通过左右声道不同处理信号,然后通过频率分析做带阻滤波滤除主要人声信号。 3 成果及展示代码:clear;clc; 文本文档林.wav'); ts=1/fs;

t=0:1/fs:N/fs; Nfft=N; df=fs/Nfft; fk=(-Nfft/2:Nfft/2-1)*df; a1=1;a2=-1;b1=1;b2=-1;%分离左声道和右声道SoundLeft=X(:,1); SoundRight=X(:,2);%对左声道和右声道进行快速傅里叶变换 SoundLeft_f=ts*fftshift(fft(SoundLeft,N)); SoundRight_f=ts*fftshift(fft(SoundRight,N));% 显示左右声道幅度变化figure(1) subplot(411) plot(t,SoundLeft); subplot(412) plot(t,SoundRight);%显示左右声道频率变化 subplot(413) f_range=[-5000,5000,0,0.1]; plot(fk,SoundLeft_f); axis(f_range); subplot(414) plot(fk,SoundRight_f); axis(f_range); NewLeft=a1*SoundLeft+a2*SoundRight; NewRight=b1*SoundLeft+b2*SoundRight; Sound(:,1)=NewLeft; Sound(:,2)=NewRight; Sound_Left_f=ts*fftshift(fft(NewLeft,N)); Sound_Right_f=ts*fftshift(fft(NewRight,N)); figure(2) subplot(411) plot(t,NewLeft); subplot(412) plot(t,NewRight); f_range=[-5000,5000,0,0.1]; subplot(413) plot(fk,Sound_Left_f); axis(f_range); subplot(414) plot(fk,Sound_Right_f); axis(f_range); BP=fir1(300,[800,2200]/(fs/2));% 根据左右声道差异进行滤波【800,2200】Hz CutDown=filter(BP,1,Sound); Sound_Final=Sound-0.6*abs(CutDown); Sound_Final_f=ts*fftshift(fft(Sound_Final,N)); figure(3)

信号与系统期末复习作业4及答案

第四章 答案 4-1.拉氏变换法和算子符号法在求解微分方程时的区别和联系? 解:拉氏变换法和算子符号法都能求解微分方程。拉氏变换法可以把初始条件 的作用计入,这就避免了算子法分析过程中的一些禁忌,便于把微分方程转为代数方程,简化求解过程。但拉氏变换法得到的系统函数可能丢失零输入响应的极点故无法用来求零输入响应,而算子符号法得到的传输算子则能反映出所有零输入响应极点。 4-2.判断下列说法的正误。 (1)非周期信号的拉氏变换一定存在; 错 (2)有界周期信号的收敛域为整个右半平面; 对 (3)能量信号的收敛域为整个s 平面; 错 (4)信号2 t e 的拉氏变换不存在。 错 4-3.求如下信号的拉氏变换。 (1))sinh(at ;(2))cosh(at ;(3)t t ωcos ;(4)t t ωsin 。 解:(1)22 111sinh()22at at e e a at s a s a s a --??=?-= ?-+-?? (2)2 2 111cosh()22at at e e s at s a s a s a -+??=?+= ?-+-?? (3)2222222cos () d s s t t ds s s ωωωω-???-=??++?? (4)22222 2sin () d s t t ds s s ωωωωω???-=??++?? 4-4.求图示信号)(t f 的拉氏变换)(s F 。标明其零点和极点。 解:22242(2)()()(2)()(2)t t t t f t e u t e u t e u t e e u t ------=--=-- t

(精品)信号与系统课后习题与解答第一章

1-1 分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号? 图1-1 图1-2

解 信号分类如下: ??? ?? ? ????--???--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为 (a )连续信号(模拟信号); (b )连续(量化)信号; (c )离散信号,数字信号; (d )离散信号; (e )离散信号,数字信号; (f )离散信号,数字信号。 1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问) (1))sin(t e at ω-; (2)nT e -; (3))cos(πn ; (4)为任意值)(00)sin(ωωn ; (5)2 21??? ??。 解 由1-1题的分析可知: (1)连续信号; (2)离散信号; (3)离散信号,数字信号; (4)离散信号; (5)离散信号。 1-3 分别求下列各周期信号的周期T : (1))30t (cos )10t (cos -; (2)j10t e ; (3)2)]8t (5sin [; (4)[]为整数)(n )T nT t (u )nT t (u )1(0 n n ∑∞ =-----。 解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各 分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。 (1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15 T 2π=。由于 5π

信号系统课后习题答案

2-7 试计算下列结果。 (1) t δ( t - 1 ) (2) ?∞ ∞--t t t d )1(δ (3) ?∞ --0 d )()3 π cos(t t t δω (4) ?+ - --003d )(e t t t δ 解 (1) t δ( t - 1 ) = δ( t - 1 ) (2) 1d )1(d )1(=-=-??∞ ∞-∞∞-t t t t t δδ (3) 21 d )()3πcos(d )()3πcos(00=-=-??∞∞ - -t t t t t δδω (4) 1d )(d )(e d )(e 0000300 3===-???+ - +- + - --t t t t t t t t δδδ 2-5 设有题2-6图示信号f ( t ),对(a)写出f ' ( t )的表达式,对(b)写出f " ( t ) 的表达式,并分别画出它们的波形。 题2-6图 解 (a) 20,2 1 ≤≤t f ' ( t ) = δ( t - 2 ), t = 2 -2δ( t - 4 ), t = 4 (b) f " ( t ) = 2δ( t ) - 2δ( t - 1 ) - 2δ( t - 3 ) + 2δ( t - 4 )

图p2-6 3-11 试求下列卷积。 (a) δ( t ) * 2 (b) ε( t + 3 ) * ε( t - 5 ) (c) t e -t ?ε( t ) * δ' ( t ) 解 (a) 由δ( t )的特点,故 δ( t ) * 2 = 2 (b) 按定义 ε( t + 3 ) * ε( t - 5 ) = ?∞ ∞---+ττετεd )5()3(t 考虑到τ < -3时,ε( τ + 3 ) = 0;τ > t -5时,ε( t -τ - 5 ) = 0,故 ε( t + 3 ) * ε( t - 5 ) =2,2d 5 3>-=?--t t t τ 也可以利用迟延性质计算该卷积。因为 ε( t ) * ε( t ) = t ε( t ) f 1( t - t 1 ) * f 2( t - t 2 ) = f ( t -t 1 -t 2 ) 故对本题,有 ε( t + 3 ) * ε( t - 5 ) = ( t + 3 - 5 )ε( t + 3 - 5 ) = ( t - 2 )ε( t - 2 ) 两种方法结果一致。 (c) t e -t ?ε( t ) * δ' ( t ) = [t e -t ε( t )]' = ( e -t - t e -t )ε( t ) 3-13 试求下列卷积。 (a) )()()()e 1(2t t t t εδε*'*-- (b) )](e [d d )(e 3t t t t t δε--* 解 (a)因为)()()()(t t t t δεεδ='=*',故 )()e 1()()()e 1()()()()e 1(222t t t t t t t t t εδεεδε----=*-=*'*- (b)因为)()(e t t t δδ=-,故 t t t t t t t t t t 333e 3)() ()(e )](e [d d )(e -----='*=* δδεδε 4-3 试求下列信号的频谱函数。 (1) t t f 2e )(-= (2) )(sin e )(0t t t f at εω?=- 原题(a>0) 解 (1) ??? ∞ --∞ --∞∞ --+==0 j 20j 2j d e e d e e d e )()(t t t t f F t t t t t ωωωω

机械工程测试技术基础大作业信号的分析与系统特性

Harbin Institute of Technology 机械工程测试技术基础 大作业 题目:信号的分析与系统特性 班级: 作者: 学号: 指导教师:李跃峰 设计时间:2015.6.22 哈尔滨工业大学

一、题目要求 1 1 ) ( + = s s H τ ; 2 22 40 ) ( n n n s s s H ω ζω ω + + = ; 二、设计过程 1) 写出波形图所示信号的数学表达通式; 在一个周期内三角波可表示为 ; 其傅里叶级数展开式为 2)求取其信号的幅频谱图(单边谱和双边谱)和相频谱图; 1、单边谱 幅频谱函数 相频谱函数 幅频谱、相频谱图如下图示: 2、双边谱 傅里叶级数的复指数展开为: A T0 )(t x t T0/2

则 则幅频谱、相频谱图如下图所示: 3)画出表中所给出的系统H (s )的伯德图; 1、一阶系统的传递函数为 ,则Bode 图为:

2、二阶系统的传递函数为,则Bode图为: 3)若将此信号输入给特性为传递函数为H(s)的系统中,求其响应; 1、一阶响应 对于该输入信号可以对每一项单独计算系统输出相应,然后相加即可。

x(t) 例如:对于,解微分方程,其解为: 便是系统对该正弦激励的响应。式中:A= 进而可以算出每一项的响应,相加就可以得到全部响应。 2、二阶响应 对于该输入信号可以对每一项单独计算系统输出相应,然后相加即可。 x(t) 例如:对于,解微分方程,其解为: 便是系统对该正弦激励的响应。 式中:; ; ; ; 带入ωn=0.04,ζ= 0.08即可得到该正弦激励响应,进而可以算出每一项的响应,相加就可以得到全部响应。 4)讨论信号参数的取值,使得输出信号的失真小。 对于线性系统,正弦函数的输出和输入满足关系: 对于二阶系统,正弦函数的输出和输入满足关系:

信号系统习题解答3版-3

信号系统习题解答3版-3

第3章习题答案 3-1 已知周期矩形脉冲信号的重复频率 5 kHz f =,脉宽20 s τ=μ,幅度10V E =,如图题 3-1所示。用可变中心频率的选频回路能否从该周期矩形脉冲信号中选取出5,12,20,50,80及100 kHz 频率分量来?要求画出图题3-1所示信号的频谱图。 图 题3-1 解:5kHz f =,20μs τ=,10V E =,1 1 200T s f μ= =,41210f ππΩ== 频谱图为 从频谱图看出,可选出5、20、80kHz 的频率分量。 3-3 求图题3-3 所示周期锯齿信号指数形式的傅里叶级数,并大致画出频谱图。 图 题3-3 解: ()f t 在一个周期(0,T 1)内的表达式为: 11 ()()E f t t T T =- - 111110011111()()(1,2,3)2T T jn t jn t n E jE F f t e dt t T e dt n T T T n π -Ω-Ω==--=- =±±±??L 11010011111()()2 T T E E F f t dt t T dt T T T ==--=?? 傅氏级数为: n c 1 2(kHz) f 5205010015080

111122()22244j t j t j t j t E jE jE jE jE f t e e e e ππππ Ω-ΩΩ-Ω=-+-+-L (1,2,3)2n E F n n π = =±±±L (0)2 (0)2 n n n π?π?->??=? ??? 其中:112T πΩ= 111124 01112411()cos T T T T E a f t dt E tdt T T π --==Ω=?? n F 2E π 6E π 10E π1 Ω13Ω1 5Ω1-Ω13-Ω15-ΩL L 4E π 12Ω14Ω8E π 2E 12-Ω14-Ω2 π- 2 πn ?15-Ω13-Ω1 -Ω1 Ω1 3Ω1 5ΩL L 1 2Ω12-Ω14-Ω14Ω

(完整版)信号与系统习题答案.docx

《信号与系统》复习题 1.已知 f(t) 如图所示,求f(-3t-2) 。 2.已知 f(t) ,为求 f(t0-at) ,应按下列哪种运算求得正确结果?(t0 和 a 都为正值)

3.已知 f(5-2t) 的波形如图,试画出f(t) 的波形。 解题思路:f(5-2t)乘a 1 / 2展宽 2倍f(5-2 × 2t)= f(5-t)

反转 右移 5 f(5+t) f(5+t-5)= f(t) 4.计算下列函数值。 ( 1) ( 2) ( t ) t 0 )dt t 0 u(t 2 (t t 0)u(t 2t 0 )dt ( 3) (e t t ) (t 2)dt 5.已知离散系统框图,写出差分方程。 解: 2 个延迟单元为二阶系统,设左边延迟单元输入为 x(k) ∑ 0 1 1) → 左○ :x(k)=f(k)-a *x(k-2)- a*x(k- x(k)+ a 1*x(k-1)+ a 0*x(k-2)=f(k) (1) ∑ y(k)= b 2*x(k)- b 0*x(k-2) (2) 右○ : 为消去 x(k) ,将 y(k) 按( 1)式移位。 a 1*y(k-1)= b 2 * a 1*x(k-1)+ b * a 1*x(k-3) (3) a 0*y(k-2)= b 2 * a 0*x(k-2)-b 0* a 0*x(k-4) (4) (2) 、( 3)、( 4)三式相加: y(k)+ a 1*y(k-1)+ a 0*y(k-2)= b *[x(k)+ a 1 *x(k-1)+a *x(k-2)]- b *[x(k-2)+a 1*x(k-3)+a *x(k-4)] 2 0 0 0 ∴ y(k)+ a 1 *y(k-1)+ a *y(k-2)= b 2 *f(k)- b *f(k-2) ═ >差分方程

第二次信号与系统作业

信号与系统下半年作业1 一、判断题: 1.拉普拉斯变换满足线性性。 √ 2.拉普拉斯变换是连续时间系统进行分析的一种方法。 √ 3.冲击信号的拉氏变换结果是一个常数。 √ 4.单位阶跃响应的拉氏变换称为传递函数。 × 二、填空题 1.如果一个系统的幅频响应是常数,那么这个系统就称为 全通系统 。 2.单位冲击信号的拉氏变换结果是 ( 1 ) 。 3.单位阶跃信号的拉氏变换结果是 (1 / s) 。 4.系统的频率响应和系统的传递函数之间的关系是把传递函数中的s 因子用ωj 代替后的数学表达式。 5.从数学定义式上可以看出,当双边拉氏变换的因子s=j ω时,双边拉氏变换的就变成了傅立叶变换的定义式,所以双边拉氏变换又称为 广义傅立叶变换 。 6、单边拉普拉斯变换(LT)的定义式是:?∞ -=0)()(dt e t f s F st . 7、双边拉普拉斯变换(LT)的定义式是:? ∞ ∞ --=dt e t f s F st )()(. 三、计算题 1. 求出以下传递函数的原函数 1)F (s )=1/s 解:)()(t u t f = 2)F(s)= 1 1+s 解:f (t)=)(t u e t - 3)F(s)= ) 1(12-s s 解:F(s)= ) 1(1 2-s s = )1)(1(1+-s s s =15.0-+s 15.0++ s -s 1 f (t)= +-)(5.0t u e t -)(5.0t u e t )(t u 2.根据定义求取单位冲击函数和单位阶跃函数的拉氏变换。

L [)](t δ=?+∞ ∞ --dt e t st )(δ=1 L [u (t)]= ?+∞∞ --dt e t u st )(=?+∞ -0dt e st =s 1 3、已知信号)(t f 是因果信号其拉氏变换为F (s )=2 1 s ,试求)0(f =? 答案:0lim )(lim )(lim )0(2 ==?==∞→∞ →→s s s F s t f f s s t 5、已知信号)(t f 是因果信号其拉氏变换为F (s )= ) 100010() 10)(2(2++++s s s s s ,试求)(∞f =? 答案:由终值定理 02.0) 100010() 10)(2(lim )(lim )(2 =++++==∞→→s s s s s s s sF f s s 5、求)()(3 t u t t f =的拉氏变换 答案:4 6 )]([s t f L = (Re(s) > 0) 一、判断题 (1)如果x(n)是偶对称序列,则X(z)=X(z -1)。 √ (2)时不变系统的响应与激励施加的时刻有关。 × (3)nx(n)的Z 变换结果是-zX(z)。 × (4)单位阶跃序列的Z 变换结果是常数 × 二、填空题 1.对于理想的低通滤波器,所有高于截止频率的频率分量都将 不能 通过系统,而低于截止频率的频率分量都将 能够 的通过系统。 2.称X(n)与X (z )是一对 ZT 变换对 。 3离散时间系统是指输入、输出都是 序列 的系统。 4.在没有激励的情况下,系统的响应称为 零输入响应 。 5.离散系统的传递函数定义式是: H (z )=Y(z) / X(z) 。 6。系统的零状态响应等于激励与 其单位冲激响应之间的卷积 。 信号与系统下半年作业2 1、 已知序列()f k 的()F z 如下,求初值(0)f , (1)f 及终值()f ∞。

信号与系统大作业

1)判断下列输出响应所对应的系统是否为线性系统?(其中y(0)为系统的初始状态,f(t)为系统的输入激励,y(t)为系统的输出响应)。 2)某系统的输入为()e t ,输出为()r t ,且2()()(1)r t e t e t =+?,则该系统是一个 (线 性/非线性)、 (时变/时不变) 、 (因果/非因果)系统。 3)计算下列各式的值 4)已知某二阶线性时不变连续时间系统的动态方程如下 初始条件y(0)=1, y '(0)=2, 输入信号f(t)=e-t u(t),求系统的完全响应y(t)。 5)已知某线性时不变系统的动态方程式如下: 起始条件为y(0-)=1,y' (0-)=3,求系统的零输入响应y(t)。 6)已知某线性时不变系统的动态方程式为 起始条件为y(0-)=2,y'(0-)= -1,求系统的零输入响应y(t)。 7)已知某线性时不变系统的动态方程式为 起始条件为y(0-)=1,y'(0-)=3,求系统的零输入响应y(t)。 8)已知某线性时不变系统的动态方程式为 试求系统的冲激响应h(t)。 9)已知某LTI 系统的动态方程式为y ′(t)+3y(t)=2f(t), 激励为f(t)=3u(t), 试求系统的冲激响应h(t),零状态响应y(t) ,全响应y1(t)。 10)已知某线性时不变离散系统的动态方程式为: 边界条件为y[-1]=0, y[-2]= 1/2,求系统的零输入响应y[k]。 "()6'()8()(),0y t y t y t f t t ++=>][]2[2]1[3][k f k y k y k y =?+?+2256()4()d y dy y t f t dt dt ++=22 44()23()d y dy d f y t f t dt dt dt ++=+22 25()43()d y dy d f y t f t dt dt dt ++=+()6()2()3'()dy t y t f t f t dt +=+

信号系统习题解答版-

第8章习题答案 8-2 列出图题8-2所示系统的差分方程,指出其阶次。 图 题8-2 解: 1201[][1][2][][1]y n b y n b y n a x n a x n ----=+- 二阶 8-3 列出图题8-3所示系统的差分方程,已知边界条件y [-1] = 0,分别求以下输入序列时的输出y [n ],并绘出其图形(用逐次迭代方法求)。 (1)[][]x n n δ= (2)[][]x n u n = 图 题8-3 解:1 [][1][]3 y n y n x n --= (1) 1[][]3n y n u n ?? = ??? (2)311[](())[]223n y n u n =- 8-7 求解下列差分方程的完全解。 (1)[]2[1]2, [0]1y n y n n y +-=-= (2)[]5[1],y n y n n =--+ [1]0y -= 解:(1)方程齐次解为:h [](2)n y n C =-,特解为:p 12[]y n D n D =+,代入原方程 121212142(1)2 2 , 39 D n D D n D n D D ++-+=-→==- 完全响应为:()14[]239n y n C n =-+-,代入1]0[=y 得:9 13=C ()1314[]2939 n y n n ∴=-+- (2)方程齐次解为:h [](5)n y n C =-,特解为:p 12[]y n D n D =+,代入原方程 0234

12121215 5(1)5 , 636D n D D n D n D D +=---+→== 完全响应为:()1 5 []5636 n y n C n =-++ ,代入0]1[=-y 得:36 5-=C ()1 1[][565]36 n y n n += -++ 8-12 用单边z 变换解下列差分方程。 (1)y [n ] + 0.1y [n -1] - 0.02y [n -2] = 10 u [n ],y [-1] = 4,y [-2] = 6 (2)y [n ] - 0.9y [n -1] = 0.05 u [n ],y [-1] = 1 (3)y [n ] + 2y [n -1] = (n -2) u [n ],y [0] = 1 解: (2)差分方程两边同时进行z 变换: 1 1 211 ()0.9[()[1]]0.05 1 (){10.9}0.050.9[1] 1 0.050.90.050.9()(1)(0.9)(0.9) (1)(10.9)(10.9)()0.50.45 10.910.9 0.50.45[][]0.10.9 z Y z z Y z y z z z Y z z y z z z z Y z z z z z z z Y z A B z z z z z z z y n z z -----+-=--=+--=+=+------=+=+----=+=---1Z 5[]0.45(0.9)[] n u n u n +(3)由差分方程得: 2(0)3(0)2(1)2(1)22 y y y y --+-=-∴-==- 差分方程两边同时进行z 变换: 1 2 211 1222 2 ()2[()(1)]21(1) 22(1) ()(1)(12)(1)(12)(12) ()33(1)2(1)(2)(1) 3949139(1)2(1)z z Y z z Y z y z z z z z y Y z z z z z z Y z z z A B C z z z z z z z z z ----++-=----=---+-++-+==++-+-+--=++ -+-

信号与系统第一章答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ (12) )]()3([2)(k k k f k ---=εε 解:各信号波形为

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2) )2()1(2)()(-+--=t r t r t r t f (5) )2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11) )]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k ---=εε 1-3 写出图1-3所示各波形的表达式。 1-4 写出图1-4所示各序列的闭合形式表达式。 1-5 判别下列各序列是否为周期性的。如果是,确定其周期。 (2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+= 解: 1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。 (1))()1(t t f ε- (2))1()1(--t t f ε (5) )21(t f - (6))25.0(-t f (7)dt t df ) ( (8)dx x f t ?∞-)( 解:各信号波形为

相关文档
相关文档 最新文档